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Nicolás Cáceres, José Figueroa, Julio Oliva, Marcelo Oyarzo and Ricardo Stuardo

Departamento de F́ısica, Universidad de Concepción,

Casilla, 160-C, Concepción, Chile

E-mail: ncaceres2016@udec.cl, josepfigueroa@udec.cl, juoliva@udec.cl,

moyarzo2016@udec.cl, ricstuardo@udec.cl

Abstract: We construct black hole solutions in four-dimensional quadratic gravity, sup-

ported by a scalar field conformally coupled to quadratic terms in the curvature. The

conformal matter Lagrangian is constructed with powers of traces of a conformally co-

variant tensor, which is defined in terms of the metric and a scalar field, and has the

symmetries of the Riemann tensor. We find exact, neutral and charged, topological black

hole solutions of this theory when the Weyl squared term is absent from the action func-

tional. Including terms beyond quadratic order on the conformally covariant tensor, allows

to have asymptotically de Sitter solutions, with a potential that is bounded from below.

For generic values of the couplings we also show that static black hole solutions must have a

constant Ricci scalar, and provide an analysis of the possible asymptotic behavior of both,

the metric as well as the scalar field in the asymptotically AdS case, when the solutions

match those of general relativity in vacuum at infinity. In this frame, the spacetime fulfils

standard asymptotically AdS boundary conditions, and in spite of the non-standard cou-

plings between the curvature and the scalar field, there is a family of black hole solutions
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1 Introduction

Higher curvature terms in addition to the Einstein-Hilbert Lagrangian appear in many

different settings. The precise form of those correction depends on the specific details of

the theory as well as on the frame used in the perturbative scheme that give rise to them.

Higher curvature correction in four dimensions improve the renormalizability properties

of the theory at the cost of spoiling its unitarity [1, 2], a feature that may be absent

when the whole series of corrections is considered. A particularly interesting theory with

quadratic terms in the curvature in four dimensions is Critical Gravity whose Lagrangian

is a precise combination of the Einstein-Hilbert term plus the Weyl square term. In this

theory the coupling of the latter is fixed in terms of the negative, bared cosmological

constant [3]. When only the higher curvature term is present in the action, imposing

Neumann boundary conditions for asymptotically AdS spacetimes it was argued in [4]

that only Einstein manifolds may remain in the spectrum, an equivalence that can be

extended for Critical Gravity at the level of the renormalized, on-shell action [5]. On

the other hand, in asymptotically flat scenarios, the existence of black holes in General

Relativity plus the most general quadratic theory in four dimensions, leads to spacetimes

with vanishing Ricci scalar [6, 7]. Such argument strongly relies on the tracelessness of

the Bach tensor that is obtained as the Euler-Lagrange derivative of the conformal gravity

action
√
−gCµνλρCµνλρ [6] (Cµνλρ being the conformally invariant Weyl tensor). Such

theory, trivially admits Einstein manifolds as solutions since the Bach tensor vanishes on

spacetimes that are conformally related to the former family. The spherically symmetric

solutions that non-trivially depart from the Schwarzschild black hole can be integrated
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numerically [6, 7], and can also be obtained in terms of an infinite recurrence relation,

which has a closed form [8–10]. Such construction can be extended to include a Maxwell

field [11] due to the tracelessness of its energy-momentum tensor and a natural question

therefore arises: is it possible to consider other matter sources in this construction? Here

we explore the consequences of introducing a conformally coupled scalar field in the action

which is particularly relevant since conformally coupled scalars have been useful in the

construction of black holes with secondary hair in GR [12–28]. Since the gravity Lagrangian

contains operators up to mass dimension 4, we mimic the same structure in the matter

sector, respecting a symmetry under local Weyl rescaling. A useful manner for doing so is

to make use of the tensor

Sµνλρ = φ2Rµνλρ +
4

s
φδ

[µ
[λ∇

ν]∇ρ]φ+
4(1− s)
s2

δ
[µ
[λ∇

ν]φ∇ρ]φ−
2

s2
δµνλρ∇αφ∇

αφ , (1.1)

that transforms under local Weyl rescalings

gαβ → Ω2 (x) gαβ , φ→ Ωs (x)φ , (1.2)

as

Sµνλρ → Ω2(s−1)(x)Sµνλρ .

This tensor was introduced in [29] and was used to construct conformal couplings of a

scalar field to Euler densities of a higher degree, leading to the conformally coupled version

of Lovelock gravities [30]. These couplings have allowed to construct exact black holes

with secondary hair in GR in higher dimensions [20], with interesting thermodynamic

properties [22–24, 31–37], extending to dimension d > 4 the known solutions in three and

four dimensions of Einstein gravity and by-passing the no-go results [38, 39].

Here we remain in dimension four, and introduce higher derivative terms constructed

out from the tensor Sµνλρ. The traces of the tensor S will be important, so we define

Sαβ := Sαγβγ and S := Sαα, which read

Sµν = φ2Rµν +
φ

s
gµν�φ+

2φ

s
∇µ∇νφ+

2(1− s)
s2

∇µφ∇νφ− (s+ 2)

s2
gµν∇ρφ∇ρφ , (1.3)

S = φ2R+ 6
φ

s
�φ− 6

s2
∇ρφ∇ρφ−

6

s
∇ρφ∇ρφ . (1.4)

Fixing the conformal weight of the scalar field in (1.2) to s = −1, one recovers, up to a

global sign, the Lagrangian for the standard conformally coupled scalar field from the scalar

quantity S defined in (1.4), with a canonical kinetic term [40]. In reference [29], the tensor

Sµνλρ defined in (1.1) was proven to be the unique, non-trivial tensorial combination of

the scalar field and derivatives of the metric, that scales homogeneously under local Weyl

rescalings and has the symmetries of the Riemann tensor. This tensor can also be obtained

introducing a Weyl compensator for the metric which was proved useful in the construction

of boundary terms in higher dimension [24].1 The inclusion of terms in the action that break

the conformal invariance remove the pure-gauge nature of the field φ, making impossible to

1At the level of the Lagrangian for the standard conformally coupled scalar field, this was done in [41].
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gauge it away. Similar higher curvature terms can be constructed using a Weyl-invariant

curvature as explored at the quadratic level in arbitrary dimension in [42–45], where a

gauge field Aµ in addition to the metric and the scalar has to be considered. In such

scenario the whole Lagrangian is Weyl invariant and therefore the scalar can be gauge

fixed by a conformal transformation.

The paper is organized as follows: in section 2 we present the theory consisting on the

most general quadratic combination in the curvature and in the tensor Sµνλρ, maintaining

the conformal invariance of the matter sector. We show that due to the existence of some

identities in four dimensions, the Lagrangian severely reduces. In section 3 we show that

the static black holes of the theory must have a constant Ricci scalar, forcing a second

order constraint on the metric in a theory that has fourth-order field equations. Section 4

is devoted to the construction of exact solutions describing spherically symmetric black

holes in de Sitter (dS), or topological black holes with compact hyperbolic horizons in

anti de Sitter (AdS). We also provide the dyonically charged version of these black holes.

Section 5 contains a general discussion on the asymptotic behavior of the metric and the

self-interacting scalar, with derivative self-interactions, admitting as a possible asymptotic

behavior the standard Henneaux-Teitelboim asymptotic conditions [46]. Section 6 contains

an extension of these results when powers of the form Sk>2 are included maintaining the

conformal invariance in the matter sector. We show that asymptotically de Sitter black

holes exist even when the potential for the scalar field is bounded from below. Partial

generalizations of these results to higher, even dimensions, as well as further comments are

given in section 7.

2 Quadratic gravity and conformally coupled scalars

We consider the theory

I [gαβ , φ] = Ig [gαβ ] + Im [gαβ , φ] , (2.1)

where

Ig =

∫ √
−gd4x

(
−2Λ +R+ α1R

2 + α2CαβγδC
αβγδ (2.2)

+α3

(
R2 − 4RαβR

αβ +RαβγδR
αβγδ

))
, (2.3)

Im =

∫ √
−gd4x

(
−λφ4 − S + β1φ

−4S2 + β2φ
−4Wαβγδ(S)Wαβγδ(S)

+β3φ
−4
(
S2 − 4SαβS

αβ + SαβγδS
αβγδ

))
, (2.4)

where Cµνρσ is the Weyl tensor and Wµνρσ(S) is the traceless part of the tensor Sµνρσ,

consequently defined as

Wµνρσ(S) = Sµνρσ +
(
gν[ρSσ]µ − gµ[ρSσ]ν

)
+

1

3
Sgµ[ρgσ]ν . (2.5)

Some remarks are now in order: in the gravitational action (2.3), we have explicitly con-

sidered the most general quadratic theory in a particular basis of quadratic invariants. In
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four dimensions the term proportional to α3 is the Euler density and therefore, its variation

does not contribute to the field equations. Since we are interested only on the properties

of the solutions of the theory (2.1), hereafter we set α3 = 0. The matter action (2.4) is

invariant under local Weyl rescaling, i.e. Im

[
Ω2 (x) gαβ ,Ω

−1 (x)φ
]

= Im [gαβ , φ], where we

have fixed the conformal weight of the scalar field to s = −1, which leads to a canonical

kinetic term from the scalar field which comes from the term linear in S. We have also

mimicked the same structure of the gravitational Lagrangian in the higher curvature terms.

Since the scalar field has mass dimension −1, all the couplings of the quadratic terms, αi
and βi in (2.3) and (2.4), are dimensionless. Therefore, these are all the terms that can

appear up to quadratic order in an action, that preserve the conformal symmetry of the

matter sector.

After explicitly computing the last two terms in (2.4), one obtains

φ−4Wαβγδ(S)Wαβγδ(S) = CαβγδC
αβγδ , (2.6)

φ−4
(
S2 − 4SαβS

αβ + SαβγδS
αβγδ

)
= R2 − 4RαβR

αβ +RαβγδR
αβγδ + b.t. , (2.7)

b.t. standing for boundary terms.

The first equality (2.6) is expected due to the fact mentioned above regarding the

tensor Sαβγδ as change of frame of Rαβγδ. Consequently, from the point of view of the field

equations it is enough to consider the following action principle

I =

∫ √
−gd4x

(
R− 2Λ

16πG
+ α1R

2 + α2CαβγδC
αβγδ − λφ4 − 1

2
(∂φ)2 − 1

12
Rφ2 + βφ−4S2

)
,

(2.8)

where we redefined α2 → α2 − β2, and we have introduced Newton’s constant. Here after

we will work with this action.

The field equations coming from the action (2.8), taking variations with respect to the

metric take a simple form

(Gµν+Λgµν)+α1

(
2gµν�R−2∇ν∇µR+2RRµν−

1

2
gµνR

2

)
+2α2

(
∇α∇βCα(µν)β+RαβCα(µν)β

)
+β

(
(2Rµν−2∇µ∇ν+gµν�)(φ−2S)+12∇(µ(φ−3S)∇ν)φ−6gµν∇α(φ−3S∇αφ)− 1

2
gµνφ

−4S2

)
− 1

2
∂µφ∂νφ+

1

4
gµν(∂φ)2− 1

12
(Gµν−∇µ∇ν+gµν�)φ2+

1

2
λgµνφ

4 = Eµν = 0 . (2.9)

The term proportional to α2 is the Bach tensor, while the first three terms in the third

line of (2.9) define the standard, quadratic, improved energy-momentum tensor [40]. On

the other hand, the equation for the higher curvature, conformally coupled scalar reads(
�− 1

6
R

)
φ− 4λφ3 + 4β

(
−S2φ−5 + φ−3RS − 3Sφ−4�φ− 3�(φ−3S)

)
= 0 . (2.10)

As expected due to the conformal symmetry of the matter Lagrangian, the trace of the

energy-momentum that can be read from equation (2.9), vanishes when one uses the equa-

tion for the scalar field (2.10). In the following sections we will be interested in deriving

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
7

some properties of the black hole solutions of the system (2.9), (2.10). The trace of the

field equations reduces to a wave equation for R− 4Λ, namely

6α1

[
�− 1

6α1

]
(R− 4Λ) = 0 . (2.11)

As it is well known for vanishing Λ in vacuum, equation (2.11) after linearisation around flat

spacetime leads to a massive degree of freedom of gravitational origin, with mass given by

m2
eff = (6α1)−1, and therefore α1 > 0 [1, 2] (see also [47]). It is interesting to notice that for

negative cosmological constant Λ = −3/l2, the coupling α1 could be negative, provided the

Breitenlohner-Freedman (BF) [48, 49] bound is fulfilled. Notice that this is not consistent

with a perturbative approach since in such scenario |α1| � 1, and therefore the mass may

be a negative large number, violating the BF bound. We therefore consider α1 > 0.

3 Restricting the black hole solutions

An static black hole spacetime admits the following coordinates xµ =
(
t, xi

)
, where the

metric takes the form

ds2 = −N2
(
xi
)
dt2 + hij

(
xk
)
dxidxj . (3.1)

Here N
(
xi
)

is a function that vanishes on the would-be event horizon, while hij is a

regular, spacelike metric in the domain of outer communications for asymptotically flat

and asymptotically AdS black holes. Now, the standard argument of no-hair theorems for

asymptotically flat black holes can be extended to other asymptotic behavior. Let us define

the quantity ξ = R − 4Λ, which by virtue of staticity depends only on the coordinates xi.

We will assume that the conformal scalar φ decays at infinity such that R → −4Λ fast

enough. The wave equation in (2.11) can be integrated on the exterior region of the black

hole, which after integration by parts, leads to∫ √
hd3x

(
∇i
(
Nξ∇iξ

)
−N∇iξ∇iξ −

1

6α1
Nξ2

)
= 0 . (3.2)

The first term in the integrand contributes as a boundary term, which acquires two con-

tributions at the would-be horizon and at infinity. Since N vanishes at the horizon, the

regularity of ξ implies that both contributions vanish since we have also assumed that ξ

approaches zero at infinity, fast enough. Since N is positive in the exterior region of asymp-

totically flat and AdS black holes and the metric hij is positive definite in that region, we

find that (3.2) implies that ξ has to vanish everywhere, and therefore, that the whole space-

time must have a constant Ricci scalar R = 4Λ. While the theory is of fourth order, this

restriction provides a second order constraint that helps in the explicit integration of the

field equation. Notice that for asymptotically de Sitter black hole, this argument can be

directly extended leading to the same conclusion that R = 4Λ in the whole region between

the event and cosmological horizons. Indeed, in that case, we must integrate in the region

between the horizons and since the boundary term will vanish at both horizons we would

reach the same conclusion.2 Assuming analyticity allows to extend this constraint to the

whole spacetime.

2Notice that a similar argument has been used in [50] to restrict black hole solutions in R2 super-

gravity [51].
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4 Exact black hole solution

4.1 Neutral case

If we allow for a single metric function in a Schwarzschild like ansatz, the integration of the

constraint R = 4Λ that we have derived in the previous section, fixes the metric function

allowing to construct an exact solution for the whole system of equation. In fact, the metric

and scalar field

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

γ , φ = φ(r) , (4.1)

define a solution of the equations (2.9) and (2.10), provided α2 = 0,

f(r) = −Λ

3
r2 + γ

(
1− µ

r

)2
, φ(r) =

√
3µ2(1 + 128πGΛ(α1 + β))

4Gπ

1

r − µ
, (4.2)

and

λ = − 2πGΛ

9(1 + 128πGΛ(α1 + β))
. (4.3)

In the line element (4.1), dΩγ denotes the metric of an Euclidean spacetime of constant

curvature γ. Notice that while the coupling of the Weyl squared term in (2.1) has to be

turned-off, this solution does receive a non-trivial contribution from the quadratic terms

with couplings α1 and β in (2.1).

The action (2.8) contains higher curvature terms as well as conformal couplings of the

scalar with quadratic curvature terms, nevertheless the form of the metric function, and

therefore the causal structure of this spacetime coincides with that reported in [16, 17].

In the spherically symmetric case γ = 1 and therefore cosmic censorship implies Λ > 0.

Provided the parameter µ is positive and below a certain critical value µc, the causal

structure is that of Reissner-Norstrom spacetime in de Sitter space, while for µ = µc the

event horizon coincides with the cosmological horizon. When dΩγ is an smooth quotient of

the hyperbolic space H2 [52], one can have event horizons even in the asymptotically AdS

case, containing a rich family of causal structures that include black holes with Cauchy

horizons, as well as spacetimes that can be interpreted black holes inside a black hole [17].

Notice also that the reality of the scalar field φ(r) in (4.2) implies that the self-interaction

potential λφ4 will be bounded from below only in the asymptotically AdS case, i.e. when

Λ < 0. We will see below that the inclusion of extra higher curvature couplings in the

matter sector, may alleviate this situation even for positive cosmological constant.

4.2 Exact charged black hole solution

The exact solution of the previous section can be charged, by adding to the action princi-

ple (2.8), the Maxwell action

IMaxwell = −1

4
FµνF

µν . (4.4)

Assuming a dyonic ansatz for the electromagnetic field, in the Schwarzschild-like coordi-

nates of (4.1), one gets

F =
Qe

r2
dt ∧ dr +Qmvol(Ωγ) , (4.5)
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where vol(Ωγ) represents the volume element of the two-dimensional, Euclidean manifold

Ωγ in (4.1), while Qe and Qm stand for the electric and magnetic charge, respectively. For

this charged configuration, the metric function f(r) and the scalar field φ(r) read

f(r) = −Λ

3
r2 + γ

(
1− µ

r

)2
, φ(r) =

√
−6λΛµ

6λ(r − µ)
, (4.6)

provided the following constraint between the integration constants (µ,Qe, Qm) is fulfilled

Q2
e +Q2

m =
µ2γ(9λ+ 2πGΛ(1 + 576λ(α1 + β)))

36πGλ
. (4.7)

As expected, this solution reduces to the one in the previous section when the charges Qe,m

vanish. It is interesting to notice that this spacetime exists as a solution of the theory for

arbitrary values of the couplings, and the strength of the self-interacting potential is not

fixed in terms of the remaining couplings as in the uncharged case. Also notice that while

the Weyl coupling α2 has been set to zero, the remaining higher curvature couplings α1

and β in (2.8) do contribute to the solution. Again, reality of the scalar field in (4.6) imply

that the cosmological constant Λ and the algebraic, self-interacting coupling λ must have

opposite sign.

5 On the asymptotic behavior

The black holes constructed in the previous sections are dressed by a secondary hair, and

are not continuously connected with Schwazschild-(A)dS spacetime, since as we turn off

the scalar field in (4.2), the spacetime approaches the vacuum. The general solution, for

arbitrary values of the coupling with primary hair has to be integrated numerically, and

here we provide some general properties of such solution, when it asymptotes to a solution of

GR, in vacuum. Let us focus on the asymptotically AdS case, and therefore set Λ = −3/l2,

which via the previous argument implies R = −12/l2, globally. Since the contributions to

the energy-momentum tensor coming from the higher curvature conformal scalar contain

negative powers of the scalar, one has to check whether such terms can indeed be considered

as perturbations of the standard conformally coupled scalar in the asymptotic region where

the scalar field tends to zero. As a matter of fact this is the case for the particular black

holes solutions we found in the previous sections, as well as in higher dimensions d > 4 as

can be seen from the explicit black hole solutions constructed in [20], but now in dimension

four we have to check whether this is the case in a more generic setup. Since we are

interested in the asymptotic behavior induced by the conformally coupled scalar field, we

turn-off the purely gravitational higher curvature terms, i.e. we set α1 = 0 and α2 = 0

in (2.8). Let us introduce an effective curvature radius at infinity leff. In global AdS

f(r) = g(r) = r2/l2eff +1 and in the absence of higher curvature terms and a self-interacting

potential (i.e. λ = β = 0), the equation (2.10) reduces to that of a free, massive scalar

with mass equal to the conformal mass m2 = −2/l2eff, which is above the BF mass in four

dimensions m2
BF = −9/(4l2eff). For this mass, the asymptotic behavior of the scalar field,

which will be consistent with the AdS asymptotics in the backreacting case, read

φ(r) =
1

r

(
a0 +

a1

r
+O(r−2)

)
+

1

r2

(
b0 +

b1
r

+O(r−2)

)
. (5.1)

– 7 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
7

Dirichlet boundary conditions are such that ai = 0 while Neumann boundary conditions

are defined by setting bi = 0. It is known that for the conformal mass, both sets of

boundary conditions lead to a consistent quantization of the scalar in global AdS [48, 49].

We want to see whether this asymptotic behavior is consistent in the fully backreacting case,

which is not clear at a first sight due to the presence of negative powers of the scalar field

in (2.10) and (2.9). We now consider in the gravitational field equations, the asymptotic

expansion for the scalar field (5.1) as well as the following asymptotic expansion for the

metric functions

f(r) =
r2

l2eff

+ 1−
mf

r
+O(r−2) , g(r) =

r2

l2eff

+ 1− mg

r
+O(r−2) . (5.2)

Let us first analyze the case when both branches in (5.1) are present, i.e. a0, b0 6= 0. For

the metric equations (2.9) one gets the following expansions

Err =
3(l2 − l2eff)

l2effl
2

+
3(mf −mg)

r3
+O(r−4) , (5.3)

E tt =
3(l2 − l2eff)

l2effl
2

+O(r−4) = Eθθ = Eφφ . (5.4)

The contribution for the matter sector (5.1) appears explicitly in the O(r−4) terms

of (5.3) and (5.4), and the vanishing of these terms, relate the arbitrary constants on the

asymptotic expansions of the field and the metric functions. Notice that in all the equations,

the leading terms leads to leff = l, and therefore the curvature radius at infinity is completely

controlled by the bared cosmological constant and does not receive contributions from the

scalar. Finally, the sub-leading term in the expansion at infinity of the field equations,

relates the constants mf and mg, implying therefore that the spacetimes will not only be

asymptotically AdS, but asymptotically Schwazschild-AdS.

When the slow branch is not present in (5.1), i.e. for Dirichlet boundary conditions for

the scalar field (a0 = 0), it is enough to consider the coefficients bi as non-vanishing. In such

case, the asymptotic expansion of the components of the gravitational field equations (2.9)

imply that b1 has to vanish, and lead to

Err =
3(l2 − l2eff)

l2effl
2

+
72β(b0l

2
eff + 3b2)

l4effb0r
2

+
3(mf −mg)

r3
+O(r−4) , (5.5)

E tt =
3(l2 − l2eff)

l2effl
2

−
72β(b0l

2
eff + 3b2)

l4effb0r
2

+O(r−4) = Eθθ = Eφφ . (5.6)

This again implies that the curvature radius at infinity is determined only in terms of the

bared cosmological constant. Even more, there is a single integration constant character-

izing the scalar field at infinity since b2 gets fixed in terms of b0. The remaining orders for

the equations relate the bi>2 with b0 and gravitational constant appearing in the expansion

of the metric functions in (5.2). These asymptotic behavior are consistent with those of a

localized matter distribution in AdS in four dimensions [46].

Is it interesting to notice that the for the exact black holes found in the previous

section, the scalar field fulfils Neumann boundary conditions, since there is a single branch

at infinity, controlled by the integration constant µ that falls-off with a leading term r−1.
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6 Beyond the quadratic level

Now, lets show that the neutral solution found in section 4.1, survives the inclusion of a

certain type of higher curvature, conformal couplings. Let us consider the action

I =

∫ √
−gd4x

(
R−2Λ

16πG
+α1R

2−λφ4− 1

2
(∂φ)2− 1

12
Rφ2+βφ−4S2+

∞∑
n=3

βnφ
4−4nSn

)
.

(6.1)

It is simple here to substitute first a metric and scalar field of the form

ds2 = −N2(r)f(r)dt2 +
dr2

f(r)
+ r2dΩ2

γ , φ = φ(r) (6.2)

in the action (6.1) and then consider the field equations of the reduced action [53]. The

solution in this case, takes the same form as before

f(r) = −Λ

3
r2 + γ

(
1− µ

r

)2
, φ(r) =

a

r − µ
, (6.3)

provided the following two constraints are fulfilled

2a2λ+ 4Λµ2 +
∞∑
n=3

βn(n− 2)a−2n+2µ2n4nΛn = 0 , (6.4)

µ2 + 16πG(8Λµ2(α1 + β)− a2) +

∞∑
n=3

nβnπGµ
2n−2a−2n+44n+1Λn−1 = 0 . (6.5)

As before, these equations imply the existence of a single, independent integration constant

that can be taken as µ or a. Nevertheless, the inclusion of the higher curvature terms,

i.e. βi>2 6= 0 allow to have spherically symmetric, asymptotically de Sitter black holes,

maintaining the reality conditions of the scalar field. See figure 1.

7 Further comments

In this paper we have studied conformally coupled scalar fields containing conformal cou-

plings with higher powers in the curvature, in four dimensions. We have shown that the

solution found in [16] can be embedded in these theories, provided the relations between the

couplings are updated due to the presence of the new terms in the action. In contrast with

what occurs in such reference, the presence of the new terms allow to construct asymp-

totically de Sitter black holes with self-interactions of the form λφ4 which are bounded

from below. These solutions fulfil Neumann boundary conditions, which are still consistent

in the backreacting case, even in the presence of the non-standard derivative, conformal,

self-interactions of the scalar field.

We proved that even in the presence of quadratic terms in the curvature in the purely

gravitational action, as well as a cosmological term, one has that the static, regular black

holes must have a constant Ricci scalar. Such argument can be trivially extended to a

certain family of theories in higher dimensions as follows. For simplicity we focus on the

– 9 –
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Cosmological Horizon

Event Horizon
Cauchy Horizon

r

f(r)

0.2 0.4 0.6 0.8

-0.1

0.0

0.1

0.2

0.3

Figure 1. Four dimensional asymptotically de Sitter black hole, supported by a real, conformally

coupled scalar field, with a λφ4 potential that is bounded from below. The parameters defining

this solution are Λ = 3, µ = 0.2, β3 = −1 α1 = 1, β = 1 and βi>3 = 0. These parameters imply

two values for the strength of the scalar field profile a ∼ .679 and a ∼ 1.224 in (6.3), but only the

former leads to a potential that is bounded from below λ ∼ .043 (we have also set 16πG = 1).

gravity part, but the argument extends to conformally invariant matter sources. Consider

the following theory in dimension D = 4k

I4k =

∫ √
−gdDx

(
R+ α1R

2k + α2 tr
(
C2k

))
, (7.1)

where α1,2 are arbitrary, dimensionless, coupling constants. The field equations are of

fourth order and or the form

Gµν + α2Bµν + α1Eµν = 0 , (7.2)

where Bµν is a traceless, generalized Bach tensor, that comes from the variation of the

Weyl invariant Lagrangian tr
(
C2k

)
and

Eµν = 2kR2k−1

(
Rµν −

1

4k
gµνR

)
+ 2kgµν�R

2k−1 − 2k∇µ∇νR2k−1 . (7.3)

The trace of the field equations (7.2) reads

(1− 2k)R+
(
8k2 − 2k

)
α1�R

2k−1 = 0 . (7.4)

Assuming the general ansatz for a static spacetime given in (3.1), leads to

�R2k−1 =
1

N
√
h
∂i

(
N
√
hhij∂jR

2k−1
)

=
∇iN
N
∇iR2k−1 +∇2R2k−1 . (7.5)

Where∇i is the covariant derivative constructed with the Levi-Civita connection associated

to hij . Then, after multiplying the trace of the field equations by R2k−1N one gets

(1−2k)R2kN+2k (4k−1)α1

(
∇i
(
NR2k−1∇iR2k−1

)
−N∇iR2k−1∇iR2k−1

)
= 0 , (7.6)

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
7

and then we integrating on the spacelike section and assuming that the boundary term

vanishes as in section 3, we get∫ √
hdD−1x

(
(1− 2k)R2kN − 2k (4k − 1)α1N∇iR2k−1∇iR2k−1

)
= 0 . (7.7)

Then, assuming α1 > 0 we have that the vanishing of the integral, requires the vanishing

of each of the terms in the integrand, therefore

R = 0 , (7.8)

generalizing the results of the previous sections to dimensions D = 4k. Notice that in

the action (7.1), we have considered a particular combination of Weyl invariant terms. In

dimension four, there exists a single term with this property, namely C2, while in dimension

eight, there are seven, algebraic invariants that are constructed by complete contractions of

the four Weyl tensors. At the level of spherically symmetric spacetimes or more generally

spacetimes of the form (4.1), all these terms contribute with the same functional form to

the field equations [54].

Recently, in reference [55] the authors numerically constructed asymptotically flat black

holes in Einstein-Weyl gravity, supported by a standard conformally coupled scalar field.

Such black holes possess primary hair and exist provided the squared mass of the massive

degree of freedom remains positive. It would be interesting to extend those results in the

presence of a cosmological constant.

It is well know that solutions of GR with a standard conformally coupled scalar field

can be embedded in eleven-dimensional supergravity (see e.g. [56]). It would be interesting

to see whether the corrections to the conformal coupling we have introduced here can be

mapped with some corrections of the eleven-dimensional theory.
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