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1 Introduction

The study of discrete symmetries and their breaking has a rich history and remains an active

field of research in fundamental physics. Parity (P), charge conjugation (C) and their joint

transformation, namely CP, were all known to be violated in weak interaction [1, 2]. On

the other hand, the combination of CP with time reversal T, namely CPT, is known to be

an unbroken symmetry of any quantum field theory respecting Lorentz symmetry, which

is the celebrated CPT theorem [3, 4].

In the Standard Model (SM) of particle physics, the weak interaction maximally breaks

P but preserves CP for one generation of fermions. The CP violation in the electroweak

sector appears only when there are at least three generations of fermions, for there is a

CP-violating complex phase in the Cabbibo-Kobayashi-Maskawa matrix [5] that cannot be

rotated away. The θ terms of the gauge fields introduce additional CP-violations in the

theory. The θ terms are not observable in the electroweak dynamics, while introducing

a CP-violating neutron electric dipole moment (EDM) in the strong sector. The long-

undetected neutron EDM puts a tight constraint on the strong vacuum angle θc < 10−10
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which is unnaturally small [6]. This so-called strong CP problem can be solved by the

Peccei-Quinn mechanism [7], in which θc is promoted to a dynamical field known as ax-

ion [8, 9], and stabilized to a zero value by the QCD instanton effect. In addition, CP

violation beyond SM is required for successful baryogenesis in the early universe.

It is thus of fundamental importance to measure the effects of CP violation in different

ways. On particle colliders, we measure cross sections or differential decay rates which

are functions of 3-momenta of outgoing particles. In such situations, CP violation usually

manifests itself as P-odd combination of external momenta, which requires a totally anti-

symmetric Levi-Civita tensor εijk. Therefore, we need at least three linearly independent

momenta kα (α = 1, 2, 3) to contract all indices in εijk. As a consequence, εijkk1ik2jk3k is

nonzero only when the three momenta are not coplanar. Given one further constraint of

momentum conservation, this means that we need at least four external particles to form

such a P-odd combination.

For instance, to study the CP properties of a heavy scalar X, one often uses the decay

channel X → V V → 4f where V represents a gauge boson that subsequently decays into

a pair of fermions ff . The momenta of the four final fermions can then form a P-odd

function. This decay pattern has been evoked to study CP violation in the neutral pion

decay [10], B-physics [12, 13], and Higgs physics [14–21].

In this paper, we propose a new way to probe P- and CP-violating effects beyond the

TeV-scale collider experiments, making use of the cosmic correlation functions of primordial

fluctuations generated during inflation.

The idea of quasi-single field inflation and a cosmological collider has been proposed

and studied in the recent years [25–46]. Assuming an inflationary background, the cosmo-

logical collider aims to study properties like the mass, spin and couplings of quantum fields

in the very early universe by measuring correlation functions of primordial fluctuations.

The energy scale of the cosmological collider, set by the Hubble constant during inflation

H . 1013−14 GeV, is much higher than earth-based colliders of any type in any foreseeable

future. Its underneath idea is that particles produced in the exponentially expanding space-

time interact with each other and leave characteristic imprints on the correlation functions

of curvature fluctuations and tensor fluctuations (primordial gravitational waves). For ex-

ample, the mass of the mediator is encoded in the scaling/oscillation behavior of correlation

functions in the soft limit, its spin is extracted from the angular dependence PS(cos θ) [43],

and the couplings are read from the size of non-Gaussianities fNL in the correlation func-

tions. For light fields, signals are usually large [26]. For heavy fields, signals are in general

suppressed by Boltzmann factors, but can be naturally lifted up in the presence of chem-

ical potentials [47, 48], or in the scenario of special inflation models [49, 50]. Even for

off-shell production of massive particles, the EFT description still gives a signal which is

only power-law-suppressed [51]. Therefore, with future experiments [52–59] on primordial

non-Gaussianities and gravitational waves on the way, the possibility of utilizing this cos-

mological collider to probe particle physics at extremely high energy scales is tantalizing

and promising.

In this paper we construct models to generate observably large CP-violating trispec-

trum, similar to the decay plane correlations in the X → V V → 4f process. Our proof-
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of-concept calculation should be easily embedded into more realistic models. Our model

borrows the structure of the Higgs-gauge sector of SM, and also makes use of a rolling

axion-like field χ(t) that couples to a massive U(1) gauge boson which we simply call Z

boson. The axion field can be either QCD axion or string axion or any axion-like particle.

It is also possible to identify the axion as the inflaton.

In our model, CP is spontaneously broken by the rolling background of the axion.

Through the coupling between Z to the inflaton fluctuation ϕ and the Higgs field h that

gives mass to Z and is derivatively mixed with the inflaton, the 4-point correlation function

of ϕ develops an imaginary part, signaling P-violation. Furthermore, the imaginary part is

an odd function of the dihedral angle between two planes defined by four external momenta.

In a parameter regime where loop expansions are trustworthy, the signal can reach up to

τNL ∼ O(102). Stronger couplings and IR growth may further enhance the signal strength.

Since the current observation by Planck 2013 [60] gives τNL < 2800 (95% CL), the signals

in our model can be searched for in future surveys of primordial non-Gaussianities.

In addition, by studying the large mass EFT description of our model, we conclude that

in de Sitter (dS) spacetime, the infinite tower of local P- and CP-violating operators made

of four inflatons are unobservable, since they contribute to a pure phase in the wavefunction

of the universe. Thus the CP-violation signals in our model come from the on-shell particle

production due to chemical potential and spacetime expansion. The extrapolation of the

null result in exact dS to real inflationary scenario is a slow-roll suppressed signal. Hence

perturbative unitarity and the smallness of slow-roll parameters should put a bound on

the strength of the CP-violation signal in single field inflation EFT. A violation of this

bound would indicate the non-local particle production effect present in quasi-single field

inflation, along with potentially large cosmological collider signals.

Existing studies of P-violating bispectra and trispectra [62–75] require the presence of

either tensor modes or broken rotational symmetry. These studies are thus aimed to probe

the P or CP of the inflaton background or the gravitational interactions. Our construction

is different in that none of these two ingredients are needed, and our motivation is to test

the violation of P and CP in particle physics.

This paper is organized as follows. We first briefly review in section 2 the 4-body

decay X → V V → 4f of a heavy scalar X, and review in section 3 the basics of primordial

non-Gaussianity. We then show a CP-violating signal in primordial trispectrum resulting

from a toy example in section 4. We provide a more realistic model in section 5 and study

its properties for different chemical potential and mass choices. We conclude in section 6.

2 Decay plane correlation in X → V V → 4f

We are mainly interested in the CP-violating effects in the correlation functions of pri-

mordial density fluctuations, i.e., the cosmological collider observables. Before a more

systematic study of this topic, it is useful to recall how to probe CP-violating effects in

the decay of a heavy scalar particle X on a collider through the channel X → V V → 4f .

Following [18, 19], we give a concise review of this useful decay channel. In figure 1 we show

the Feynman diagram of this process in the left panel and the momentum configuration of
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the four final fermions in the right panel. Consider first the decay of X with 4-momentum

p into two off-shell gauge bosons V V with 4-momenta q1, q2 and polarization vectors ε1, ε2.

The most general amplitude for this process respecting Lorentz symmetry is

A(X → V V ) = F1ε
∗
1 · ε∗2 +

F2

m2
X

(ε∗1 · p)(ε∗2 · p) + i
F3

m2
X

εµνρσpµPνε
∗
1ρε
∗
2σ , (2.1)

where P = p1 − p2. The first two terms stand for P-even S-wave contribution and

D-wave contribution, while the last term is the P-odd P -wave amplitude. The form factors

Fi (i = 1, 2, 3) are functions of momentum squares. It is easy to identify the EFT operators

corresponding to these form factors. At the leading order of a gradient expansion of the

EFT operators, we have F1 ↔ XVµV
µ, F2 ↔ XVµνV

µν and F3 ↔ XVµν Ṽ
µν .

The vector bosons subsequently decay to Dalitz pairs, with an amplitude given by

A(X → V V → 4f) = Aρσ(X → V V )Dρα
V (ūΓαv)Dσβ

V (ūΓβv) , (2.2)

with Γµ being the 1PI vertex of the fermion-vector interaction. Focusing on the P -wave

contribution, we see

A(X → V V → 4f)|P -wave = i
F3

m2
X

εµνρσp
µqνDρα

V (ūΓαv)Dσβ
V (ūΓβv) . (2.3)

To further simplify this expression we focus on the transverse polarizations of the vector

boson and write ū(q1)Γαv(q2) ∼ (q1 − q2)α. Consequently,

A(X → V V → 4f)|P -wave ∼ i
F3

m2
X

εµνρσ(p1 + p2)µ(p1 − p2)ν(q1 − q2)ρ(k1 − k2)σ . (2.4)

Here we used the antisymmetry of the Levi-Civita symbol to simplify the tensor structure

of the vector propagator. After boosting to the rest frame of the scalar, p = p1 + p2 =

(mX , 0, 0, 0) only has a time-like component and the amplitude is proportional to the

rotational invariant

A(X → V V → 4f)|P -wave ∝ εijk(q1 + q2)i(q1 − q2)j(k1 − k2)k . (2.5)

As a result, with spin degrees of freedom neglected, decaying through P -wave channel is

forbidden if ~q1, ~q2 and ~k1 are coplanar. Around this planar configuration, the amplitude

behaves as an odd function of the dihedral angle between the two decay planes spanned by

~q1, ~q2 and ~k1, ~k2. To show this more explicitly, we parametrize ~q1 = (q1 sin θq, 0,−q1 cos θq),

~q2 = (−q1 sin θq, 0,−p + q1 cos θq), ~k1 = (k1 sin θk cosφ, k1 sin θk sinφ, k1 cos θk), ~k2 =

(−k1 sin θk cosφ,−k1 sin θk sinφ, p − k1 cos θk) in figure 1. The amplitude is then propor-

tional to

(~q1 + ~q2) · [(~q1 − ~q2)× (~k1 − ~k2)] = −4q1k1p sin θk sin θq sinφ . (2.6)

If the dynamical factor is regular around sin φ = 0, the amplitude is odd in sin φ↔ − sinφ,

with φ being the relevant dihedral angle. As we mentioned before, the P-odd shape vanishes

when all momenta are coplanar (φ = 0).
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X
p

p2

p1

k1

k2

q2

q1

f2

f̄2

f1

f̄1

Figure 1. The kinematics of X → V V → 4f .

To monitor the φ dependence in the correlation of decay products, we calculate the

differential decay rate dΓ/dφ, which is the modular square of the amplitude (2.2), with all

final-state spin states summed, and all phase space variables except φ integrated,

dΓX→V V→4f

dφ
=

∫
dΠk1,q1,p,θk,θq

∑∣∣∣A|S-wave +A|D-wave +A|P -wave

∣∣∣2
=

∫
dΠk1,q1,p,θk,θq

∑
|A+B sinφ|2 = (P-even) + (P-even) sin φ . (2.7)

In the second line, we have explicitly spelled out the sin φ dependence in the P-wave

amplitude, and the coefficients A and B are both symmetric under φ → −φ. In the

final result, therefore, we get a piece odd in φ → −φ which arises from the interference

between the P-even (S and D-wave) amplitude and P-odd (P -wave) amplitude. The P-odd

dependence in the final result is nonzero only when AB 6= 0, namely when both CP-even

and CP-odd pieces are present. Therefore the P-odd behavior is a signature of CP violation.

We note in particular that the case with A = 0 and B 6= 0 will not generate a P-odd shape

in the final result.

3 A brief review of primordial non-Gaussianity

In this section we provide a very brief review of primordial non-Gaussianity in the context

of cosmological collider physics. We refer readers to [78] for a pedagogical review.

In ordinary inflation scenarios, the primordial fluctuations as we observe today were

generated from the quantum fluctuation of the inflaton field φ = φ0 + ϕ during inflation.1

We use φ0 to denote the background and ϕ the fluctuation. Due to the flatness of the

inflation potential, the fluctuation ϕ behaves approximately as a massless scalar field. It

is convenient to expand this fluctuation field in terms of Fourier modes ϕ(τ,~k), and the

1Notice that the inflaton field φ is to be distinguished from the dihedral angle mentioned above.
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mode function of positive frequency part is given by

ϕ(τ,~k) =
H√
2k3

(1 + ikτ)e−ikτ , (3.1)

where H is the Hubble parameter during inflation and τ is the conformal time which goes

from −∞ to 0. At the late time limit τ → 0, the mode function approaches to a constant

ϕ(0,~k) = H/
√

2k3, and thus provides the initial condition for the density fluctuations of

our universe.

From the observation we can probe the n-point correlation functions of ϕ, i.e.,

〈ϕ(τ,~k1), · · ·ϕ(τ,~kn)〉. The 2-point function gives the power spectrum which is well-

measured today. The late time limit of the mode function (3.1) predicts a scale invariant

power spectrum 〈ϕ2〉 ∼ H2/(2k3), which is correct up to slow-roll corrections. Higher point

correlations (n > 3) provide the information about the interactions of ϕ modes, and are

known as primordial non-Gaussianities. Therefore, we can think of non-Gaussianity effec-

tively as “inflaton collisions”. Upon a gauge transformation ζ = −(H/φ̇0)ϕ that translates

inflaton fluctuations into curvature fluctuations ζ, the inflaton correlations can also be ex-

pressed in terms of ζ, which is also widely used. Here φ̇0 is the rolling speed of the inflaton

background and can be approximated as a constant during inflation for our calculation.

The inflaton field is not the only field present during inflation. The fast expansion of

the inflationary universe allows for the production of any heavy particles with mass up to

O(H). Heavy particles decay quickly in an expanding background and cannot survive the

late time limit. However, they may interact with the inflaton fluctuation ϕ before they

decay, leaving imprints on the non-Gaussianity. Therefore, measuring non-Gaussianity can

be viewed as a way to extract information of short-lived heavy particles by monitoring the

correlation of long-lived inflaton modes. This is completely in parallel with the logic of

modern collider experiments, and for this reason, this approach is called the cosmological

collider physics.

However, we should also point out a major distinction from collider experiments. In

collider experiments, it is usually possible to reconstruct the phase space of a process at

the single-event level. On the cosmological collider, single-event level signals are typi-

cally overwhelmed by large fluctuations in the IR and are therefore undetectable. Instead,

we can only measure the statistical average of a large number of events from correlation

functions. In this regard, the cosmological collider is less informative than ordinary col-

lider experiments.

The techniques of computing non-Gaussianity is quite similar to usual calculation of

S-matrix, with some complication from the curved spacetime background. In particular,

we can still use a diagrammatic approach to organize the perturbative expansion. The key

difference is the lack of explicit in and out states in the case of cosmic correlators. As

a result, we should calculate Schwinger-Keldysh diagrams rather than ordinary Feynman

diagrams, although the “Feynman rules” are similar. The rules not only allow us to calcu-

late the non-Gaussianty explicitly, but also provide a way to estimate the size of the result

before a detailed calculation.
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In this paper we are mostly interested in the 4-point correlation of the inflaton fluc-

tuations, since the CP violation in general implies a shape containing Levi-Civita symbol

εijk. As explained above, we need at least three independent momenta to form a nonzero

result when contracted with εijk. This means that we need to consider at least 4-point

correlations, since the external momenta of n-point correlations are subject to momen-

tum conservation.

At the 4-point level, it is customary to parameterize the correlation function by the

trispectrum as

〈ζ(~k1)ζ(~k2)ζ(~k3)ζ(~k4)〉′ = (2π)6P 3
ζ

K3

(k1k2k3k4)3
T (~k1, ~k2, ~k3, ~k4), (3.2)

where K =
∑4

i=1 ki, and the prime on 〈· · ·〉′ means the δ-function of momentum conser-

vation is removed. Here Pζ is the power spectrum defined via (2π2/k3)Pζ = 〈ζ(~k)ζ(−~k)〉′
and is measured to be Pζ ' 2 × 10−9 at the CMB scale. Again using the conversion

ζ = −(H/φ̇0)ϕ, we can find an estimate of the trispectrum T as,

T ∼
P−1
ζ

(2π)2
× (loop factors)× (vertices)× (propagators) . (3.3)

Here again every dimensional parameter is measured in the unit of the Hubble parameter

H, as long as the particles are not far heavier than the scale H. The four external momenta

subject to momentum conservation can form non-coplanar configuration and thus we can

look for signals of CP violation from the trispectrum. In the next section we use a toy

example to illustrate how this can be achieved.

4 A toy model: scalar QED in de Sitter

To draw analogy to the collider event in figure 1, we now consider a diagram contributing

to the 4-point cosmic correlator with exactly the same topology, shown in figure 2. In

this figure, we are imagining a pair of scalar fields φ± (thick dashed lines with arrows)

being external lines. These fields are charged under a U(1) gauge group, and thus interact

with the U(1) gauge field Aµ (wiggly lines) through minimal coupling as in a scalar QED.

Unlike the collider process in figure 1, here we do not have an initial heavy scalar particle X.

Instead, we can introduce a CP-odd operator insertion θ(τ)FF̃ . Here θ(τ) has explicit time

dependence and, as we shall see below, behaves effectively as a particle source producing

gauge bosons Aµ during inflation. Such a θ term can be easily generated from a coupling

to an axion-like field χ through the term χFF̃ , by allowing the background of χ to slowly

roll down its potential during inflation.

The model generating the above diagram is simply the scalar QED with an additional

time-dependent θ-term. Its action is

S =

∫
dτd3x

√−g
[
−gµνDµφ

∗Dνφ−m2φ∗φ− 1

4
gµρgνσFµνFρσ −

1

4
c0θ(τ)EµνρσFµνFρσ

]
,

(4.1)
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~p−~p~q1
~k1

~q2 ~k2

Figure 2. The induced CP-violating t-channel diagram. See the text for explanation of various

lines. We adopted the diagrammatic notation in [78].

where Eµνρσ = εµνρσ/
√−g is the covariant Levi-Civita tensor. The θ-term is dynami-

cal since it is explicitly time-dependent. Evaluating the above action on the inflationary

background with the spacetime metric gµν = a2(τ)ηµν with a ' −1/(Hτ), we have,

S =

∫
dτd3x

[
− a2ηµν∂µφ

∗∂νφ−m2a4φ∗φ− 1

4
ηµρηνσFµνFρσ

+ iea2ηµνφ∗
←→
∂µφAν − e2a2φ∗φAµAνη

µν − 1

4
c0θ(τ)εµνρσFµνFρσ

]
. (4.2)

In this toy example we neglect the back-reaction of the quantum fields on the spacetime

geometry. In addition, we require 〈φ〉 = 0 to keep gauge invariance manifest. Upon

integration by part, the last term takes the form of a Chern-Simons term with a time-

dependent factor in the front.

−
∫
dτd3x

θ(τ)

4
εµνρσFµνFρσ =

∫
dτθ′(τ)

∫
d3xεijkAi∂jAk . (4.3)

This is essentially the spatial integral of the Chern-Simons charge density J0
CS =

εijkAiFjk [77]. In other words, for c0θ
′ > 0 (c0θ

′ < 0) the rolling background pumps

left-handed (right-handed) states out of the vacuum while destroying right-handed (left-

handed) states into the vacuum. This can be viewed as the physical source of P-violation.

We are interested in the decay of the photon pair into scalars, therefore no special care

about boundary condition is needed.

To pursue a perturbative calculation, we quantize the system using the Schwinger-

Keldysh path-integral formalism [78]. The relevant Feynman rules are given in appendix A.

The t-channel diagram (shown in figure 2) is given by〈
φ~q1φ

∗
~q2
φ~k1φ

∗
~k2

〉′
t
=−e2c0

∑
ε2=±

ε2

∫
dτ1dτ2dτ3a(τ1)2θ′(τ2)a(τ3)2εijk(q1−q2)ipj(k1−k2)k

×Gε1(q1, τ1)G∗ε1(q2, τ1)Dε1ε2(p,τ1, τ2)Dε2ε3(p,τ2, τ3)Gε3(k1, τ3)G∗ε3(k2, τ3)

≡ (~q1+~q2)·[(~q1−~q2)×(~k1−~k2)] F (~q1,~q2,~k1,~k2) , (4.4)

where G is the propagator for a massive scalar in dS and D denotes the propagator of a

massless vector in flat spacetime with the tensor structure stripped (because gauge fields

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
9

are conformally coupled in four-dimensional spacetime). The u-channel contribution is

obtained by exchanging two anti-particles,〈
φ~q1φ

∗
~q2
φ~k1φ

∗
~k2

〉′
u

=
〈
φ~q1φ

∗
~k2
φ~k1φ

∗
~q2

〉′
t
. (4.5)

There is no s-channel contribution in this toy model since we can distinguish two charge

eigenstates for external scalars. Therefore the total CP-odd contribution to the 4-point

function is〈
φ~q1φ

∗
~q2
φ~k1φ

∗
~k2

〉′
= 2

[〈
φ~q1φ

∗
~q2
φ~k1φ

∗
~k2

〉′
t
+
〈
φ~q1φ

∗
~q2
φ~k1φ

∗
~k2

〉′
u

]
(4.6)

= 2(~q1 + ~q2) · [(~q1 − ~q2)× (~k1 − ~k2)]
(
F (~q1, ~q2,~k1,~k2)− F (~q1,~k2,~k1, ~q2)

)
,

which bears an analogues form as its flat spacetime ancestor (2.5). When the 4-point

function is observed for a momentum set up as in figure 1, the trispectrum will acquire a

sinφ dependence that apparently violates parity conservation.

Some conceptual remarks are in order before we conclude this section.

First, in flat spacetime, the combined transformation CPT is an unbroken discrete

symmetry as a consequence of Poincaré symmetry. Thus any CP violation in the theory

is equivalently a T violation, and vice versa. However, the CPT theorem does not hold in

its original form in curved spacetime. It is easy to find models violating T but preserving

CP. For example, consider a minimally coupled real scalar in an expanding spacetime.

The time reversal symmetry T is spontaneously broken by the expansion of the universe,

so is the combined CPT. Hence CP violation is not automatic in an expanding universe,

instead, it is model-dependent.

Second, we claimed that the CP-odd shape in the trispectrum is a signal of CP violation

and we have been comparing this signal with the CP-odd signal in the differential decay

rate of X → 4f on a particle collider. But there is a subtlety in making this comparison.

In cosmology we observe correlation functions instead of cross sections or decay rates.

The cross sections are always modular squares of scattering amplitudes, which means that

the appearance of Levi-Civita symbol in cross sections (or differential decay rates) must

be from the interference between a CP-even piece and a CP-odd piece at the amplitude

level. The existence of both CP-even and CP-odd pieces with the same outgoing states is

usually required to establish the CP-violating signal. However, in cosmic correlators, there

exists interference between process with different outgoing states. In particular, there is

always a CP-even Gaussian piece standing for free propagation, with which the CP-odd

non-Gaussian piece can interfere. Thus in a sense, we observe amplitudes directly instead

of their modular squares. Consequently, we can see Levi-Civita symbols directly at the

amplitude level. This does not necessarily imply CP violation at the Lagrangian level,

since we can assign CP = −1 to the scalar field (the axion-like field χ in our toy example).

Nonetheless, we need a nonzero and rolling background of χ to generate the desired θ(τ)

term in this toy model, and therefore the CP is spontaneously broken by the rolling classical

profile of the axion field. So we can still say that the CP-odd shape in the trispectrum in

our model is a signal of CP violation.

– 9 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
9

Third, a technical point to be made is that we require a pair of charged scalar fields

appearing in external lines, not only to couple them to a U(1) gauge boson, but also to

make the four external lines non-identical. This is important to generate a nonzero CP-odd

shape, since if we choose the four external lines to be identical, the combination in (4.6)

will vanish.

5 CP-violating trispectrum in a realistic model

In the last section we realized a CP-violating trispectrum in a toy model made of spec-

tator fields on dS background. This result cannot be applied directly to generic inflation

models because, as we mentioned above, we need two scalars with opposite U(1) charge in

external lines, to generate a nonzero CP-odd trispectrum. A pair of two distinguishable

charged scalars are not available in minimal inflation scenarios, since that results in large

isocurvature fluctuations which have been severely constrained by observations. On the

other hand, if we simply replace all external lines by inflaton fluctuations, the CP-violating

shapes will be canceled due to permutations (cf. the end of last section). Therefore, we

need to find other ways to construct two distinguishable external lines.

To this end, we still need at least two real scalar fields φ and σ. We will assume that

φ is the inflaton field which has very flat potential and its fluctuation ϕ is nearly massless.

On the other hand, σ is in general massive. To realize a process with topology similar to

the previous example, we require a coupling ∂µφZ
µσ and also a two-point mixing φ̇σ that

converts the second scalar σ to the observable φ. These two couplings can appear naturally

in an effective theory of inflaton plus a U(1) gauge sector with a complex Higgs scalar field.2

Among the leading inflaton-matter couplings we have the following operators [40],

Linf-gauge
int =

c1

Λ
∂µφ(H†DµH) +

c2

Λ2
(∂φ)2H†H+ · · · . (5.1)

Upon symmetry breaking, either by input or by heavy-lifting, the c1 term yields a triple

vertex ∆L1 =
ρ1,Z
φ̇0
h∂µϕZ

µ that acts as a current-potential interaction, and the c2 term

results in a mixing between Higgs and inflaton ∆L2 = −ρ2ϕ̇h. The couplings are related

to the EFT Wilson coefficients by ρ1,Z ≡ −Im c1φ̇0mZ/Λ and ρ2 ≡ 2c2φ̇0v/Λ
2.

In addition to the above two couplings, we also introduce the CP-violating interaction

∆L3 = − c0θ(t)
4 ZµνZρσEµνρσ, where θ(t) is dependent on time. The CP violation induced

by this operator will produce signatures in the trispectrum of ϕ.

To summarize, with the inflaton background, our model consists of the following three

couplings,

∆L1 =
ρ1,Z

φ̇0

h∂µϕZ
µ, ∆L2 = −ρ2ϕ̇h, ∆L3 = −c0

4
θ(t)ZµνZρσEµνρσ . (5.2)

As in the previous toy model, the time-dependent θ-term is most naturally realized with

a rolling axion field χ = fθ where f is the decay constant. In this case, CP is preserved

2Note that our model takes the form of the electroweak sector of SM, yet they are not necessarily the

same. To be general, we choose to consider the fields in our model as BSM fields hereafter and comment

later on the special case where they are the SM fields.

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
9

at the Lagrangian level since the axion is CP odd, but CP is spontaneously broken by the

rolling background of χ. The dynamics of its classical profile is governed by the equation

of motion

θ̈ + 3Hθ̇ +
V ′(θ)

f2
+

c0

4f2
〈ZµνZρσEµνρσ〉 = 0 , (5.3)

where V (θ) = Λ4
χ (1− cos θ) is the axion potential. We require the energy density of the

axion to be much smaller than that of the inflaton, Λ4
χ � M2

pH
2, to avoid multi-field

inflation (for keeping things simple). The last term of (5.3) comes from the back-reaction

of perturbations on the background. Although in its apparent form this term appears to

be a correction to the slope of the potential, it is actually proportional to the rolling speed

θ̇ and thus serves as a frictional force Γθ̇ ∼ c0
4f2
〈ZµνZρσEµνρσ〉. This is the usual dissipative

effects due to particle production. The large friction produced by the combination of

exponential spacetime expansion and dissipative effects tends to drive the axion to the

slow-roll attractor phase, where | θ̈
(3H+Γ)θ̇

| � 1 and θ̇ ∼ Λ4
χ

f2(3H+Γ)
∼ const. For our purpose,

it is convenient to absorb the axion rolling speed into the coupling constant and define an

dimensionless parameter c as

c ≡ c0θ̇

H
∼

c0Λ4
χ

f2(3H + Γ)H
. (5.4)

We point out that the θ term is only P-violating by itself since it is C-invariant, hence

breaking CP also. Even in the absence of a direct coupling between fermions and our

axion, the time-dependent θ still provides a chemical potential for the fermion sector and

thus brings extra P-violation that cannot be balanced by any C-violation. Consider the

coupling of the Z field to a fermion,

∆Lf = ψ̄(i /D −m)ψ − c0

4
θ(t)ZµνZρσEµνρσ . (5.5)

If θ(t) = const, we can perform a global chiral redefinition ψ′ ≡ exp [−iαγ5]ψ with α ∝ θ/2,

to eliminate the total derivative term, and also by doing so giving an invariant definition

of fermion parity. However, if the θ term is dependent on time, there is no global chiral

field redefinition that can eliminate the θ term once and for all. And the natural parity

defined at one moment will differ from that of the next. Thus a chemical potential term for

fermions will be induced at one-loop level, which is proportional to the rate of change of θ:

⇒ ψ̄γ0γ5ψ∂0θ ∝ c(nR − nL) . (5.6)

This term is C-invariant but P-odd for fixed axion background. Using the EOM method

described in section 5.2, this simply corresponds to the one-loop self-energy for the fermion,

with odd number of θ insertions contributing to the chemical potential term and even

number of θ insertions contributing to the mass term and the field-strength renormalization

factor. Note that in the SM setup, U(1)B+L is anomalous with respect to SU(2)L but not

U(1)Y . Thus only left-handed fermions are relevant to the induced chemical potential

term cnB+L.
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~p−~p~q1
~k1

~q2 ~k2

Figure 3. The leading-order CP-violating t-channel diagram.

5.1 Leading-order perturbation theory

For a perturbatively small c � 1, we can simply calculate the trispectrum to the leading

order. This corresponds to the parameter regime where
c0Λ4

χ

f2(3H+Γ)H
� 1. Namely either

the coupling c0 is small or the axion rolling speed is slow.

Again we can quantize the system using Schwinger-Keldysh formalism. The relevant

Feynman rules are given in appendix A. Note that symmetry breaking gives Z boson a

mass and its different polarization modes have different EOMs. Since the θ factor already

occupies the time-like component, only the spatial components of the gauge field propagator

contribute. The longitudinal polarization is proportional to p̂ip̂j and thus vanishes upon

contraction with the Levi-Civita symbol. The transverse polarization is proportional to

δij − p̂ip̂j and is filtered to δij by the same reasoning.

The t-channel diagram is given by

〈
ϕ~q1ϕ~q2ϕ~k1ϕ~k2

〉′
t

= −c0

(
ρ1,Z

φ̇0

)2

ρ2
2

∑
{εi}=±

ε1ε2ε3εε
′

×
∫
dτdτ1dτ2dτ3dτ

′a(τ)3a(τ1)2θ′(τ2)a(τ3)2a(τ ′)3εjmkq1ipmk1l

×Gϕ;ε1(q1, τ1)Gh;ε1ε(q2, τ1, τ)∂τGϕ;ε(q2, τ)

×Dij;ε1ε2(p, τ1, τ2)Dkl;ε2ε3(p, τ2, τ3)

×Gϕ;ε3(k1, τ3)Gh;ε3ε′(k2, τ3, τ
′)∂′τGϕ;ε′(k2, τ

′)

≡ F (~q1, ~q2,~k1,~k2) (~q1 + ~q2) · (~q1 × ~k1) , (5.7)

where in the second step we used the fact that Dij ∼ δij effectively. The explicit form

of the propagators is dependent on their IR oscillation frequencies µh and µZ , which are

related to the field masses mh and mZ by

m2
h

H2
= µ2

h +
9

4
and

m2
Z

H2
= µ2

Z +
1

4
. (5.8)

Because the inflaton is neutral, the four external lines should be completely symmetrized.

Taking into account the symmetry F (#1,#2,#3,#4) = F (#3,#4,#1,#2), we find the
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total 4-point function to be

〈
ϕ~q1ϕ~q2ϕ~k1ϕ~k2

〉′
=

{
1

2
(~q1 +~q2) · [(~q1−~q2)×(~k1−~k2)]

[
F (~q1, ~q2,~k1,~k2)−F (~q1, ~q2,~k2,~k1)

]
+
(
~q2↔~k2

)
+

~q2
~k1

~k2

↓ ↓ ↓
~k1

~k2 ~q2

}+

{
F (#1,#2,#3,#4)→ F (#2,#1,#4,#3)

}
, (5.9)

where the three lines represent correspondingly t, u, s channel contributions. This is again

of the same form of (2.5) and (4.6), hence sharing the sinφ dependence for the two planes

defined by four momenta. The coefficient function F is dictated by detailed dynamics and

can be calculated numerically. To simplify a five-layer time-ordered integral, we evoke the

mixed propagator that was introduced in [78] and reduce the integral to three layers.

From the definition of the trispectrum T in (3.2), we have

TPT (~q1, ~q2, ~k1, ~k2) =
φ̇2

0

H4

〈
ϕ~q1ϕ~q2ϕ~k1ϕ~k2

〉′
H4

(q1q2k1k2)3

K3
. (5.10)

The trispectrum calculated from the above expression behaves as an odd function of the

angle φ.

We note that the trispectrum induced from one θ insertion is purely imaginary. This

is a notable fact due to P-violation. While the scalar correlation function in position space

is manifestly real, its counterpart in momentum space is in general not. Because〈
n∏
j

ϕ(~xj)

〉
=

∫
{~kj}

ei
∑n
j
~kj ·~xj

〈
n∏
j

ϕ~kj

〉
=

〈
n∏
j

ϕ(~xj)

〉∗
(5.11)

leads to 〈
n∏
j

ϕ−~kj

〉
=

〈
n∏
j

ϕ~kj

〉∗
. (5.12)

For n < 4, we can use spatial rotations (if there is rotational symmetry) to transform the

left-hand side of (5.12) back to the original configuration, thereby establishing the reality.

However, for n > 4, P-violation leads to
〈∏

j ϕ−~kj

〉
6=
〈∏

j ϕ~kj

〉
. This will give rise to the

imaginary part of the 4-point correlation function in momentum space. Figure 4 shows the

imaginary part of the dimensionless trispectrum with respect to φ for different momentum

configurations. The shape dependence on the angle φ is in accordance with our expectation

from intuition. For example, in the middle panel where k1 = k2, we anticipate the behavior

|Im T̃PT (φ = δ)| = |Im T̃PT (φ = π − δ)| because of rotational symmetry. In this light-field

case, τNL ∼ O(10) if the couplings are chosen as c ∼ 0.1, ρ2/H, ρ1,Z/φ̇0 ∼ 0.2. When the

mass of the fields increases, the decrease in τNL is significant (see section 5.3).
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(1,1,π/3,π/3)
-π 0 π-4000

-2000

0

2000

4000

ϕ

Im
T PT

(1, 2 ,π/3,π/4)
-π 0 πϕ

(1,2,π/3,π/4)
-π 0 πϕ

Figure 4. The perturbatively computed dimensionless trispectrum divided by couplings T̃PT ≡
TPT /c(ρ2H )2(

ρ1,Z
φ̇0

)2 as a function of φ with different momentum configurations. Left panel: k1 =

q1 = 1, p = 2, θk = θq = π/3, middle panel: k1 = 1, q1 =
√

2, p = 2, θk = π/3, θq = π/4, right

panel: k1 = 1, q1 = p = 2, θk = π/3, θq = π/4. The masses are chosen as µh = 0.3, µZ = 0.2, which

correspond to mh = 1.53H,mZ = 0.54H.

5.2 Partially non-perturbative treatment of the θ term

The calculation above is for a single θ-term insertion. This is essentially the leading P- and

CP-violating term of a perturbative expansion in terms of c� 1, where c is defined in (5.4).

However, it is physically allowed to have c ∼ O(1), where the perturbative expansion in

small c is no longer valid. In this case we should treat the θ-term non-perturbatively. The

way to keep contributions to all orders in c is to derive the EOM for the gauge field by

including the θ-term. The resulting equation is still linear and has an analytical solution.

Then we can use the mode function from this equation to compute the trispectrum, which

effectively includes contributions with arbitrary number of θ-term insertions. We illustrate

this resummation as below.

= + + + · · · .

(5.13)

We could have used this method from the very beginning. But a single θ-insertion is still

useful because it is in direct analogy to one-body decay in particle physics. Furthermore, we

can see explicitly the appearance of the Levi-Civita symbol, both in the original Lagrangian

and in the final result. As we shall see below, the Levi-Civita dependence in our non-
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perturbative treatment is no longer manifest in intermediate steps, but the P-odd angular

dependence in the final result still persists.

The EOM of the vector field Z is obtained by varying the quadratic action,

∂µZ
µσ −m2

Za
2Zσ = −c0∂ρθε

µνρσZµν . (5.14)

Notice that the indices are raised using ηµν , as will be for this whole subsection. In the

unitary gauge, Z boson behaves as a Proca field with a second-class constraint found by

taking the divergence of (5.14),

∂σ(a2Zσ) = 0 , (5.15)

which becomes 2HZ0 = ∂σZ
σ in dS. Therefore Z0 has no dynamics and must be solved

from the dynamics of the longitudinal component. Since we are interested in the effects

brought by the θ term, we neglect the longitudinal dynamics and write the Fourier-space

EOM for the transverse components Z⊥i ≡ (δij − ∂i∂j/∂2
k)Zj as,[

∂2
τ + (p2 +m2

Za
2)
]
Z⊥i (~p) = 2ic0aθ

′εijkpjZ
⊥
k (~p) . (5.16)

We choose circular polarizations as the basis to diagonalize the EOM, namely Z⊥i =∑
λ=± ε

λ
i (p̂)vλp (τ) and ~ε (±) = (~ε (1) ± i~ε (2))/

√
2, where p̂ stands for the unit vector in

the ~p direction. With the inflationary background, the EOM reads

v(±)′′
p +

(
p2 ∓ 2pc0θ̇

Hτ
+

m2
Z

H2τ2

)
v(±)
p = 0 . (5.17)

The second term in the bracket comes from the CP-violating θ term and acts as a chemical

potential favoring one polarization over the other and thus produces a left-right imbal-

ance. As mentioned above, this is the source of P-violation in the four-scalar final state.

The solutions to the EOM are Whittaker functions, which under the Bunch-Davies initial

condition become

v(±)
p =

1√
2p

2∓ice∓πc/2W (±ic, iµZ , 2ipτ)
τ→−∞−−−−→ 1√

2p
e−ipτ (−pτ)±ic . (5.18)

From this mode function we obtain four Schwinger-Keldysh propagators,

D+−
i1i2

(~p, τ1, τ2) =
∑
λ=±

[
ελi1(−p̂)vλp (τ1)

]∗
ελi2(−p̂)vλp (τ2) (5.19a)

D−+
i1i2

(~p, τ1, τ2) =
∑
λ=±

ελi1(p̂)vλp (τ1)
[
ελi2(p̂)vλp (τ2)

]∗
(5.19b)

D++
i1i2

(~p, τ1, τ2) = Θ(τ1 − τ2)D−+
i1i2

(~p, τ1, τ2) + Θ(τ2 − τ1)D+−
i1i2

(~p, τ1, τ2) (5.19c)

D−−i1i2(~p, τ1, τ2) = Θ(τ1 − τ2)D+−
i1i2

(~p, τ1, τ2) + Θ(τ2 − τ1)D−+
i1i2

(~p, τ1, τ2) . (5.19d)

As a consistency check, the propagators are invariant under SO(2) little group transforma-

tions ελi1 → eiλθελi1 , ελ∗i2 → e−iλθελ∗i2 . However, notice that now with P-violation, we have

D+−
i1i2

(~p, τ1, τ2) =
[
D−+
i1i2

(~p, τ1, τ2)∗
]
~p→−~p

6= D−+
i1i2

(~p, τ1, τ2)∗ , (5.20)
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because the mode functions for two polarizations behave differently and v
(+)
p 6= v

(−)
p . Hence

the vector propagator distinguishes two polarizations, which in turn will be imprinted on

the final states.

With the effects of the θ term non-perturbatively encoded in the propagators in (5.19),

we can calculate the trispectrum by a simple exchange diagram. The current insertion

vertex requires a contraction between polarization vectors and the corresponding three-

momenta. To proceed, we build the polarization vectors through a Gram-Schmidt proce-

dure,

~ε (±) =
1√

2(1− (n̂ · p̂)2)
[(n̂− (n̂ · p̂)p̂)± i(p̂× n̂)] , (5.21)

where n̂ is a random-directional unit vector different from p̂. The momentum contraction

involves the following expression:(
~q1 · ~ε (±)(p̂)

)(
~k1 · ~ε (±)(p̂)

)∗
=
(
~q1 · ~ε (±)(−p̂)

)∗ (
~k1 · ~ε (±)(−p̂)

)
. (5.22)

Since we have checked the little group invariance of the vector propagators, we can choose

whatever n̂ that simplifies calculation without affecting the final result. Setting n̂ = q̂1

gives(
~q1 · ~ε (±)(p̂)

)(
~k1 · ~ε (±)(p̂)

)∗
=

1

2

[
~q1 · ~k1 − (~q1 · p̂)(~k1 · p̂)∓ ip̂ · (~q1 × ~k1)

]
. (5.23)

The P-odd pattern appears again in the last term. If the θ term were absent, the mode

functions for two polarizations would be the same and would lead to a cancellation of this

pattern, leaving a real trispectrum without P-violation.

The 4-point function is now computed easily as a single tree-level exchange diagram,〈
ϕ~q1ϕ~q2ϕ~k1ϕ~k2

〉′
= −

(
ρ1,Z

φ̇0

)2

ρ2
2

∑
{εi}=±

ε1ε2εε
′
∫
dτdτ1dτ2dτ

′a(τ)3a(τ1)2a(τ2)2a(τ ′)3

×Gϕ;ε1(q1, τ1)Gh;ε1ε(q2, τ1, τ)∂τGϕ;ε(q2, τ)

× q1i1D
ε1ε2
i1i2

(~p, τ1, τ2)k1i2

×Gϕ;ε2(k1, τ2)Gh;ε2ε′(k2, τ2, τ
′)∂′τGϕ;ε′(k2, τ

′)

+ (23 perms) . (5.24)

Afterwards, calculations are standard and the final trispectrum normalized according

to (5.10) is shown in figure 5. As is clear from the figure, in the presence of the θ term,

the trispectrum induced by the transverse components of the vector boson develops an

imaginary part that behaves as an odd function of φ around the planar configuration. In

contrast, the real part of the trispectrum is an even function in φ. The physical explanation

for this is very clear. Planar momentum configurations are even under P transformation,

and therefore cannot possess an imaginary part,3 for the same reason as why in Chemistry,

3Notice that this is true only when spatial rotational symmetry is preserved. If there exists a special

direction, planar configurations can also have nonzero imaginary parts (see [68]). Here we deem manifest

rotational symmetry as a more natural choice and will only consider this case hereafter.
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Figure 5. The dimensionless trispectrum divided by couplings T̃⊥ ≡ T⊥/(ρ2H )2(
ρ1,Z
φ̇0

)2 as a function

of φ with different momentum configuration. Left panel: k1 = q1 = 1, p = 2, θk = θq = π/3, middle

panel: k1 = 1, q1 =
√

2, p = 2, θk = π/3, θq = π/4, right panel: k1 = 1, q1 = p = 2, θk = π/3, θq =

π/4. Here we have taken c = 0.1 (perturbative in c) for the first line and c = 0.6 (non-perturbative

in c, marginal in loops) for the second line. The masses are chosen as µh = 0.3, µZ = 0.2, which

correspond to mh = 1.53H,mZ = 0.54H. In these cases, Im τNL ∼ O(102) if the couplings are all

near 0.2.

planar molecules generally have no enantiomers. To check the consistency, a comparison

with the leading-order perturbation theory results in the previous subsection is shown in

figure 6. Clearly, in the perturbative regime, these two methods agree with each other

very well. In the partially non-perturbative regime, e.g., c = 0.6, Im (cT̃PT ) mismatches

Im T̃EOM by a numerical factor.

When chemical potential is large, namely c & 1, the production rate of gauge boson is

dramatically amplified. This can be seen from the IR expansion of the gauge field mode

function:

v(±)
p

τ→0−−−→ α±
C√
2µZ

(−τ)
1
2

+iµZ + β±
C∗√
2µZ

(−τ)
1
2
−iµZ , (5.25)

where C = ei(µZ ln(2p)−π/4) is a pure phase and

α±= 2∓ice−
1
2
π(±c−µZ)

√
2µZ Γ(−2iµZ)

Γ
(

1
2−iµZ∓ic

) , β±=−i2∓ice− 1
2
π(±c+µZ)

√
2µZ Γ(2iµZ)

Γ
(

1
2 +iµZ∓ic

) (5.26)
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Figure 6. A numerical check on the consistency. In the left panel, we plot the ratio of pertur-

bative results obtained in section 5.1 against the non-perturbative results obtained using EOM in

section 5.2. In the right panel, we show the imaginary part of the trispectrum on the same plot

for a direct comparison. The first row corresponds to c = 0.1 while the second row corresponds to

c = 0.6. The parameters are chosen as k1 = q1 = 1, p = 2, θk = θq = π/3 and µh = 0.3, µZ = 0.2,

which correspond to mh = 1.53H,mZ = 0.54H. For c = 0.1, within most regions, the error is

acceptable by . c = 10%, validating perturbation theory. Near the ends, numerical uncertainties

overcome the systematic deviation predicted by perturbation theory, since Im T̃ ∼ 0. For c = 0.6,

the two methods approximately mismatch by a numerical factor.

are the Bogolyubov coefficients. The particle number density in the momentum space is

given by

〈n(±)
~p 〉′ = |β±|2 =

1

r±e2πµZ − 1
, with r± =

cosh[π(±c+ µZ)]

cosh[π(±c− µZ)]
. (5.27)

For a large positive c, r± → e±2πµZ , leading to an exponentially enhanced production of

negatively polarized gauge field particles, i.e., 〈n(−)
~p 〉′ ∝ e2πc. This exponential growth

in particle number density could threaten the inflation background. To check this, we

compute the energy density of the produced gauge bosons,

〈Tµν(Z)〉 = − 2√−g

〈
δS2[Z]

δgµν

〉
=

〈
ZµρZ

ρ
ν −

1

4
gµνZρσZ

ρσ +m2
ZZµZν −

1

2
gµνm

2
ZZρZ

ρ

〉
.

(5.28)

Interestingly, the θ term does not contribute to Tµν(Z) at all because of its ignorance to

the geometry of spacetime. The physical energy density is given as εZ = 〈Ttt〉 = a−2〈Tττ 〉.
Considering only the amplified transverse modes and using the mode expansion, we obtain
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the usual expression for vacuum energy contributed by transverse modes of Z,

ε⊥Z = a−4

〈
1

2
(∂τZ

⊥
i )2 +

1

4
(∂iZ

⊥
j − ∂jZ⊥i )2 +

1

2
m2
Za

2Z⊥2
i

〉
=
∑
λ=±

∫
~p

1

2a4

(
|vλ′p |2 + (p2 +m2

Za
2)|vλp |2

)
. (5.29)

The momentum integral is quartically divergent in the UV, as is in flat spacetime. This

formally infinite contribution to the energy density by the vacuum fluctuations is always

present and we assume it is canceled by a shift in the height of the inflaton potential. Thus

we only need to care about the contribution by real particle production. We cut off the

momentum integral at horizon scale p < −τ−1 and use the IR expansion (5.25) to obtain

ε⊥Z (τ) ≈
∑
λ=±

∫
|~pph|<H

(
mZ +

p2
ph

2mZ

)(
|βλ|2 +

1

2

)
. (5.30)

As a result, the energy density in the gauge field sector is approximately given by the rest

energy and non-relativistic kinetic energy of the produced real particles. Notice that the

1/2 term in the last bracket is the remaining (finite) vacuum energy in the IR. Since now

〈n(−)
~p 〉′ = |β−|2 ∝ e2πc, the constraint on energy density becomes

ε⊥Z (τ) ∼ H3mZe
2πc < −M2

p Ḣ =
1

2
φ̇2

0 ⇒ c <
1

2π
ln

φ̇2
0/H

4

2mZ/H
. (5.31)

We see that with φ̇2
0/H

4 ∼ 3600, for µZ ∼ 0.2, or mZ/H ∼ 0.54, the chemical poten-

tial should satisfy c . 1.29 to keep the stability of inflation background. However, even

when (5.31) is satisfied, the calculation in this subsection may still be inapplicable due to

the break-down of loop expansion.4 If the particles running the loop include the highly

amplified transverse modes of Z, the loop corrections may exceed the tree-level propaga-

tor (5.19) and perturbation theory becomes invalid. In the gauge-scalar sector, there are

interactions between Higgs and Z boson that contribute to the self-energy of the Z boson

at one-loop level, which goes like

Z

h

∼ g2

(4π)2
× m2

Z

m2
h

e4πc ×
( )

. (5.32)

Here the coupling gmZ/ cos θW ∼ gmZ , the loop factor 1/(4π)2 and the EFT leading

order Gh ∼ 1/m2
h have been taken into account. To ensure the validity of loop expansion,

we require
g2

(4π)2
× m2

Z

m2
h

e4πc . 1 ⇒ c .
1

2π
ln

4πmh

gmZ
. (5.33)

4Loop expansion is only a way of organizing calculation. What really makes perturbation theory valid

is the smallness of all coupling constants.
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Figure 7. The three leading diagrams with enhancement that contribute to the bispectrum at one-

loop level. Their contributions to fNL are estimated to be 4.2, 3.3 and 0.6 for c = 0.66, µh = 0.3,

µZ = 0.2, g = 0.55, with all other couplings near 0.2.

For the parameter choice in figure 5, with g = 0.55, the constraint gives c . 0.66, which

suggests a marginally perturbative choice c = 0.6. We comment that for an SM setup,

the θ coefficient before ZZ̃ is the SU(2)L axion and hence will also appear before W±W̃∓.

Due to the non-linear coupling between W± and Z, the constraint from loop expansion

will be even tighter. Whatsoever, the CP-breaking pattern in the trispectrum that we are

concerned with still persists.

We stress that the bound (5.33) is from the validity of the perturbative loop expansion.

The parameter space violating (5.33) can still be physically conceivable, as long as the back-

reaction to the energy budget of the inflationary universe remains small, i.e., when (5.31)

is satisfied. In such a case, the failure of loop expansion is related to the fact that the

copious production of real particles forms a classical many-body system. Thus the loop

expansion based on perturbative EFT around an approximate vacuum is no longer sufficient

to capture the physics. Then the calculations in this subsection are no longer valid. We

leave this possibility for future studies.

In addition to the above constraints from the consistency of our model itself, we need

to check the observational constraints on the bispectrum. Since all the tree-level diagrams

involving the vector field Z contain the scalar-vector mixing vertex ∂µϕZ
µ, only the lon-

gitudinal component of Z contributes. Therefore at tree-level, there is no exponentially

enhanced diagram. At one-loop level, there do exist such potentially dangerous diagrams.

We show the three leading diagrams in figure 7. For c = 0.66 and µZ = 0.2, the exponential

factor |α−|4 ∼ 427 tends to cancel the loop factor 1
(4π)2

∼ 0.0063, leaving a tree-level-size

result suppressed by couplings and masses. For example,

⇒ fNL ∼
φ̇0

H2
× |α−|4

1

(4π)2

(
ρ1,Z

φ̇0

)2 gmZ

H
× ρ2

H
× H4

m4
h

≈ 4.2 (5.34)

for c = 0.66, µh = 0.3, µZ = 0.2, g = 0.55,
ρ1,Z
φ̇0

= ρ2
H = 0.2. Thus the final bispectrum is

roughly fNL . O(1) under the loop expansion bound (5.33). This still satisfies the current

constraints of Planck 2018 [61], which gives f local
NL = −0.9± 5.1, f equil

NL = −26± 47, fortho
NL =

−38 ± 24, (68%CL). For c > 0.66, the system becomes fully non-perturbative and the

naive estimations become invalid.
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Finally, we comment that the real part of the trispectrum is also important for inferring

the mass of the vector field Z. If we observe the oscillations in the collapsed limit of the real

part and the CP-odd imaginary part at the same time, together they can provide better

constraints on the model parameters.

5.3 A large mass EFT?

In this section, we study the large mass EFT of our model. We will show that in exact dS

spacetime, the P- and CP-violating signals cannot be seen at any order in the large mass

expansion, therefore demonstrating the importance of on-shell real particle production. The

large mass EFT is usually applicable when the massive fields mediating the interactions

are heavy compared to H. In our study, we also require c � max{1, µZ} to suppress

the on-shell particle production, focusing on the single field description of the off-shell

contributions of extra fields in dS. For a heavy Higgs, integrating it out yields a change

of inflaton sound speed at quadratic level due to the two-point mixing. Furthermore, the

original current-potential interaction ∆L1 becomes schematically

∆L1 =
ρ1,Z

φ̇0

h∂µϕZ
µ → ρ1,Z

φ̇0

ρ2∂µϕZ
µ 1

�−m2
h

ϕ̇ ≡ JµZµ . (5.35)

If the mass of the Z boson is also large, we can integrate it out as well, yielding a current-

current interaction from ∆L3:

∆L3 = −c0θ(t)

4
ZµνZρσEµνρσ → ∆LEFT

= −c0θ(t)∂µ

[(
1

�−m2
Z

)
να

Jα
]
∂ρ

[(
1

�−m2
Z

)
σβ

Jβ

]
Eµνρσ .

(5.36)

Thus we obtain the EFT Lagrangian by expanding the non-local propagators into an infinite

gradient series,

∆LEFT = −
(
ρ1,Z

φ̇0

ρ2

)2 c0θ(t)

m4
Zm

4
h

(5.37)

× Eµνρσ
∑

m,n,p,q

∂µ

[(
�

m2
Z

)m(
∂νϕ

(
�

m2
h

)n
ϕ̇

)]
∂ρ

[(
�

m2
Z

)p(
∂σϕ

(
�

m2
h

)q
ϕ̇

)]
.

Here we used ηµν to replace the polarization sum since in the Feynman-diagram calculation

only δij coming from the transverse components contributes. Using the antisymmetry of

εµνρσ, it is easy to see that the first term of (5.37) with m = n = p = q = 0 vanishes.

For simplicity, assuming mh � mZ , we obtain the leading-order (LO) and next-to-leading

order (NLO) EFT operators

∆LLO = −
(
ρ1,Z

φ̇0

ρ2

)2 c0θ(t)

m6
Zm

4
h

Eµνρσ2∂µ [� (∂νϕϕ̇)] ∂ρ [∂σϕϕ̇] (5.38a)

∆LNLO = −
(
ρ1,Z

φ̇0

ρ2

)2 c0θ(t)

m8
Zm

4
h

Eµνρσ∂µ [� (∂νϕϕ̇)] ∂ρ [� (∂σϕϕ̇)] . (5.38b)
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Consider the expansion of (5.38) in a dS background. We first perform an integrate-by-

parts (IBPs) to convert the derivative onto θ. Then by using the EOM, ϕ′′+2aHϕ′−∂2
i ϕ =

0 and doing some IBPs, we obtain the on-shell effective operators

√−g∆LLO =

(
ρ1,Z

φ̇0

ρ2

)2 c0θ̇ε
ijk

m6
Zm

4
h

a−3
(
−4ϕ∂iϕ

′∂j∂lϕ∂k∂lϕ
′) (5.39a)

√−g∆LNLO =

(
ρ1,Z

φ̇0

ρ2

)2 c0θ̇ε
ijk

m6
Zm

4
h

{
H2

m2
Z

a−3
(
−8ϕ∂iϕ

′∂j∂lϕ∂k∂lϕ
′)

+
H

m2
Z

a−4
[
4ϕ∂i∂nϕ ∂j∂m∂nϕ∂k∂mϕ

′ + 4ϕ∂i∂nϕ ∂j∂m∂mϕ∂k∂nϕ
′]

+
1

m2
Z

a−5
[
−8∂m∂mϕ∂iϕ

′∂j∂nϕ∂k∂nϕ
′ + 4∂nϕ

′∂i∂nϕ∂j∂mϕ∂k∂mϕ
′]} .
(5.39b)

The LO term and the NLO last term survive the flat spacetime limit H → 0, a → 1 and

are thus present when the spacetime is not expanding. The terms proportional to powers

of H are due to the curved spacetime background and can be constructed independently

by trading the derivatives on ϕ with those on the spacetime metric. Note that these terms

are not total derivatives and naively should contribute to the observables. However, as we

shall see in the following, they do not show up in the 4-point function on the dS boundary.

As an explicit example, let us compute the effect of the LO term even before momentum

permutation.

〈
ϕ~q1ϕ~q2ϕ~k1ϕ~k2

〉′
LO

= 4

(
ρ1,Z

φ̇0

ρ2

)2 c0θ̇

m6
Zm

4
h

~q2 ·(~k1×~k2)(~k1 ·~k2)

×
[
−i×i5

∫ 0

−∞
dτa(τ)−3Gϕ,+(q1, τ)G′ϕ,+(q2, τ)Gϕ,+(k1, τ)G′ϕ,+(k2, τ)

+i×(+i)5

∫ 0

−∞
dτa(τ)−3Gϕ,−(q1, τ)G′ϕ,−(q2, τ)Gϕ,−(k1, τ)G′ϕ,−(k2, τ)

]
= 4

(
ρ1,Z

φ̇0

ρ2

)2 cH12

m6
Zm

4
h

~q2 ·(~k1×~k2)(~k1 ·~k2)

2q3
12q22k3

12k2

×2iIm

[∫ 0

−∞
dττ5(1+iq1τ)(1+ik1τ)e−iKτ

]
= 0 . (5.40)

The above expression vanishes because the time integral gives a real result. Therefore the

LO term turns out to be unobservable in the trispectrum in dS. A similar calculation can

be performed for the NLO term and we still get a null result because of the vanishing

imaginary part of the time integral. These null results can also be viewed as a cancellation

between the time-ordered diagram and the anti-time-ordered diagram. The cancellation is

irrespective of the assumption mh � mZ above and should be quite general. In fact, similar

cancellation happens to the P-odd shape graviton bispectrum in exact dS spacetime [63–65].
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This phenomenon is more easily understood in the wavefunction formalism. The wave-

function of the universe in single-field EFT is given by

Ψ[ϕ] = N exp

(
−1

2

∫
ψ2ϕ

2 − 1

4!

∫
ψ4ϕ

4 + · · ·
)
, (5.41)

where ψN ’s are the dual correlators of the boundary CFT. In particular, the power spec-

trum and the trispectrum are given by the relations

〈ϕ2〉′ = 1

2Re ′ψ̃2

(5.42)

〈ϕ4〉′ = −2Re ′ψ̃4

(2Re′ψ̃2)(2Re′ψ̃2)(2Re′ψ̃2)
, (5.43)

where ψ̃N ’s are written in momentum space and Re ′ is defined as Re ′(#) ≡ 1
2(# +

#∗|~pn→−~pn). For a perturbative calculation, ψ̃4 is essentially the time-ordered diagram

in (5.40). However, if the time integral gives a real value, Re ′ψ̃4 = 1
2(ψ̃4 + ψ̃∗4|~pn→−~pn) =

1
2(ψ̃4 − ψ̃4) = 0. Thus even if ψ̃4 6= 0, the trispectrum is still zero. Viewed another way,

a P-odd real ψ̃4 yields a purely imaginary ψ4 in coordinate space, i.e., ψ4 = ±i|ψ4|. This

suggests that the wavefunction is modified by a pure phase due to the four-point interaction,

Ψ[ϕ] = N exp

(
− i

4!

∫
±|ψ4|ϕ4

)
exp

(
−1

2

∫
ψ2ϕ

2 + · · ·
)
. (5.44)

This pure phase is eliminated when computing the expectation value of an observable [63]:

〈O〉 =

∫
Dϕ|Ψ|2O∫
Dϕ|Ψ|2 . (5.45)

As a result, to check whether we can obtain power-law suppressed CP-violating effects in

the trispectrum, we only need to check whether ψ̃4 (in other words, the time integral)

computed using (5.37) is real or not.

The most general P- and CP-odd 4-point contact vertex in the large mass EFT can be

schematically written as ∫
dτd3xa1−2m−nε(3)∂3+2m

i ∂nτ ϕ
4 , (5.46)

where ε(3) is the Levi-Civita symbol for three spatial dimensions and is assumed to be

contracted to the spatial derivatives (m > 0). The power of the scale factor is fixed by

dilation in exact dS spacetime. Also without any loss of generality, we restrict n 6 3 by

using inflaton EOM and IBPs. Therefore, ψ̃4 is given by

ψ̃4 ∝ iε(3)(iki)
3+2m

∫ 0

−∞
dτa1−2m−n∂nτG

4
+ (5.47a)

∝ ε(3)(ki)
3 × (kj)

2m

∫ 0

−∞
dττ2m+n−1∂nτ u

∗4 (5.47b)

∝ ε(3)(ki)
3 × (kj)

2m

∫ 0

−∞
dττ2m+n−1∂nτ

(
1− k ∂

∂k

)4

eiKτ (5.47c)
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∝ ε(3)(ki)
3 × (kj)

2m

(
1− k ∂

∂k

)4 ∫ 0

−∞
dττ2m+n−1(iK)neiKτ (5.47d)

∝ ε(3)(ki)
3 × (kj)

2m

(
1− k ∂

∂k

)4

(iK)n(−1)n+1(iK)−2m−nΓ(2m+ n) (5.47e)

∝ ε(3)(ki)
3 × (kj)

2m

(
1− k ∂

∂k

)4

K−2m ∈ R . (5.47f)

Here in every step some real factors are omitted for simplicity. In (5.47c) we have evoked

the symmetry-breaking operator introduced in [76]. The final ψ̃4 is manifestly real for

2m + n > 0. Yet it is P-odd because of the Levi-Civita symbol. Henceforth, by the

preceding argument, none of the EFT operators of the form (5.46) contribute to the in-

in observables. They are all pure phases of the wavefunction. This null result can be

generalized to all tree-level diagrams and we sketch the proof in appendix B.

Several important remarks are given below.

First, the P-odd local EFT operators are unobservable not because of the indistin-

guishability between the external lines, since cancellation takes place before permutation.

In other words, P-odd local EFT operators made by four massless fields with different

flavors are also unobservable in the 4-point function in exact dS.

Second, integrating out extra fields usually yields a modification of the inflaton sound

speed. However a constant change of sound speed does not influence the conclusion above

since it can be absorbed into a global redefinition of spatial coordinates.

Third, dilation symmetry is crucial in this derivation. For example, any small departure

of the scale factor in (5.47b) from the dS case, where a(τ) ∝ τ−1, can easily produce an

imaginary part for ψ̃4. As a special case, when spacetime is flat, a ≡ 1, the 4-point

function will receive contributions from the P-odd contact EFT operators. Thus in the

real inflationary universe, it is possible to have observable P- and CP-violating effects in

a local EFT, but they are subjected to a slow-roll suppression (see [64, 65] for similar

statements in the case of graviton bispectrum).

Indeed, the large-mass fall-off behavior of the P- and CP-violating signal obtained in

our model is faster than the naive power laws in (5.38). This suggests that this signal

is suppressed by exponential factors like e−πµh or e−πµZ , which decrease faster than any

powers of H
mZ
∼ 1

µZ
or H

mh
∼ 1

µh
. Hence it is impossible to see the P- and CP-violating signal

at any fixed order in the EFT expansion. The signal is caused by the non-perturbative on-

shell particle creation in the dS spacetime. Real particles, when produced, automatically

break dilation symmetry, which is crucial in the proof of the cancellation of EFT signals

above. As a further confirmation, we show in appendix C that once the βλ coefficient

in (5.25) is turned off, the signal decreases dramatically by another exponential factor.

Interestingly, we can recast this statement in a more practical form. During infla-

tion, the P- and CP-violating signals from single-field EFT terms are at least slow-roll

suppressed. Henceforth, given the measurement bounds on the slow-roll parameters, per-

turbative unitarity put a constraint on the signal strength of P- and CP-violating scalar

trispectrum. Any observation of these signals that exceeds the maximum amount allowed

by perturbative single-field EFT alone is an indication of extra degrees of freedom being
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excited from the BD vacuum during inflation. This is a characteristic feature of quasi-single

field inflation and is essential for utilizing the cosmological collider in the possible future.

6 Conclusions and outlook

In this work, we studied the simplest P and CP violating signals on the cosmological

collider, which opens up a new window of probing P and CP properties of fundamental

physics at very high energy scales. We presented a simple model consisting of a Higgs

sector and a P- and CP-violating θ term as a proof of concept that demonstrates this

idea. In this model, the 4-point correlation function of the primordial fluctuations is P-odd

and possesses an imaginary part with odd dihedral-angle dependence. This is very similar

to the 4-body decay of a heavy scalar field X that has been routinely studied in collider

physics. We studied the perturbation theory description, the partially non-perturbative

EOM method as well as the large-mass behavior of this model. For suitable choices of

parameter values, the signal strength can be as large as τNL ∼ O(100), which is promising

for future measurements.

We showed that the CP-violating local effective operators with the inflaton field alone

are all unobservable in an exact dS background. So the CP violating effects in our model

will be exponentially suppressed by masses. They are significant only when these masses are

close to or below the Hubble scale, in which case the intermediate particles will be created

on-shell. Therefore, our study suggests that the CP violating effects in the imaginary part

of the trispectrum is usually accompanied by the conventional cosmological collider signals,

in the real part of the collapse-limit trispectrum.

In real inflationary scenario, the local inflaton EFT description of CP-violations is

subject to slow-roll suppression. Thus unitarity bound and slow-roll parameters constraints

give a maximum amount of CP-violation on the trispectrum in the EFT description. If

signals larger than this bound is observed, it is likely to be caused by non-local particle

production effects such as in our model. Therefore finding large P- and CP-violations in the

scalar trispectrum would be able to serve as a good omen of cosmological collider physics.

Many questions along this direction are left untouched in the current work which we

hope to address in the future. We conclude this paper by mentioning a few of them. First,

the model we are considering is still based on the EFT operators and is not UV-complete.

It will be interesting to embed it in a UV-complete model of particle physics. Second, in

our calculation, fermions do not show up in the external lines, thus information of their

CP violations are washed out in the observables on the future boundary of dS, which are

directly relevant to the late time universe. Although we can predict the CP violation effects

in the fermion sector, it is still unclear how one can observe these effects in the boundary

correlators of curvature perturbations. Third, in the numerical examples shown in this

work, we have assumed that the intermediate particles are heavy, i.e., mZ > H/2 so that

we have oscillatory signals in the real part of the trispectrum. This however is not the

only possibility since we can readily generalize the calculation to the case of light fields

with mZ < H/2, where the signals are expected to be larger. Fourth, in this work we did

not perform a systematic analysis of CP-violating single-field EFT in inflation, where dS
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isometries are softly broken. Thus we did not give any concrete bound on CP-violation

in the single-field EFT description. It is important to have an explicit demonstration of

this idea in the future work. Fifth, it is interesting to consider the relation between our

model and the spontaneous baryogenesis scenario [80–82], where net baryon number is

created from the relaxation of a pseudo-Goldstone boson field of broken U(1)B. If the θ

term is embedded into UV models such as this, its chemical potential on baryons may lead

to spontaneous baryogenesis. The relevant cosmological collider signals may give possible

hints for spontaneous baryogenesis.
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A Feynman rules for Schwinger-Keldysh diagrammatics

The Schwinger-Keldysh propagators are obtained from 2-point functions with different

time-orderings. Two of them carrying signature (+−) and (−+) are disconnected contri-

butions due to the sewing condition on two time contours at measurement time. For scalar

fields, they are simply

GI;+−(k, τ1, τ2) = vIk(τ1)∗vIk(τ2) (A.1a)

GI;−+(k, τ1, τ2) = vIk(τ1)vIk(τ2)∗ . (A.1b)

Here I = φ, h, ϕ, · · · stands for different scalar fields,5 with vIk being the corresponding

mode function,

vIk(τ) = −i
√
π

2
e
iπ
(
iµI
2

+ 1
4

)
H(−τ)3/2H

(1)
iµI

(−kτ), µI =

√
m2
I

H2
− 9

4
. (A.2)

The other two carrying signature (++) and (−−) are Green functions of the linear EOMs

and represent the propagation of a wave mode.

GI;++(k, τ1, τ2) = Θ(τ1 − τ2)GI;−+(k, τ1, τ2) + Θ(τ2 − τ1)GI;+−(k, τ1, τ2) (A.3a)

GI;−−(k, τ1, τ2) = Θ(τ1 − τ2)GI;+−(k, τ1, τ2) + Θ(τ2 − τ1)GI;−+(k, τ1, τ2) . (A.3b)

Diagrammatically, (+) sign is represented by a black dot while (−) is represented by

a white dot. When one end of the propagator is on the boundary τ = 0, these four

propagators reduce to two varieties, namely, GI;+(k, τ) = GI;−+(k, 0, τ) = GI;++(k, 0, τ)

and GI;−(k, τ) = GI;+−(k, 0, τ) = GI;−−(k, 0, τ). The boundary end is usually represented

by a white square.

The vertex rules for computing correlation functions of the Maxwell-Chern-Simons

theory in dS spacetime are given in (A.4), and those for the more realistic model (5.2) are

5Notice that here I is not summed over.

– 26 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
9

given in (A.5). Each vertex has two choices of color, accounting for their time-ordering.

The Feynman rules for negative color vertices are obtained by a complex conjugation and

a momentum reversal.

~q1

~q2

µ = 0

= e

∫
dτa(τ)2(G1G

∗′
2 −G′1G∗2)D0 (A.4a)

~q1

~q2

µ = i

= −ie
∫
dτa(τ)2G1G

∗
2(~q1 − ~q2)iDi (A.4b)

i k

−~p ~p = c0

∫
dτθ′(τ)εijkDipjDk . (A.4c)

~q1

~q2

µ = 0

= −iρ1,Z

φ̇0

∫
dτa(τ)2GhG

′
ϕD0 (A.5a)

~q1

~q2

µ = i

=
ρ1,Z

φ̇0

∫
dτa(τ)2GhGϕq1iDi (A.5b)

= −iρ2

∫
dτa(τ)3GhG

′
ϕ (A.5c)

i k

−~p ~p = c0

∫
dτθ′(τ)εijkDipjDk . (A.5d)

B Tree-level diagrams in single-field EFT in dS

In this appendix we generalize the discussions in section 5.3 for CP-violating single-field

EFT in dS. We will prove that in an exact dS background, any single-field EFT operator

of the form

∆LCP-odd
N = a1−2m−nε(3)∂3+2m

i ∂nτ ϕ
N (B.1)

does not lead to observable CP-violating signals at tree-level.
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B.1 A theorem for CP-even EFTs

In order to show the absence of CP-violation signals, we work in the EFT without P- and

CP-violation first and prove a theorem that is by itself meaningful.

Theorem. The tree-level contribution to the wavefunction exponent ψ̃ is real for massless

scalar EFTs respecting parity, dilation and rotational invariance.

Proof. Consider a general connected tree diagram with E external lines, I internal lines

and V vertices. The set of external lines is denoted E while the set of internal lines is

denoted I. The set of vertices is denoted V. Then a perturbative calculation of ψ̃E is given

schematically by

ψ̃E =

∫ 0

−∞(1−iε)

∏
v∈V

idτvDv

∏
e∈E

Ke

∏
e′∈I

Ge′ , (B.2)

where Dv is the differential operator at vertex v originating from the interaction ∆Lv,Nv =

Dvϕ
Nv and is understood to contract with the Nv propagators in all possible ways. The

bulk-to-boundary propagator and bulk-to-bulk propagator for a massless scalar are given

by [85]:

K(k, τ) = (1− ikτ)eikτ (B.3)

G(k, τ1, τ2) =
H2

2k3
(1 + ikτ1)(1− ikτ2)e−ik(τ1−τ2)Θ(τ1 − τ2) + (τ1 ↔ τ2)

−H
2

2k3
(1− ikτ1)(1− ikτ2)eik(τ1+τ2) . (B.4)

The bulk-to-boundary propagator solves homogeneous EOM while the bulk-to-bulk prop-

agator solves EOM with a point source under a Dirichlet boundary condition. For conve-

nience, we change to the variable x ≡ −τ . Then ψ̃E takes the form

ψ̃E =

∫ ∞(1−iε)

0

[∏
v∈V

idxvDv

∏
e∈E

Ke

∏
e′∈I

Ge′

]
τv→−xv

. (B.5)

The differential operators representing local interactions act on the time-ordering Θ-

function part as well as the mode-function part of the propagators. The case of a single

time derivative acting on the propagator contains no contribution from differentiating the

Θ-function due to the symmetric property G(k, τ1, τ2) = G(k, τ2, τ1). However, there arises

a new term from differentiating the Θ-function when two time derivatives are involved.

In terms of the massless mode function vk(τ) = H√
2k3

(1 + ikτ)e−ikτ , a straightforward

computation gives

∂τ1∂τ2G(k, τ1, τ2) = Θ(τ1 − τ2)v′k(τ1)v′k(τ2)∗ + Θ(τ2 − τ1)v′k(τ1)∗v′k(τ2)− v′k(τ1)∗v′k(τ2)∗

+δ(τ1 − τ2)
(
vkv
′∗
k − v′kv∗k

)
(τ1) , (B.6)

where the last term is a new contact contribution proportional to the Wronskian of the

mode function, vkv
′∗
k −v′kv∗k = ia−2. Thus a contact interaction is induced from joining two

derivative interactions with a propagator. In the Hamiltonian approach, this is essentially
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𝜑′ 𝜑′ 𝜑′ 𝜑′= +
(With hidden contact interaction) (Θ-functions only) (Contact part)

Figure 8. An illustration of the reduction process. Here we take E = 5 and the red circle

indicates that there is a hidden contact contribution in the derivative interactions. We can separate

this contribution and form the second diagram on the right, with the first diagram containing Θ-

functions only. But the second diagram already exists in the perturbation theory, so this merely

modifies its coefficient by a real numeric factor.

due to derivative interactions affecting the definition of canonical momenta [78]. Being a

tree-level effect, the induced contact interaction apparently still preserves parity, dilation

and rotational symmetry and so is still within the tower of EFT operators. And every

time a contact interaction is induced, the original diagram becomes a diagram with one

internal line short (see figure 8). Hence in this way we can reduce a given tree diagram with

E external lines to a set of irreducible diagrams, each with E external lines and without

contact contributions hidden in the propagators. This set of diagrams is the same as the set

of tree diagrams generated by the tower of EFT operators, except for (diagram-dependent)

real numeric factors which is not important for our purpose.

Now having reduced the hidden contact interactions, we have obtained diagrams in

which only Θ-functions are present. Choose any such irreducible diagram with I internal

lines and V vertices, we can first expand it to the sum of 3I terms, each term having a

particular integration ordering. These different integration orderings define various subre-

gions of RV+. After further expanding the integrand to a sum of monomials, we see that

they all take the same form

(Real factor)×
∫
T
iV dV x

V∏
j=1

iAjx
Bj
j e−i

∑
j pjxj , (B.7)

where T ⊂ RV+ is the integration region and pj ’s are linear combinations of internal and

external momenta, which will be of no importance in our proof. The relevant quantities

here for the reality of (B.7) are the powers Aj and Bj , as can be seen after a Wick rotation.

According to the iε-prescription, the integral factorizes into

i
∑
j(Aj+Bj) × (Real factor)× (−1)

∑
j Bj

∫
T
dV x

V∏
j=1

x
Bj
j e−

∑
j pjxj . (B.8)

The integral is now purely real and the only (possibly) imaginary part comes from the

prefactor, which is real if
∑

j(Aj +Bj) is even.
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By a simple power-counting method, we can show that Aj +Bj is even for any j.

First let us consider interactions without time derivatives. Parity, dilation as well as

rotational invariance fix the general form of the interaction to be

Dj = a4−2m∂2m
i . (B.9)

Since we are working in the perfect dS limit, each scale factor a(τj) ∝ τ−1
j ∝ x−1

j decrease

Bj by −1. Thus the scale factors in the interaction vertex change Bj by ∆Bj = 2m − 4.

From (B.3) we see that i and τj = −xj always appear together in the propagators, adding

∆Aj = ∆Bj = 1 every time expanded. As a result, starting with zero, Aj + Bj always

changes by an even number, giving rise to an even Aj +Bj in the end.

Second, consider interactions with time derivatives,

Dj = a4−2m−n∂2m
i ∂nτj . (B.10)

Each time derivative acting on (B.3) either brings down a −i from the exponential or lowers

the power of τj by one,6 leading to a net change ∆Aj + ∆Bj = −1. This is canceled by an

extra power of a−1 in the interaction vertex. Therefore the total Aj +Bj is again even.

In summary, the prefactor i
∑
j(Aj+Bj) ∈ R and every monomial (B.7) in the expansion

of ψ̃E is real, leading to the conclusion ψ̃E ∈ R.

We point out that our proof is not dependent on the flavor of the scalar field. Hence

the theorem also applies to the case with multiple massless scalar fields.

B.2 The absence of CP-violation signals

With the help of the above theorem, we can now proceed to consider the CP-violating case.

First, it is easy to show that a single N -point contact diagram generated by ∆LCP-odd
N

in (B.1) is unobservable since the corresponding ψ̃N ∈ R and is P-odd. Its proof is identical

to (5.47), with powers of 4 replaced by N . Therefore, any disconnected tree diagram

made of this piece of ψ̃N ∈ R vanishes for observables because it is a pure phase before

the wavefunction.

Second, we can show that CP-violating signals in connected tree diagrams are also

unobservable. For any EFT vertex ∆LCP-odd
N , we can relate it to a CP-even interaction

vertex obtained by removing the εijk∂i∂j∂k structure and adding three scale factors,

∆LCP-even
N = a4−2m−n∂2m

i ∂nτ ϕ
N . (B.11)

Now, for each connected tree diagram containing a vertex ∆LCP-odd
N , there is a correspond-

ing diagram with the replacement ∆LCP-odd
N → ∆LCP-even

N (see figure 9). If we count the

power of the scale factor, there is an extra phase i3 coming from time integral, which can-

cels the i coming from three spatial derivatives. Thus the new diagram has a same phase

(up to π) as the old diagram.

6Note that since we have performed the reduction of hidden contact interactions, there is no time

derivatives acting on Θ-functions now.
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Δ𝐿𝑁𝐶𝑃−𝑜𝑑𝑑 Δ𝐿𝑁𝐶𝑃−𝑒𝑣𝑒𝑛
. . . . . .

Figure 9. The old diagram (left) and the new diagram (right) differ by three spatial derivatives

and three powers of scale factors, thus they share the same phase.

Since the new diagram comes from a massless EFT without P-violation, according to

the theorem proven in the proceeding subsection, it must be real. Consequently, the old

diagram is also real.7 In addition, it flips sign under a spatial reflection. Then by the pure-

phase argument, the old connected tree diagram also does not contribute to the observables.

The above ∆LCP-odd
N → ∆LCP-even

N treatment immediately generalizes to an odd num-

ber of ∆LCP-odd
N insertions. In contrast, an even number of ∆LCP-odd

N insertions does con-

tribute to observable correlations functions, yet in that case CP is preserved. Thus, in con-

clusion, we have shown that the CP-violation signals are indeed absent in the tree-level ob-

servables.

C A check on the mass dependence

Here we numerically check the dependence of the strength of the CP-violating signal on

the mass of the gauge boson, keeping the mass of the Higgs fixed. The result is plotted in

figure 10. To show the importance of particle creation, we also use the IR expansion (5.25)

and turn off the negative-frequency modes by setting βλ ≡ 0, which eliminates the particle

creation effects up to higher orders in e−πµZ . As is clear from figure 10, the CP-violating

signal decreases approximately as e−πµZ . In addition, the IR expansion (α + β) provides

a good approximation to the full solution, while the positive-frequency-only result (α)

is smaller than the full result by yet another exponential factor. This demonstrates the

importance of the β term.

We should point out that the exponential dependence on µZ is only valid for large µh.

In other words, it is possible that the CP-violating signal is suppressed only by powers of

1/µZ , but with a factor e−πµh in the front. This corresponds to a non-local (� −m2
h)−1

interaction with a local EFT expansion of (�−m2
Z)−1. As we have shown in section 5.3,

what is forbidden as an observable is a completely localized CP-violating operator made

of four scalars that respects dilation symmetry.

7An aside: One can also directly show this by the power-counting method used in the proof of the

previous theorem.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

10-8

10-6

10-4

0.01

1

100

μZ

|I
m
T | ⅇ-π μZⅇ-2 π μZ

EOMα onlyα+β

Figure 10. The imaginary part of the dimensionless trispectrum divided by couplings T̃ ≡
T/(ρ2H )2(

ρ1,Z
φ̇0

)2 as a function of µZ . The momentum configuration is chosen to be k1 = q1 =

1, p = 2, θk = θq = π/3, φ = 0.5. Here we have taken c = 0.1 and µh = 2.5, which correspond

to mh = 2.92H. The blue dots are from the partially non-perturbative EOM method discussed in

section 5.2, while the yellow and green dots represent respectively, the α-term-only case and case

with the full IR expansion containing both α term and β term. The red and purple lines show the

asymptotic behavior at large µZ .
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