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1 Introduction

Charting and analyzing vacua of supergravity theories is a fundamental task to find which
models can be related to string theory as well as to understand supersymmetry breaking,
the possible mechanisms to generate critical points with a positive value of the cosmological
constant and which supergravities lead to Anti-de Sitter (AdS) vacua with an interesting
holographic dual. Among all possible theories, the maximally supersymmetric ones stand
out for their fixed matter content and the limited number of possible deformations. For
these reasons there has been an active interest in their gaugings and in the analysis of the
resulting scalar potentials to understand their critical points, with a special emphasis on
the theories obtained by reducing string or M-theory on spheres, which give models with
vacua dual to maximally supersymmetric Conformal Field Theories (CFT).

The main challenges one faces when dealing with this problem are associated to the
very complicated structure of the scalar potential, a function of 70 or 42 scalars in the
maximal theory in 4 and 5 dimensions respectively, which also depends on a large number
of parameters (912 and 351 respectively) that fix the structure of the gaugings and therefore
of the full lagrangian, according to the rules specified in [1, 2]. Clearly such a large space
of parameters makes the search for critical points complicated and attempts at a general
classification extremely difficult. However, there has been some interesting progress in the
last few years that expanded a lot our knowledge of this particular aspect of maximal
supergravity theories.

There are mainly three techniques that have been used so far to find and analyze
critical points of (maximal) supergravity theories. The first one relies on using symmetries
to consistently truncate a particular theory to a subset of fields containing a limited number
of scalars and then extremising the resulting simplified potential. Pioneered in [3, 4], this
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technique allowed for the first and only analytic results for the maximal theories from the
’80s until recent years. For what concerns maximal supergravity in 5 dimensions, this
technique allowed the discovery of 5 vacua [5–8] of the SO(6) and SO(3,3) gauged models
in addition to the maximally symmetric one in [9], though often only partial results were
available on the spectrum about these vacua.

More recently, a new numerical approach, based on Machine Learning software libraries
was developed and employed in a series of papers [10–17] where many new vacua of the
maximal supergravities in 4 and 5 dimensions had been found. This also allowed to find
precise information about the spectrum of scalar fluctuations, residual gauge groups and
residual supersymmetry. In particular, 27 new AdS vacua were found in the SO(6) maximal
supergravity in 5 dimensions, with a detailed analysis in [15, 16].

While these approaches are very interesting and gave promising results, so far they
have only been used to produce critical points for a fixed scalar potential, which is result-
ing from a single specific gauging within the large infinite family of possible deformations.
This leaves open the possibility that other vacua with the same residual symmetries appear
in different gaugings. The approach we are going to use in this work uses instead the power
of the embedding tensor formalism in a way that allows for the search of critical points
independently from the choice of gauging. This approach was pioneered in a very different
context in [18] and used in the context of maximal 4-dimensional supergravity in [19–25],
as well as in half-maximal supergravity in four and three dimensions [26, 27]. In addition to
the power of investigating in a single sweep all deformations of maximal supergravity, this
approach has so far produced analytic results for the critical points and their full spectrum,
also providing information on the gauging, the residual gauge symmetry and supersymme-
try of the vacua. Moreover, for Minkowski vacua this led to understanding the moduli space
of these theories [24] as well as their uplift to string theory [28]. Finally, since the vacua are
obtained without specifying first the gauging, this means that we can exhaustively classify
vacua with a given residual symmetry for all possible consistent gaugings.

In this work we apply this last technique by investigating critical points of maxi-
mal gauged supergravities in 5 dimensions with a residual U(2) symmetry. We recover
all previously known vacua and we find four new ones, with different gauge groups and
cosmological constants. We also provide analytic results for their full mass spectra, thus
completing partial results for old vacua as well as fully analyzing new ones. We did not
find new AdS vacua, so that the only such vacua with U(2) symmetry are those appearing
in the maximal supergravity with SO(6) gauge group, but we have new Minkowski and de
Sitter vacua. A particularly interesting result is that two of the vacua appear in the same
theory with SO∗(6) =SU(3,1) gauge group, providing the first example n D ≥ 4 where
a single gauging of a maximal supergravity theory produces vacua in different classes of
the cosmological constant, one having a positive cosmological constant and the other a
vanishing cosmological constant and residual supersymmetry.1

In what follows, after some summary of the main ingredients of maximal supergravity
in 5 dimensions, we will discuss in some detail our technique in section 3 and then proceed

1There is a similar instance in maximal supergravity in 3 dimensions [29].
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with a detailed analysis of the U(2) invariant sector in section 4. We tried to summarize
all our results in tables that could be easily consulted and used for future reference.

2 N=8 supergravity in 5 dimensions

A comprehensive presentation of the 5-dimensional N = 8 supergravity lagrangian, super-
symmetry rules and of all the details regarding the gauging procedure can be found in [1],
which we are going to use as a basis for our analysis. In order to facilitate reading, we col-
lected in this section the main formulas and properties of the tensors relevant for our work.

Any gauging of 5-dimensional maximal supergravity is specified by the choice of the
embedding tensor ΘM

α, which selects the generators tα of the duality algebra e6(6) associ-
ated to the vector fields AMµ gauging the corresponding group. Once this tensor is fixed,
everything else in the lagrangian and supersymmetry transformations follows, according
to the analysis in [1]. The embedding tensor lives in the product representation 27 × 78
of E6(6), but it is constrained by supersymmetry and gauge-invariance to the represen-
tation 351, which is then further constrained by consistency conditions quadratic in the
embedding tensor.

These 351 parameters can also be codified in a different set of tensors that explicitly
transform under the maximal compact subgroup of E6(6), namely USp(8). Since we are
interested in the critical points of the scalar potential, we will in fact make extensive use
of the fermion shifts

Aij = Aji = ΩikΩjlA
kl = (Aij)∗ (2.1)

and
Ai,jkl = Ai,[jkl] = ΩimΩjnΩkpΩlqA

m,npq = (Ai,jkl)∗, (2.2)

satisfying
Ai,jklΩkl = 0 = A[i,jkl] = ΩijAi,jkl. (2.3)

These tensors are expressed in terms of the USp(8) indices i, j, . . . = 1, . . . , 8, which are
carried by the fermion fields and by the supersymmetry parameters εi (Ω is the USp(8)
symplectic-invariant form). In fact Aij is in the representation 36 and Ai,jkl in the 315
of USp(8), which are precisely the representations under which the 351 of E6(6) breaks.
They are called fermion shifts because they appear in the supersymmetry transformations
of the fermion fields and are non-vanishing only when there is a non-trivial gauging, hence
shifting the ungauged expression.

The relation between the fermion shifts and the embedding tensor is expressed via the
T-tensors:

T klmnij = 4A2
q,[klm δn]

[i Ωj]q + 3A2
p,q[kl Ωmn] Ωp[i Ωj]q , (2.4)

Ti
jkl = −ΩimA2

(m,j)kl − Ωim

(
Ωm[k A1

l]j + Ωj[k A1
l]m + 1

4ΩklA1
mj
)
, (2.5)

Z ij,kl = Ω[i[k A1
l]j] +A2

[i,j]kl , (2.6)
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and can be written as

XMN
P = ΘM

α(tα)NP = VmnM VNklVPij
[
2 δik T j lmn + T ijpqmn Ωpk Ωql

]
, (2.7)

where V ijM are the coset representatives of the E6(6)/USp(8) scalar manifold, satisfying
V ijMΩij = 0, and VMij are their inverse V ijM VNij = δNM .

Once we use the T-tensor, the quadratic constraints on the embedding tensor have a
rather simple expression:

T ijkl Zkl,mn = 0 = T ijklmnZmn,pq . (2.8)

Let us now come to the center of our analysis: the scalar potential and the mass
matrices. While everything can be defined in terms of the fermion shifts, for the scalar
masses we preferred to use a convenient expression which is valid only at the selected point
of the scalar manifold we use as a basis for our analysis. As we will see we are not going
to lose generality by this assumption.

Following a well-known general rule of gauged supergravity theories, the scalar poten-
tial is the square of the fermion shifts:

V = 3AijAij −
1
3 A

i,jklAi,jkl. (2.9)

We are looking for maximally-symmetric vacua, where all fields are vanishing except for
the scalar fields, which could have a constant vacuum expectation value and for the metric,
which either describes a de Sitter, Minkowski of anti-de Sitter spacetime. The scalar
equations of motion are solved by the critical point condition

Uijkl −
3
2Ω[ij Ukl]pq Ωpq + 1

8 (Umnpq Ωmn Ωpq) Ω[ijΩkl] = 0 , (2.10)

where the tensor Uijkl is

Uijkl = 4
3 A1

mq A2m,[ijk Ωl]q + 2A2
m,npq A2n,m[ij Ω|p|k Ωl]q . (2.11)

Once we find a critical point, we derive the masses of the various fields by computing
the eigenvalues of the respective mass matrices. For what concerns the gravitini ψiµ, the
mass matrix is directly proportional to the Aij shift matrix

M(3/2)
ij = 3

2 Aij . (2.12)

The masses of the other fermions χijk are then fixed by the eigenvalues of (indices ijk and
pqr are fully antisymmetrized)

M(1/2)
ijk,pqr = 8A[i,j[pqΩr]k] + 2A[i[pΩqjΩk]r] −

10
3 Al, ijkA

lm(Am,stuAn,stu)−1An,pqr. (2.13)

This mass matrix is the result of subtracting from the lagrangian mass the appropriate
term to remove the goldstinos from the spectrum for susy-breaking vacua. It is understood
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that in case of a degenerate matrix Am,stuAn,stu, we only compute the inverse for its non-
degenerate part, as this is the part related to the goldstino directions, which in the original
lagrangian mix the gravitinos and the spin-1/2 fields. The proof that such additional term
correctly producesM1/2

ijk,pqrA
s,pqr = 0 follows once one takes into account the equations of

motion (2.10) and one uses repeatedly the quadratic constraints (2.8). In particular the
matrix we are inverting is related to the shift of the gravitinos by means of the quadratic
identity known as supersymmetric ward identity

1
3 Aj,stuA

i,stu = 1
8 δ

i
j V + 3AipApj , (2.14)

which also tells us that the expression is explicitly dependent on the value of the cos-
mological constant at the vacuum. This expression generalizes previous similar formulae
for maximal theories in 4 dimensions, which were obtained in particular instances where
the cosmological constant was vanishing [30] or when the squared shifts had already been
diagonalized [25]. A simple way to understand this expression can also be obtained by
comparing it with the analogous expression for N = 1 supergravity presented in [31].

Also the masses of the bosonic degrees of freedom can be expressed in terms of the
same tensors. The vector mass matrix is

M(v)M
N = 1

3 V
ij
M TmnpqijTmnpq

klVNkl , (2.15)

while the squared masses of the tensor fields follow from the eigenvalues of the matrix

M(t)M
N = V ijM Zij mnZ

mnklVNkl . (2.16)

These mass matrices are clearly redundant, because the sum of vector and tensor fields
present in the theory is fixed, given that the tensor fields appear by dualization of the
vector fields. This means that both M(v) and M(t) are degenerate and contain zeros in the
directions where the fields have been dualized.

All the above expressions have general validity and should be evaluated at the critical
points satisfying (2.10). For the scalar fields, on the other hand, following [19] we provide
an expression that is valid only when the critical point is the base-point of the manifold,
i.e. when all scalars are vanishing. While this could seem a restriction, as we will explain
in the next section, it allows us to obtain the full spectrum for any critical point in any
arbitrary gauging. This is given in terms of the embedding tensor, the e6(6) generators, the
e6(6) structure constants fαβγ and the e6(6) Cartan-Killing metric ηαβ :

Mα
β = 16

5
(
ΘM

σ(tαtβ)MNΘN
γ(δγσ + 5 ησγ) + ΘM

σ(tα)MNΘN
γfβγ

σ

+ΘM
σ(tβ)MNΘN

γfαγ
σ + ΘM

σΘM
γfαγ

δfβδ
σ
)
.

(2.17)

The matrix is non-zero only in the non-compact directions, i.e. along the generators tα ∈
e6(6) \ usp(8). Moreover all goldstone fields appear with a zero eigenvalue.
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3 Extrema of the scalar potential

The procedure used to find and analyze the scalar potential has been developed in the case
of maximal supergravities in [19], developing on an old idea presented in a very different
context [18]. The main point is that the scalar potential is a function of the scalar fields
via the coset representatives V ijM and the embedding tensor ΘM

α

V (φ) = V (V(φ),Θ) . (3.1)

As explained above, vacua of the theory follow as solutions of the minimization condi-
tion (2.10). This is generally a rather complicated expression of the scalar fields (at best
ratios of polynomials and exponentials of the scalar fields). This is the reason why the
task of finding solutions to such complicated system of equations has always been very
challenging and researchers usually focussed on restricted sets of scalar fields in order to
simplify the task, which anyway is often performed only numerically.

The alternative proposed in [19] maps the problem to a coupled set of second and first
order algebraic conditions on the gauging parameters. This is possible because the scalar
manifold is homogeneous and therefore each point on the manifold can be mapped to any
other by an E6(6) transformation and at the same time the scalar potential is invariant
under the simultaneous action of these trasformations on both the coset representatives
and on the embedding tensor. This implies that we can always map any critical point of
the scalar potential to the “origin” at φ = 0. At such point, the scalar potential is a simple
quadratic function of the embedding tensor

V = 2
15 ΘM

αΘM
β (δαβ + 5ηαβ) (3.2)

and the minimization conditions become quadratic conditions on the embedding tensor,
which should be solved together with the quadratic constraints (2.8). The result is that
rather than fixing the gauging and then performing a scan of all possible critical points
of the scalar potential and then scan among all possible gaugings, one can simply solve
a set of quadratic conditions on the embedding tensor and then read the resulting values
of Θ that fix at the same time the gauge group, the value of the cosmological constant
and the masses at the critical point. Clearly any choice of point on the scalar manifold
is equivalent, but choosing φ = 0 has the advantage that it is a fixed point under the
action of the maximal compact subgroup of the isometries, namely USp(8), and therefore
we can consider modifications of the embedding tensor related only to the non-compact
transformations, so that there is a one-to-one correspondence between the parameters in
Θ related to the scalar fields and the independent directions on the scalar manifold. We
advise the reader to consult [19] for more details.

As we mentioned in the introduction, all our results are fully analytic. The reason we
are able to produce such results is related to the procedure we used to solve the quadratic
conditions coming from the minimization of the scalar potential and from the quadratic
constraints. While in fact we reduced our problem to a set of quadratic equations, we still
have generically a very large number of parameters and quadratic equations. This implies
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that not always one can see a straightforward analytic solution, because the equations are
coupled and they could become very high in order in terms of a single variable.

We mainly used two techniques. The first one is based on a simplification of the
set of quadratic equations by employing a choice of a more convenient Gröbner basis for
the polynomial generating the same solutions. This has been done with the aid of the
computer algebra system for polynomial computations SINGULAR [32]. Unfortunately when
the number of variables is very large, this can be extremely costly in time and therefore one
has to resort to a different way of reducing the set of equations. We found a very effective
procedure by borrowing an algorithm developed in the context of cryptography where the
solution of quadratic equations on finite fields is a common problem. In particular we
used the so-called XL algorithm [33], or extended linearization. The idea is rather simple.
Rather than solving directly the given set of quadratric equations, one produces sets of
linear equations in the monomials appearing in the equations and in all equations obtained
by multiplying the original set of equations by the variables and by their products up
to a fixed order. This produces sets of linear equations that can be solved rapidly and,
once interpreted in terms of the original variables, they may reduce to equations in a
single variable or in simpler sets of polynomial equations (like equality between different
monomials). This allows to fix and eliminate some of the variables from the problem and
then face a simpler set of equations, which could be solved directly or further simplified by
another iteration of the same procedure, or by a more convenient choice of Gröbner basis.

4 Vacua with residual U(2) symmetry

In this work we decided to scan gauged maximal supergravity in 5 dimensions for vacua
with a residual U(2) symmetry. Asking for a residual U(2) invariance of the vacuum (with
respect to a gauged or global symmetry) imposes restrictions on the allowed coefficients
of the embedding tensor and consequently of the fermion shift tensors, which should be
singlets with respect to this residual symmetry. To perform a full analysis, we therefore
looked at all the inequivalent embeddings of SU(2) in USp(8) and then singled out all pos-
sible inequivalent charge assignments for the remaining U(1)s, if any. We then performed
the branching of the 36 and 315 representations of USp(8) specifying the fermion shifts
with respect to the chosen embedding and classified all inequivalent cases. When the com-
mutant of the residual symmetry group in USp(8) was non-trivial we used the commuting
symmetries to further reduce the number of inequivalent variables by removing those that
could be generated by the action of the commutant. Once the non-vanishing components
of the fermion shifts had been identified we then proceeded to solve the set of quadratic
algebraic conditions coming from the scalar equations of motion (2.10) and the quadratic
constraints (2.8) and then collected all solutions, which may still be related by duality
transformations. Finally, we analyzed their properties and computed their mass spectrum
as we will discuss momentarily. In the summary tables we collected all inequivalent vacua
and reported the most general mass spectra for each of them. Unfortunately, two of the
branchings still present a very large number of singlets (≥ 48) and even combining all the
techniques mentioned above we have not been able to fully scan and solve their equations
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for all the allowed parameters, though for all solutions we recovered the same vacua we
found in other branchings.

As a first step we list the branchings we analyzed by the inequivalent decompositions of
the 8-dimensional representation of USp(8) under SU(2) and then give one of the branching
routes leading to this decomposition. For each case we also give a table with the subcases
based on possible different choices of the U(1) factor, when present. We also list the
number of singlets in the fermion shifts, which are going to be the variables to be fixed by
the quadratic conditions in order to find vacua.

4.1 Branchings

We find 13 different branchings of the fundamental representation of USp(8) under SU(2),
which we therefore analyze separately. The labels on the various factors are self explana-
tory: we use letters from the beginning of the alphabet to keep track of the various factors
in the decompositions and we use S and diag to specify the symmetric and diagonal em-
bedding of the group.

Case 1: 8→ 8. The branching path is

USp(8)→ SU(2)S . (4.1)

This case leaves no singlets to discuss, so no vacua are possible for this choice.

Case 2: 8→ 6 + 2. The branching path is

USp(8)→ SU(2)A ×USp(6)→ SU(2)A × SU(2)S → SU(2)diag (4.2)

There is only one singlet in Ai,jkl.

Case 3: 8→ 6 + 1 + 1. The branching path is

USp(8)→ SU(2)A ×USp(6)→ 1A × SU(2)S (4.3)

There are 3 singlets in Aij and no singlets in Ai,jkl.

Case 4: 8→ 4 + 4. The branching path is

USp(8)→ USp(4)2 → USp(4)diag → SU(2)S (4.4)

We have one singlet in Aij and 3 singlets in Ai,jkl.

Case 5: 8→ 4 + 2 + 2. The branching path is

USp(8)→ USp(4)A ×USp(4)B → [SU(2)×U(1)]A × SU(2)S → SU(2)diag (4.5)

We find just one singlet in Aij and 8 in Ai,jkl.

Case 6: 8→ 4 + 2 + 1 + 1. The branching path is

USp(8)→ USp(4)×USp(4)→ [SU(2)A × SU(2)B]× SU(2)S → SU(2)B+S (4.6)

There are 3 singlets in Aij and 5 singlets in Ai,jkl.
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# 8 charges 36 315

decomposition choice singlets singlets

7 8→ 400 + 1±1±1 (qA, qB)

7a 8→ 40 + 2 · 1±1 qA 4 7

7b 8→ 40 + 1±1 + 2 · 10
qA+qB

2 4 5

Table 1. Branchings for the case 7.

# 8 charges 36 315

decomposition choice singlets singlets

9 8→ 311 + 3−1−1 + 1−31 + 13−1 (qA, qB) 2 1

9a 8→ 3±1 + 1±3 qA 2 3

9b 8→ 3±1 + 1±1 qB, qA+qB
2 2 5

9c 8→ 2 · 30 + 1±1
qA−qB

4 4 3

9d 8→ 3±1 + 2 · 10
qA+3qB

4 4 1

Table 2. Branchings for the case 9.

Case 7: 8→ 4 + 4 · 1. The branching path is

USp(8)→ USp(4)A×USp(4)B → [SU(2)S ]A× [SU(2)×U(1)]B → SU(2)S×U(1)A×U(1)B
(4.7)

In this case we have two inequivalent choices of U(1) ⊂ U(1)A× U(1)B, which we list
in the table 1.

Case 8: 8→ 2 · 3 + 2. The branching path is

USp(8)→ SU(2)A×USp(6)→ SU(2)A× [SU(3)×U(1)]B → SU(2)A×SO(3)B → SU(2)diag
(4.8)

The decomposition contains 3 singlets for Aij and 6 singlets for Ai,jkl.

Case 9: 8→ 2 · 3 + 2 · 1. The branching path is

USp(8)→ SU(4)×U(1)B → SU(3)×U(1)A ×U(1)B → SU(2)s ×U(1)A ×U(1)B. (4.9)

This case has already 21 SU(2) singlets overall, therefore we distinguish various subcases
according to the choices of a U(1) factor, which we report in the table 2.

Case 10: 8→ 4 · 2. The branching path is

USp(8)→ SU(2)A × SU(2)B × SU(2)C → SU(2)C ×U(1)A ×U(1)B (4.10)

This case has 51 singlets of SU(2) and therefore we classify various subcases according to
a remaining U(2) symmetry. We collect all different branchings in table 3.
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# 8 charges 36 315

decomposition choice singlets singlets

10 8→ 2±1±1 (qA, qB) 2 3

10a 8→ 2 · [2±1] qA 4 15

10b 8→ 2 · [20] + 2±1
qA+qB

2 2 11

10c 8→ [2±3] + [2±1] 2qA + qB 2 7

Table 3. Branchings for the case 10.

# 8 charges 36 315

decomposition choice singlets singlets

11 8→ 211 + 200 + 2−1−1 + 12−1 + 1−21 (qA, qB) 2 5

11a 8→ 2±1 + 20 + 1±2 qA 2 5

11b 8→ 2±1 + 20 + 1±1 qB 2 7

11c 8→ 2±2 + 20 + 1±1 qA + qB 2 7

11d 8→ 3 · 20 + 1±1
qA−qB

3 4 23

11e 8→ 2±1 + 20 + 2 · 10
qA+2qB

3 4 7

Table 4. Branchings for the case 11.

Case 11: 8→ 3 · 2 + 2 · 1. The branching path is

USp(8)→ SU(2)×USp(6)→ SU(2)× [SU(3)×U(1)]
→ SU(2)× [SU(2)×U(1)×U(1)]→ SU(2)diag ×U(1)A ×U(1)B

(4.11)

This case has 39 singlets of SU(2) and therefore we classify various subcases according to
a remaining U(2) symmetry. Results are collected in table 4.

Case 12: 8→ 2 · 2 + 4 · 1. The branching path is

USp(8)→ USp(4)A ×USp(4)B → [SU(2)×U(1)]A × [SU(2)× SU(2)]B
→ SU(2)A ×U(1)A ×U(1)B ×U(1)C

(4.12)

This case has 64 singlets of SU(2) and therefore we classify various subcases according to
a remaining U(2) symmetry, which we list in table 5.

Case 13: 8→ 2 + 6 · 1. The branching path is

USp(8)→ SU(2)×USp(6)→ SU(2)×[SU(2)A×USp(4)]
→ SU(2)×[SU(2)A×SU(2)B×SU(2)C ]→ SU(2)×U(1)A×U(1)B×U(1)C

(4.13)
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# 8 charges 36 315

decomposition choice singlets singlets

12 8→ 2±100 + 10±10 + 100±1 (qA, qB, qC) 3 5

12a 8→ 2±1 + 4 · 10 qA 11 21

12b 8→ 2 · 20 + 1±1 + 2 · 10 qB 5 19

12c 8→ 2±1 + 2 · 1±1 qA + qB + qC 5 19

12d 8→ 2±1 + 1±1 + 2 · 10 qA + qB 5 9

12e 8→ 2 · [20 + 1±1] qB + qC 5 27

12f 8→ 2±1 + 1±2 + 2 · 10 qA + 2qB 5 15

Table 5. Branchings for the case 12.

# 8 charges 36 315

decomposition choice singlets singlets

13 8→ 2000 + 1±100 + 10±10 + 100±1 (qA, qB, qC) 3 9

13a* 8→ 20 + 1±1 + 4 · 10 qA 11 37

13b 8→ 20 + 2 · [10 + 1±1] qA + qB 7 27

13c 8→ 20 + 1±2 + 1±1 + 2 · 10 2qA + qB 5 17

13d* 8→ 20 + 3 · 1±1 qA + qB + qC 9 47

13e 8→ 20 + 2 · 1±1 + 1±2 qA + qB + 2qC 3 9

13f 8→ 20 + 1±1 + 2 · 1±2 qA + 2qB + 2qC 3 19

Table 6. Branchings for the case 13.

This case has 124 singlets of SU(2) and therefore we classify various subcases according to
a remaining U(2) symmetry. Note that cases 13e and 13f have only a subset of the singlets
present in the other cases, so it is enough to solve cases 13a–13d. Results are presented
in table 6.

The branchings 13a and 13d present more than 48 singlets and this hampered the
simplification of the problem with any of the techniques used in this work in a reasonable
amount of time. Anyway, all solutions we have been able to find for these branchings were
already present in one of the other branchings.

4.2 Vacua

The search for vacua has been carried out by solving the sets of quadratic equations for
the singlets in the tables above. Once we found solutions, we checked for each candidate
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vacuum susy Ggauge Gres ref. branching

A1 8 SO(6) SO(6) [8, 9] 4,9,10,12

A2 0 SO(6) SO(5) [6–8] 4, 10, 12cef

A3 0 SO(6) SU(3) [6–8] 9a, 12ef

A4 2 SO(6) SU(2) × U(1) [8] 12cef

A5 0 SO(6) SU(2) × U(1) × U(1) [8] 12be

M1 0,2,4,6 U(1)nR16 U(1) [35] 5,6,7,10

11,12,13

M2 2 SO∗(6)=SU(3,1) SU(3) × U(1) [36] 8,9,11

12abcef , 13b

M3 4 SO∗(4) nR8 U(2) here 12abcef

11, 13bc

M4 0 [SO(3,1) × SO(2,1)] nR8 U(2) here 10b

M5 4 SO*(4) nR8 SO(3) here 12be

D1 0 SO(3,3) SO(3)2 [5] 9b,10ab

D2 0 SO∗(6)=SU(3,1) SU(2) here 9b

Table 7. Summary of vacua found in this work.

vacuum the rank of the embedding tensor, the signature of the resulting Cartan-Killing
matrix and the full mass spectrum. Overall we found 5 different Anti-de Sitter vacua, 5
Minkowski vacua and 2 de Sitter vacua. The vacua with negative cosmological constant
are all pertaining to the same gauging, namely the maximal SO(6) theory of [9], and were
all already known [6–8]. Among the Minkowski vacua there are the Cremmer-Scherk-
Schwarz gaugings [34, 35] with various mass parameters and a supersymmetric vacuum
for the SO∗(6) theory discovered in [36], but we also find three new vacua with a non-
abelian gauge group (like those in [24] for the analogous analysis of maximal supergravity
in 4 dimensions). Finally, we also find 2 de Sitter vacua, resulting from gauging of the
semisimple groups SO(3,3) [5] and SO∗(6), the latter being new. All the vacua are reported
in the table 7, together with the number of supersymmetry they preserve, the original
gauging, the residual gauge group and the reference where they were first discovered. In
the appendix we provide for each vacuum one instance of fermion shift values reproducing
the critical point mentioned in the table.

Given the nature of the gaugings generating such vacua, we can also see how some of
these could be obtained from string theory reductions. All AdS vacua appear in the SO(6)
theory, which is a consistent truncation of type IIB supergravity compactified on S5 [39].
A subset of the CSS gaugings and their vacua M1 are known to be the result of a twisted
torus reduction [34], while the most general gauging and vacuum in this class may admit
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an uplift through a generalised Scherk-Schwarz Ansatz analogous to the ones described for
four-dimensional CSS gaugings in [28].

It is interesting to notice that for the first time in a maximal theory in D ≥ 4 we find
a gauging that produces at the same time vacua with different types of cosmological con-
stants. This is the SO∗(6) =SU(3,1) gauging, that contains at the same time a Minkowski
and a de Sitter vacuum. Our claim that they reside in the same model follows both from
the analysis of the embedding tensors that generate them, and the direct identification of a
truncated scalar potential for the SU(3,1) theory where both vacua are easily found. From
the embedding tensors we find which generators of e6(6) are involved in their correspond-
ing model and analyzing the commutants we find in both cases that the representation
27 decomposes in the representations 15 + 6 + 6 of the gauge group. This corresponds
to the correct branching under SU(3,1) and since the adjoint is unique in the branching,
we argue that the gaugings are the same. Moreover, if we directly decompose the 315
representation of e6(6) from the branching above for the 27 we see that there is a unique
singlet with respect to SU(3,1) and therefore there is a unique possible form of embedding
tensor leading to this gauging up to duality transformations.

Actually, for this specific model we can provide a truncated scalar potential, where we
make explicit the dependence on the two scalar fields that are singlets of both symmetry
groups. Furthermore, both vacua arise as different solutions of the 9b case and the com-
mutator of the residual U(2) group with the non-compact generators of e6 leaves only two
generators g1 and g2, for which we can provide a truncated scalar potential where both
vacua can be found. We construct the coset representative

L(x, y) = exp (g1 x+ g2 y) , (4.14)

which induces the scalar potential

V = −27
16
(
12− 16 cosh(2x) cosh(2y) + 4 cosh2(2x) cosh2(2y)

)
, (4.15)

where x and y are canonically normalized scalar fields. The scalar potential has two vacua,
clearly represented in figure 1, a Minkowski one at x = y = 0 and a line of unstable de
Sitter vacua at cosh(2x) cosh(2y) = 2. At any point in the family of de Sitter vacua we see
that the masses of the two fluctuations are indeed zero and m2/Λ = −24. These coincide
with one of the moduli and one of the unstable directions of the full scalar spectrum about
the de Sitter vacuum (see table 14).

A similar discussion could apply to the vacua (M3) and (M5). They both have the
same gauge group, though in this case they do not belong to the same model. In fact,
there are 4 U(2) invariant scalar fields in both models, but the scalar potentials show only
a single vacua in each of the potentials constructed from (M3) and (M5) by introducing
the appropriate coset representatives. For instance, using canonically normalized fields,
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Figure 1. Scalar potential for the two common scalars invariant under the residual symmetries of
the vacua (M2) and (D2). We see a Minkowski vacuum at the center of the picture, surrounded by
a family of de Sitter vacua, with a massless modulus.

the potential of (M3) is

V = x
− 4√

3
1 x−3

√
2

3
8192x2

2x
2
4

(
x
√

2
3 −1

)2 [
−8m1m2x

√
3

1 x2
(
x2

2−1
)(

3x2
√
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3 +2x

√
2

3 +3
)2(

x4
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)
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√

3
1
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√
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3 +2x

√
2
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)(
x2

4+1
)(

1+x2
2

)
+4
(
x
√

2
3 −1

)2
x4x2

)
((

3x2
√

2
3 +2x

√
2

3 +3
)(
x2

4+1
)(

1+x2
2

)
−4
(
x2
√

2
3 +6x

√
2

3 +1
)
x4x2

)
+m2

2

((
3x2
√

2
3 +2x

√
2

3 +3
)(
x2

4+1
)(

1+x2
2

)
−4
(
x
√

2
3 −1

)2
x4x2

)
((

3x2
√

2
3 +2x

√
2

3 +3
)(
x2

4+1
)(

1+x2
2

)
+4
(
x2
√

2
3 +6x

√
2

3 +1
)
x4x2

)]
.

(4.16)

This shows a single critical point at xi = 1, where the scalars x1,2,4 are moduli, while
the scalar x3 is massive with mass m2. Actually x1 is a modulus that simply rescales the
mass parameters. While the gauge group is the same, the two vacua indeed pertain to two
different gaugings. This is possible because the decomposition of the 351 of E6(6) under
SO*(4) shows 6 singlets and therefore one could find inequivalent embeddings of the same
gauge group.

4.3 Mass spectra

In this final section we present the mass spectra of all the vacua listed in the previous table.
The masses for backgrounds with non-vanishing cosmological constant are normalized in
terms of the (A)dS radius squared L2 = |6/V |, so that supersymmetric gravitinos have a
normalized squared mass of 9/4.

For the AdS vacua, which are not new, most of these spectra were already known from
previous work, like the one of the maximally supersymmetric point given in table 8. The
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L2m2
3/2

[
9
4

]
×8

L2m2
vec [0]×15

L2m2
tens [1]×12

L2m2
1/2

[
1
4

]
×40

,
[

9
4

]
×8

L2m2
scal [−4]×20, [−3]×20, [0]×2

Table 8. Masses for the AdS vacuum A1.

L2m2
3/2

[
8
3

]
×8

L2m2
vec [0]×10,

[
8
3

]
×5

L2m2
tens

[
2
3

]
×10

, [6]2

L2m2
1/2 [0]×32,

[
8
3

]
×8

,
[

675
128

]
×8

L2m2
scal

[
−16

3

]
×14

, [−2]×20, [0]×7, [8]×1

Table 9. Masses for the AdS vacuum A2.

L2m2
3/2

[
49
18

]
×6

,
[

9
2

]
×2

L2m2
vec [0]×8,

[
32
9

]
×6

, [8]×1

L2m2
tens

[
8
9

]
×6

,
[

32
9

]
×6

L2m2
1/2 [0]×8,

[
1
2

]
×16

,
[

25
18

]
×18

,
[

121
18

]
×6

L2m2
scal

[
−40

9

]
×12

,
[
−16

9

]
×12

, [0]×17, [8]×1

Table 10. Masses for the AdS vacuum A3.

L2m2
3/2

[
49
16

]
4
, [4]2,

[
9
4

]
×2

L2m2
vec [0]4,

[
9
16

]
×4

,
[

5
4

]
×2

,
[

65
16

]
×4

, [6]×1

L2m2
tens

[
9
4

]
×2

,
[

9
16

]
×4

,
[

25
16

]
×4

,
[

25
4

]
×2

,

L2m2
1/2

[
1
16

]
×4
,
[

1
4

]
×6
,
[

9
16

]
×4
, [1]×2,

[
25
16

]
×4
,
[

9
4

]
×2
,[

49
16

]
×8
, [4]×2, [0]×12,

[
29
4 ±
√

7
]
×2

L2m2
scal [0]×13, [−4]3,

[
−15

4

]
×12

,
[
−55

16

]
×4

, [−3]×2,
[
−39

16

]
×4

, [3]×2, [4± 2
√

7]×1

Table 11. Masses for the AdS vacuum A4.

spectrum of the non-supersymmetric ones (A2), (A3) and (A5), however, was lacking some
states that we provide in tables 9, 10 and 12 respectively.

The spectrum of the vacuum (A4), which we give in table 11, is particularly interesting
in the context of the AdS/CFT correspondence, as it fixes the anomalous dimensions of the
operators of the corresponding N=1 deformation of super-Yang-Mills in 4 dimensions [37].

The full spectra of the de Sitter vacua (D1) and (D2), provided in tables 13 and 14,
are new and show that such vacua are unstable with very large instabilities, of the order
of the cosmological constant, or larger.
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L2m2
3/2

[
81
25

]
×4

,
[

18
5

]
×4

L2m2
vec [0]×4 ,

[
24
5

]
×1
,
[

96
25

]
×8
,
[

24
25

]
×2

L2m2
tens

[
44
5

]
×2
, [4]×2 ,

[
16
25

]
×8

L2m2
1/2 [0]×8,

[
22
5 ± 4

√
2
5

]
×4
,
[

34
25

]
×8
,
[

2
5

]
×4
,
[

1
25

]
×12

, [161
25 ±

4
5
√

34]×4

L2m2
scal

[
52
5

]
×2
,
[

84
25

]
×2
,
[

48
5

]
×1
,
[
−136

25

]
×6
, [−4]×4 ,

[
−64

25

]
×8
,
[
−12

5

]
×6
, [0]×13

Table 12. Masses for the AdS vacuum A5.

L2m2
3/2 [0]×8

L2m2
vec [0]×6, [8]×9

L2m2
tens [2]×12

L2m2
1/2 [0]×16, [8]×32

L2m2
scal

[−8]×1, [−6]×2,

[0]×11, [10]×18, [16]×10

Table 13. Masses for the dS vacuum D1.

L2m2
3/2

[
9
2

]
×2

,
[

81
2

]
×6

L2m2
vec [0]×3, [24]×1, [96]×11

L2m2
tens [32]×6, [56]×6

L2m2
1/2

[0]×8,
[

25
2

]
×6

,
[

121
2

]
×10

,[
169
2

]
×6

,
[

225
2

]
×8

,
[

289
2

]
×10

L2m2
scal

[−24]×1, [0]×14,

[4(29±
√

433)]×5,

[40]×3, [112]×12, [120]×2

Table 14. Masses for the dS vacuum D2.

For what concerns the Minkowski vacua, since there is no intrinsic scale associated to
the vacuum, we parametrized all masses in terms of the ones of the gravitini. We easily
reproduce the expected spectrum for the CSS vacua in table 15, while the results for all
the other vacua, presented in tables 16, 17, 18 and 19, are new.

By also looking at the fermion shifts collected in the appendix, is interesting to notice
that all the vacua we found show spectra that do not depend on additional parameters
except for a few masses (or the cosmological constant, if different from zero). This means
that for all the gaugings considered the vacua appear in a unique theory with that gauge
group and there are no continuous families of models with the same gauge group containing
such vacua. This differs from what was discovered in the 4-dimensional case [20, 38], where
it was found that one can have infinite families of gaugings with the same gauge group and
vacua whose existence and whose value of the cosmological constant may depend on the
parameter specifying the family of gaugings.

The other interesting fact that emerges from the spectra is that also in 5 dimensions,
like in 4, Minkowski vacua have moduli. In fact, once we remove the scalars that are eaten
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m2
3/2

[
m2

1
]
×2 ,

[
m2

2
]
×2 ,

[
m2

3
]
×2 ,

[
m2

4
]
×2

m2
vec [0]×1, [(m1 ±m3)2]×2, [(m1 ±m4)2]×2, [(m2 ±m3)2]×2, [(m2 ±m4)2]×2

m2
tens [0]×2, [(m1 ±m2)2]×2, [(m3 ±m4)2]×2

m2
1/2

[0]×8, [m2
i ]×2, [(m3 ±m1 ±m2)2]×2, [(m4 ±m1 ±m2)2]×2,

[(m1 ±m3 ±m4)2]×2, [(m2 ±m3 ±m4)2]×2

m2
scal [0]×18,

[
(m1 ±m2)2]

×2,
[
(m3 ±m4)2]

×2,
[
(m1 ±m2 ±m3 ±m4)2]

×2

Table 15. Masses for the CSS vacuum M1.

m2
3/2 [0]2, [m2

1]2, [m2
2]2, [m2

3]2

m2
vec [0]3, [(m1 ±m2)2]2, [(m1 ±m3)2]2, [(m2 ±m3)2]2,

m2
tens [m2

1]4, [m2
2]4, [m2

3]4,

m2
1/2

[0]10, [m2
1]2, [m2

2]2, [m2
3]2, [(m1 ±m2)2]4, [(m1 ±m3)2]4,

[(m2 ±m3)2]4, [(m1 ±m2 ±m3)2]2

m2
scal [0]14, [m2

1]4, [m2
2]4, [m2

3]4, [(m1 ±m2 ±m3)2]4,

Table 16. Masses for the Minkowski vacuum M2.

m2
3/2 [0]×4, [m2

1]×2, [m2
2]×2

m2
vec [0]×4, [m2

1]×4, [m2
2]×4, [(m1 ±m2)2]×2

m2
tens [0]×3, [m2

1]×4, [m2
2]×4

m2
1/2 [0]×12, [m2

1]×10, [m2
2]×10, [(m1 ±m2)2]×8

m2
scal [0]×18, [m2

1]×4, [m2
2]×4, [(m1 ±m2)2]8

Table 17. Masses for the Minkowski vacuum M3.

m2
3/2 [m2]×4, [3m2]×4

m2
vec [0]×4, [4m2]×10, [8m2]×3

m2
tens [0]×2, [4m2]×8

m2
1/2 [0]×8, [m2]×8, [3m2]×12, [7m2]×8, [9m2]×12

m2
scal [0]×20, [4m2]×10, [8m2]×6, [12m2]×6

Table 18. Masses for the Minkowski vacuum M4.
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m2
3/2 [0]×4, [m2

1]×2, [m2
2]×2

m2
vec [0]×3, [m2

1]×4, [m2
2]×4, [m2

1 +m2
2 ±m2

3]×2

m2
tens [0]×4, [m2

1]×4, [m2
2]×4

m2
1/2 [0]×12, [m2

1]×10, [m2
2]×10, [m2

1 +m2
2 ±m2

3]×8

m2
scal [0]×18, [m2

1]×4, [m2
2]×4, [m2

1 +m2
2 ±m2

3]×8

Table 19. Masses for the Minkowski vacuum M5.

by the massive vectors in the usual Higgs mechanism, we see that the vacuum (M2) has
two additional massless fields, the vacuum (M3) has 6 additional moduli, the vacuum (M4)
7 and the vacuum (M5) again 6. Like in the 4-dimensional case [24], it may be worth
investigating if these gaugings can be connnected to each other by infinite distance limits
along their moduli spaces. Quite possibly, the most general such limits may also generate
novel gaugings with new Minkowski vacua and residual symmetries other than U(2).
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A Fermion shifts at the vacuum

In this appendix we provide an instance of the value of the fermion shifts generating the
vacua of table 7. For all examples we have chosen a basis where either

Ω = 14 ⊗ i σ2 (A.1)

or
Ω = i σ2 ⊗ 14. (A.2)

A1. In the basis with Ω as in (A.1), the maximal AdS supersymmetric vacuum is easily
obtained by setting

A16 = A38 = −A25 = −A47 = g, Ai,jkl = 0. (A.3)

A2. In the basis with Ω as in (A.1), the SO(5) non-supersymmetric AdS vacuum follows
from choosing

A16 = A38 = −A25 = −A47 = g, (A.4)
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and

A1162 = A2251 = A3384 = A4473 = A5562 = A6651 = A7784 = A8873 = g

4 , (A.5)

A1238 = A1274 = A2183 = A2147 = A3164 = A3245 = A4136 = A4325

= A5368 = A5647 = A6385 = A6457 = A7861 = A7258 = A8167 = A8275 = 3
16g, (A.6)

A1364 = A2345 = A3182 = A4127 = A5278 = A6718 = A7456 = A8365 = g

16 , (A.7)

A1678 = A2758 = A3568 = A4576 = A5243 = A6134 = A7214 = A8123 = 5
16g. (A.8)

A3. In the basis with Ω as in (A.2), the SU(3) invariant AdS vacuum follows from

A15 = A26 = A37 = 7
9 im1, A48 = −im1, (A.9)

and

A1256 = A1357 = A2165 = A2367 = A3517 = A3276

= A5162 = A5317 = A6125 = A6273 = A7135 = A7236 = i

9 g, (A.10)

A1548 = A2648 = A3748 = A5148 = A6248 = A7348 = 2
9 i g, (A.11)

A1234 = A2314 = A3124 = A5678 = A6587 = A7568 = 1
2
√

3
g, (A.12)

A4123 = A8567 =
√

3
2 g. (A.13)

A4. In the basis with Ω as in (A.1), the N = 2 AdS vacuum with U(2) residual symmetry
follows from

A14 = −A23 = 7
12 g, A56 = −ig2 , A78 = i

2
3 g, (A.14)

and

A1124 = A2213 = A3324 = A4413 = − 5
24 g, (A.15)

A1275 = A1268 = A2157 = A2186 = A3457 = A3486 = A4375 = A4368 = i

8 g, (A.16)

A1475 = A1486 = A2357 = A2368 = A3275 = A3286 = A4157 = A4168 = g

8 , (A.17)

A1456 = A2365 = A3265 = A4156 = g

24 , (A.18)

A1478 = A2387 = A3287 = A4178 = g

6 , (A.19)

A7568 = A8567 = −i g6 , (A.20)

A7152 = A7345 = A8126 = A8436 = i
g

4 , (A.21)

A7154 = A7235 = A8416 = A8236 = g

4 , (A.22)

A7128 = A7348 = A8127 = A8347 = i
g

12 . (A.23)
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A5. In the basis with Ω as in (A.1), the N = 0 AdS vacuum with SU(2) × U(1)2 residual
symmetry follows from

A23 = −A14 = 1
3

√
2
5 g, A56 = −ig5 , A77 = −A88 = i

g

5 , (A.24)

and

A1124 = A2213 = A3324 = A4413 = g

3
√

10
, (A.25)

A1456 = A2365 = A3287 = A4178 = 1
12

√
1− 2

5
√

6 g, (A.26)

A1487 = A2378 = A3256 = A4165 = 1
12

√
1 + 2

5
√

6 g, (A.27)

A5164 = A5236 = A6145 = A6253 = A7148 = A7283 = A8174 = A8237 = g

4
√

15
, (A.28)

A5621 = A6521 = A7734 = A8843 = i
1
60
(
2 +
√

6
)
g, (A.29)

A5634 = A6534 = A7721 = A8812 = i
1
60
(
−2 +

√
6
)
g, (A.30)

A5678 = A6578 = A7765 = A8856 = i
g

15 . (A.31)

M1. The general CSS Minkowski vacuum in the basis with Ω as in (A.1), follows from

A11 = A22 = m1
3 , A33 = A44 = m2

3 , A55 = A66 = m3
3 , A77 = A88 = m4

3 , (A.32)

and

A1134 = A2234 = −m1
3 , (A.33)

A1156 = A1178 = A2256 = A2278 = m1
6 , (A.34)

A3312 = A4412 = −m2
3 , (A.35)

A3356 = A3378 = A4456 = A4478 = m2
6 , (A.36)

A5578 = A6678 = −m3
3 , (A.37)

A5512 = A5534 = A6612 = A6634 = m3
6 , (A.38)

A7756 = A8856 = −m4
3 , (A.39)

A7712 = A7734 = A8812 = A8834 = m4
6 . (A.40)

Obviously the vacua that appear in the context of our analysis have some of the masses
either set to zero or proportional to each other, in order to respect the correct U(2) residual
symmetry, but they are always subcases of the one presented here.

M2. The Minkowski vacuum from the SU(3,1) gauging appears in the basis with Ω as
in (A.1) by choosing

A34 = i
m1
3 , A56 = i

m2
3 , A77 = A88 = m3

3 (A.41)
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and

A3124 = A4123 = −i m1
3 , (A.42)

A3456 = A3478 = A4356 = A4378 = i
m1
6 , (A.43)

A5126 = A6125 = −i m2
3 , (A.44)

A5346 = A5678 = A6345 = A6578 = i
m2
6 , (A.45)

A7712 = A8812 = −m3
3 , (A.46)

A7734 = A7756 = A8834 = A8856 = m3
6 . (A.47)

M3. The first new Minkowski vacuum we found appears in the basis with Ω as in (A.1)
by choosing

A56 = −im2
3 , A77 = A88 = m1

3 (A.48)

and

A5346 = A6345 = i
m2
3 , (A.49)

A5126 = A5678 = A6125 = A6578 = −i m2
6 , (A.50)

A7734 = A8834 = −m1
3 , (A.51)

A7712 = A7756 = A8812 = A8856 = m1
6 . (A.52)

M4. The new non-supersymmetric Minkowski vacuum appears in the basis with Ω as
in (A.1) by choosing

A23 = −A14 = m1
3 , A58 = −A67 = m1√

3
(A.53)

and

A1142 = A1478 = A2231 = A2387 = A3342 = A3287 = A4431 = A4178 = m1
6 , (A.54)

A1485 = A1467 = A2358 = A2376 = A3258 = A3276 = A4185 = A4167 = m1

3
√

2
, (A.55)

A5182 = A5384 = A6127 = A6347 = A7126 = A7346 = A8215 = A8435 = m1

4
√

3
, (A.56)

A5146 = A5236 = A6145 = A6235 = A7148 = A7238 = A8147 = A8237 = m1
4 , (A.57)

A5568 = A6657 = A7768 = A8857 = m1

2
√

3
(A.58)

A5542 = A6631 = A7742 = A8831 = m1
2 . (A.59)

M5. The new N = 4 Minkowski vacuum appears in the basis with Ω as in (A.1) by
choosing

A56 = −i m2
3 , A77 = A88 = m1

3 (A.60)
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and

A5126 = A6125 = i
m2
3 , (A.61)

A5346 = A5678 = A6345 = A6578 = −i m2
6 , (A.62)

A7712 = A8812 = −m1
12 −

m2
3

8m2
, (A.63)

A7734 = A8834 = −m1
12 + m2

3
8m2

, (A.64)

A7714 = A7732 = A8814 = A8832 = −1
8

√
4m2

1 −
m4

3
m2

2
, (A.65)

A7756 = A8856 = m1
6 . (A.66)

D1. The de Sitter vacuum associated to the SO(3,3) gauging appears in the basis with
Ω as in (A.2) by choosing

Aij = 0 (A.67)

and

A1278 = A1386 = A1476 = A2187 = A2358 = A2457 = A3168 = A3285 = m, (A.68)
A3465 = A4167 = A4275 = A4356 = A5283 = A5274 = A5346 = A6138 = m, (A.69)
A6147 = A6354 = A7182 = A7164 = A7245 = A8127 = A8163 = A8235 = m. (A.70)

D2. The new de Sitter vacuum associated to the SU(3,1) gauging appears in the basis
with Ω as in (A.2) by choosing

A15 = A26 = A37 = 3 i g, A48 = −i g, (A.71)

and

A1265 =A1375 =A2156 =A2376 =A3157 =A3267

=A5126 =A5137 =A6152 =A6237 =A7153 =A7263 = ig, (A.72)
A1458 =A2468 =A3478 =A5184 =A6284 =A7384 = 2ig, (A.73)
A1287 =A1368 =A2178 =A2385 =A3186 =A3258 =A4167 =A4275 =A4356 (A.74)

=A5247 =A5364 =A6174 =A6345 =A7146 =A7254 =A8127 =A8163 =A8235 =
√

3
2 g,

A1467 =A2475 =A3456 =A5238 =A6183 =A7128 = 3
√

3
2 g. (A.75)
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any medium, provided the original author(s) and source are credited.

– 22 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
4
(
2
0
2
1
)
0
3
9

References

[1] B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 5 supergravities, Nucl. Phys.
B 716 (2005) 215 [hep-th/0412173] [INSPIRE].

[2] B. de Wit, H. Samtleben and M. Trigiante, The Maximal D = 4 supergravities, JHEP 06
(2007) 049 [arXiv:0705.2101] [INSPIRE].

[3] N.P. Warner, Some Properties of the Scalar Potential in Gauged Supergravity Theories, Nucl.
Phys. B 231 (1984) 250 [INSPIRE].

[4] N.P. Warner, Some New Extrema of the Scalar Potential of Gauged N = 8 Supergravity,
Phys. Lett. B 128 (1983) 169 [INSPIRE].

[5] M. Günaydin, L.J. Romans and N.P. Warner, Compact and Noncompact Gauged
Supergravity Theories in Five-Dimensions, Nucl. Phys. B 272 (1986) 598 [INSPIRE].

[6] L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on
perturbations of N = 4 superYang-Mills from AdS dynamics, JHEP 12 (1998) 022
[hep-th/9810126] [INSPIRE].

[7] J. Distler and F. Zamora, Nonsupersymmetric conformal field theories from stable
anti-de Sitter spaces, Adv. Theor. Math. Phys. 2 (1999) 1405 [hep-th/9810206] [INSPIRE].

[8] A. Khavaev, K. Pilch and N.P. Warner, New vacua of gauged N = 8 supergravity in
five-dimensions, Phys. Lett. B 487 (2000) 14 [hep-th/9812035] [INSPIRE].

[9] M. Pernici, K. Pilch and P. van Nieuwenhuizen, Gauged N = 8 D = 5 Supergravity, Nucl.
Phys. B 259 (1985) 460 [INSPIRE].

[10] T. Fischbacher, Fourteen new stationary points in the scalar potential of SO(8)-gauged
N = 8, D = 4 supergravity, JHEP 09 (2010) 068 [arXiv:0912.1636] [INSPIRE].

[11] T. Fischbacher, Numerical tools to validate stationary points of SO(8)-gauged N = 8 D = 4
supergravity, Comput. Phys. Commun. 183 (2012) 780 [arXiv:1007.0600] [INSPIRE].

[12] T. Fischbacher, The Encyclopedic Reference of Critical Points for SO(8)-Gauged N = 8
Supergravity. Part 1: Cosmological Constants in the Range-Λ/g2 ∈ [6 : 14.7),
arXiv:1109.1424 [INSPIRE].

[13] I.M. Comsa, M. Firsching and T. Fischbacher, SO(8) Supergravity and the Magic of Machine
Learning, JHEP 08 (2019) 057 [arXiv:1906.00207] [INSPIRE].

[14] N. Bobev, T. Fischbacher and K. Pilch, Properties of the new N = 1 AdS4 vacuum of
maximal supergravity, JHEP 01 (2020) 099 [arXiv:1909.10969] [INSPIRE].

[15] C. Krishnan, V. Mohan and S. Ray, Machine Learning N = 8, D = 5 Gauged Supergravity,
Fortsch. Phys. 68 (2020) 2000027 [arXiv:2002.12927] [INSPIRE].

[16] N. Bobev, T. Fischbacher, F.F. Gautason and K. Pilch, A cornucopia of AdS5 vacua, JHEP
07 (2020) 240 [arXiv:2003.03979] [INSPIRE].

[17] N. Bobev, T. Fischbacher, F.F. Gautason and K. Pilch, New AdS4 Vacua in Dyonic
mathrmISO(7) Gauged Supergravity, arXiv:2011.08542 [INSPIRE].

[18] S.P. Li, R.B. Peschanski and C.A. Savoy, Mass Degeneracy and the Superhiggs Mechanism,
Nucl. Phys. B 289 (1987) 206 [INSPIRE].

[19] G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions,
Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

– 23 –

https://doi.org/10.1016/j.nuclphysb.2005.03.032
https://doi.org/10.1016/j.nuclphysb.2005.03.032
https://arxiv.org/abs/hep-th/0412173
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412173
https://doi.org/10.1088/1126-6708/2007/06/049
https://doi.org/10.1088/1126-6708/2007/06/049
https://arxiv.org/abs/0705.2101
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.2101
https://doi.org/10.1016/0550-3213(84)90286-4
https://doi.org/10.1016/0550-3213(84)90286-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB231%2C250%22
https://doi.org/10.1016/0370-2693(83)90383-0
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB128%2C169%22
https://doi.org/10.1016/0550-3213(86)90237-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB272%2C598%22
https://doi.org/10.1088/1126-6708/1998/12/022
https://arxiv.org/abs/hep-th/9810126
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9810126
https://doi.org/10.4310/ATMP.1998.v2.n6.a6
https://arxiv.org/abs/hep-th/9810206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9810206
https://doi.org/10.1016/S0370-2693(00)00795-4
https://arxiv.org/abs/hep-th/9812035
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9812035
https://doi.org/10.1016/0550-3213(85)90645-5
https://doi.org/10.1016/0550-3213(85)90645-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB259%2C460%22
https://doi.org/10.1007/JHEP09(2010)068
https://arxiv.org/abs/0912.1636
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.1636
https://doi.org/10.1016/j.cpc.2011.11.022
https://arxiv.org/abs/1007.0600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.0600
https://arxiv.org/abs/1109.1424
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.1424
https://doi.org/10.1007/JHEP08(2019)057
https://arxiv.org/abs/1906.00207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.00207
https://doi.org/10.1007/JHEP01(2020)099
https://arxiv.org/abs/1909.10969
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.10969
https://doi.org/10.1002/prop.202000027
https://arxiv.org/abs/2002.12927
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12927
https://doi.org/10.1007/JHEP07(2020)240
https://doi.org/10.1007/JHEP07(2020)240
https://arxiv.org/abs/2003.03979
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.03979
https://arxiv.org/abs/2011.08542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.08542
https://doi.org/10.1016/0550-3213(87)90377-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB289%2C206%22
https://doi.org/10.1016/j.nuclphysb.2012.01.023
https://arxiv.org/abs/1112.3345
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.3345


J
H
E
P
0
4
(
2
0
2
1
)
0
3
9

[20] G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged
supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

[21] A. Borghese, A. Guarino and D. Roest, All G2 invariant critical points of maximal
supergravity, JHEP 12 (2012) 108 [arXiv:1209.3003] [INSPIRE].

[22] A. Borghese, G. Dibitetto, A. Guarino, D. Roest and O. Varela, The SU(3)-invariant sector
of new maximal supergravity, JHEP 03 (2013) 082 [arXiv:1211.5335] [INSPIRE].

[23] A. Borghese, A. Guarino and D. Roest, Triality, Periodicity and Stability of SO(8) Gauged
Supergravity, JHEP 05 (2013) 107 [arXiv:1302.6057] [INSPIRE].

[24] F. Catino, G. Dall’Agata, G. Inverso and F. Zwirner, On the moduli space of spontaneously
broken N = 8 supergravity, JHEP 09 (2013) 040 [arXiv:1307.4389] [INSPIRE].

[25] A. Gallerati, H. Samtleben and M. Trigiante, The N > 2 supersymmetric AdS vacua in
maximal supergravity, JHEP 12 (2014) 174 [arXiv:1410.0711] [INSPIRE].

[26] G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux
compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].

[27] N.S. Deger, C. Eloy and H. Samtleben, N = (8, 0) AdS vacua of three-dimensional
supergravity, JHEP 10 (2019) 145 [arXiv:1907.12764] [INSPIRE].

[28] G. Dall’Agata, G. Inverso and P. Spezzati, Uplifts of maximal supergravities and transitions
to non-geometric vacua, JHEP 08 (2019) 014 [arXiv:1903.11619] [INSPIRE].

[29] T. Fischbacher, H. Nicolai and H. Samtleben, Vacua of maximal gauged D = 3 supergravities,
Class. Quant. Grav. 19 (2002) 5297 [hep-th/0207206] [INSPIRE].

[30] G. Dall’Agata and F. Zwirner, Quantum corrections to broken N = 8 supergravity, JHEP 09
(2012) 078 [arXiv:1205.4711] [INSPIRE].

[31] S. Ferrara and A. Van Proeyen, Mass Formulae for Broken Supersymmetry in Curved
Space-Time, Fortsch. Phys. 64 (2016) 896 [arXiv:1609.08480] [INSPIRE].

[32] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-2 — A computer
algebra system for polynomial computations, http://www.singular.uni-kl.de (2019).

[33] N. Courtois, A. Klimov, J. Patarin and A. Shamir, Efficient algorithms for solving
overdefined systems of multivariate polynomial equations, in Advances in Cryptology —
EUROCRYPT 2000, B. Preneel ed., Lecture Notes in Computer Science, vol. 1807, Springer,
Berlin, Heidelberg (2000), pp. 392–407 [DOI].

[34] J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153
(1979) 61 [INSPIRE].

[35] E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity, Phys.
Lett. B 84 (1979) 83 [INSPIRE].

[36] M. Günaydin, L.J. Romans and N.P. Warner, IIB, or Not IIB: That Is the Question, Phys.
Lett. B 164 (1985) 309 [INSPIRE].

[37] D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from
holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363
[hep-th/9904017] [INSPIRE].

[38] G. Dall’Agata, G. Inverso and A. Marrani, Symplectic Deformations of Gauged Maximal
Supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

[39] O. Hohm and H. Samtleben, Consistent Kaluza-Klein Truncations via Exceptional Field
Theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevLett.109.201301
https://arxiv.org/abs/1209.0760
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.0760
https://doi.org/10.1007/JHEP12(2012)108
https://arxiv.org/abs/1209.3003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3003
https://doi.org/10.1007/JHEP03(2013)082
https://arxiv.org/abs/1211.5335
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.5335
https://doi.org/10.1007/JHEP05(2013)107
https://arxiv.org/abs/1302.6057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.6057
https://doi.org/10.1007/JHEP09(2013)040
https://arxiv.org/abs/1307.4389
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.4389
https://doi.org/10.1007/JHEP12(2014)174
https://arxiv.org/abs/1410.0711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.0711
https://doi.org/10.1007/JHEP03(2011)137
https://arxiv.org/abs/1102.0239
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.0239
https://doi.org/10.1007/JHEP10(2019)145
https://arxiv.org/abs/1907.12764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.12764
https://doi.org/10.1007/JHEP08(2019)014
https://arxiv.org/abs/1903.11619
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.11619
https://doi.org/10.1088/0264-9381/19/21/302
https://arxiv.org/abs/hep-th/0207206
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207206
https://doi.org/10.1007/JHEP09(2012)078
https://doi.org/10.1007/JHEP09(2012)078
https://arxiv.org/abs/1205.4711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.4711
https://doi.org/10.1002/prop.201600100
https://arxiv.org/abs/1609.08480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.08480
http://www.singular.uni-kl.de
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1016/0550-3213(79)90592-3
https://doi.org/10.1016/0550-3213(79)90592-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB153%2C61%22
https://doi.org/10.1016/0370-2693(79)90654-3
https://doi.org/10.1016/0370-2693(79)90654-3
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB84%2C83%22
https://doi.org/10.1016/0370-2693(85)90332-6
https://doi.org/10.1016/0370-2693(85)90332-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB164%2C309%22
https://doi.org/10.4310/ATMP.1999.v3.n2.a7
https://arxiv.org/abs/hep-th/9904017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904017
https://doi.org/10.1007/JHEP07(2014)133
https://arxiv.org/abs/1405.2437
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.2437
https://doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8145

	Introduction
	N=8 supergravity in 5 dimensions
	Extrema of the scalar potential
	Vacua with residual U(2) symmetry
	Branchings
	Vacua
	Mass spectra

	Fermion shifts at the vacuum

