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1 Introduction

Consider the scattering of O(N) vector particles in two dimensions in the absence of any

other stable particles/bound-states as recently revisited in [2, 3]. At first sight, this looks

like a harmless mathematical problem. We simply want to study the space of the three

functions which have no singularities in the physical strip1 0 < Im(θ) < π, are purely real

when θ is purely imaginary, obey crossing and are bounded by unitarity:2

Sa(iπ − θ) = Cab Sb(θ) ,

(
1 Sa(θ)

S∗a(θ) 1

)
� 0 for θ ∈ R , (1.1)

where a labels the three possible representations: singlet, antisymmetric and symmetric

traceless and Cab is the crossing matrix where the group parameter N enters (for the

explicit form see (A.1) in appendix A). That is it, this is our problem.

1We are looking at the two-to-two scattering matrix element parametrized by the center of mass energy

s. Throughout this paper we use interchangeably s or the rapidity θ defined by s = 4m2 cosh2 θ/2. In the

rapidity complex plane, the physical sheet gets mapped to the strip 0 < Im(θ) < π (see e.g. figure 1 of [3]).
2The unitarity conditions usually written as a constraint on the absolute value of the S-matrix elements

|Sa(θ)|2 ≤ 1 can be recast as the positive semidefinite condition below as used e.g. in [4].
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Figure 1. S-matrix monolith for O(7) and s∗ = 3m2. The best way to feel — quite literally

— the various vertices, pre-vertices, edges and faces of the monolith is to 3D print it. We can

easily detect nearly imperceptible vertices with one’s fingertips [1], see also figure 9 below. We

attach an ancillary file 3dPrint.stl made out of a discretization of the monolith with more than

200,000 points (using the method of normals explained below) which can be directly printed or very

efficiently visualized.3 To generate such 3D printing file for the convex monolith is quite simple. We

generate a huge list of points belonging to the monolith and then create the convex hull of all these

points using Mathematica’s built-in function ConvexHullMesh which can then be exported directly

into an .stl file.

The O(N) S-matrix space defined through (1.1) is an infinite dimensional convex space

since it is an intersection of two convex spaces: an infinite dimensional hyperplane de-

fined by crossing and the space of positive semi-definite matrices as imposed by unitarity.4

Throughout this paper, we use a three-dimensional section corresponding to the real values

of Sa(θ∗) for various θ∗ along the imaginary axis with Im [θ∗] ∈ [0, π] (or s∗ ∈ [0, 4m2])

to visualize this infinite dimensional space. These three coordinates can be thought of

as effective four-point couplings measuring the interaction strength in the theory in each

of the three scattering channels. The three dimensional allowed shape hence obtained is

what we call the O(N) monolith and which we illustrate in figure 1. If θ∗ = iπ/2 we are

at a crossing symmetric point and this three-dimensional shape flattens out into a two-

dimensional shape which we dub the O(N) slate (see shaded region in figure 4 below) and

which we study in great detail in section 2.

This space turns out to be extremely rich and the S-matrices living in its boundary

exhibit a large number of striking features such as Yang-Baxter factorization at some special

points, some rather universal emergent periodicity (in the logarithm of the physical energy)

3There are free visualization programs online, see e.g. viewstl.com in case the reader’s OS does not

automatically read .stl files. (Mac OS does with the built application Preview.)
4Note that the unitarity constraint has to be saturated up until the inelastic threshold (s = 16m2 in this

case). However it is more efficient to impose the inequality constraint (1.1) for all physical values of s and

thus define a convex optimization problem. In fact, the maximization of the linear functionals considered

in this paper lead to S-matrices that generically saturate unitarity at all energies.

– 2 –
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Figure 2. Some features of the O(N) monolith. Three arrows point to the integrable solutions

corresponding to vertices (Free, NLSM) or pre-vertices (periodic YB) of the monolith. A fourth

arrow points the yellow point corresponding to a constant solution which does not saturate unitarity.

A line of simple (yet non-integrable) S-matrices connecting the two periodic Yang-Baxter solutions

is highlighted in green. For each such special feature there is a mirror one simply related by

Sa → −Sa which is a clear symmetry of the monolith.

and infinitely many resonances (showing up as poles in higher sheets), sometimes arranged

in nice regular patterns, some other times organized in intricate fractal structures. We also

find vertices, edges and faces in the boundary of this space and even some new kind of

hybrid structures we dub pre-vertices . Finally we find that unitarity is not only satisfied

but actually saturated for any real θ at all points in this boundary except at one single point

which we call the yellow point and whose S-matrix is a constant. Throughout the following

we focus on the monolith for N > 2. The special N = 2 case is discussed in appendix E.

Figure 2 shows some of these remarkable features. First, we highlight three integrable

solutions:5 free theory, the O(N) non-linear sigma model (NLSM) and a periodic solution

to the Yang-Baxter equation found in [5] and rediscovered in [3]. The first two are clear

vertices of the monolith where different edges meet. For the latter the situation is more

subtle since there are two edges clearly pointing towards it, but they loose their sharpness

as they get closer to the integrable point, this is what we referred to as pre-vertex before.

Secondly, the yellow point discussed above sits on one of the faces of the monolith. Notice

that the space is symmetric under reflections around the origin, i.e. if we flip the sign of

the S-matrix we get another viable S-matrix, so that each of the above points appears

twice. Finally, there is a line on the boundary of the monolith connecting the two periodic

Yang-Baxter solutions where two of the scattering channels are the same (up to a relative

sign) so that the S-matrices are simple enough to write analytically (this line is explored

in appendix C.3).

5These three integrable S-matrices are the so called minimal solutions; multiplying these by CDD factors

we obtain more integrable solutions which live inside the allowed space (and not at its boundary).
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How can we find the boundary of this O(N) monolith or the two-dimensional slate?

There are two natural options. The first one is to construct explicitly elements inside the

space (1.1). By probing more elements in this space we obtain larger allowed regions until

eventually we converge to the full S-matrix space. This is what is called the primal prob-

lem and which has been explored in several recent S-matrix bootstrap works [2–4, 6–9].

The other option is by excluding S-matrices, that is by finding points which are outside

of the S-matrix space. By excluding more and more points we should describe better and

better the exterior of the S-matrix space until eventually we should converge towards the

true boundary between allowed and disallowed S-matrices. This is what we call here the

dual problem. In convex optimization problems the original and dual problems usually go

hand in hand; here we explore this duality in the S-matrix bootstrap context. A beauti-

ful fact about convex optimization is that the dual and original problems should indeed

converge towards the same optimal solution as depicted in the cartoon of figure 3. In our

context, figure 4 depicts the allowed slate space as probed through the original and dual

problem. Both beautifully converge towards the very same optimal boundary (the black

curve bracketed between the two blue curves).

Let us conclude this introduction by giving some further technical details on how these

problems are tackled in practice. In the primal problem in which we study directly the

S-matrix space, we propose more and more general ansatze — with several free parameters

— for smooth crossing symmetric ensembles of three functions Sa(θ).
6 Then we maximize

various linear functionals acting on these functions over those free parameters.

As a first example of the type of functionals used here, we can fix two components

x = Ssym(θ∗) and y = Santi(θ∗) and maximize and minimize the third component z =

Ssinglet(θ∗); repeating this strategy for several (x, y) would yield various points on the

boundary of the 3D monolith. This procedure is represented in a two-dimensional section

in figure 5(a). Two other functionals are more efficient. One is what we call the radial

functional where we set Sa(θ∗) = r na with na the components of a three-dimensional

unit vector and we maximize r to find the boundary of the monolith/slate in a particular

direction n. This method is represented in figure 5(b). Lastly, we have the so-called normal

functionals where we maximize a combination
∑

a naSa(θ∗). Here we find the boundary

points of the S-matrix space with normal n, see figure 5(c). This last type of functional

has the advantage of putting many points close to the most interesting higher curvature

regions such as vertices or edges of the S-matrix space as illustrated in figure 5(c); the

radial functional has the positive feature of equally populating all direction while the first

type of functional has no particular advantage and, indeed, we will use it very rarely. Of

course, by considering a large number of base points (x, y) and many directions na all such

functionals end up describing the very same boundary. In this introduction we stick to the

normal class of functionals where we maximize

max
(
F [S] ≡

∑
a

naSa(θ∗)
)
, Im [θ∗] ∈ [0, π] (1.2)

6This could be a discretized dispersion relation (free parameters would be the values of the discontinuity

at a set of discrete points), a Taylor expansion (free parameters would be the Taylor coefficients), Fourier

decomposition (free parameters would be the Fourier coefficients), etc.
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Figure 3. By construction, the minimum of the dual problem (1.4) puts a strict upper bound on the

maximum of the original problem (1.2). A priori the optimal minimum and the optimal maximum

are separated by what is known as the duality gap as depicted in (a). For convex problems the

duality gap is zero and thus both problems describe the very same boundary of the S-matrix space,

one converging from its interior, the other from its exterior, see (b). With different ansatze we

can thus rigorously bracket the optimal bound (in black in (b)). Strictly speaking the previous

statements should be qualified by the statement that both the dual and the primal problem ought

to be feasible which is the case for us.

Figure 4. Two-dimensional section of the monolith we call the O(N) slate obtained at s∗ = 2m2

(θ∗ = iπ/2) in the σi decomposition of (A.2) for N = 7. In black we show the optimal bound

to which the primal and dual problems converge respectively from below or above. Consistent S-

matrices lie on the shaded region in grey. In blue (red) we present various bounds as we take periodic

ansatze in the primal (dual) problem. From lighter to darker colors we have period τ = 0, 4, 6, 10.25.
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Figure 5. Different maximization functionals to obtain the boundary of a certain region of the

plane. In panel (a) we fix one of the coordinates and maximize/minimize the other. In the second

panel (b) we fix a particular direction and perform a radial maximization, which useful for defining

the faces of the convex space. Finally in (c) we have the normal maximization where we have a

uniform distribution of unit vectors and the maximization chooses the points where the normals

are aligned with the unit vectors, resulting in a higher concentration of points in high curvature

regions.

over crossing symmetric functionals and imposing the unitarity constraints. By increasing

the number of free parameters describing these functions and by picking different directions

n we converge towards the true boundary of the S-matrix space from the inside.

In the dual approach we reach the boundary of the S-matrix space from the outside.

We start by re-writing

F =

∮
dθ

2πi

∑
a

Ka(θ)Sa(θ) , (1.3)

which is true if each Ka is a function with a pole at θ∗ and residue given by na.
7 The

contour of integration can be taken to be a big rectangle inside the physical rapidity strip

(that is the boundary of the Mandelstam physical sheet). If we impose appropriate crossing

transformations on K we can relate the integration over the top part of the rectangle to

the bottom part so that we end up with the very same integral (times 2) integrated over

the real line alone. Since the S-matrix is at most of absolute value 1 on the real line we

conclude that

F ≤ min

(
Fd ≡

∑
a

+∞∫
−∞

dθ

π
|Ka(θ)|

)
. (1.4)

We just found in this way an upper bound on the optimal solution to the primal max-

imization problem (1.2). We can now take an ansatz for these so far generic functions

Ka and solve this dual minimization problem. By taking more general ansatze for Ka we

get better estimates for the minimum of (1.4) which provides a sharp upper bound to the

primal problem.

7Strictly speaking there should also be poles at the crossing symmetric image iπ − θ∗ as explained in

detail below.
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As stated above, because the original problem is convex, it can be shown that this

upper bound actually coincides with the solution to the original maximization problem,

see figures 3 and 4. In particular, as explained in detail in section 3, it is easy to see

that this can only be true if either unitarity is saturated or the original functional is

very special. This clarifies a long standing puzzle. It was thus far stated as a mystery

why was unitarity saturated at the boundary of the physical S-matrix space in many

different contexts [3, 4, 7, 8, 10–12]. This dual problem, with its associated zero duality

gap theorems, provides a clean explanation in the two dimensional examples.

In the rest of the paper we expand on the results mentioned in this introduction. In

section 2 we take a closer look to the space of O(N) S-matrices — in particular to the

two-dimensional slate — and in section 3 we present the derivation of the dual problem

and explain the bracketing procedure of figure 4.

2 The monolith and slate

To approximate the infinite dimensional S-matrix space we need some clever coordinates.

One possibility is to parametrize the S-matrix components by dispersion relations; two such

dispersions relations were used efficiently in [3] and [2]; the code in [2] is very fast and was

the one we used to generate the heaviest plots here while the method used in [3] is more

reliable to explore the boundary S-matrices at large rapidities when the numerics are most

challenging and was thus the one used to extract the analytic properties of the whence

obtained S-matrices at various special points. Finally, a third method discussed below is

to use a Fourier decomposition of the S-matrix elements; this would turn out particularly

relevant due to an emergent and mysterious periodicity which the boundary S-matrices

exhibit.

In practice we use from a few dozens to a few hundreds of coefficients to parametrize the

S-matrices. To visualize the S-matrix space, however, we need to pick a lower dimensional

section as discussed in the introduction. A natural set of three variables to explore is the

allowed (real) values of Sa(s∗) for each of the three components for a given s∗ ∈ [0, 4m2]. At

the crossing symmetric point s∗ = 2m2 these three values are no longer independent; only

two are. In other words, the three-dimensional monolith flattens into a two-dimensional

slate as we slide s∗ towards 2m2, see figure 6. This two dimensional slate is the simplest

lower-dimensional shadow of our O(N) S-matrix space. Nicely, most of the interesting

kinks of the O(N) space — or at least those in the three dimensional monolith — are still

visible in this lower dimensional section which will be the main focus of this section.

To explore the slate we can use the primal or dual problem. Here we focus on the

primal one where we give an ansatz for the S-matrices and maximize various functionals

as discussed in the previous section. The result we obtain is represented in figure 7. For

each point at the boundary of this space we can extract numerically the corresponding

S-matrix. Here are some remarkable features we learn from these numerics:

• A few points are special along the slate boundary: we have the free theory vertex,

a less sharp kink corresponding to the O(N) non-linear sigma model (NLSM) — see

– 7 –
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Figure 6. Space of allowed S-matrices Sa(s∗) for N = 7 and different values of s∗, obtained using

functionals of the normal type. Close to threshold s∗ ≈ 4m2 the space approaches the cube defined

by unitarity |Sa(s)| ≤ 1 for physical values s > 4m2. As we decrease s∗, the monolith morphs

into the two-dimensional slate at s∗ = 2m2. At the boundary of the allowed space we have the 3

(+ 3 flipping all signs) integrable solutions, namely free theory, the NLSM [13] and the periodic

Yang-Baxter solution [5]. The coloring corresponds to the associated Sa(s = 4m2) values as in

table 1 of appendix C.

figure 9 — and a point corresponding to a periodic — in real θ — integrable solution

(pYB) found in [5] and rediscovered in [3]. As mentioned in the introduction, the

slate is symmetric under reflections around the origin so we get the reflected points

by flipping the signs of the S-matrices. The analytic S-matrices at these three points

read SFree = (1, 1, 1) and

SNLSM = −
(

1,
θ − iπ
θ + iπ

,
θ − iπ
θ + iπ

θ − iλGN

θ + iλGN

)
Fπ+λGN

(θ)F2π(θ) , (2.1)

SpYB =

(
sinh

[
ν
(
1− iθ

π

)]
sinh

[
ν
(
1 + iθ

π

)] , −1, 1

) ∞∏
n=−∞

F
π+ inπ2

ν

(−θ) , (2.2)

where Fa(θ) ≡ Γ
(
a+iθ
2π

)
Γ
(
a−iθ+π

2π

)
/Γ
(
a−iθ
2π

)
Γ
(
a+iθ+π

2π

)
, λGN = 2π

N−2 , ν = arccosh
(
N
2

)
and we have used the notation S = (Ssing, Santi, Ssym). At these three-points the S-

matrix obeys nice cubic factorization equations known as the Yang-Baxter equations.

It is worth emphasizing that these were by no means imposed and rather come out

as a mysterious outcome. It is amusing to think that had Yang-Baxter not been

discovered before and these nice integrable solutions not unveiled decades ago, we

could have discovered them here in these numerical explorations.

• Another interesting point is the yellow point between free theory and NLSM in fig-

ure 7. The S-matrix there is a simple constant solution to crossing and unitarity

Sconst = ±
(

1, −1,
N − 2

N + 2

)
, (2.3)

but does not obey Yang-Baxter equations. Notice that in the symmetric channel

unitarity is not saturated. To our knowledge this is the first analytic solution to

– 8 –
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Figure 7. Allowed space of S-matrices in the plane σ1(s∗ = 2) vs σ2(s∗ = 2). The coloring at

its boundary matches the convention in table 1. We have also marked the points corresponding to

known integrable S-matrices and the constant solution in (2.3).

the S-matrix bootstrap problem where unitarity is not saturated. We call it the

yellow point.

If we look for constant solutions to the bootstrap problem it is actually easy to

derive (2.3) analytically. First, because of crossing, all possible constant solutions lie

on the same plane as the slate (i.e. must be eigenvectors of the crossing matrix). The

unitarity inequalities then define a polygon on this plane which is nothing but the

innermost curve in figure 4. Such polygon is simply given by Sa = CabSb, |Sa| ≤ 1

with Sa constant. The vertices of this polygon are precisely (±) free theory and the

yellow point. These are the only points that touch the boundary of the slate. (No

other points could touch it since the slate is a convex space.)

• As we move along the boundary we observe that all S-matrices saturate the unitarity

condition at all values of energy except for the yellow point discussed above. Uni-

tarity saturation was previously a puzzle in the S-matrix bootstrap approach but as

already anticipated in the introduction, it has a nice simple explanation arising from

a vanishing duality gap in convex optimization problems together with analyticity.

What is particularly nice is that even the exceptional yellow point can be nicely

explained in these terms as discussed in the next section.

• Perhaps the most striking and still mysterious feature of the S-matrices on the bound-

ary of the slate is that they are periodic in θ. The period is plotted in figure 8. It

is a feature of the slate boundary but it is not a generic feature of the S-matrix

space boundary; it is not a property of a generic solution at the boundary of the

three-dimensional monolith for example. Still, even there, there is some more refined

version of emergent periodicity which we comment on in appendix C.2.

– 9 –
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τ

Figure 8. Period τ (in the real θ direction) of the S-matrices obtained numerically along the curve

defining the boundary of the s∗ = 2m2 plane for N = 7. The period diverges for free theory and the

non-linear sigma model, has a local minimum at the periodic Yang-Baxter solution and approaches

zero for the constant solution (the plot presents some noise around the latter since the numerics

have a hard time converging for small periods).

• Given the periodic nature of the S-matrices at the boundary of the slate, it is natural

to explore its inside by considering ansatze with a fixed period. This can be done

quite easily using Fourier coefficients as explained in appendix D. Given a particular

period, the allowed region touches the boundary of the slate at the points where the

S-matrices have the same period but otherwise describes a smaller region inside (since

we are not working with the most general S-matrix). This is how the inside curves in

figure 4 are generated. Note that already for the period of the periodic Yang-Baxter

solution τ = 2π2/arccosh(7/2) ≈ 10.25 we can approximate very well the boundary

of the slate. Also, since free theory and the yellow point are constant solutions, for

any period we choose the allowed region will touch the boundary of the slate at those

points. In fact, the polygon described above is the extreme case where the period

τ → 0.

Apart from the periodicity in θ, what can we say about the poles and zeros of Sa(θ), i.e.

the possible resonances and virtual states? By a careful study of the S-matrices obtained

numerically, we were able to understand their analytic structure. A generic S-matrix along

the boundary curve of the slate has two different types of analytic structures which we

refer to as simple and fractal.

The simple structures are the building blocks of the O(N) S-matrices studied here.

Starting from an initial pole or zero, we can recover all the poles and zeros in higher sheets

from crossing and unitarity as explained in the appendix C. This structure is encoded in a

particular ratio of gamma functions we called Fa(θ) shown in figure 10 (a) and which we

– 10 –
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Figure 9. The zoomed-in view of the less sharp kink of NLSM. The circles here are the points on

the boundary of the slate and the red and blue lines are the tangents on two side of the NLSM

kink at (σ2, σ1) ≈ (−0.4159, 0.3327). The plot in the inset is the same as in the big one except for

a simple small rotation of the axes (by 9.5 degrees which is the approximate slope near the NLSM)

which renders the NLSM kink much easier to spot.

rewrite here for convenience

Fa(θ) ≡
Γ
(
a+iθ
2π

)
Γ
(
a−iθ+π

2π

)
Γ
(
a−iθ
2π

)
Γ
(
a+iθ+π

2π

) . (2.4)

The integrable solutions can be conveniently written in terms of these simple structures,

see above. Note that each solution has a single parameter (λGN for NLSM and ν for pYB)

and that the infinite product in (2.2) takes care of the periodicity in the real θ direction.

On the other hand, the fractal structures require the inclusion of infinite parameters

labeling the new structures emerging as we move to higher sheets. The simplest of these

structures appeared in the analytic solution found in [3] which depends on an infinite

number of parameters µi (see figure 10 (b)). The general fractal structure appearing

in the S-matrices has new towers in each representation, leading to three infinite sets of

parameters (one per representation) as shown in figure 10 (c).

To take into account the periodicity, the S-matrices are given by a collection of fractal

or simple structures appearing either at multiples of the period Re(θ) = nτ or at Re(θ) =(
n+ 1

2

)
τ , with n ∈ Z. It is a beautiful story how these intricate structures move in the

complex θ plane interpolating between the simpler integrable solutions. In appendix C.1

we explain in detail how this interpolation occurs.

3 Dual problem

The space of 2-particle S-matrices allowed by the unitarity, crossing and symmetry con-

straints is convex. In such space we maximize a linear functional. Since the space is convex,

there are no local maxima other than a global maximum found at the boundary of the space

allowing us to map out such boundary. As we describe in appendix B (see also [14, 15]) for

the case of a general convex maximization problem with a finite number of variables, it is

– 11 –
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Figure 10. Different types of analytic structures appearing in the θ plane. (a) Simple structure

given by a single ratio of gamma functions Fλ+π(θ). (b) The simplest fractal structure with

an infinite set of parameters µi labelling the new towers of poles and zeros appearing in higher

strips; this is the type of structure present in the green line of figure 2 described in appendix C.3.

(c) The general fractal structure with three (infinite) sets of parameters (µIi , µ
−
i , µ

+
i ) according to

the representation (sing, anti, sym) on which the first (i.e. closest to the physical strip) zero/pole

appears.

useful to define a so-called dual minimization problem. By taking a continuum limit we can

obtain the dual problem we are interested in. Equivalently, as we describe in this section,

there is also a simple and straightforward way to derive the same dual problem directly

in the infinite dimensional case used to find the S-matrices. In this section we introduce

such derivation as well as important consequences that can be derived from it. We start,

as before, by defining a functional F on the space of S-matrices Sa(θ) that are analytic on

the physical strip 0 ≤ Im(θ) ≤ π and respect crossing symmetry Sa(iπ− θ) =
∑

bCabSb(θ)

and unitarity |Sa(σ ∈ R)| ≤ 1:

F [Sa] =
∑
a

na Re

[
Sa

(
iπ

2

)]
(3.1)

The sum is over the three representations (singlet, antisymmetric and symmetric traceless)

and we write the sum explicitly since we do not always have repeated indices.

For simplicity we chose to evaluate the functions at the (unphysical) crossing symmetric

point θ = iπ
2 and therefore we should take na =

∑
bCbanb without loss of generality since

the anti-crossing symmetric part cancels. For a given na we can maximize the functional

numerically as we already discussed obtaining the curve displayed in figure 7. In particular

we obtain a point where the normal to the curve is parallel to na (after projecting na onto

the σ1,2 plane). Since the curve has kinks, several values of na can lead to the same point

at the boundary of this two dimensional section we called the O(N) slate. We find kinks

at the free theory and the integrable O(N) non-linear sigma model.

Now let us derive the dual minimization problem and its main properties. Consider a

set of three functions Ka(θ) analytic on the physical strip except for a pole at θ = iπ
2 with
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residue Res[Ka,
iπ
2 ] = na. We can then rewrite the functional to maximize as a contour

integral along a contour8 C = (−∞,∞) ∪ (iπ +∞, iπ −∞):

F =
∑
a

na Re

[
Sa

(
iπ

2

)]
=
∑
a

Re

[
1

2πi

∮
C
Ka(θ)Sa(θ)dθ

]
(3.2)

=
∑
a

Re

[
1

2πi

∫ +∞

−∞
(Ka(σ)Sa(σ)dσ −Ka(iπ − σ)Sa(iπ − σ)) dσ

]
(3.3)

By crossing symmetry we have Sa(iπ − σ) = CabSb(σ). If we further impose

Ka(iπ − σ) = −CbaKb(σ) , (3.4)

namely that Ka obeys anti-crossing with the transpose matrix Cᵀ, then both integrals have

the same value (since C2 = 1) and we can write the functional as an integral over the real

axis where Sa satisfies the unitarity constraint |Sa(σ)| ≤ 1. Thus we get the bound

F=
∑
a

1

π

∫ +∞

−∞
Im [Ka(σ)Sa(σ)] dσ ≤

∑
a

1

π

∫ +∞

−∞
|Ka(σ)Sa(σ)| dσ ≤ 1

π

∫ +∞

−∞

∑
a

|Ka(σ)| dσ

(3.5)

where the right hand side is the definition of the dual functional on the space of Ka. Thus,

we obtain

max
{Sa}

[
F =

∑
a

na Re

[
Sa

(
iπ

2

)]]
≤ min
{Ka}

[
Fd ≡

1

π

∫ +∞

−∞

∑
a

|Ka(σ)| dσ

]
(3.6)

where the maximum is over all functions Sa(θ) analytic on the physical strip and obeying

crossing and the unitarity constraint and the minimum is over all functions Ka(θ) analytic

on the physical strip except for a pole at θ = iπ
2 with residue Res[Ka,

iπ
2 ] = na and obeying

anticrossing with Cᵀ. To be more precise, we can add the condition that Sa are bounded

analytic functions (from the unitarity constraint) whereas Ka are only required to be such

that Fd is finite, namely
∫ +∞
−∞ |Ka(σ)|dσ <∞. The minimization problem is also a convex

optimization problem known as the dual of the original or primal problem. The difference

between the minimum of the dual problem and the maximum of the primal problem is

called the duality gap. If the primal problem is convex and the dual strictly feasible9 (as

is the case here), the duality gap vanishes [14] implying that the inequalities in eq. (3.5)

are saturated. Therefore we must have for every σ ∈ R and every representation a:

|Ka(σ)Sa(σ)| = |Ka(σ)| ⇒ |Sa(σ)| = 1 or Ka(σ) = 0 (3.7)

Re [Ka(σ)Sa(σ)] = 0 (3.8)

Im [Ka(σ)Sa(σ)] ≥ 0 (3.9)

Since Ka is analytic, if it vanishes on a segment of the real axis, it will vanish everywhere

in the physical strip. If that is not the case, it implies that |Sa(σ)| = 1, namely unitarity

8The small vertical segments at ±∞ can be safely dropped since we require K(θ) to go to zero there.
9Strict feasibility of the dual problem is sometimes called Slater’s condition. It means that there is a

point in the interior of the dual cone that satisfies the linear constraints. In this case it means that there is

at least a set of functions Ka that satisfy all conditions. In the next section we give the example Ka = ina
cosh θ

.
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is saturated everywhere at the maximum of the functional. It is in principle possible

that Ka(σ) = 0 at isolated points but, assuming continuity of |Sa(σ)| we will still have

|Sa(σ)| = 1 on the real axis (physical line). Furthermore, assuming that Ka(σ) 6= 0, the

only way to satisfy the other two conditions is that

Sa = i
K∗a(σ)

|Ka(σ)|
(3.10)

providing a simple way to determine the S-matrix once the dual problem is solved, and

also making evident it saturates unitarity. Before continuing let us summarize some simple

but useful properties of the dual problem:

• In the dual problem there are no inequality constraints for Ka so finding the minimum

is generically an easier task. For the numerics in this paper we used the discretized

version described in appendix B or the Fourier decomposition parametrization in

appendix D.

• Taking Ka within a subset of all analytic functions (except for the pole at θ∗) one

can put upper bounds that will always be larger or equal than the best upper bound.

This can be done sometimes analytically and is complementary to taking Sa on a

subset which will give a value below the best upper bound. In this way one can

bracket the optimal bound as shown in figure 4.

• If both extremal functions Sa and Ka are obtained analytically, a zero duality gap is

an analytic proof that such Sa indeed maximize the given functional.

• Using the previous point, if one can show analytically that a given Sa maximizes

different functionals, then one has a proof that the convex set of allowed Sa has a

vertex at that point (at least in the considered subspace).

Applications and generalizations. We can illustrate the last bullet point with the

simple example of free theory where Sa(θ) = 1. In particular the curve in figure 7 has a

kink at the free theory as we can now derive analytically. The value of the functional (3.1)

is just

F =
∑
a

na . (3.11)

For Ka we can take the simple ansatz

Ka =
ina

cosh θ
, (3.12)

which has a simple pole at iπ/2 with residue na (all other poles are outside the physical

strip). Using that cosh(σ) > 0 the dual functional Fd can be easily evaluated to get

Fd =
1

π

∫ +∞

−∞

∑
a

|Ka(σ)| dσ =
∑
a

|na|
1

π

∫ +∞

−∞

1

cosh(σ)
dσ =

∑
a

|na| . (3.13)

Indeed, this is the simplest example of (3.6) since

F =
∑
a

na ≤ Fd =
∑
a

|na| . (3.14)
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The inequality is saturated when na ≥ 0. Furthermore, to satisfy the anti-crossing condi-

tion (3.4) we need na = Cbanb. Then, up to an overall normalization, na takes the form

(nsing, nanti, nsym) =

(
0,

1

2
,

1

2

)
+ α

(
1

2N
,−1

4
,
N − 2

4N

)
, 0 ≤ α ≤ 2. (3.15)

For all the na above, the functional is maximized by the free theory showing that the free

theory is indeed at a kink of the boundary curve as seen in figure 7.

In fact the test functions Ka = ina/cosh θ can be used to put upper bounds for all

directions in the σ1,2 plane. Indeed, consider the following maximization problem

max
{Sa}

[t], such that Re

[
Sa

(
iπ

2

)]
= t va,

∑
a

v2a = 1. (3.16)

Finding the maximum of t and replacing in Sa(
iπ
2 ) = t va determines a point on the bound-

ary curve of figure 7 in the direction va (projected on the plane σ1,2). Namely we find a

point in a given direction rather than a point with a given normal as was the case when

fixing na as discussed earlier, see figure 5. We can write a Lagrangian using Lagrange

multipliers µa:

L= t+
∑
a

µa

{
Re

[
Sa

(
iπ

2

)
− tva

]}
= t

(
1−
∑
a

µava

)
+
∑
a

Re

[
1

2πi

∮
C
Ka(θ)Sa(θ)dθ

]
(3.17)

where we take Ka as before with Res[Ka,
iπ
2 ] = µa. Maximizing L over the space of Sa

satisfying the constraint is the same as maximizing t since then L = t independently of the

value if µa. If we choose µa such that ∑
a

µava = 1 (3.18)

then we have

L =
∑
a

Re

[
1

2πi

∮
C
Ka(θ)Sa(θ)dθ

]
≤ 1

π

∫ +∞

−∞

∑
a

|Ka(σ)| dσ (3.19)

where we used the same bound derived before in (3.5). We learn that

max
{Sa}

[t] ≤ min
{Ka}

[
1

π

∫ +∞

−∞

∑
a

|Ka(σ)| dσ

]
(3.20)

where the maximum is over all Sa satisfying the extra constraints in (3.16) and the minimum

over all Ka with residue µa satisfying (3.18). This minimization problem can be used

numerically to calculate the boundary curve in figure 7.

If we just consider the simple functions Ka = ina
cosh θ we find an exterior curve determined

by the minimization problem:

min
na

∑
a

|na|, nava = 1, na =
∑
b

Cbanb (3.21)
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In each region where na have definite signs, the function to minimize is linear and there-

fore it is minimized at the boundary of the region, namely where one na vanishes. By

enumerating the different possibilities one finds the bound given by the enveloping polygon

in figure 4, whose vertices are

(σ2, σ1)vertices =

{
(1, 0) ,

(
0,

1

2

)
,

(
−1,

1

N

)
, (−1, 0) ,

(
0,

1

2

)
,

(
1,− 1

N

)}
(3.22)

We now consider the possibility of Sa not saturating unitarity. As already discussed this

can happen only if Ka is identically zero for some representation a. In particular the

corresponding residue na has to vanish as well. Taking nsing = 0 or nanti = 0 leads to the

free theory. For the remaining case nsym = 0 we get something more interesting. Using

crossing we can determine up to an overall constant

(nsing, nanti, nsym) = (1, 1−N, 0) . (3.23)

If we take again the simple functions Ka = ina
cosh θ then from (3.10) we have Ssing = 1 and

Santi = −1 implying that Sa are constant and

F = Ssing + (1−N)Santi = N ≤ |1|+ |N − 1| = N (3.24)

Since the inequality is saturated we learn that the constant functions indeed maximize this

functional. On the other hand using crossing we obtain Ssym = −N−2
N+2 which does not

saturate unitarity (|Ssym| < 1) consistently with Ksym = 0. This is precisely the yellow

point discussed above.

It is also interesting to consider the case where we evaluate the S-matrix at a different

interior point. Using crossing symmetry we can define such functional as

F =
1

2

∑
a

(
naRe [Sa(θ∗)] +

∑
b

nbCbaRe [Sa(iπ − θ∗)]

)
(3.25)

Due to crossing symmetry both terms are equal so that F =
∑

a naRe [Sa(θ∗)]. Using the

previous reasoning, we choose Ka to have poles at θ∗ and iπ−θ∗ with residues Res[Ka, θ∗] =

na and Res[Ka, iπ − θ∗] =
∑

bCbanb. Under those conditions (3.5) is still valid and can be

used to find Sa, put bounds, etc. In the same way, (3.20) is also valid.

Going back to the case where we evaluate the functional at the crossing symmetric

point θ = iπ2 , using the dual problem we can bracket the optimal bound as seen in figure 4.

In that figure, the black curve is the optimal bound. To obtain the interior curves, we take

the S-matrices as periodic functions along the real axis:

Sa(θ + τ) = Sa(θ), τ ∈ R (3.26)

Maximizing the functional in this set of functions we obtain a maximum that is always

smaller or equal than the optimal bound. In that way we draw the interior curves. In

particular if we consider constant S-matrices we find the interior polygon contained in

all other curves. Appendix D.1 shows a simple numerical implementation of this primal
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problem, ready to be copy/pasted into Mathematica. For the exterior curves we consider

functions Ka of the form

Ka(θ) =
ika(θ)

cosh θ
, ka(θ + τ) = ka(θ), ka

(
iπ

2

)
= na (3.27)

which parameterize a subset of all possible functions Ka. Notice however that Ka itself is

not periodic, otherwise it would have had infinite number of poles on the line Im(θ) = π
2

instead of just one as required. Numerically minimizing the dual function we find the

exterior curves. In the particular case of constant ka we obtain the exterior polygon that

contains all other curves and that was derived in more detail in the previous subsection.

Appendix D.2 contains a simple numerical implementation of this dual problem, ready to

be copy/pasted into Mathematica.

Summarizing, in this section we derived the dual problem that allows us to explain

why the maximum generically saturates unitarity on the physical line, also allows us to

bracket the optimal bound, an important point since results are usually numeric, and

finally provides a procedure to check when a given analytic function Sa maximizes a given

functional.

4 Discussion

In this paper we considered the scattering matrices of massive quantum field theories with

no bound states and a global O(N) symmetry in two spacetime dimensions. In particular

we explored the space of two-to-two S-matrices of particles of mass m transforming in the

vector representation as restricted by the general conditions of unitarity, crossing, analytic-

ity and O(N) symmetry. Such space is an infinite dimensional convex space parameterized

by three analytic functions Sa(s) of the Mandelstam variable s. The index a indicates the

O(N) representation to which the initial two particle state belongs: singlet, antisymmetric

or symmetric traceless. A simple picture of that space can be obtained by finding all the

allowed values of the functions Sa(s∗) at an unphysical point 0 < s∗ < 4m2. In this way

we obtain a three-dimensional convex subspace which we dub as the O(N) monolith that

can be plotted using numerical methods. A beautiful picture emerges and at the boundary

of this space we identify vertices that correspond to known theories (free theory and the

integrable O(N) non-linear sigma model). Another interesting theory appears at a point

we call a pre-vertex, an intersection of two edges but with no curvature singularity. Finally

there is an interesting point corresponding to a constant solution that does not saturate

unitarity in one of the channels. This is an exceptional case since at all other boundary

points the S-matrices obtained saturate unitarity. Although the results are numeric for

several points we find analytic expressions for the S-matrix including a line that connects

two integrable points. In the particular case of the crossing symmetric point s∗ = 2m2,

the crossing anti-symmetric linear combination vanishes and the space of allowed values

is two dimensional, and now dubbed as the O(N) slate. Again we obtain an interesting

boundary contour with vertices at the free theory and O(N) non-linear sigma model. A

curious property of this case is that the S-matrices at the boundary curve of the O(N)

slate are periodic in the rapidity.
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A simple way to find the boundary of the allowed space is to maximize a linear func-

tional in the convex space since the maximum is always at the boundary. In general convex

maximization problems the so call dual problem plays an important role. The same hap-

pens in this case. Indeed we find that the dual problem consists of minimizing a functional

over the space of analytic functions with a pole at s∗ (the point where we evaluate the

S-matrix). The main property of the dual problem is that the minimum of the dual func-

tional equals the maximum of the original one for convex problems such as this one. This

allows for some important numerical and analytical results that can be obtained from the

dual problem. Numerically, the dual problem has no inequality constraints so it is easier to

solve. Also any test function provides a strict upper bound that approaches the boundary

of the space from outside as a better ansatz for the functions are found. Additionally, it

can be shown that the S-matrices resulting from this problem always saturate unitarity

except in the case where the corresponding dual function identically vanishes. This is an

exceptional case and corresponds to the constant solution previously discussed. Finally,

if the dual functions are found analytically this provides an analytical proof that certain

given S-matrices maximize the original functional. In fact this can be used to show that

the space has vertices by showing that different functionals are maximized by the same

S-matrices.

In summary, we found a rich structure in the allowed space of S-matrices for two

dimensional massive theories with particles in the vector representation of O(N) by using

convex maximization and in particular its convex dual minimization problem. At the

boundary of the allowed space special geometric points such as vertices (and pre-vertices

as defined above) were found to correspond to integrable models. Although the dual

minimization problem implies that unitarity is saturated as it should be for integrable

models, the reason that such models appear at geometrically distinguished points (e.g.

vertices) is not clear. In particular it will be nice to understand if the dual functions play

a role in the integrable structure associated with those models.

Finally, in higher dimensions similar unitarity saturation was also observed [7, 8]. It

would be very interesting to develop the higher dimensional dual problem which should

explain this saturation, see also [16–20]. At the same time, it is known that unitarity can

not be saturated at all energies and spins in higher dimensions [21]. It would be fascinating

to resolve this tension and find a sharp rigorous dual problem in higher dimensions.
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A Notation

Crossing matrix

Cab =

 1
N −N

2 + 1
2

N
2 + 1

2 −
1
N

− 1
N

1
2

1
2 + 1

N
1
N

1
2

1
2 −

1
N

 . (A.1)

where a, b = sing, anti, sym.

Two different decompositions of the two-to-two S-matrices are:

S(θ) = σ1(θ)K + σ2(θ)I + σ3(θ)P (A.2)

= Ssing(θ)Psing + Santi(θ)Panti + Ssym(θ)Psym , (A.3)

where Kkl
ij = δijδ

kl, Iklij = δliδ
k
j , Pklij = δki δ

l
j . The bases are related by the trivial map:

Ssym = σ2 + σ3 , Santi = σ2 − σ3 , Ssing = Nσ1 + σ2 + σ3 . (A.4)

B The primal-dual quadratic conic optimization

In this appendix, we review the standard primal-dual conic optimization problem and its

relation to the S-matrix bootstrap we studied in the main text. In particular we consider

the discretized version of the dual problem described in section 3. See references [14, 15]

for more details on convex optimization.10

The standard conic optimization problem is given by

minimize cTx

subject to Ax = b

x ∈ K
(B.1)

where K is a convex cone. One can then write down the Lagrangian

L(x, λ, ν) = cTx+ νT (Ax− b)− λTx (B.2)

where ν is the Lagrange multiplier of the linear constraint and λ ∈ K∗ is the dual cone

satisfying

λTx ≥ 0, ∀x ∈ K, λ ∈ K∗. (B.3)

The dual function is defined as

g(λ, ν) = inf
x
L(x, λ, ν) =

{
−bT ν, c+AT ν − λ = 0

−∞, otherwise
(B.4)

10For parts of the optimization, we used CVX, a package for specifying and solving convex pro-

grams [22, 23].
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and the dual problem is
maximize − bT ν
subject to c+AT ν − λ = 0

λ ∈ K∗
(B.5)

For any feasible point of the primal and dual problem (x̃, λ̃, ν̃) one has

− bT ν̃ = −x̃TAT ν̃ = cT x̃− λ̃T x̃ ≤ cT x̃ (B.6)

where we used the linear constraints of the primal and dual problem for the first and second

equality. The difference between the maximum of the dual function g̃ and the minimum of

the primal function f̃ is λ̃T x̃ which is the so-called duality gap.

In the S-matrix bootstrap, we discretize the S-matices by its values on the physical

line Sa(σi), i = 1, . . . ,M . The unitarity constraints are

ReS2
A + ImS2

A ≤ 1, A = (a, i). (B.7)

It is convenient to consider the rotated quadratic cones instead:

ReS2
A + ImS2

A ≤ 2uAvA (B.8)

with the trivial linear constraints

uA =
1√
2
, vA =

1√
2
, ∀A. (B.9)

The real and imaginary parts are related by

ImSA = KABReSA (B.10)

which is the discrete version of the dispersion relation together with crossing constraint.

(See definition in [2].) Therefore we can write our bootstrap problem in the standard

quadratic conic optimization language with the following identifications:

x =


ReS

ImS

u

v

 , A =

K −I 0 0

0 0 I 0

0 0 0 I

 , b =

 0
1√
2
1√
2

 . (B.11)

The elements in x and b should be understood as 3M -dimensional column vectors and the

elements in A are 3M × 3M -dimensional matrices. For any given maximization in the 2d

and 3d plots, the functional can be written as

F =
∑
A

wAReSA, (B.12)

and hence

c =


−w
0

0

0

 . (B.13)
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With these identifications, we can consider the dual variables

λ =


λ1
λ2
λ3
λ4

 , ν =

ν1ν2
ν3

 (B.14)

of the dual problem (B.5). The dual cones are given by:

λ21A + λ22A ≤ 2λ3Aλ4A, λ3A > 0, λ4A > 0, ∀A (B.15)

where we used that these quadratic cones are self-dual. With the explicit expressions

of (B.11), the dual linear constraint and the dual functional become the following:

Fd = −
∑
A

1√
2

(ν2A + ν3A)

wA = KT
ABν1B − λ1A

−ν1A = λ2A

ν2A = λ3A

ν3A = λ4A

(B.16)

which reduces to

Fd = −
∑
A

1√
2

(λ3A + λ4A) (B.17)

−wA = KT
ABλ2B + λ1A. (B.18)

From (B.6) we see that in the primal-dual problem, the duality gap is closed when

we have

λ̃T x̃ = 0, (B.19)

i.e. λ̃ and x̃ are orthogonal. It is easy to see that this happens iff (λ̃1A, λ̃2A, λ̃3A, λ̃4A) and

(−ReS̃A,−ImS̃A, ṽA, ũA) are parallel. Let us thus write

(λ̃1A, λ̃2A, λ̃3A, λ̃4A) = κ̃A(−ReS̃A,−ImS̃A, ṽA, ũA), (B.20)

and
λ̃T x̃ = λ̃3AũA + λ̃4Aṽ4A + λ̃1AReS̃A + λ̃2AImS̃A

=
∑
A

κ̃A(2ũAṽA − ReS̃2
A − ImS̃2

A)

= 0.

(B.21)

Since κ̃A ≥ 0 and 2ũAṽA ≥ ReS̃2
A + ImS̃2

A, ∀A, we see that for the last equality of (B.21)

to be true we have either κ̃A = 0 or ReS̃2
A + ImS̃2

A = 2ũAṽA = 1, i.e., unitarity saturation

for each A. Using (B.9) and (B.20), the dual maximization functional (B.17) becomes

Fd = −
∑
A

κA. (B.22)
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To summarize, the optimal value of the primal function (B.12) can be obtained by solving

the following dual optimization problem

minimize
∑
A

κA

subject to −KT
ABλ2B = λ1A + wA.

λ21A + λ22A = κ2A

(B.23)

Now let us interpret the dual optimization problem (B.23). Following the properties

of K, we see that −KT gives the dispersion relation with crossing using −CT . Therefore

we can identify λ2A and λ1A + wA as the real and imaginary parts of an analytic function

on the physical line satisfy crossing with −CT

ha(iπ − θ) = −hb(θ)Cba. (B.24)

For a maximization in the 2d plot with a fixed normal vector, we have the functional

F =
∑
a

naReSa
(
i
π

2

)
=Re

[
1

2πi

∑
a

∮
inaSa(θ)

cosh(θ)

]
=

1

2π

∑
a

∫ ∞
−∞

dσ
naReSa(σ) + naCabReSb(σ)

cosh(σ)

=
1

π

∑
a

∫ ∞
−∞

dσ
naReSa(σ)

cosh(σ)
,

(B.25)

where in the last equation we assume nb = naCab. Comparing with (B.12), we see that

wA, A = a, i correspond to the discrete version of the imaginary parts of ina
cosh(θ) on the

physical line which have poles at iπ2 with crossing symmetric residues. We therefore con-

clude that the analytic continuation of λa into the physical strip also include such pole

terms with opposite signs to cancel the poles and we have

− λa(θ) =
ina

cosh(θ)
− ha(θ). (B.26)

The minimization problem (B.23) reduces to minimizing
∑

A κA =
∑

A |λA| where −λa are

analytic functions with poles at iπ/2 and crossing symmetric residues nb = naCab.

We can now make the following identifications

λ1A → −ImKA, λ2A → −ReKA, κA = |λA| → |KA|. (B.27)

Combined with (B.20), we see

ReSA =
ImKA

|KA|
, ImSA =

ReKA

|KA|
. (B.28)

This becomes (3.10) in the continuous limit.
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Ssing(θ = 0) Santi(θ = 0) Ssym(θ = 0)

� −1 −1 −1

� −1 −1 +1

� −1 +1 −1

� −1 +1 +1

� +1 −1 −1

� +1 −1 +1

� +1 +1 −1

� +1 +1 +1

Table 1. Colors assigned to the eight different combinations of Sa(θ = 0) = ±1 which help

characterize the faces and edges of the monolith as in figures 6 and 7.

C Analytic properties

In this appendix we further explain some of the analytic properties of the S-matrices on

the boundary of the monolith. A first simple characterization of some of these properties

is the value at threshold of the three different channels Sa(θ = 0). Given the generic

saturation of unitarity (Sa(θ)Sa(−θ) = 1), the quantity Sa(θ = 0) can take values ±1

leading to the eight possible combinations in table 1, represented in different colors. This

is the coloring used in figures 6 and 7 which highlights some of the geometric aspects of

the first one and interesting points of the latter. Apart from geometry, the transition from

one color to another indicates changes in the analytic structure of the S-matrices such as

collision of zeros and poles at the boundary of the physical strip. Such collisions and further

phenomena are explained in detail in the next section for the S-matrices at the boundary

of the slate.

C.1 The slate

In the following we explain how the analytic structure of the S-matrices changes as we

move along the boundary of the θ? = iπ/2 slate of figure 7. The interpolation between

the different known S-matrices (free, periodic YB, NLSM, constant) is separated in four

regions. For simplicity, we present the analysis for the first two strips 0 ≤ Im(θ) ≤ 2π in

the complex rapidity plane.

Region I: from Free to periodic YB. We start from free theory where the complex θ

plane is devoid of any structure. As soon as we move towards the periodic YB solution on

the boundary curve of 7 we get poles and zeros at Re(θ) = nτ in a fractal structure (see

figure 10(c)). The pair of zero and pole11 emerging from θ = 0 allows for the change of sign

in the antisymmetric channel: Santi(θ = 0) = +1 in free theory to Santi(θ = 0) = −1 in this

region (that is from grey to light blue in the coloring of table 1). Note that the zeros in the

11Recall that unitarity in the rapidity plane reads: Sa(θ)Sa(−θ) = 1, so that for every zero in θ there is

a pole in −θ.
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second sheet of Ssing (in orange) –giving rise to the fractal structure– are necessary so that

there are no poles inside the physical strip. As the period decreases we see as well a simple

(see figure 10(a)) structure at Re(θ) =
(
n+ 1

2

)
τ starting in the symmetric representation

(in purple). The simple green structure at multiples of iπ does not move in the imaginary

θ direction and is present in most of the curve.

As we keep moving along the curve, both the fractal and simple structures move into

higher sheets indefinitely until disappearing. The period keeps decreasing until it reaches

the periodic Yang Baxter value: τ = 2π2/ν. Only the green structure at multiples of iπ

remains, leaving the analytic structure of the periodic Yang Baxter solution (2.2).

Region II: from periodic YB to (-)NLSM. After passing the periodic YB solution,

the period again increases as shown in figure 8. New structures of fractal type for Re(θ) =(
n+ 1

2

)
τ and simple for Re(θ) = nτ come from higher sheets and make their way close to

the physical strip.

The structures keep lowering until the zeros in the physical strip of Santi (in pink) reach

the θ ∈ R line. In the singlet representation, the fractal structure in orange reaches the line

θ ∈ iπ+R, canceling the dangerous pole at the upper boundary of the physical strip (similar

cancellations follow in higher sheets, proving the necessity of the fractal structures). In

the symmetric channel, the simple structure (in purple) keeps lowering until it reaches the

θ ∈ iλ + R line. In the meantime the period diverges, so that only the central structure

remains and we get the NLSM solution (2.2).
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Region III: from (-)NLSM to constant solution. As we pass the NLSM the simple

structure in Ssym keeps lowering towards the θ ∈ R line and at the same time the period

decreases. Meanwhile, a new fractal structure emerges from the θ ∈ R line in the singlet

representation, again at Re(θ) =
(
n+ 1

2

)
τ .

Now a curious phenomenon occurs: as the simple structure reaches the θ ∈ R line and the

fractal one heads to the θ ∈ iπ+R line, the period vanishes. This means there is a collision

of infinite poles and zeros at Im(θ) = iπ, 2iπ, . . . and at the real line in the symmetric

channel. With this mechanism we reach the constant solution (2.3) where |Ssym| < 1!

Region IV: from constant solution to (-)Free. Finally, as the period increases in

the fourth region we get a new simple structure in the symmetric representation at Re(θ) =(
n+ 1

2

)
τ and the fractal structure moves down towards the real θ line. After the constant

solution, the value of Ssym immediately changes from −(N − 2)/(N + 2) to −1 so that we

have the change of colors from light blue to dark pink in figure 7.

To reach the final point of (-) free theory, all zeros and poles should disappear and a change

of sign in Ssing(θ = 0) should occur (so that we pass from dark pink to black in the notation

of table 1). Most of the structure disappears as the period again diverges. For the change of

sign, the fractal structure in the singlet channel reaches θ = 0 and collides with its unitarity

image pole. Thanks to the fractal structure, similar cancellations occur at θ = iπn. Up to

an overall minus sign, this leaves us back where we started so by following the same logic

we can describe the S-matrices on the lower curve of figure 7.

As we have seen, there are basically three mechanisms for the appearance/disappear-

ance of structures of poles and zeros in the S-matrices. Namely, collision of zeros and poles,

structures moving in the imaginary rapidity direction to higher and higher sheets or moving
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in the real rapidity direction (e.g. with the period diverging). Although the functions on

the 3D monolith are more complicated, the same mechanisms survive.

C.2 General analytic properties of the monolith

Let us now explore the more general S-matrices on the boundary of the 3D monolith. As one

might expect, having a volume with many faces, vertices and edges instead of the s∗ = 2m2

plane with a single boundary curve significantly adds complexity to the playground. The

biggest difference compared to the problem described in the previous section is that the

S-matrices on the monolith are not exactly periodic but have a generalized periodicity. The

explanation for this property –as the periodicity in the 2D plane– remains an unsolved

mystery.

What we mean by the term generalized periodicity is that the S-matrices are composed

of a central structure with purely imaginary zeros and poles and other structures with

equally spaced zeros and poles that appear after some offset in real rapidity. In an equation,

the S-matrices have the following form:

S(θ) = C(θ)G(θ + ζ)G(−θ + ζ) , (C.1)

where C(θ) is the central structure, ζ is the offset and the product G(θ)G(−θ) is periodic

in the real rapidity direction. The first example of such functions was first encountered

in [3] when studying the S-matrices maximizing the coupling to a single bound state in the

singlet channel. Remarkably, a simple modification of this solution describes a line on the

boundary of the monolith as described in the next section. For a graphical representation

of the type of structure (C.1), see figure 11(a).

As far as we can tell numerically, the S-matrices on the boundary of the monolith

saturate unitarity except at the constant solution (2.3). There are only six points where the

Yang-Baxter equations are satisfied, corresponding to ±(Free, NLSM, pYB) also present

in the 2D plane.

At a generic point on the boundary, the fractal structures described in the previous

section are still present, but we gain many new parameters from the offset in the real

rapidity and the “independent”12 central structure. We have looked at representative

points of some of the faces and edges of the monolith so that we have a rough idea of how

the interpolation between different faces takes place. Since we do not have yet the complete

picture let us for now restrict to one line on the boundary which we know analytically and

where the interpolation between two integrable points is precise.

C.3 The σ2 = 0 line

There is a special line on the boundary of the monolith identified by σ2(s∗) = 0. For

the two-dimensional slate, this condition selects the periodic YB solution where the S-

matrices obey σ2(s) = 0 (i.e. for any value of s) implying Santi(s) = −Ssym(s). In the

3D monolith, we have the same situation which greatly simplifies the task of finding an

analytic solution. A very similar problem was introduced in [3] when studying the space

12Of course, this is not strictly true since all parameters are related by crossing.

– 26 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
2

of S-matrices maximizing the coupling to a single bound state in the singlet representation

giving rise to a solution with the generalized periodicity described above. It turns out that

the S-matrix of [3] times a simple CDD factor which cancels the unwanted poles in the

physical strip perfectly describes the σ2(s∗) = 0 on the monolith. The final expression is13

S(θ) = ±

G(θ)

1

−1

Fλ(−θ)F2π−λ(−θ)

[ ∞∏
i=1

µi + iθ

µi − iθ
F 2
µi(θ)

][ ∞∏
n=0

F−iζ− inπ2
ν

(θ)F
iζ+ inπ2

ν

(θ)

]
,

(C.2)

where we have defined

G(θ) ≡ iθ − λ
iθ + λ

iθ + λ− 2π

iθ − λ+ 2π

( ∞∏
i=1

iθ + µi − π
iθ − µi + π

iθ − µi − π
iθ + µi + π

)
Γ
[
ν
π2 (θ + ζ − iπ)

]
Γ
[
ν
π2 (−θ + ζ + iπ)

]
Γ
[
ν
π2 (θ + ζ + iπ)

]
Γ
[
ν
π2 (−θ + ζ − iπ)

] .
(C.3)

The infinite set of parameters µi can be consistently truncated and determined (along with

the offset ζ) using the crossing equations as explained in [3] (see appendix A). The factors

containing λ and µi are part of the central structure C(θ), whereas the product of gamma

functions has precisely the form G(θ + ζ)G(−θ + ζ) of (C.1).14 The analytic structure is

depicted in figure 11 (a).

This solution nicely interpolates between the ± periodic YB solutions, the two signs

referring to the two different lines connecting the integrable solutions. The interpolation

takes place as follows. The parameter λ –which in [3] was related to the mass of the bound

state– takes values λ ∈ [π, 2π] so that the first zero in the antisymmetric and symmetric

representations remains inside the physical strip (blue cross in figure 11 (a)). It can also

be used as a parameter for the position along the two lines.

As λ → 2π three things happen: first, the anti/sym zero in blue reaches the upper

boundary of the physical strip; meanwhile, the orange tower of poles and zeros moves

down until the zero in the physical strip of the singlet channel arrives to θ = 0, producing

an infinite cancellation of poles and zeros at Sa(iπn); finally the offset reaches the value

ζ = π2/ν so that we have exactly the analytic structure of the periodic YB solution.

When λ → 3/2π something curious happens: the first anti/sym zero (in blue) moves

down to the middle of the physical strip and at the same time the first zero in singlet

(orange) moves up also to the middle of the physical strip. Again, infinite cancellations

occur, leaving behind a single tower of poles and zeros in the imaginary axis and as ζ →

13When comparing equations (37–38) in [3] to (11), it is useful to note that

F (λ,−θ)F (2π − λ,−θ) =
sinh(θ)− i sin(λ)

sinh(θ) + i sin(λ)

+iθ − λ+ π

−iθ − λ+ π
F (π − λ, θ)2 .

14Recall that the function Fa(θ) puts poles and zeros in the vertical (imaginary θ) direction according to

unitarity and crossing. It is a simple exercise to rewrite (C.2) in a real periodicity friendly notation as an

infinite product of gamma functions akin to the ones in (C.3).
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Figure 11. (a) Analytic structure of solution along the σ2 = 0 line given in (11). (b) The simple

analytic structure remaining from (11) when λ = 3π/2.

π2/(2ν) we have the very symmetric solution:

S(θ) =
(
N σ(iπ − θ) + σ(θ), −σ(θ), σ(θ)

)
, (C.4)

with σ(θ) = tan

(
iθ

2
+
π

4

) [ ∞∏
n=0

F
− iπ2

ν

(
n+

1
2

)(θ)F iπ2

ν

(
n+

1
2

)(θ)

]
,

whose analytic structure is depicted in figure 11 (b). On the monolith, this point corre-

sponds to the middle of the green faces in figure 6.

Finally, we have the limit λ → π which leads us to the other periodic YB solution.

Here, we have the blue structure going towards θ = 0 while the orange one keeps moving up

until it reaches the upper boundary of the physical strip. In this case, the offset vanishes

ζ = 0. Again, the fractal structure of the µ tower permits the perfect cancellation of poles

and zeros so that only the periodic resonances of pYB remain.

As a last remark for this section, let us point out that the fact that we have Santi(s) =

−Ssym(s) for any s on this line clarifies the double change of sign in Sa(θ = 0) resulting

in the coloring shown in figure 6 (from dark (light) green to dark (light) blue edge where
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pYB lives). In more generic situations, we expect contiguous colors on the monolith to

correspond to a change of sign in a single representation.

D Two Mathematica codes for the slate

Here we illustrate how to find a very good approximation to the slate in a few seconds. We

will work with O(7) symmetry, periodic functions with a small frequency (i.e. large period)

w = 1/3 with 10 Fourier modes of each sign, 20 grid points where we impose unitarity inside

the fundamental period (in the primal problem) and 100 grid points used to evaluate the

integrals by Chebychev method (in the dual problem) with some high precision. Finally,

we solve the dual and original problems at 100 different points to generate some nice plots.

All this translates into the initialization code

n=7; Nmax=10; gridPoints=20; integralPoints=20; precision=100; plotPts=100; w=1/3;

The crossing matrix is also used in both the dual and the original problem. It is after all

where the specific N in O(N) is input. It reads

c={{1/n,1/2-n/2,-1/n+(1+n)/2},{-1/n,1/2,1/2+1/n},{1/n,1/2,1/2-1/n}};

We can now set up the primal and dual problems.

D.1 Primal problem (normals)

In the primal problem we parametrize crossing symmetric S-matrices. We can use disper-

sion relations as in [2] and [3] or complex plane foliations as in [7] and [11]. Here we use a

Fourier decomposition and focus on functions with a fixed period. The larger is the period

we use the better we approximate a generic function. With the small frequency we chose

above we already get a very good approximation to the optimal solution as we will see

below. Under crossing positive and negative frequency modes get interchanged so that it

is straightforward to write down a crossing symmetric ansatz as

S[t_]={sing[0],anti[0],(n*anti[0]+2*sing[0])/(n+2)}+Sum[{sing[n],anti[n],sym[n]}*

Exp[I*n*t*w]+c.{sing[n],anti[n],sym[n]}*Exp[I*n*(I*Pi-t)*w], {n,1,Nmax}];

The free parameters are the various fourier coefficients which we list as

vars=Variables[S[1/2]];

Finally we prepare the unitarity constraints

unit[t_]=ComplexExpand[Re[#1]]^2 + ComplexExpand[Im[#1]]^2 <= 1 & /@ S[t];

Unitarity=And@@Flatten[unit /@N[Range[0,2*Pi/w,2*Pi/(w*gridPoints)],500]];

and define the components σ1 and σ2 since we will be plotting the allowed space in this

plane. These components are simple combinations of the S-matrix irreps

{s1,s2} = ({(#1[[3]] - #1[[2]])/2, (#1[[3]] + #1[[2]])/2} & )[S[I*(Pi/2)]];

Then we have our main function
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S2
Primal (blue) and Dual (red) O(N=7) slate using frequency w=1/3

Figure 12. Primal (blue) and Dual (red) estimates of the slate boundary with the parameters

described in the text. The optimal bound must be somewhere between the two curves; since they

are basically on top of each other already, we conclude that the dual and primal problems for

this large period are a very good approximation of the optimal bound. (The blue points are more

densely located in larger curvature regions since we used the normal functionals while the red dots

are more uniformly distributed since we found them using the radial method.)

fsol[alpha_]:=fsol[alpha]=FindMaximum[{Cos[alpha]s1+Sin[alpha]s2,Unitarity},vars]

which looks for the slate boundary point with angle α normal. We can run it for many

alphas to generate a beautiful plot,15

Dynamic[ProgressIndicator[a,{0,\[Pi]}]]

ListLinePlot[Join[#,-#]&@Table[{s2,s1}/.fsol[a][[2]],{a,0,Pi,Pi/plotPts}],Mesh->All]

The reader who runs this Mathematica code should hopefully have obtained the blue dots

in figure 12. The red dots correspond to the dual solution of the next section. Clearly,

even with such small parameters and only with a few seconds wait, we can already get

a pretty satisfactory approximation to the optimal bounds both from the primal or dual

perspective. What is more, we can also directly compare the S-matrices obtained through

the original and primal problems using (3.10) and indeed obtain a perfect match as another

nice confirmation of a zero duality gap as expected.

15The Dynamic function with the ProgressIndicator converts an agonizing wait into a bliss. The code

works equally well without it but generates more stress in the user.
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D.2 Dual problem (radials)

In the dual problem we parametrize the kernels Ka(θ). They have a pole at iπ/2 with

residues related to the radial direction (or to the normal) which we want to explore in the

slate. It is again straightforward to write down a Fourier ansatz with the right crossing

properties:

v1 = {0, 1/2, 1/2}; v2 = {1/(2*n), -(1/4), (n - 2)/(4*n)};

K[t_]=(#+c\[Transpose].(#/.t->I*Pi-t)&@Sum[{sing[n],anti[n],sym[n]}*

(Exp[I*n*t*w]-Exp[-n*w*Pi/2]),{n,1,Nmax}]+a1*v1+a2*v2) Sech[t];

vars=K[1/2]//Variables

and again we expect the results derived from this ansatz to better approach the optimal

slate boundary as we take larger and larger periods. Different a1, a2 correspond to different

directions in the slate; the vectors v1 are the eigenvectors of the transposed crossing matrix

with eigenvalue 1. In the dual problem we don’t need to impose any (unitarity) constraints

but we do need to compute an integral of the absolute value of the Ka over the real line

and then minimize this quantity. For that we write down a very precise evaluation of the

integral using Chebychev integrations so that the resulting expression can be minimized

using Mathematica’s built-in functions. This is achieved through

grid=Table[N[Cos[j\[Pi]/(integralPts+1)],precision],{j,1,integralPts}];

integrals=2*Table[Expand[Times@@(x-Drop[grid, {k}])/Times@@(grid[[k]]-Drop[grid,{k}])]

/.x^(m_.):>Boole[EvenQ[m]]/(m+1),{k,integralPts}]

f[y_]=(1/2)*Sec[Pi*y/2]^2*Total@Abs@K[Tan[(Pi*y)/2]];

goal=(f/@grid//ExpandAll//Chop).integrals;

which produces the integral as goal which we simply minimize as16

sol[a_]:=sol[a]=FindMinimum[goal/.First@Solve[Cos[a]*a1+Sin[a]*a2==1],vars]//Quiet

repeating for several radial directions we finally generate a beautiful plot as

Dynamic[ProgressIndicator[a,{0,\[Pi]}]]

Table[sol[a][[1]] {Cos[a],Sin[a]},{a,Range[0,\[Pi],\[Pi]/plotPts]}];

ListLinePlot[Join[%,-%],PlotStyle->Red,Mesh->All]

These are the red dots in figure 12. Note that we are using the radial constrains (3.18) and

the relation (3.20) to convert the dual problem outcome directly into a statement about

the O(N) slate boundary.

16The Quiet at the end is not very scientific. It quiets Mathematica so we don’t see her error message

complaints. In this case it is justified since the final results are quite ok and her worries are unjustified.

Still, by increasing WorkingPrecision and/or PrecisionGoal one can get rid of such annoyances. The

result would be safer but slower so we do not worry about it here.
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E The O(2) slate

The nature of the space of O(N) S-matrices is different for N > 2 and N = 2. A simple way

to see this is that the integrable solutions for one and other case are completely different.

In the former we have the NLSM and periodic Yang-Baxter solutions discussed in the main

text, which have no free parameters and therefore stand as isolated points on the boundary

of the monolith. In the latter there is an integrable solution with a continuous parameter

describing a line on the boundary of the O(2) monolith. In this appendix we focus on the

s∗ = 2m2 slate for N = 2.

The well known integrable solution for N = 2 is the sine-Gordon scattering of kinks/

antikinks which has a free parameter γ related to the coupling in the sine-Gordon La-

grangian. It was first bootstrapped in [13] and reads

SsG
γ (θ) = − 1

π
U(θ)


sin
(
8πiθ
γ

)
− sin

(
8π2

γ

)
sin
(
8πiθ
γ

)
+ sin

(
8π2

γ

)
− sin

(
8π(π+iθ)

γ

)
 , (E.1)

where again we used the notation S = (Ssing, Santi, Ssym)ᵀ and the prefactor is given by17

U(θ) = Γ

(
8π

γ

)
Γ

(
1 + i

8θ

γ

)
Γ

(
1− 8π

γ
− i8θ

γ

) ∞∏
n=1

Rn(θ)Rn(iπ − θ)
Rn(0)Rn(iπ)

, (E.3)

Rn(θ) =
Γ
[
2n8π

γ + i8θγ

]
Γ
[
1 + 2n8π

γ + i8θγ

]
Γ
[
(2n+ 1)8πγ + i8θγ

]
Γ
[
1 + (2n− 1)8πγ + i8θγ

] .
For γ ≥ 8π the above S-matrix exhibits no bound states and so our bootstrap problem

should make contact with this solution.18 Amusingly, the whole boundary of the slate can

be identified with (E.1) and simple modifications of it.

The results are summarized in figure 13. First, we have the blue section which is

simply the sine-Gordon S-matrix (E.1) with γ ≥ 8π. The right free theory vertex with

σ2 = 1 corresponds to γ = 8π and the point at which σ2 = 0 (which would be the analogue

of the periodic YB solution for N > 2) is reached as γ → ∞. Then we have the orange

curve which follows from the same sine-Gordon S-matrix with γ purely imaginary γ ∈ iR+.

Naturally, the σ2 = 0 point connects the two regions at infinity in the γ complex plane.

These are the two fundamental regions. The rest of the curve can be obtained by the usual

reflection σi → −σi and a map σ2 → −σ2 − 2σ1 which can be traced back to a simple

change of sign in the U(1) basis of the problem.

17It is sometimes convenient to use the following integral representation for the prefactor:

U(θ) = −iπ sinh(θ)

sin
(

8π2

γ

) exp

 1

2πi

∞∫
−∞

csch(x− θ) log

− 2 sin2
(

8π2

γ

)
csch2(x)

cos
(

16π2

γ

)
− cosh

(
16πx
γ

)
 dx

 . (E.2)

18This solution appeared already in the S-matrix bootstrap context [3, 9] in the regime where γ < 8π

and there are bound states in the theory.
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Figure 13. The O(2) slate. The black dots are numerical data obtained with the dual minimization

explained in appendix D for a small frequency w = 1/8. The blue/green curves correspond to the

analytic solution (E.1) with γ ≥ 8π whereas the orange/yellow ones are obtained with γ ∈ iR+. The

blue and green (orange and yellow) sections are related by the map σ2 → −σ2− 2σ1, as highlighted

by the σ2 = −σ1 line in grey.

As a final remark, let us comment that O(2) slate nicely connects to the space of Z4

S-matrices described in [24] and bootstrapped in [12]. Indeed, by taking two different limits

of the integrable elliptic deformation of [24] the two sine-Gordon solutions at the boundary

of the O(2) slate (γ ≥ 8π and γ ∈ iR+) are recovered.19
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