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leading order in GN in the holographic limit. Under this dictionary, distantly separated

regions in the CFT vacuum state have zero mutual information at leading order, and only

attain nonzero mutual information at this order when they lie close enough to develop

significant classical and quantum correlations. Previously, the separation at which this

phase transition occurs for equal-size ball-shaped regions centered at antipodal points on

the boundary was known analytically only in 3 spacetime dimensions. Inspired by recent

explorations of general relativity at large-d, we compute the separation at which the phase

transition occurs analytically in the limit of infinitely many spacetime dimensions, and

find that distant regions cannot develop large correlations without collectively occupying

the entire volume of the boundary theory. We interpret this result as illustrating the

spatial decoupling of holographic correlations in the large-d limit, and provide intuition for

this phenomenon using results from quantum information theory. We also compute the

phase transition separation numerically for a range of bulk spacetime dimensions from 4

to 21, where analytic results are intractable but numerical results provide insight into the

dimension-dependence of holographic correlations. For bulk dimensions above 5, our exact

numerical results are well approximated analytically by working to next-to-leading order

in the large-d expansion.
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1 Introduction and summary

Entanglement has played an increasingly prominent role in theoretical physics, particularly

in the context of holographic dualities. The broad expectation that the emergence of a

dynamical bulk spacetime will be elucidated by a better understanding of the structure

of entanglement in the boundary field theory has motivated many vibrant explorations

into holographic entanglement, often utilizing the bulk geometry. One useful measure of

entanglement in a pure state is the entanglement entropy, defined as the von Neumann

entropy of the reduced density matrix associated with a bipartition of the full Hilbert

space.1 In a local quantum field theory, it is natural to partition the system into spatial

regions; for a theory which admits a holographic dual, in a state describing a classical bulk

geometry, entanglement entropy can be obtained using the Ryu-Takayanagi (RT) [2] (and

its covariant generalization, the Hubeny-Rangamani-Takayanagi (HRT) [3]) prescription

(often collectively referred to as HRRT), which expresses this quantity geometrically, in

terms of an area of a bulk surface. More specifically, the entanglement entropy S(A)

of a given boundary region A is given to leading order in a small-GN expansion by the

quarter-area of the smallest-area extremal surface EA homologous to that region:

S(A) = min
EA∼A

[
1

4GN
Area(EA)

]
+O(1). (1.1)

1Although the quantum field theory Hilbert space does not strictly-speaking factorize, this will not

impact the present discussion; for a nice summary of the associated subtleties see e.g. [1].
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In concrete realizations of the AdS/CFT correspondence, this expression has been argued

to follow from path integral arguments [4, 5], with the O(1) corrections having been com-

puted in [6]. The geometrization of entanglement given by equation (1.1) has led to many

intriguing insights and developments; see e.g. [7] for a recent review.

Although the entanglement entropy of a spatial region with nonempty boundary suf-

fers from a UV divergence in any local quantum field theory (its bulk dual manifested

by the associated HRRT surfaces having infinite proper area since they reach the space-

time boundary), one can nevertheless construct meaningful finite quantities by combining

entanglement entropies of several subsystems so that the UV divergences cancel in a cutoff-

independent way [8]. The most basic such quantity is the mutual information I(A : B),

defined by

I(A : B) = S(A) + S(B)− S(A ∪B) . (1.2)

The mutual information measures how the individual entropies of regions A and B differ

from their joint entropy. In this sense, it characterizes the total amount of correlation

between the subsystems A and B. By using the HRRT formula (1.1) to compute the

mutual information for various subsystems in a holographic state, one can elucidate how

the state is ‘held together’ by its spatial correlations.

Due to a universal relation known as subadditivity, the mutual information cannot

be negative; i.e., I(A : B) ≥ 0 holds for any subpartition of any physically allowed state.

Indeed, in an ordinary quantum field theory living on a single connected background,

I(A : B) is strictly positive: the mutual information of two regions is bounded below by

connected correlation functions of operators supported on the two regions [9, 10], and

these correlation functions are generally nonvanishing. That said, the fact that the HRRT

formula (1.1) is expressed in terms of an expansion in GN indicates a hierarchy of correlation

scales in any holographic theory. Subregions of a geometric state in a holographic field

theory can be correlated only at O(1), with vanishing correlations at order G−1
N . In fact,

the minimality condition in equation (1.1) makes it easy to engineer subregions that satisfy

I(A : B) = 0 at leading order in GN . As the separation between any two spatial regions is

increased, keeping the state fixed, the HRT surface EA∪B computing entanglement entropy

of the joint system A ∪B undergoes a phase transition from a connected surface (joining the

boundaries of A and B) to a pair of disconnected surfaces EA∪EB. These two configurations

are sketched in figure 1 for antipodal boundary regions in a time slice of vacuum AdS3.

The relation I(A : B) = 0 at order G−1
N thus follows directly from equation (1.1).2

The hierarchy of correlation scales in small-GN holographic systems, together with the

presence of this “phase transition” in which separated regions may spontaneously develop

correlations at order G−1
N upon tuning their separation, indicates a rich structure of coupling

(and decoupling) in the spatial correlations of holographic states. This phenomenon of

spatial decoupling is the central focus of this paper. We investigate the rich correlation

structure of holographic theories by analyzing the mutual information phase transition in

2This characteristic property of geometric states in holography was recently utilized by [11, 12] in

constructing the multi-party entanglement relations delineating the holographic entropy cone (initially

explored in [13]).
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more than 3 bulk dimensions, which has until now been the only analytically tractable case.3

In particular, we will find an analytic solution for the phase transition in the limit d→∞.

One may object that the AdSd+1/CFTd correspondence is microscopically well-defined only

for a rather limited set of d’s (and in fact, interacting CFTs are only known to exist for

d ≤ 6). However, the bulk geometry is of course well-defined at any d, and some effective

quantum system (such as a tensor network) may well still utilize the ‘holographic’ crutch

of computing entanglement entropy by bulk extremal surface areas.4 We will therefore

assume that equation (1.1) is meaningful at all d, and in particular that it allows us to

relate the presence of correlations between spatially separated regions in the boundary with

the connectivity of HRT surfaces in the bulk.

Our analysis is motivated partially by recent developments in the theory of large-d

general relativity [15], which has proved a surprisingly powerful computational (as well

as conceptual tool) for approximating various quantities in the more physically relevant

context of d = 4 or 5 in terms of an expansion in 1/d. The essential insight of the large-

d program in general relativity is that at infinite d, the complicated non-linear physics

of Einstein’s equations simplifies considerably. This can be seen heuristically in the fact

that the Newtonian potential in (d+ 1) dimensions scales as 1/rd−2; massive objects, even

ones that are quite near one another, tend to decouple from one another at large d. Our

explorations below will show, in precise terms, that the holographic mutual information

obeys a similar principle: spatial regions tend to decouple from one another in the large-d

limit.

The mutual information phase transition is of interest not only because it illustrates

the phenomenon of spatial decoupling, but because it underlies another interesting feature

of holography related to bulk reconstruction. It is believed that the bulk dual of the

reduced density matrix ρA associated to a given spatial region A on the boundary is its

entanglement wedge5 WA, namely the bulk domain of dependence of the ‘homology region’

RA which itself is defined as a spatial region whose only boundaries are A and its bulk

HRT surface EA. Since the HRT surface of a region can ‘jump’ upon tuning its size, the

corresponding entanglement wedge can correspondingly jump under continuous variations

of A (as well as under variations of the state). Such a jump naturally occurs in the presence

of a phase transition in the order G−1
N mutual information between two regions.

As a simple example, consider two intervals A and B positioned antipodally on a t = 0

slice of pure global AdS3, as sketched in figure 1. The homology requirement in (1.1) allows

3While certain aspects of connected and disconnected extremal surfaces were investigated in 4 bulk

dimensions in [14], the phase transition itself was not the object of study.
4Moreover, since the HRRT formula can be viewed as a generalization of the black hole Bekenstein-

Hawking entropy formula to arbitrary spatial partitions of the boundary, one might well expect it to hold

for general holographic theories, not just those that admit a microscopic realization in terms of a strongly

interacting CFT.
5The term “entanglement wedge” was coined and defined in [16], where the authors used it to prove

consistency of HRT with boundary causality and proposed it as the natural dual of ρA. Closely related

constructs were previously considered by [17] and [18]; the latter work having originally specified ‘the gravity

dual of a density matrix’ as the bulk region whose geometry remains invariant under a restricted variation

of the dual CFT state ρ which keeps the reduced density matrix ρA fixed. Subsequent support for the

conjecture that the dual of ρA is WA was provided in [19, 20].

– 3 –



J
H
E
P
0
4
(
2
0
2
0
)
1
7
3

A

B
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EB

(a)

A

B

EA∪B

(b)

Figure 1. Phase transition in the HRT surface and corresponding entanglement wedge (whose

spatial slice is indicated by the shaded homology region RA∪B) for the boundary region A ∪B in

AdS3. (a) Shows the decorrelated phase, while (b) shows the correlated phase. When A and B

each take up one quarter of the boundary length, the surfaces EA∪B and EA ∪ EB have equal area.

two possible configurations for the HRT surface for the composite subsystem A ∪B. One

(figure 1a) with a disconnected homology region bounded by EA and EB, and one (figure 1b)

with a connected homology region bounded by EA∪B. When the two intervals jointly cover

half of the boundary circle, the two sets of HRT surfaces have the same area (by symmetry),

so this configuration lies precisely on the phase transition. Increasing the size of A ∪B
(or bringing its components closer together by breaking the Z4 symmetry) pushes the

configuration into the connected (and hence correlated) phase with I(A : B) = O(G−1
N ),

while conversely shrinking the size of A ∪B pushes the configuration into the disconnected

(decorrelated) phase with I(A : B) = O(1).

That the entanglement wedge may jump upon a small change in the parameters of

A ∪B implies that the density matrix ρA∪B has a rather intricate structure, encoding the

bulk geometry in a highly non-trivial way. Indeed, the size of the bulk region WA which is

associated to a given boundary subsystem ρA (with A now specifying an arbitrary collection

of regions) can jump by an arbitrarily large amount under continuous variations of A. One

way to see this is to consider partitioning the boundary circle into 2 N equal intervals

and taking A to consist of every other interval, i.e. the N non-adjoining intervals which

collectively cover half the boundary. Then, analogously to the situation sketched in figure 1,

in the N→∞ limit, the corresponding homology region would jump, upon changing the size

of a single interval, from covering ‘almost everything’ to ‘almost nothing’ on the Poincaré

disk.6 While this suggests that bulk reconstruction right at the phase transition is under

6In the global AdS conformal diagram, the corresponding entanglement wedge WA would jump from

the Wheeler-de Witt patch of the given time slice to ‘almost nothing’ consisting of the N individual single-
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qualitatively less control than otherwise, in a generic situation (namely away from the co-

dimension ≥1 set of fine-tuned configurations where several families of extremal surfaces

have exactly the same areas), this subtlety does not arise. Nevertheless, the presence of

phase transitions remains even if we restrict attention to generic configurations for purposes

of bulk reconstruction, so it is of interest to identify where in the parameter space such

phase transitions occur. Identifying these phase transitions in parameter space, both for

intermediate dimensions and in the large-d limit, is the focus of the present paper.

In investigating the mutual information phase transition, with an eye toward under-

standing both bulk reconstruction and the decoupling of holographic correlations, we will

restrict our attention to the vacuum state of a d-dimensional holographic field theory

(and the corresponding spacetime, vacuum AdSd+1). This state is not only analytically

approachable using geometric methods, it also constitutes a “worst-case scenario” for in-

vestigating decoupling; the ground state is in some sense the hardest-to-decorrelate state in

any given field theory. For example, as we increase the temperature in the family of thermal

states of a holographic CFT, corresponding to increasing the mass of Schwarzschild-AdS

black holes in the gravitational dual, the mutual information between any two fixed re-

gions decreases. This can be checked explicitly in the 3-dimensional case of BTZ, but it

can also be easily motivated in general by the observation that at large temperature, the

entanglement entropy has a volume-law scaling with region size.7

Our goal, then, is to determine the behavior of the mutual information phase tran-

sition in the ground states of holographic CFTs. As a geometrical problem, we aim to

determine the separation at which two antipodal, equal-size, ball-shaped regions on the

boundary of vacuum AdSd+1 develop nonzero mutual information at order G−1
N . This

choice of boundary regions maximizes the minimal separation between the two regions

while also maximizing their volume. Since the mutual information increases as the separa-

tion between the regions decreases, antipodally placed balls are the natural configuration

to consider when investigating spatial decoupling, since these regions will maximize the

total fraction of the boundary volume that can be occupied by A ∪B before developing

order G−1
N correlations between A and B. Furthermore, since any two ball-shaped regions

can be mapped to non-antipodal regions by a conformal transformation, under which the

mutual information is invariant, knowledge of the parameters of the phase transition for

equal-size, antipodal balls can be used to compute the parameters of the phase transition

for arbitrary pairs of ball-shaped regions on the boundary (cf. appendix A).

The question, then, is as follows: how close do two antipodal, equal-size, ball-shaped

boundary regions have to be in order to develop correlations at order G−1
N ? Since the

geometry is static, we can use the RT prescription and limit consideration to a single time

slice in the bulk, wherein we consider (spatial codimension one) minimal surfaces boundary-

anchored on the pair of entangling surfaces ∂A and ∂B. If the angular separation between

interval entanglement wedges. (Of course the UV divergent pieces would still match between the two

possibilities, but the finite difference in spacetime volume would grow arbitrarily large with N.)
7In the bulk, the HRT surfaces hug the horizon, which in the conformal diagram is very close to the

boundary, so that the difference between EA∪B and the union of EA and EB gives only an (exponentially)

small contribution to I(A : B).
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the caps is small enough, the requisite minimal surfaces will be the disconnected ones EA
and EB, whereas in the other regime there will be a single connected ‘tube-like’ surface

EA∪B straddling ∂A and ∂B. The location of the phase transition is the angle at which the

two sets of minimal surfaces have the same area. In the AdS3 case of figure 1, the phase

transition occurs when the angular separation between the surfaces is π/2; equivalently, the

phase transition occurs when the two caps collectively occupy 1/2 of the boundary volume.

In the remainder of this paper, we compute the angular separation at which antipodal

regions develop order G−1
N mutual information (i) numerically for a range of dimensions

d > 2 and (ii) analytically in the limit d→∞.
With this stated as our goal, let us turn to considering how the mutual information

should behave under varying d. We present two lines of argument, each of which would

lead us to a different conclusion. First, given a system of finite total volume (which we

can normalize to V = 1) in its ground state, one might naively expect that the volume

VA∪B spanned by the subsystem A ∪B such that I(A : B) = O(1) must be capped at

VA∪B ≤ 1/2, or some other O(1) portion of the boundary. This reasoning follows from a

heuristic understanding of the monogamy of entanglement : if the degrees of freedom in A

and B are individually in highly entangled states, without being significantly entangled to

one another, then they must be entangled with distinct systems in the complement A ∪B.

To support the large amount of entanglement in A and B, the complement A ∪B must

have at least as many degrees of freedom as A ∪B — or, allowing for the states on A and

B to be submaximally entangled, perhaps some order-one fraction thereof.8

Another line of argument following from monogamy of entanglement, however, sug-

gests a very different result: if the local degrees of freedom in the holographic theory are

entangled in isotropic fashion, then the higher the dimensionality, the smaller the amount

of entanglement which can be spared for any given direction (since it has to be equally

distributed amongst all the directions). In the present setup, there is only a single direction

(the angle) spanning the separation between A and B; the entanglement in this direction

should be greatly suppressed relative to the d− 2 directions along the entangling surfaces

∂A and ∂B. So in the large-d limit, this line of argument would suggest that regions A

and B should disentangle from each other even when they are very close (parametrically in

1/d). This is, in fact, the line of reasoning that will be supported by our geometric argu-

ments: we find, in section 2, that the angular separation at which antipodal caps develop

order G−1
N correlations scales as 1/d; this is in contrast to the slower, 1/

√
d scaling that

would signal the development of large correlations at some finite fraction of the boundary

volume.9 This means that in fact VA∪B → 1 as d→∞ — in other words, at large dimen-

sion, the regions decorrelate from each other even though they subtend almost the entire

system!

The arguments presented thus far are largely heuristic. In the remainder of this paper,

we make them concrete. In section 2, we use (1.1) to reduce the problem of determin-

ing the mutual information phase transition to the geometric problem of comparing the

8This line of reasoning was suggested to us by Geoff Penington.
9Cf. footnote 12 for the calculation that establishes this scaling.
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areas of two families of surfaces, which in turn we reduce to the problem of solving a first-

order, inhomogeneous differential equation. We then solve this equation analytically in the

limit d → ∞ to demonstrate the decoupling of holographic correlations at large d, solve

it numerically at a range of smaller dimensions to show the phenomenon of decoupling

at finite d, and finally cast all of our results in terms of conformally invariant quantities.

In section 3, we return to the heuristic “monogamy of entanglement” argument of the

previous paragraph and make it precise; using theorems from the quantum information lit-

erature, we argue that isotropic systems should generically experience a spatial decoupling

of entanglement at large d, and apply this observation to understanding the holographic

results of section 2. In section 4, we interpret our results and suggest possible directions

for future work.

2 Holographic mutual information in the vacuum

In this section, we derive the parameters of the mutual information phase transition in

vacuum AdSd+1 (i) analytically in the limit of large d, and (ii) numerically for intermediate

dimensions 3 ≤ d ≤ 20. Concretely, we will consider antipodal, equal-size, ball-shaped

regions in a time slice of AdSd+1, and find the size at which the mutual information between

the two regions becomes nonzero at order G−1
N using the HRRT formula (1.1). Our first

step will be to introduce a system of coordinates in which the differential equation satisfied

by extremal surfaces homologous to these regions takes a simple form. We then study this

equation analytically in a large-d expansion to find the quantitative behavior of the phase

transition in the large-d limit, and give numerical results for dimensions d = 3 through

d = 20 where analytical results are intractable. Finally, since the mutual information

between boundary subregions in a conformal field theory is invariant under a conformal

transformation of the boundary, we cast our results in terms of a conformally invariant

quantity that measures the separation between the ball-shaped regions; this quantity can be

used to compute the mutual information between any two ball-shaped regions by computing

the mutual information of antipodal regions with the same conformal invariant. We find

that in the large-d limit, the boundary separation at which antipodal regions develop

nonzero mutual information at order G−1
N vanishes as 1/(d − 2) in the usual spherical

metric for the boundary.

2.1 Choice of coordinates

Consider anti-de Sitter spacetime in d+ 1 dimensions with global time coordinate t. Since

vacuum AdS spacetime is static — i.e., symmetric under both time translation and time

reversal — the extremal surface that computes the entanglement entropy of any region in

a constant-t slice of the boundary must lie entirely within the corresponding constant-t

slice of the bulk. In using the HRRT formula (1.1) to compute the mutual information

between regions in a single time slice of the vacuum state, we may therefore restrict our

consideration to the constant-t, spacelike bulk geometry given by hyperbolic space in d

dimensions (Hd).

– 7 –
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A

B

(a) (b)

Figure 2. Antipodal, ball-shaped regions of equal size on the boundary of H3. (a) When A and B

are small, the minimal surface homologous to A∪B consists of two disjoint minimal caps homologous

to A and B individually. (b) When A and B are large, the minimal surface homologous to A ∪ B
is a connected, “tube-like” surface.

In units where the radius of curvature is equal to one, the metric of Hd may be written

in the Poincaré ball model as

ds2 =
4

(1− r2)2

(
dr2 + r2dΩ2

d−1

)
, (2.1)

where r is a radial coordinate in the range r ∈ [0, 1) and dΩ2
d−1 is the metric of the (d−1)-

sphere. The Poincaré ball model is useful in two dimensions because geodesics of the metric

are given by segments of circles in the ambient space that intersect the boundary of the

Poincaré ball, r = 1, orthogonally. (By “ambient space”, we mean the plane generated

by allowing r to range from 0 to ∞.) In dimensions d > 2, we may generalize the notion

of a geodesic to that of a codimension-1 extremal surface. While there are many different

classes of codimension-1 extremal surfaces in Hd, it remains true that any codimension-1

surface that can be extended to form a (d− 1)-sphere in the ambient space that intersects

r = 1 orthogonally is locally extremal. We call such a surface a minimal cap.

Our goal is to find the phase transition between vanishing and nonzero mutual infor-

mation at order G−1
N for equal-size, antipodal, ball-shaped regions on the boundary. Let

θ be an arbitrary choice of angular direction in the (d − 1)-sphere, and let A and B be

two such boundary regions centered around the points θ = 0 and θ = π, respectively.

These regions are sketched for d = 3, in which case the boundary is topologically S2, in

figure 2. The minimal surfaces homologous to A and B are simply minimal caps in Hd

(which, again, is itself a time-slice of AdSd+1). Finding the minimal surface homologous to

A∪B, however, is more subtle. When A and B are sufficiently small, the minimal surface

homologous to A ∪ B is simply the union of the disjoint minimal surfaces homologous to

A and B individually. In this case, the mutual information

I(A : B) = S(A) + S(B)− S(A ∪B) (2.2)

– 8 –
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vanishes at order G−1
N under the HRRT formula (1.1). As the regions A and B are made

larger, however, there exist other locally extremal surfaces homologous to A∪B that could

potentially be the global minima used to compute the entanglement entropy — namely the

connected, “tube-shaped” surfaces sketched in figure 2b. The mutual information phase

transition happens when A and B are large enough that one of these connected surfaces

replaces the disconnected, “two caps” surface as the global minimum homologous to A∪B.

In this case, the mutual information (2.2) becomes positive at leading order in the HRRT

formula (1.1).

Finding the precise size at which A and B undergo a phase transition in the holo-

graphic mutual information is a problem of finding and comparing extremal surfaces in Hd.

This problem is nontrivial, as the differential equation satisfied by extremal surfaces in a

generic coordinate system is a second-order, nonlinear ODE. We may simplify the problem

considerably by choosing a system of coordinates that is well adapted to the regions we

consider.

Our choice of coordinate system is motivated by the fact that one class of extremal

surfaces homologous to regions of the form A∪B is known, namely the class disconnected

surfaces formed by the union of two minimal caps homologous to A and B. We will

adapt our coordinates to this knowledge by choosing a coordinate that has as its level sets

minimal caps with their centers at θ = 0. Crucially, as we will see, the integral curves of this

coordinate are isometries of hyperbolic space; this feature is what allows us to simplify our

calculation. Each minimal cap is a portion of a sphere in the ambient space 0 ≤ r <∞ with

its center on the axis θ = 0. Since these spheres must meet r = 1 orthogonally, each point

in Hd must lie on exactly one such sphere. We will naively choose one of our coordinates

to be the radius of the corresponding sphere, ρ. Several such spheres are sketched in d = 2

in figure 3. The condition that the sphere meets r = 1 orthogonally constrains ρ to satisfy

1 + ρ2 =
1 + r2

2r| cos θ|
. (2.3)

As a coordinate, ρ can only cover one half of Hd at a time, since points in Hd that are

reflection-symmetric across the plane θ = π/2 have the same value of ρ (cf. figure 3).

From equation (2.3), it is straightforward to check that surfaces of constant ρ are

extremal surfaces, as previously claimed. One simply defines a normal vector to any such

surface as na = ∇aρ, normalizes it to n̂a = na/
√
nbnb, then checks that the unit normal

vector satisfies

∇an̂a = 0 (2.4)

on the surface, which is a necessary and sufficient condition for a surface to be locally

extremal [8]. The fact that surfaces of constant ρ are not only extremal, but form a

foliation of Hd by extremal surfaces, suggests that there exists an isometry which maps

between different minimal caps. In other words, it suggests that there exists a vector field

proportional to na that is a symmetry of the metric. By reparametrizing ρ according to

tanh η =
1

1 + ρ2
=

2r| cos θ|
1 + r2

, (2.5)

– 9 –
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θ

Figure 3. Spheres (red) centered on the θ = 0 axis that intersect the boundary of H2 (gray)

orthogonally. The family of minimal caps obtained by restricting these spheres to the interior of H2

form a foliation of H2. Points that are symmetric across the θ = π/2 plane lie on different spheres

with the same radius ρ.

we can make this isometry explicit. It is straightforward to show that the coordinate vector

field (∂/∂η)a is in fact a Killing vector field, i.e., it satisfies

∇a(∂/∂η)b +∇b(∂/∂η)a = 0. (2.6)

Since (∂/∂η)a is a symmetry of the metric, the metric components in a system of coordinates

including η will have no η-dependence. This is the fundamental simplification that allows

us to find the desired extremal surfaces numerically in any dimension and analytically in

the limit of arbitrarily many dimensions. Naively, the coordinate η ranges from zero at

θ = π/2 to ∞ at θ = 0 — however, since tanh(η) is an odd function of η and cos(θ) is

odd under reflections about π/2, the coordinate range may be extended to η ∈ (−∞,∞)

so that η, unlike ρ, covers the entire geometry Hd.

All that remains is to adapt the other coordinates on the Poincaré ball to η. Surfaces

of constant η are symmetric under rotations along the (d− 2)-sphere, so we need only find

one other compatible coordinate, which we call ζ, in order to implement the coordinate

transform (r, θ) 7→ (η, ζ). For convenience, we choose ζ such that level sets of ζ are (i)

orthogonal to level sets of η, and (ii) symmetric under rotations along the (d− 2)-sphere.

The level sets of ζ will then be surfaces of revolution around the θ = 0 axis whose cross-

sections are segments of circles that intersect the boundary at θ = 0 and θ = π — see

figure 4b for a sketch. One convenient choice of coordinate satisfying these criteria is to let

ζ be the angle formed between the θ = 0 axis and the ζ = const. surface at the point on

the boundary where the two meet. The function ζ then satisfies

cos ζ =
1− r2√

(1 + r2)2 − 4r2 cos2 θ
. (2.7)
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(a) (b)

Figure 4. Surfaces of (a) constant η and (b) constant ζ in the coordinate system for H3 given by

equations (2.8) and (2.9). The surface plotted are (a) η = 0.7, 0,−0.4,−1 and (b) ζ = 0.75.

The combined coordinate transform (r, θ) 7→ (η, ζ) can be found by inverting equa-

tions (2.5) and (2.7), and is given by

r2 =
sin2 ζ + sinh2 η

(cos ζ + cosh η)2
, (2.8)

tan θ =
sin ζ

sinh η
. (2.9)

In these coordinates, the metric of Hd given in equation (2.1) takes the form

ds2 =
1

cos2 ζ

(
dη2 + dζ2 + sin2 ζ dΩ2

d−2

)
. (2.10)

The coordinate η ranges from +∞ at the north pole of the sphere, to zero at the plane

θ = π/2, to −∞ at the south pole. The coordinate ζ ranges from zero at the θ = 0 axis to

π/2 at the boundary. To help with visualization, some level sets of η and ζ are sketched

in d = 3 in figure 4.

2.2 Mutual information at large d

When A and B are sufficiently large, there are two different classes of extremal surfaces

homologous to A∪B. One surface, Σcap, is just the union of the minimal caps homologous

to A and B individually. There may also exist connected, “tube-like” extremal surfaces

like the one sketched in figure 2b. In general, no such tube surface will exist when A and

B are sufficiently small, and when A and B are large there exist two tube-like surfaces

that extremize the area action; we show the existence of these two branches of “tube-like”

solutions numerically in subsection 2.3 (cf. figure 7).10 The mutual information phase

10While two branches of smooth “tube-like” surfaces exist only in dimensions d ≥ 3, the presence of

these branches can be seen in d = 2. There are in fact two “connected” minimal surfaces linking antipodal
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transition occurs when A and B are sufficiently large that one of the tube-like surfaces

becomes smaller than the “cap” surface in the sense that its finite area difference with the

cap surface becomes negative.

Both the “cap” and “tube” surfaces are symmetric under rotations along the (d− 2)-

sphere, so both locally satisfy equations of the form

η = η(ζ). (2.11)

On such a surface, the induced metric hab inherited from (2.10) takes the form

ds2 =
1

cos2 ζ
((1 + η̇2)dζ2 + sin2 ζdΩ2

d−2), (2.12)

where the overdot denotes a total derivative with respect to ζ. The volume element of the

induced metric is given by
√
h = sec ζ tand−2 ζ

√
1 + η̇2

√
ω, (2.13)

where
√
ω is the volume element of dΩ2

d−2. For notational convenience, we denote by f(ζ)

the function

f(ζ) ≡ sec ζ tand−2 ζ, (2.14)

so the volume element takes the form
√
h = f(ζ)

√
1 + η̇2

√
ω. (2.15)

The Euler-Lagrange equations of this volume element are given by

η̇2 =
C2

f(ζ)2 − C2
, (2.16)

where C is a constant. One possible solution to this equation is given by C = 0, so that

η̇ = 0. These are the minimal caps that are symmetric about the ζ = 0 axis, which we

showed in the previous subsection are surfaces of constant η. The (infinite) area of any

such surface Σcap is given formally according to equation (2.15) by

Acap =

∫
Σcap

√
h = Sd−2

∫ π/2

0
dζ f(ζ), (2.17)

where Sd−2 is the surface area of the (d− 2)-sphere. The other class of solutions to (2.16),

with C 6= 0, are the “tube-like” solutions. These solutions have a special point, which we

call ζ∗, where C2 = f(ζ∗)
2 is satisfied and the derivative η̇ blows up. This point corresponds

to the “turning point” of the tube in the bulk — the minimal value of ζ reached by the

tube as it extends from (A ∪B)c into the bulk. A tube-like surface with its turning point

identified is sketched in figure 5. The (infinite) area of any such surface Σtube is given

formally by

Atube =

∫
Σtube

√
h = 2Sd−2

∫ π/2

ζ∗

dζ
f(ζ)2√

f(ζ)2 − f(ζ∗)2
, (2.18)

where we have used C = f(ζ∗) and the factor of 2 comes from the fact that the tube is

symmetric under the reflection η 7→ −η.

intervals in d = 2: the usual one consisting of two smooth geodesics (cf. figure 1), and also the “kinked

surface” consisting of piecewise-smooth geodesics that touch at the center of H2 (cf. figure 8c).
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Figure 5. The tube-like surface (purple) from figure 2b together with the surface of constant ζ

(blue) that marks its “turning point”, ζ∗. This particular surface has turning point ζ∗ ∼ 0.93.

A choice of turning point ζ∗ uniquely specifies an extremal, tube-like surface homolo-

gous to A∪B. At the phase transition, there exists some ζ∗ whose corresponding tube-like

surface has area equal to the area of two minimal caps. At the phase transition, therefore,

ζ∗ satisfies

0 = 2Acap −Atube = 2Sd−2

[∫ π/2

0
dζ f(ζ)−

∫ π/2

ζ∗

dζ
f(ζ)2√

f(ζ)2 − f(ζ∗)2

]
. (2.19)

Note that since the area Sd−2 vanishes in the limit d→∞, equation (2.19) always vanishes

in the large-d limit for any configuration of boundary regions. However, for any fixed,

large d, there will still be a phase transition at which equation (2.19) is satisfied. The

parameters of this phase transition can be derived by dividing the above expression by

2Sd−2 and finding the value of ζ∗ that solves the equation

0 =

∫ π/2

0
dζ f(ζ)−

∫ π/2

ζ∗

dζ
f(ζ)2√

f(ζ)2 − f(ζ∗)2
, (2.20)

should such a solution exist. Equivalently, one could define a normalized mutual informa-

tion Î(A : B) = I(A : B)/Sd−2, and look for the phase transition in this manifestly finite

quantity.

Both integrals in equation (2.20) are divergent at ζ = π/2. This is a manifestation of

the fact that the areas of boundary-anchored extremal surfaces diverge near the boundary

of AdS. However, the area difference that appears in equation (2.20) is finite. It may be

computed by introducing a cutoff at ζc = π/2 − ε and taking the limit ε → 0; the answer

obtained is independent of the cutoff procedure [8]. Using such a cutoff procedure, we are

free to split the infinite integral
∫ π/2

0 dζ f(ζ) into a sum of integrals over the ranges (0, ζ∗)

and (ζ∗, π/2) and combine divergent terms to rewrite equation (2.20) as

0 =

∫ ζ∗

0
dζ f(ζ) +

∫ π/2

ζ∗

dζ f(ζ)

(
1− f(ζ)√

f(ζ)2 − f(ζ∗)2

)
. (2.21)

Both integrals in equation (2.21) are now manifestly convergent.
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Recall that f(ζ) = sec ζ tand−2 ζ is dimension-dependent. For the special case d = 2,

the second integral in (2.21) is elementary, and equation (2.21) is solved by the critical value

ζc∗ = π/4; this is why the mutual information phase transition in d = 2 is straightforward to

compute, as explained in the introduction to this paper. For d = 3, the integral is elliptic;

it has a closed form in terms of functions with known series expansions, which can then be

exploited to find the parameters of the mutual information phase transition numerically

with high accuracy.11 For d > 3, the second integral in equation (2.21) is hyperelliptic;

it is not analytically tractable, and cannot be exploited to find the value of ζ∗ at which

the phase transition occurs. However, both integrals in equation (2.21) are tractable in

the limit d → ∞ as power series in 1/(d − 2). We will now exploit this simplification to

find the limiting behavior of the phase transition as d → ∞, and use this result to glean

information about the dimension-dependence of holographic correlations.

We will evaluate the two convergent integrals in (2.21) separately, referring to them as

I1 and I2, respectively. It is first convenient to remove the ζ∗ dependence in the range of

integration by making the coordinate substitution

u =
tan ζ

tan ζ∗
. (2.22)

Under this substitution, the integrals take the form

I1 = τd−1

∫ 1

0
du

ud−2

√
1 + τ2u2

, (2.23)

I2 = τd−1

∫ ∞
1

du
ud−2

√
1 + τ2u2

(
1−

√
1 + τ2u2ud−2√

(1 + τ2u2)u2(d−2) − (1 + τ2)

)
, (2.24)

where we have written τ = tan ζ∗ and used the form of f(ζ) given in equation (2.14). The

term ud−2 which appears in both integrands has an essential singularity as d → ∞. To

facilitate a large-d expansion, it is therefore convenient to make the substitution w = ud−2,

after which the integrals take the form

I1 =
τd−1

d− 2

∫ 1

0
dw

w1/(d−2)√
1 + τ2w2/(d−2)

, (2.25)

I2 =
τd−1

d− 2

∫ ∞
1

dw
w1/(d−2)√

1 + τ2w2/(d−2)

(
1− w

√
1 + τ2w2/(d−2)√

(1 + τ2w2/(d−2))w2 − (1 + τ2)

)
. (2.26)

The integrands can be expanded in powers of 1/(d − 2) and evaluated analytically order-

by-order. Up to the addition terms of order O(1/(d− 2)3), the integrals are given by

I1 =
τd−1

d− 2

[
1√

1 + τ2
− 1

d− 2

1

(1 + τ2)3/2

]
, (2.27)

I2 =
τd−1

d− 2

[
− 1√

1 + τ2
+

1

d− 2

1

(1 + τ2)3/2

(
1− π

2
(1− τ2)

)]
. (2.28)

11A related elliptic integral was computed in [14] to obtain analytic expressions for the tube-like extremal

surfaces in d = 3.
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Their sum satisfies

I1 + I2 =
π

2

τd−1

(d− 2)2

τ2 − 1

(1 + τ2)3/2
+O

(
1

(d− 2)3

)
. (2.29)

From equation (2.29), we see that the area difference between the cap and tube surfaces

vanishes at leading order in the large-d expansion exactly when τ2 = 1. Since τ is given by

τ = tan ζ∗, it follows that the tube-like extremal surface that initiates the phase transition

tends to

lim
d→∞

ζc∗ =
π

4
. (2.30)

The value of η at which this surface meets the boundary, η∞, is computed by the integral

η∞ =

∫ π/2

ζ∗

dζ η̇ =

∫ π/2

ζ∗

dζ
f(ζ∗)√

f(ζ)2 − f(ζ∗)2
, (2.31)

where we have used the form of η̇ given in equation (2.16), and used the tube-like surface’s

η 7→ −η symmetry to guarantee that η(ζ∗) vanishes. Using the same substitutions we used

previously, u = tan ζ/ tan ζ∗ and w = ud−2, this integral takes the form

η∞ =
τ
√

1 + τ2

d− 2

∫ ∞
1

dw
w1/(d−2)

w(1 + w2/(d−2)τ2)

1√
(1 + τ2w2/(d−2))w2 − (1 + τ2)

. (2.32)

Since the leading term in the integrand is O(1) in 1/(d − 2), we see immediately that η∞
falls off as 1/(d−2) in the limit of large d. In other words, the boundary separation at which

the phase transition occurs approaches zero as 1/d. The ball-shaped boundary regions A

and B must have entangling surfaces within a (1/d)-size neighborhood of the equator in

order to develop nonzero correlations at order G−1
N . We can compute the d-dependence of

η explicitly by performing the integral in equation (2.32) at leading order in 1/(d − 2),

yielding the expression

η∞ =
1

d− 2

τ

1 + τ2

∫ ∞
1

dw
1

w
√
w2 − 1

+O

(
1

(d− 2)2

)
=

1

d− 2

π

2

τ

1 + τ2
+O

(
1

(d− 2)2

)
. (2.33)

Substituting in τ = tan ζ∗ gives η∞ in a simple closed form:

η∞ =
1

d− 2

π

2
sin ζ∗ cos ζ∗ +O

(
1

(d− 2)2

)
. (2.34)

We argued above that the position of the phase transition is given to leading order in

1/(d− 2) by ζc∗ = π/4, yielding a critical value of η∞ given by

ηc∞ =
1

d− 2

π

4
+O

(
1

(d− 2)2

)
. (2.35)

By transforming back to the usual spherical coordinates using equation (2.9), we see that

the critical angle at which antipodal caps develop correlations at order G−1
N limits to

θc∞ =
π

2
− 1

d− 2

π

4
+O

(
1

(d− 2)2

)
. (2.36)
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Notably, this implies that boundary caps must occupy 100% of the area of the boundary

with respect to the spherically symmetric metric to develop large correlations in the limit

d → ∞; in order for the strip between the two critical caps to occupy a nonvanishing

fraction of the boundary area, the critical angle would have to differ from π/2 at order

1/
√
d− 2.12 While these expressions for ηc∞ and θc∞ are coordinate dependent, we will

re-express the boundary separation at which the phase transition occurs in terms of a

coordinate-independent and conformally invariant quantity in subsection 2.4.

One interesting feature of this calculation is that the expression for η∞ in terms of ζ∗
given by equation (2.34) is general — it holds for any tube-like surface, not just the one that

initiates the mutual information phase transition. We see by inspection of equation (2.34)

that η∞ is bounded at leading order as a function of ζ∗. In other words, η∞ cannot be

arbitrarily large; in fact, it cannot be larger than order 1/(d− 2). The fact that η∞ has a

maximal value suggests that tube-like extremal surfaces do not exist for arbitrary values of

η∞ in large dimensions — there is a critical value of η∞ near the equator where tube-like

extremal surfaces begin to exist. We also see that once such solutions exist, there generically

exist two values of ζ∗ satisfying equation (2.34) for a single value of η∞; i.e., there are two

tube-like extremal surfaces corresponding to any permitted boundary condition η∞ (except

for the maximal allowed value of η∞, at which only one such surface exists). In the following

subsection, we show these properties explicitly for dimensions d = 3 through d = 20 using

numerical techniques. By inspection of equation (2.34), we see that the maximal value of

η∞ is attained in the large-d limit when ζ∗ = π/4 — in other words, the critical value of η∞
at which tube-like extremal surfaces begin to exist and the critical value of η∞ at which the

mutual information phase transition occurs converge at leading order in the limit d→∞.
Finally, we note that equation (2.29) can be expanded analytically beyond leading order

in 1/(d − 2) to obtain approximations for the critical parameter ζc∗ in finite dimensions.

Expanding to one further order in 1/(d − 2), the value of ζc∗ predicted by equation (2.29)

for d ≥ 5 is within 4% percentage error of the numerical values we compute in the following

subsection. This suggests that the 1/(d− 2) expansion is genuinely computationally useful

for studying holographic entanglement entropy in physically interesting dimensions, just

as it was found to be computationally useful for studying black holes in general relativity

in [15]. We comment further on this calculation in the discussion in section 4.

2.3 Numerical results in intermediate dimensions

With the parameters of the mutual information phase transition computed analytically at

large d, we now turn to computing the parameters numerically for intermediate dimensions

12A ∆θ-width strip around the equator of a (d− 1)-sphere occupies fractional area

1√
π

Γ(d/2)

Γ((d− 1)/2)

∫ ∆θ/2

−∆θ/2

dθ cosd−2(θ).

In the large-d limit, this expression approaches√
d

2π

∫ ∆θ/2

−∆θ/2

dθ e−(d−2)θ2/2.

Standard estimates on the error of Gaussian integrals show that this expression limits to zero when θ

vanishes more quickly than 1/
√
d− 2 and to one when θ vanishes more slowly than 1/

√
d− 2.
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d = 3 through d = 20 where analytic calculations are intractable. Recall from equa-

tion (2.21) that the mutual information phase transition is characterized by the turning

point ζ∗ that satisfies equation

0 =

∫ ζ∗

0
dζ f(ζ) +

∫ π/2

ζ∗

dζ f(ζ)

(
1− f(ζ)√

f(ζ)2 − f(ζ∗)2

)
, (2.37)

with f(ζ) given by

f(ζ) ≡ sec ζ tand−2 ζ. (2.38)

In principle, one can simply compute these two integrals numerically for various values

of ζ∗ and search for values of ζ∗ for which equation (2.37) nearly vanishes. In practice,

most numerical algorithms will fail to converge for sufficiently large d, since evaluating the

integrand of the second integral requires taking the ratios and differences of rather large

numbers, which can result in loss of machine precision. To avoid this complication, it is

useful to make the substitution

h =

√
f(ζ)− f(ζ∗)

f(ζ) + f(ζ∗)
, (2.39)

in which case equation (2.37) may be expressed as

0 =

∫ ζ∗

0
dζ f(ζ)−

∫ π/2

ζ∗

dζ f(ζ∗)
(1 + h2)(1− h)

2h(1 + h)
. (2.40)

It is also useful to explicitly factor out the term f(ζ∗), since this quantity has a pole near

ζ∗ = π/2. The final expression for the integral is

0 = f(ζ∗)

[∫ ζ∗

0
dζ

f(ζ)

f(ζ∗)
−
∫ π/2

ζ∗

dζ
(1 + h2)(1− h)

2h(1 + h)

]
. (2.41)

In figure 6a, we show plots of the right-hand side of equation (2.41) for several values of

d between d = 2 and d = 20 for the full range of possible turning points ζ∗ = 0 to ζ∗ = π/2.

In figure 6b, we show the same plots zoomed in near ζ∗ = π/4; by inspection of this plot,

one can observe the qualitative behavior of the root of equation (2.41) for dimensions d = 2

to d = 20. In dimension d = 2, equation (2.41) is satisfied exactly at ζ∗ = π/4, as can be

computed analytically by evaluating the elementary integrals in equation (2.41) for d = 2.

At d = 3, the phase transition parameter ζc∗ jumps down to a value near ∼0.76, then slowly

climbs back up towards π/4 as d is further increased. We observe, in this limiting behavior,

a numerical manifestation of the explicit large-d limit obtained in equation (2.30).

The boundary value η∞ corresponding to a particular value of the turning point ζ∗
can be computed numerically by evaluating the integral

η∞ =

∫ π/2

ζ∗

dζ
f(ζ∗)√

f(ζ)2 − f(ζ∗)2
. (2.42)

This integral is straightforward to compute numerically. In figure 7, we show plots of η∞
versus ζ∗ for the same values of dimension d that were sketched in figure 6. We see that
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Figure 6. (a) Plots of the right-hand side of equation (2.41) for all values of d between 2 and 20.

(b) The same plot, zoomed in near ζ∗ = π/4. We see that the critical value of ζ∗ is exactly π/4 at

d = 2, jumps down to ∼0.76 at d = 3, then increases monotonically toward π/4 as d→∞.

while there is no upper bound on η∞ in d = 2, η∞ has a maximum value in any dimension

d > 2. Furthermore, the function η∞(ζ∗) is not invertible — in d > 2, there generically exist

two tube-like surfaces corresponding to a single value of η∞, each with different turning

points ζ∗. By comparing with the plot of the normalized mutual information function shown

in figure 6a, we see that the value of ζ∗ for which the mutual information becomes positive is

always strictly greater than the value of ζ∗ corresponding to the maximal η∞; it is therefore

always the outer branch of extremal tube-like surfaces that initiates the phase transition

in the mutual information.

To aid with visualization, we have plotted in figure 8a each of the “tube-like” surfaces

that initiates the phase transition for even dimensions in the range d = 2 through d = 20.
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Figure 7. The boundary condition η∞ as a function of the turning point ζ∗ for extremal tube-like

surfaces in dimensions d = 2 through d = 20. While there is no maximal value of η∞ for d = 2,

there exists a maximal η∞ in d > 2 — above this value of η∞, extremal tube-like surfaces do not

exist.

This is accomplished by evaluating (2.41) numerically to find the critical turning point ζc∗
as a function of d, and then integrating

η(ζ) =

∫ ζ

ζc∗

dζ̃
f(ζc∗)√

f(ζ̃)2 − f(ζc∗)
2

(2.43)

to obtain an equation for the corresponding surface. In figure 8a, the surfaces are projected

down onto a single slice H2 slice of the d-dimensional hyperbolic geometry so that they may

be plotted together. Figure 8c shows all of these surfaces together with their corresponding

inner branches—the other set of tube-like surfaces that have the same boundary condition

η∞ as those that initiate the phase transition.

In future work, it may be useful to have explicit numerical values for the parameters

of the phase transition in low dimensions. For this reason, table 1 contains the critical

values ζc∗ and ηc∞ = η∞(ζc∗) that initiate the mutual information phase transition for sev-

eral dimensions between d = 3 and d = 20, expressed to five digits of precision. It also

includes the corresponding boundary values of θ in usual spherical coordinates, computed

by transforming η → θ using equation (2.9), as well as the critical values of the conformal

invariant χ we introduce in the following subsection in equation (2.45).

2.4 Conformally invariant separation of boundary regions

Thus far, we have phrased our results entirely in terms of the (η, ζ) system of coordinates

introduced in subsection 2.1. A coordinate-dependent characterization of the phase transi-

tion makes interpreting our results difficult; for example, while we showed in subsection 2.2

that the boundary separation of antipodal caps at the phase transition scales like 1/d in

the limit d → ∞, this scaling could easily be changed by transforming to a d-dependent
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Figure 8. (a) The tube-like minimal surfaces at the mutual information phase transition, projected

down onto a single hyperbolic slice, for even dimensions in the range d = 2 through d = 20. (b)

The same surfaces together with their “inner branches” — the other set of tube-like surfaces with

the same boundary conditions — plotted with dashed lines.

d ζc∗ ηc∞ = η∞(ζc∗) θc∞ χc

2 π/4 (0.78540) arccosh
√

2 (0.88137) π/4 (0.78540) 4

3 0.76115 0.43845 1.1458 0.81951

4 0.76227 0.28817 1.2865 0.34147

5 0.76539 0.21334 1.3591 0.18484

7 0.77044 0.13954 1.4317 0.07839

9 0.77369 0.10336 1.4676 0.04289

11 0.77585 0.08199 1.4889 0.02695

14 0.77796 0.06253 1.5083 0.01566

17 0.77932 0.05051 1.5203 0.01021

20 0.78027 0.04236 1.5285 0.00718

∞ π/4 (0.78540) π/4(d− 2) (0) π/2− π/4(d− 2) (0) π2/4(d− 2)2 (0)

Table 1. A table containing the numerical values of the critical parameters ζc∗, η
c
∞, θc∞, and χc for

various dimension in the range d = 3 through d = 20, with analytic results in d = 2 and d→∞.
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system of coordinates. It will be useful, instead, to formulate a coordinate-covariant notion

of the separation between antipodal caps on the boundary of Hd. The most obvious notion

of boundary separation, the minimum proper distance between the surfaces, is ill-defined,

since the boundary metric is only defined up to a conformal factor. Instead, we define a

notion of distance between the caps that is both coordinate-independent and conformally

invariant as follows.

In previous subsections, we considered the mutual information between equal-size an-

tipodal caps on Sd−1. To define a conformally invariant distance between caps, let us first

generalize to consider antipodal caps A and B that are not necessarily the same size. For

any such pair of caps, we define the conformal radii as

γA,B = cosh(ηA,B)− sinh(ηA,B), (2.44)

where ηA,B is the value of η at the cap boundary ∂A (equivalently, ∂B). The conformal

cross-ratio

χ =
(γA − γB)2

γAγB
(2.45)

can be shown to be invariant under conformal transformations. We show this explicitly

in appendix A, where we also show that γA (γB) is the radius of the sphere obtained by

mapping A (B) to Euclidean space conformally via the stereographic projection. This is

the sense in which χ encodes a conformally invariant distance between the caps. When A

and B are equal size, (2.45) simplifies to

χ = 4 sinh2(ηA), (2.46)

where we have used ηB = −ηA.
In addition to being invariant under passive conformal transformations that change the

metric, χ also has the advantage of being invariant under active conformal transformations

that move the regions A and B around the sphere. Since any two non-adjacent caps on Sd

can be mapped to equal-size antipodal caps by a conformal transformation, any two caps

develop nonzero mutual information at order G−1
N exactly when their cross-ratio χ equals

the cross-ratio χc of equal-size caps at the phase transition. The appropriate generalization

of χ for non-antipodal caps was introduced in [21] and is reproduced in equation (A.13) of

appendix A. To check whether two ball-shaped regions have nonzero mutual information

at leading order in GN , therefore, one need only compute χ using equation (A.13) and

compare it to the critical value χc given in table 1 for the dimension in question.

By using equation (2.35) for the value of η at which the phase transition occurs in the

limit d→∞, we see that in the limit of large d, the critical value χc is given by

χc =
1

(d− 2)2

π2

4
+O

(
1

(d− 2)4

)
. (2.47)

Since χ represents a conformally invariant distance between the caps (cf. equation (2.45)),

the fact that χc vanishes in the limit d→∞ indicates that equal size, antipodal caps must

be arbitrarily close to one another to develop nonzero mutual information at order 1/GN
in the large-d limit.
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3 Monogamy of entanglement in many-dimensional, regular lattices

With the holographic calculation of section 2 now completed, we turn to interpreting our

results from the perspective of quantum information theory. In the introduction to this

paper, we argued that the main technical result of section 2, which shows that antipodal

boundary regions in the vacuum of a holographic theory must take up the entire volume

of the boundary to develop nontrivial correlations at order G−1
N , was one manifestation

of a broader phenomenon of the spatial decoupling of entanglement in the large-d limit.

We also gave a heuristic argument based on monogamy of entanglement to explain this

decoupling. The rough flavor of this argument was to suggest that in an isotropic state,

each spatially local degree of freedom should be entangled with every spatial dimension

equally; the principle of monogamy of entanglement should suggest, then, that it must

be relatively unentangled with its neighbors in any given direction in the limit d → ∞.
The “monogamy of entanglement”, however, is a general principle, not a single quantita-

tive statement: it is realized in many different forms, mostly taking the form of various

quantum de Finetti theorems that restrict the entanglement structure of states obeying

certain kinds of symmetry. The purpose of this section is to use these theorems to put our

heuristic “isotropy argument” on concrete footing, and to argue rigorously that the spatial

decoupling of ground state entanglement in the large-d limit is a generic feature of spatially

local, isotropic quantum systems.13

Before proceeding, we pause to review some general properties of entangled states. A

pure state |ψ〉AB on a bipartite Hilbert space HA ⊗HB is said to be unentangled if it can

be written as a product state,

|ψ〉AB = |ψ〉A ⊗ |ψ〉B. (3.1)

A general density matrix ρAB — i.e., a positive semidefinite Hermitian operator with unit

trace — is said to be unentangled if it can be written as a classical mixture of product

states :

ρAB =
∑
j

pjρ
A
j ⊗ ρBj . (3.2)

Here ρAj and ρBj are density operators on systems A and B, and {pj} is a set of proba-

bilities satisfying
∑

j pj = 1. States of this form are often called separable. States of the

form (3.1) and (3.2) are called unentangled because they can be prepared starting from

any product state on HA⊗HB by performing local unitaries on the individual subsystems

and exploiting classical randomness; no joint unitary operation is present to generate en-

tanglement between the systems. To prepare a state of the form (3.1), one simply prepares

the pure states in systems A and B separately; to prepare a state of the form (3.2), one

first draws a random number j from the distribution {pj}, then prepares the corresponding

13Note that in section 2, we showed the large-d decoupling of ground state correlations by computing

the mutual information, which counts both quantum and classical correlations. The monogamy of entan-

glement arguments presented here explain only the generic decoupling of quantum correlations; the large-d

decoupling of classical correlations found in section 2 may be a special feature of holographic theories. We

discuss this further at the end of this section.
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state ρAj ⊗ ρBj by acting on HA and HB with local unitaries. This procedure will produce,

for any measurement, exactly the same statistics as would be measured in the state (3.2).

More abstractly, one can define the class of separable states (3.2) as the set of bipartite

states that can be prepared from a product state using only local operations and classical

communication (LOCC); if it is possible to reproduce the measurement statistics of a state

without ever performing a nonlocal operation to couple the systems, they cannot mean-

ingfully be said to be entangled. Our goal in the following, as is common in the quantum

information literature, will be to argue that large-d, isotropic ground states are locally very

close to being separable; this is the sense in which their entanglement structure decouples

at large d.14

We take as our model a quantum system on a d-dimensional, regular lattice15 with

finite local Hilbert space dimension k and lattice symmetry group G. In practice, we will

not actually use the fact that the lattice is regular, only that (i) the degree of each vertex

(i.e., the number of neighbors) scales linearly with d, and (ii) for any fixed vertex v and two

neighboring vertices w and w′, the symmetry group G contains an element that maps w

to w′ while keeping v fixed. Condition (ii) is that the graph is isotropic. For concreteness,

one can picture the generalized, d-dimensional square lattice with Hilbert space Ck on

each vertex; this is sketched in figure 9 for the case d = 3. Our goal will be to show that

in the large-d limit, any two neighboring vertices in the ground state of such a system

are unentangled up to corrections of order O(1/d) in an appropriate norm.16 We will see

that this phenomenon follows directly from the isotropic symmetry of the graph, in direct

analogy with the heuristic isotropy argument made in the introduction of this paper.

Suppose we endow our lattice Hilbert space with a Hamiltonian H that (i) commutes

with each element of G, and (ii) has a unique ground state |0〉. For any vertex v with

neighbors {w1, . . . , wn}, the reduced density matrix

ρvw1...wn = tr{v,w1,...,wn}c |0〉〈0| (3.3)

describes the ground state of v and its nearest neighbors. This state is sketched in figure 9b.

Since H commutes with each element of G and has a unique ground state, |0〉 is symmetric

with respect to the lattice symmetries; this symmetry is inherited by the reduced state on

14Familiar entanglement measures such as the von Neumann entropy are useful only in certain contexts;

for example, the von Neumann entropy of a subsystem is only a good entanglement measure when the full

state is pure. The distance from a given state to the nearest separable state is the only universal measure

of entanglement in arbitrary settings.
15Formally, a regular lattice is one whose symmetry group acts transitively on the set of flags, where a

flag is a tuple consisting a vertex, an edge containing that vertex, a face containing that edge, and so on

up to the highest-dimension object permitted by the lattice. In two dimensions, the square, triangular, and

hexagonal lattices are all examples of regular lattices.
16The results on this section are quite similar in spirit to a well-known result in the quantum information

literature, which is that the ground state of a maximally connected lattice is locally unentangled in the

limit of infinitely many lattice sites [22]. Generalizations of this result are known under the common mantra

that “mean field theory is exact in the limit of infinite degree”. (See, e.g., [23–25].) What differs here is

not so much our method as our perspective; we use the quantum de Finetti theorems not to show that

highly-connected lattices are well-approximated by separable ground states, but to argue that the local

decoupling of entanglement is a generic feature of large-d, isotropic systems.
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(b)

Figure 9. (a) A square lattice in d = 3. Here each blue dot represents a local Hilbert space Ck.

(b) A visual representation of the reduced ground state on a single vertex v and its neighbors

{w1, . . . w6}.

{v, w1, . . . , wn}, so that ρvw1...wn satisfies

gρvw1...wng−1 = ρvw1...wn (3.4)

for any element g ∈ G. By our isotropy assumption, G contains at least one element gj
that maps w1 to wj without moving v for any j ∈ {1 . . . n}. Applying this symmetry to

equation (3.4) yields the expression

ρvw1...wn = gjρ
vw1...wng−1

j = ρvwj ..., (3.5)

where the ordering of the unlabeled systems on the right-hand side of this expression

depends on the particular choice of gj . In the square lattice sketched in figure 9, such a

symmetry can be implemented, for example, by a rotation about v; in figure 10, we sketch

the action of one such symmetry transformation g2 for the 3-dimensional square lattice.

By tracing out all but the first two subsystems in equation (3.5), we find that the biparite

reduced density matrices on pairs of sites {v, wj} satisfy

ρvw1 = ρvwj . (3.6)

In other words, any two nearest-neighbor density matrices sharing a vertex are identical.

Intuitively, the principle of monogamy of entanglement suggests that the bipartite

entanglement between v and any of its neighbors wj must be small when the total number

of neighbors n is large; in order for v to be entangled in the same way with a large number

of neighbors, it cannot possibly be highly entangled with any of them. The quantitative

version of this statement is as follows: a state ρvw1...wn satisfying equation (3.6) is called an

n-extension for the state ρvw1 ; a bipartite state admitting an n-extension is unentangled

in the sense of equation (3.2) up to O(1/n) corrections. The proof of this claim follows
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g2 vw1

w2

w3

w4
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Figure 10. The reduced state ρvw1...w6 on the 3-dimensional square lattice transforms under a

rotation about the marked axis in a way that maps the label w1 to the label w2 while keeping

v fixed. Vertices that are altered by this symmetry transformation are marked in green in the

second image. The existence of such a symmetry implies that the two-party reduced states satisfy

ρvw1 = ρvw2 . This rotation is just one choice of symmetry g2; other lattice symmetries can also map

w1 to w2 while differing in how they permute the other neighbors wi.

from the quantum de Finetti theorems for symmetric states, which we will now introduce.

The general idea of the following is to exploit the lattice symmetry, which guarantees the

validity of equation (3.6) and hence implies that each vertex is equally entangled with all

of its neighbors, to show that each two-party reduced state must be nearly separable.

The quantum de Finetti theorems govern how close a quantum state respecting a par-

ticular symmetry is to being unentangled. The quantum de Finetti theorem for symmetric

states, first proved in [26–28] and generalized to the form we use here by [29], states that a

pure state |Φ〉 ∈ (Ck)⊗n that is invariant under permutations of the n subsystems is close

to being separable on any m subsystems with mk � n. Formally, for any m < n, there

exists a probability measure dm(σ) on the space of density matrices over Ck such that the

m-party reduced state ρm satisfies [29]∥∥∥∥ρm − ∫ dm(σ)σ⊗m
∥∥∥∥

1

≤ 4
mk

n
. (3.7)

In other words, the reduced state ρm is within O(mk/n) distance of the separable state∫
dm(σ)σ⊗m. The norm that appears in this equation is the trace norm, given by ‖A‖1 =

tr
√
A†A. Density matrices that are close in the trace norm have similar expectation values

on bounded operators; they satisfy

|tr(ρO)− tr(σO)| ≤ ‖ρ− σ‖1 sup
|ψ〉∈H

〈ψ|O|ψ〉 (3.8)

for any operator O. When the local Hilbert space dimension k and the number of sub-

systems m are much smaller than the total number of systems n, (3.7) implies that the

m-partite reduced state of a symmetric state |Φ〉 will reproduce, for any bounded operator,

measurement statistics very close to that of an unentangled state.
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A generalization of equation (3.7) for mixed states, also proved in [29], states that

when an n-party density matrix ρn commutes with permutations of the n subsystems, the

m-party reduced state satisfies∥∥∥∥ρm − ∫ dm(σ)σ⊗m
∥∥∥∥

1

≤ 4
mk2

n
(3.9)

for some probability measure dm(σ). The only difference from equation (3.7) is an extra

factor of the local Hilbert space dimension k. A further generalization from [29], and the

one that we will apply to our lattice system, concerns states that are symmetric relative

to an auxiliary system. It states that when a state ρAn on the Hilbert space HA ⊗ (Ck)⊗n

commutes with permutations of the n subsystems, the reduced state ρAm for m < n satisfies∥∥∥∥ρAm − ∫ dm(σ) τAσ ⊗ σ⊗m
∥∥∥∥

1

≤ 4
mk2

n
, (3.10)

where τAσ is a σ-dependent family of density matrices on HA. Put simply, equation (3.10)

states that any system HA that couples to a large number of identical systems in a

permutation-invariant way must not be very entangled with any of them; its joint reduced

state with any small collection of subsystems m satisfying mk2 � n is close to separable.

We argued above that in the unique ground state of a d-dimensional lattice system

with local Hilbert space dimension k, the reduced state of a vertex v with any one of

its neighbors wi is n-extendible, where n is the degree of the vertex. More precisely, the

reduced state ρvwi has an n-extension ρvw1...wn satisfying

ρvwi = ρvwj (3.11)

for any j ∈ {1, . . . , n}. One cannot apply equation (3.10) directly to this state; the n-

extension ρvw1...wn is not symmetric under permutations of the n neighboring vertices, since

the lattice symmetry does not induce a full permutation symmetry on the neighbors of v.

If, however, one symmetrizes the state ρvw1...wn with respect to subsystems {w1, . . . , wn} to

obtain a symmetric state ρ̃vw1...wn , the entanglement structure of this symmetrized state can

be constrained by equation (3.10). Since the symmetrized and unsymmetrized states agree

on two-party subsystems, i.e. ρvwj = ρ̃vwj , the relative quantum de Finetti theorem (3.10)

can then be used to constrain ρvwj . These states must satisfy∥∥∥∥ρvwj − ∫ dm(σ) τ vσ ⊗ σ
∥∥∥∥

1

≤ 8k2

n
(3.12)

for some probability measure dm(σ) over states on wi. Under our assumption that the

degree of each vertex scales linearly with dimension, n = αd, we find that each bipartite

state of neighboring vertices ρvwi satisfies an equation of the form∥∥∥∥ρvwj − ∫ dm(σ) τ vσ ⊗ σ
∥∥∥∥

1

≤ 8k2

αd
, (3.13)

i.e., it is within O(k2/d) trace distance of being separable.
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The arguments presented thus far in this section show that the spatial decoupling of

entanglement in the large-d limit is a generic feature of isotropic lattice systems with (i)

finite local Hilbert space dimension, and (ii) a unique ground state. It follows that any

quantum system that is well approximated by an isotropic lattice satisfying (i) and (ii)

must also exhibit entanglement decoupling at large d. There are two main obstructions

to applying this analysis toward understanding the decoupling of holographic correlations

observed in section 2. The first is that the boundary theory in a holographic system is a

Lorentzian quantum field theory, which naively has infinite local Hilbert space dimension

even under an arbitrary lattice regularization. The second is that the decoupling of the

mutual information found in section 2 suggests a decoupling of both quantum and clas-

sical correlations, while the de Finetti arguments presented in this section apply only to

entanglement, i.e., to quantum correlations.

To address the first obstruction, we note that the ground state of any quantum field

theory can be well approximated by a lattice-regulated field theory, which in turn can be

well approximated at least in the ground state by keeping only a finite number of basis

states on each vertex. The only question is how the local Hilbert space dimension k required

to obtain a good approximation scales with the spatial dimension d. Since equation (3.13)

shows that any two-party reduced state of an isotropic ground state is separable up to

corrections of order O(k2/d), the quantum de Finetti theorem should suggest decoupling

of entanglement in quantum field theories provided that the local Hilbert space dimension

required to approximate the true ground state grows more slowly than
√
d. At present, we

have no general argument that this should be the case; however, we note that this condition

can be relaxed if one uses a coarser notion of the “distance to separability” than distance

in the trace norm. The trace distance ‖ρAB − σAB‖1 gives the maximum probability

of distinguishing two states by performing a joint measurement on both systems. If we

ask instead for the maximum probability of distinguishing the states by performing local

measurements on each subsystem, we are led to the LOCC norm ‖·‖LOCC; it was shown

in [30] that an n-extendible state ρAB is within O(
√

log k/n) of being separable with respect

to this norm. This norm measures how well two local observers sitting on neighboring sites

would be able to decide whether or not their joint state is entangled; in order for the ground

state of a quantum field theory to be locally decoupled in an operational sense, therefore,

we need only require that the local site dimension k grows more slowly than ed.

As for the second obstruction, we view this not as a true obstruction but as a feature

of our calculation! The arguments of this section suggest that spatial decoupling of ground

state entanglement is generic at large d; the calculations of section 2, however, suggest the

decoupling of all correlations at order G−1
N , both quantum and classical. While the decou-

pling of entanglement is a natural consequence of isotropy combined with the monogamy

of entanglement, the decoupling of classical correlations are more subtle. It is possible that

the large-d decoupling of classical correlations is in fact generic for reasons that are beyond

the scope of this section, or it is possible that the large-d decoupling of holographic classical

correlations is a genuinely special feature of holography.

Holographic systems are well known to have universal entanglement structure that is

not generic in arbitrary quantum systems. For example, states with entropies obeying the
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HRRT formula (1.1) are known to satisfy an entropy inequality known as the monogamy

of mutual information [17, 31]

S(A) + S(B) + S(C)− S(AB)− S(BC)− S(AC) + S(ABC) ≤ 0. (3.14)

In [31], this inequality was interpreted as implying that at order G−1
N , quantum correlations

dominate over classical ones in holographic systems. Our observation that all holographic

correlations decouple at large d is certainly compatible with this interpretation: quantum

correlations decouple due to monogamy of entanglement, and it is certainly possible that

classical correlations then decouple solely due to their subdominance. However, this ar-

gument, even if valid, does not explain the mechanism by which the classical correlations

decouple; understanding this mechanism, and understanding what it can teach us about

the correlation structure of holographic quantum theories, remains an open question for

future work.

4 Discussion

The primary motivation for our analysis was to understand how the spatial correlation of

spacetime regions in a quantum field theory depends on the dimension of the spacetime.

To address this question, we focused our attention on holographic field theories where the

difficult computation of the entanglement entropy of a given region in the boundary CFTd

can be mapped to the simpler problem of computing the area of the smallest-area extremal

surface in AdSd+1 anchored to the boundary of the region via the HRRT formula (1.1).

In this context, we analyzed the phase transition in the leading 1/GN piece of the mutual

information I(A : B) between two equal-sized antipodal caps A and B in the vacuum

state at a fixed time on the boundary of global AdSd+1, whereby the HRT surface switches

from two disconnected surfaces anchored on the boundary of each region to one connected

surface anchored on the boundary of both regions.

Surprisingly, we found in section 2 that in the limit of infinitely many spacetime dimen-

sions, the regions A and B have to occupy the entire boundary volume in order to develop

non-zero mutual information at order G−1
N . This conclusion contradicts a naive argument

presented in the Introduction, which used monogamy of entanglement to argue that some

O(1) fraction of the boundary degrees of freedom should suffice to develop correlations at

order G−1
N . This argument, however, depended on the assumption that ball-shaped regions

are highly entangled with their complements at large d, whereas our calculations in sec-

tion 2 show that holographic correlations between spatial regions decouple in the limit of

large d.

Our analysis of this phase transition for the extremal surfaces in AdSd+1 anchored

on the boundary of A and B was greatly simplified by the use of a particular choice of

coordinates adapted to an isometry of Hd that is generated by a coordinate Killing vector

field. The advantage of these coordinates was that the disconnected HRT surfaces were

level sets of the Killing coordinate, and the Euler-Lagrange equations for the connected,

“tube-like” surfaces became first-order ODEs. This simplification enabled us to solve for

the phase transition numerically in any spacetime dimension d and analytically in the

limit d→∞.
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The mutual information is indeed but one of many diagnostics of the correlations

between the degrees of freedom in a quantum field theory. However, we argued that

the decoupling of the holographic mutual information in the limit of infinite spacetime

dimensions is actually a manifestation of a much more general phenomenon of decoupling

in quantum systems with a large number of spacetime dimensions. We demonstrated in

section 3 that in the simple setting of a quantum system on a regular d-dimensional lattice,

monogamy of entanglement implies that the entanglement between neighboring lattice sites

in an isotropic state vanishes in the limit d → ∞. More precisely, using the quantum de

Finetti theorems, we showed that the reduced density matrix for any two neighboring

vertices is within 1/d trace distance of a separable state. The primary technical result

of section 2, that the mutual information in a holographic theory decouples spatially at

large d, implies a stronger result than the monogamy of entanglement argument presented

in section 3: since mutual information counts both classical and quantum correlations,

the decoupling of holographic mutual information at large d is qualitatively more severe

than the generic decoupling of quantum correlations implied by the quantum de Finetti

theorems. A more precise interpretation of this result remains open for future work.

Our work inspires many other possible directions for future research. A major success

of the large-d expansion in general relativity initiated in [15] is the remarkable agreement

of the 1/d expansion, truncated at only a few orders, with numerical results at small

d for a wide range of physically interesting quantities (such as the quasinormal mode

spectrum of a low-dimensional black brane, for example [15]). One might expect that a

similar agreement could be found between our numerical values for the phase transition

at small d (cf. section 2.3) and our 1/d expansion for the phase transition parameter

(cf. section 2.2). In fact, the result obtained for the phase transition parameter ζc∗ by

expanding to one further order in the 1/d expansion of equation (2.29) differs from the

actual numerical values computed in section 2.3 by a fairly small percentage error: while

the percentage error for the d = 3 phase transition parameter is ∼29%, the error drops to

∼3.5% by d = 5 and below 1% by d = 18. By adding only a few more orders in the 1/d

expansion, it should be possible to get good analytic approximations to the numerically

computed phase transition parameters in low d. This suggests broader applicability of the

large-d program in holography: there are other interesting geometric quantities related to

holographic entanglement entropy that are analytically formidable in physically interesting

numbers of dimensions that may yield to a truncated 1/d analysis.

In the Introduction we motivated our choice of the state by arguing that the vacuum

state is the most difficult to unentangle so that the vacuum state has the best hope of re-

maining entangled at large d. It would nevertheless be interesting to generalize our analysis

to other geometric states, such as perturbations to the vacuum state, which correspond to

linear perturbations of pure AdS [32]. One particularly exciting prospect would be to ana-

lyze the mutual information structure of thermal states, i.e. black holes, at large d, either

for spatial partitions of a single asymptotic region or for the mutual information between

two asymptotic regions.17 In the second case, phase transitions in the mutual information

17For some existing work in this direction, see [33–36].
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between two asymptotic regions in certain black hole spacetimes have been shown to be

related [37] to the phenomenon of scrambling; it would be interesting to investigate such

phenomena in the large-d limit.

One important open question in our whole discussion of the mutual information phase

transition is to understand directly from the CFT side of the duality why the regions A

and B need to collectively occupy the entire boundary volume to develop non-zero mutual

information at order G−1
N in the limit d→∞. This problem is in principle tractable due to

the simplification of conformal blocks at large d [38]. However, our attempts to compute the

mutual information directly in the CFT have been unsuccessful due to issues in computing

S(A ∪ B) with the replica trick. To compute the joint Renyi entropy S(n)(A ∪ B) =

(1 − n)−1 log Tr(ρn) = (1 − n)−1 log〈τA∪B〉, where τA∪B is a twist operator for n copies

of the CFT whose support is the entangling surface ∂A ∪ ∂B, one needs to evaluate the

one-point function of a disconnected, non-local operator in n copies of the CFT. This seems

to be equally difficult in any spacetime dimension d > 2 and does not seem to simplify at

large d or large N . In the limit χ → ∞,18 it has been argued that 〈τA∪B〉 can be written

as a sum of products of local operators in each copy of the CFT inserted at points in A

and B so that the problem becomes doable [10]. But according to equation (2.47), this is

the opposite limit from the one where the phase transition occurs! If one could reproduce

our result for the mutual information phase transition directly from the CFT, it would not

only provide a nice test of the HRRT formula, but it would also give further intuition as

to why spatial regions decouple in the large d limit.

Let us conclude with some more general prospects for future directions. While the

idea of large d is not new in quantum gravity [39], to our knowledge this work is the first

attempt to employ the large-d limit in the context of quantum information in holography.

Given the success of our approach in obtaining an analytic formula for the phase transition

in the leading GN term in the mutual information, it is natural to ask whether the large

d limit could be applied to other problems in the AdS/CFT correspondence that have

hitherto been intractable in a low number of dimensions. Are there other holographic en-

tanglement phenomena that similarly simplify in the large-d limit? A basic question that

one would like to answer is what are the necessary and sufficient criteria for a CFT state to

have a nice dual geometry. A recent research avenue approaches the question by exploring

the restrictions on the entanglement structure due to entropy inequalities. The program

initiated in [11, 12] obtains these via an algebraic method which has a close connection to

the marginal independence problem (namely when can a given set of mutual informations

between composite subsystems simultaneously vanish) [40]. The large-d decorrelation in-

dicates that in this limit, holographic configurations are maximally localized in entropy

space.

From the bulk side, the geometric toolkit may become more tractable at large d. As

a concrete calculation, one could study whether shape deformations of the entanglement

entropy simplify in the large-d limit. In particular, a naive large-d intuition might suggest

that the way a given extremal surface corresponds to the shape of the entangling surface is

much more “local” in higher dimensions, so that a given bulk region can be more readily

18Recall equation (2.45) for the definition of the conformal invariant χ.
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decoded from a more limited set of specific entanglement entropies. Much more ambi-

tiously, one could even try to construct the bulk Einstein’s equations beyond the linear

approximation from entanglement entropy relations [32, 41]. Pushing this one step further,

perhaps the very machinery of bulk reconstruction simplifies in the large-d limit so that

we can really see the inner workings of the bulk-boundary duality in action.
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A Conformal cross-ratio for antipodal caps

In this appendix, we demonstrate that the conformal cross-ratio χ defined by (2.45) is

the unique conformal invariant characterizing the configuration of two antipodal caps on

Sd−1. The conformal cross-ratio χ can be thought of as the conformally invariant distance

between the caps.

Consider the boundary cylinder R × Sd−1 of AdSd+1 in the coordinates (t, θ,Ωd−2)

with metric given by

ds2 = −dt2 + dθ2 + sin2 θ dΩ2
d−2. (A.1)

Let A and B be polar caps on the any constant-t slice centered at θ = 0 and θ = π,

respectively. Since the metric on the cylinder is time translation-invariant, we take t = 0

in the following discussion. Each polar cap is defined by the inclination angle θ of its

boundary:

A = {(θ,Ωd−2) ∈ Sd−1 | θ ≤ θA}, (A.2)

B = {(θ,Ωd−2) ∈ Sd−1 | θ ≥ θB}, (A.3)

with θA ≤ θB, as illustrated in figure 11.

To determine the conformally invariant distance between the caps A and B, we first

conformally map the cylinder R × Sd−1 to Minkowski spacetime R1,d−1, where the action
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A

B

θA

θB

Figure 11. Two polar cap regions A and B centered around antipodal points of S2.

B

rB

A

rA

Figure 12. The polar caps A and B on the t = 0 slice of R× S2 are mapped to balls centered at

r = 0 and r =∞ on the τ = 0 slice of R1,2.

of the conformal group is simpler. Writing R1,d−1 in spherical coordinates (τ, r,Ωd−2), we

choose a conformal map given by the stereographic projection

τ ± r = tan

(
t± θ

2

)
. (A.4)

Observe that the constant t = 0 slice on the cylinder is mapped to the constant τ = 0

slice in Minkowski spacetime. The polar caps A and B are mapped to (d− 1)-dimensional

spatial balls centered at r = 0 and r =∞, respectively. Explicitly,

A 7→ BrA(r = 0), rA = tan

(
θA
2

)
(A.5)

and

B 7→
(
BrB (r = 0)

)c
, rB = tan

(
θB
2

)
, (A.6)

as illustrated in figure 12.

This map makes it clear that the angular distance θB − θA between the caps is not

invariant under dilatations rA,B 7→ λrA,B (λ ∈ R). To construct a conformally invariant
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quantity χ that characterizes this configuration of balls in Minkowski spacetime, we first

observe that the only translation- and rotation-invariant quantities describing a configu-

ration of two spheres are the radii rA,B of the spheres and the distance ` between their

centers. (While ` vanishes for the configuration of spheres we are currently considering,

special conformal transformations will make it nonzero.) Up to taking an overall power, the

only functions χ(rA, rB, `) that are invariant under dilatations are ratios of homogeneous

polynomials of equal degree, i.e.,

χ(rA, rB, `) =

∑
m+n+p=k am,n,pr

m
A r

n
B`

p∑
m+n+p=k bm,n,pr

m
A r

n
B`

p
. (A.7)

Under a special conformal transformation

xµ 7→ xµ − bµx2

1− 2b · x+ b2x2
, (A.8)

a configuration of two spheres centered around the origin transforms to a new configuration

of spheres according to

rA,B 7→ rA′,B′ =
rA,B

|1− b2r2
A,B|

, (A.9)

`2 = 0 7→ `2 =
b2(r2

A − r2
B)2

(1− b2r2
A)2(1− b2r2

B)2
. (A.10)

Imposing invariance of equation (A.7) under transformations of this form uniquely fixes χ

to take the form

χ =
(rA − rB − `)(rA − rB + `)

rArB
(A.11)

up to multiplication by a constant and taking the reciprocal. For concentric spheres —

i.e., antipodal caps on Hd — this reduces to

χ =
(rA − rB)2

rArB
. (A.12)

Using (2.9), it is straightforward to show that the ball radii rA,B are equivalent to the

conformal radii γA,B introduced in section 2.4. We thus recover the form of χ given in the

main text by equation (2.45).

An equivalent construction of χ due to [21] is as follows: consider a line in Rd−1 that

passes through the centers of both balls. The intersection of this line with the boundary

of each ball defines four points: p1 and p2 for the first ball, and q1 and q2 for the second.

The conformal cross-ratio

χ = 4
|p1 − q1||p2 − q2|
|p1 − p2||q1 − q2|

(A.13)

is then a conformal invariant that reproduces (A.11). To find the value of χ for a particular

configuration of caps on Sd−1, one simply maps the two caps to Rd−1 conformally, draws

a line through the centers of the corresponding balls, and constructs the quantity (A.13).

This construction illustrates that the space of configurations of two non-overlapping balls

in Rd−1 up to translations and rotations is actually one-dimensional; this is why there is

only one conformal invariant up to powers and scalar multiplication.

– 33 –



J
H
E
P
0
4
(
2
0
2
0
)
1
7
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, APS Medal for Exceptional Achievement in Research: Invited article on

entanglement properties of quantum field theory, Rev. Mod. Phys. 90 (2018) 045003

[arXiv:1803.04993] [INSPIRE].

[2] S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006)

045 [hep-th/0605073] [INSPIRE].

[3] V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[4] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[5] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,

JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[6] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[7] M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.

931 (2017) 1 [arXiv:1609.01287] [INSPIRE].

[8] J. Sorce, Holographic entanglement entropy is cutoff-covariant, JHEP 10 (2019) 015

[arXiv:1908.02297] [INSPIRE].

[9] M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area Laws in Quantum Systems:

Mutual Information and Correlations, Phys. Rev. Lett. 100 (2008) 070502

[arXiv:0704.3906] [INSPIRE].

[10] J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J.

Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].

[11] V.E. Hubeny, M. Rangamani and M. Rota, The holographic entropy arrangement, Fortsch.

Phys. 67 (2019) 1900011 [arXiv:1812.08133] [INSPIRE].

[12] V.E. Hubeny, M. Rangamani and M. Rota, Holographic entropy relations, Fortsch. Phys. 66

(2018) 1800067 [arXiv:1808.07871] [INSPIRE].

[13] N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The Holographic Entropy

Cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].
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