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The last few years have witnessed a surge of interest in a class of soluble deformations

of two-dimensional quantum field theories, among them the so-called TT deformation [1].

This irrelevant deformation is triggered by the composite operator

TT = − detTµν .

It is a curious feature of this deformation that a number of physically interesting quantities

such as the deformed classical Lagrangian [2–4], the finite volume spectrum [5], the S-

matrix [6–9], and the torus partition function [10–12] are determined in terms of the data

of the undeformed theory. TT deformations have also been studied from the point of view

of holography [13–17], little string theories [18–23], and in the context of supersymmetric

quantum field theories [24–29]. For a pedagogical introduction to TT deformations, we

invite the reader to consult [30] and references therein.

In this short note, we focus on TT deformations of free quantum field theories.

1 Bosons

We start with a free boson in two dimensional Euclidean space.1 It is described by the

Lagrangian

L0 =
1

2
∂φ∂̄φ . (1.1)

Consider TT deformations of this Lagrangian, first discussed in [2]. A well-known result

in the literature shows that it is possible to resum these deformations to all orders in the

TT coupling constant λ to get the non-local Lagrangian

Lλ =
1

λ

(
−1 +

√
1 + λ ∂φ∂̄φ

)
. (1.2)

The above Lagrangian can be interpreted as describing the dynamics of a Nambu-Goto

string in a three-dimensional target space

Lλ =
1

λ

√√√√√det

 3∑
µ=1

∂αXµ∂βXµ

 , (1.3)

1We adopt the conventions of [31].
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in the so-called static gauge, i.e. when one makes the identifications

X1 → x0 , X2 → x1 , X3 →
√
λφ . (1.4)

Here, x0 and x1 are Euclidean worldsheet coordinates, while the boson φ makes up the

(single) transverse oscillator.

Given the tantalising square-root form of the above Lagrangian, it is natural to wonder

if these deformations are in any way related to the physics of D-branes [25, 32]. Indeed, the

Lagrangian (1.2), after an analytic continuation to Minkowski spacetime, can be written

in a more suggestive form as

LD = − 1

λ

(
−1 +

√
− det (ηµν + λ ∂µφ∂νφ)

)
. (1.5)

As is well-known, a p-brane embedded in (D+ 1)-dimensional Minkowski space will break

translation invariance along directions orthogonal to it. The dynamics of Nambu-Goldstone

modes corresponding to the spontaneously broken translation invariance are governed by

the Dirac Lagrangian. For p = 1, i.e. for a string, the Lagrangian (1.5) is the Dirac

Lagrangian, with the tension T of the string is related to TT coupling λ as

T ←→ 1

λ
. (1.6)

To summarise, the TT-deformed free boson Lagrangian, upon analytic continuation, is just

the Dirac Lagrangian for a string with tension inversely proportional to the TT coupling λ.2

In this article we call to attention a curious feature of the above deformation in the infi-

nite coupling limit (i.e. λ→∞) of a TT deformation. In particular, we consider the λ→∞
limit after the TT-deformed free boson Lagrangian (1.2) has been analytically continued to

Minkowski spacetime. To the best of our knowledge, such a limit has remained unexplored

in the literature. The tensionless limit of the Dirac Lagrangian, however, has been recently

studied by [34], and we draw on some of the results of these investigations, bringing them

to bear upon the study of TT deformations via the aforementioned correspondence.

The Hamiltonian corresponding to the Dirac Lagrangian is

HD =
1

λ

(
−1 +

√
1 + λ

[
π2 + (φ′)2

]
+ λ2 [φ′π]2

)
, (1.7)

where π is the canonical momentum conjugate to φ.3 In the above equations, the dots are

time derivatives and the primes are spatial derivatives, as usual. While the zero-coupling

limit of (1.7) returns the Hamiltonian for a free boson, the infinite-coupling limit yields

lim
λ→∞

HD =
∣∣φ′π∣∣ , (1.8)

and so the equations of motion in the infinite-coupling limit depend on the sign of πφ′.

We argue that both choices of sign correspond to co-existent sectors of the theory. The

2The relationship between Nambu-Goto strings and TT deformations has also been studied in [33].
3While this note was being completed, we came across [35], where TT deformations are also considered

within the Hamiltonian framework.
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equations of motion for each of these sector can be written down provided we impose the

constraint π = ±φ′, only to be imposed at the level of equations of motion. It is easy, then,

to verify using the equations of motion that this choice of sign π = ±φ′ implies in turn a

choice of chirality.

We conclude from this that the classical Hamiltonian breaks up into two sectors de-

scribing left-chiral and right-chiral bosons. In other words, the infinite-coupling limit effects

a decoupling of the chiral halves of the boson. It is impossible to simultaneously write down

the equations of motion for both sectors; nontheless, the two sectors are straightforwardly

related by a parity transformation.

Instead of describing the chiral bosons using their equations of motions, we may wish

to make the chirality of a specific sector manifest at the level of the Hamiltonian. For

example, we find that with (say) the choice π = +φ′, we have

HD =
(
φ′
)2
, (1.9)

and the resulting Lagrangian in configuration space is

LFJ = φ′
(
φ̇− φ′

)
. (1.10)

The Lagrangian (1.10) is the well-known Floreanini-Jackiw Lagrangian for a chiral bo-

son [36]. Therefore, we conclude that at the level of classical Lagrangians, the infinite

coupling limit of a TT-deformed free boson effects a decoupling of the left-chiral and right-

chiral halves of the bosons.

At this stage, it may be tempting to conclude that the infinite coupling limit halves

the number of degrees of freedom and leaves us with a chiral boson. If this were true, only

one of the two possible signs of πφ′ is physical, not both. This conclusion is incorrect. The

infinite coupling limit effectively maps the original (free) theory to a theory in which both

chiralities which are decoupled. There is no reason to privilege one choice of the sign over

the other. Additionally, there is nothing to suggest that on taking the infinite coupling limit,

a parity-invariant theory should go into a parity-violating theory. Finally, this conclusion is

consistent with expectations from considerations pertaining to the gravitational anomaly.

The theory (1.2), when coupled to a metric, is anomaly free. If and only if the infinite

coupling limit returns both left- and right-chiral sectors will the final theory, on coupling to

a metric, be free of gravitational anomalies.4 Finally, since the infinite-coupling limit does

not seem to affect any considerations pertaining to gravitational anomaly, it is natural to

expect that both the initial and the final theories, on coupling to a metric, yield a theory

devoid of gravitational anomalies.

It is well known that equal numbers of left- and right-chiral bosons cannot always be

thought of as describing ordinary bosons. The observation central to this note provides a

novel (but not unique) example contrary to this common expectation. This is guaranteed

because the TT deformation is an invertible deformation. In principle, given a pair of left-

and right-chiral bosons, we can always reverse the steps taken in this note, i.e. restore the

coupling and run the TT deformation machinery in reverse to obtain a theory of ordinary

4We couple to the metric only after performing TT deformations and taking the infinite coupling limit.

– 3 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
0

free bosons. Other instances in which a scalar is known to undergo chiral decoupling are

when the scalar is either compact or twisted. It seems that the chiral decoupling presented

in this article is unrelated to either of those known instances of chiral decoupling.

Often in the literature the TT deformation is thought of as a “reversal of the renor-

malization group flow.” This is true in the sense that the theory (1.2), when thought of as

an UV theory, under the renormalization group flow ends up in an IR fixed point given by

the free boson (1.1). If one thinks of the infinite-coupling limit as a part of the flow, albeit

towards the UV starting from (1.5), then one observes the following curious feature: a

local theory of chirally decoupled bosons first flows down to a non-local interacting theory

of a regular boson, and then flows down to a local theory of regular boson interacting via

derivative interactions, to eventually a local theory of free bosons in the IR.5

2 Fermions

Analogously, one may study the TT-deformed free fermion in the limit of infinite cou-

pling. We start out in Euclidean space, as before. The TT-deformed Lagrangian for a free

fermion is6

Lλ = ψ†−∂ψ− + ψ†+∂̄ψ+ − λ
[(
ψ†−∂ψ−

)(
ψ†+∂̄ψ+

)
−
(
ψ†−∂̄ψ−

)(
ψ†+∂ψ+

)]
. (2.1)

After analytic continuation, we compute the Hamiltonian in the usual way, via a Legendre

transform. The result is

Hλ = − 1

2λ

(
−1 +

√
1 + 4λ

[
Π−ψ′− −Π+ψ′+

]
+ 4λ2

[
Π−ψ′− + Π+ψ′+

]2)
, (2.2)

where primes denote spatial derivatives, and Π± are the canonical momenta conjugate to

ψ±. In the limit of vanishing λ, this returns

H0 = lim
λ→0

Hλ = −Π−ψ
′
− + Π+ψ

′
+ , (2.3)

as one would expect. At large λ, however, one gets

H∞ = lim
λ→∞

Hλ = −
∣∣Π−ψ′− + Π+ψ

′
+

∣∣ , (2.4)

and the corresponding first-order action is

S =

∫
d2σ

[
Π+ψ̇+ + Π−ψ̇− −H∞

]
. (2.5)

At this stage itself, we can conclude that the infinite-coupling limit yields decoupled chiral

fermions. Let us be a little more explicit, for clarity.

In a form structurally reminiscent of the bosons, the equations of motion in the infinite-

coupling limit depend on a sign, in this case of
(
Π−ψ

′
− + Π+ψ

′
+

)
. There are, once again,

5We acknowledge helpful correspondence with Shouvik Datta regarding this point.
6This Lagrangian has been shown in [37] to be equivalent to the N = (2, 2) Volkov-Akulov Lagrangian.
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two sectors corresponding to two possible choices of sign, and they are described by the

following actions: for the (+) sign, we have

H∞ =
(
Π−ψ

′
− + Π+ψ

′
+

)
,

SR =

∫
d2σ [Π+∂−ψ+ + Π−∂−ψ−] , (2.6)

and for the (−) sign, we have

H∞ = −
(
Π−ψ

′
− + Π+ψ

′
+

)
,

SL =

∫
d2σ [Π+∂+ψ+ + Π−∂+ψ−] . (2.7)

From the actions (2.6) and (2.7) we conclude that in either sector, the two chiralities are

decoupled.

In close analogy with the bosons, we may choose to impose constraints on the equations

of motions that resolve the sign ambiguity introduced by the absolute value. A suitable

pair of constraints is

Right Sector: Π− = 0 and Π+ψ
′
+ > 0 , (2.8)

Left Sector: Π+ = 0 and Π−ψ
′
− > 0 . (2.9)

The choice of setting the non-zero term in H∞ to be less than zero forces us to conclude that

ψ− propagates in the (+) direction, and likewise for ψ+ and the (−) direction. We reject

these branches on the basis of a definite convention: the chiral fermion ψ+ (respectively, ψ−)

propagates along the (+) (respectively, (−)) direction.

It is once again straightforward to see that the constraints (2.8) and (2.9) imposed on

the equations of motion obtained from the actions (2.6) and (2.7) respectively are nothing

but chirality constraints, describing the classical dynamics of chiral fermions. Once again

the two sectors are simply related to each other by a parity transformation.

3 Further comments

It is interesting to compare and contrast our findings with what is already known about

the TT deformation. One of the beautiful aspects of these deformations is the ability to

determine the exact finite-volume spectrum of the deformed theory. Consider a quantum

field theory wrapped around a cylinder of circumference R, whose undeformed energies and

quantised momenta are En and Pn respectively. The energy spectrum is deformed by the

TT deformation, while the momenta remain unchanged. The deformed spectrum Eλn is

Eλn =
R

λ

(
−1 +

√
1 +

λEn
R

+
λ2 P 2

n

R2

)
. (3.1)

On considering the above result in the limit λ→∞, we find

E∞n = |Pn| , (3.2)

– 5 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
0

which is the dispersion relation of a classical chiral field. This moves us to conclude that

the chiral decoupling we have discussed in this paper may be generic — in this regard,

free field theories are only the simplest and most transparent examples of this decoupling.

Further, since the deformed spectrum is quantum mechanically exact, it is likely that chiral

decoupling at infinite λ is a generic feature of TT-deformed quantum field theories.

Another attractive feature of these irrelevant deformations are that the exact S-matrix

of the deformed theory is arrived at by multiplying the S-matrix of the undeformed theory

by a phase. For the scattering of massless particles (i, j) → (k, l) with relative rapidity

θ = θi − θj , the S-matrix changes as

Sklij (θ)
TT−→ Sklij (θ) eiδ

(λ)
ij (θ) , (3.3)

where the phase is referred to as the CDD factor, and takes the form

δ
(λ)
ij (θ) = −2λ p

(+)
i p

(−)
j , (3.4)

where p
(+)
i and p

(−)
j are the momenta of the left- and right-moving particles. Implicit in the

derivation of the CDD factor is the assumption that λ is finite. Since the coupling λ only

appears in the phase, rigorously taking the limit λ→∞ (with other parameters held fixed)

of the CDD factor is at best ambiguous. One possible resolution to this ambiguity would

be to start with the classical theory at infinite coupling, following the analysis presented in

this paper, and then compute the S-matrix. It would be interesting to better understand

how the infinite coupling limit should be interpreted in the context of scattering.

Finally, irrespective of the imposition of the constraints, the chiral decoupling of

fermions in the infinite-coupling limit represents a curious development. The original ac-

tion (2.1) appears to be an interacting theory with coupling constant λ. In the limit where

the coupling constant goes to infinity — when the interaction term is dominant — we find

that the theory breaks up into two sectors, each describing a chiral fermion.

Indeed, the same is true of the bosonic case as well: the theory is interacting at finite,

non-zero values of coupling and when the coupling constant goes to infinity, the theory

breaks up into two sectors, each describing a chiral boson.

How might one explain this development? Since our analyses in this note are purely

based on equations of motion, it would be interesting to study the corresponding quantum

field theories, perhaps along the lines of [9, 38]. We hope to return to these questions in

the near future.
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