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1 Introduction

The study of conformal field theories (CFTs) on Euclidean manifolds has proven to be a
remarkable source of structural information about such theories. A paradigmatic example

corresponds to the free energy of CFTs on spherical backgrounds, which plays a central role

in establishing the monotonicity of renormalization group flows in various dimensions [1-7].



On general grounds, the metrics of the corresponding manifolds can be understood as
background fields which couple to the stress-energy tensor of the theory, 7),,. In particular,
the effect of small deformations of the background metric on the partition function is
controlled by integrals of various expectation values involving such operator. Since T}, is
defined for every CFT, such deformations are susceptible of having a universal nature —
and they often do [8-16].

In this paper we are interested in the free energy Fsg = —log |Zgg|, of a particular
class of odd-dimensional backgrounds, usually called “squashed spheres”, which preserve a
SU(%) xU(1) subgroup of the SO(d+1) isometries group of their round counterparts. Just
like those, they are Hopf fibrations over the complex projective space CP¥, St < S¢ — CP*,
where we used the notation k = (d — 1)/2. The corresponding metrics can be defined as

ds2 2
dsdy = 5 4 (14¢) |:d¢+ (jip’;)} : (1.1)
where 1 € [0,27) is a periodic coordinate parametrizing the S, J = dAgpr is the Kéhler
form on CP*, and dsépk is the Einstein metric on CP*, normalized so that R;; = gij.l In
the expressions above, the parameter ¢ measures the degree of squashing of the sphere,
the round case corresponding to € = 0. In general, this parameter can take values in the
domain € € (—1,400).

This kind of backgrounds — which in the d = 3 case are sometimes called “Berger
spheres” [17] — have been often considered in the physics literature in many contexts,
including: general field-theoretical studies [8, 12, 18-21], O(/N) models and higher-spin
theories [22, 23] and holographic cosmology [24-27]. Special mention deserves their role
in AdS/CFT [28-30], where the bulk solutions controlling the corresponding semiclassical
partition functions for such boundary metrics correspond to a well-known and important
family of gravitational solutions, the so-called Euclidean Taub-NUT/bolt metrics [31-38].
They have been also extensively studied for supersymmetric CFTs? — see e.g., [39-47].

Our main interest here will be in the case in which the “squashing-parameter” is small,
le| < 1, so we can understand the corresponding backgrounds as small deformations of the
usual round sphere and consider a perturbative expansion for the free energy around ¢ = 0.
As we review in detail in section 2.1, such expansion starts at quadratic order in &, and
the corresponding coefficient is controlled by the flat-space stress-tensor two-point function
charge Cr for general CFTs, namely [8, 12]

9 1 (d—1)
Fga = Fga + %FS(?(O) +0O(3), where FS(? (0) = (=) -

7Td+1(d _ 1)2
2d!

Cr. (12)

The goal of this paper is to provide strong evidence for similar universal relations concerning
the O(&3) terms and the stress-tensor three-point function charges ¢, and ¢4 valid for general

'The most familiar case corresponds to d = 3, for which CP' = S?, and we can use standard spherical
coordinates to write Agz = 2 cos fd¢ and dS;z = d#? + sin? 6d¢>.

2In that context, Supersymmetry demands the introduction of additional background fields besides the
metric, which makes the resulting free energies inequivalent from the ones considered in this paper — see [§]
for a more detailed discussion concerning this difference.



three- and five-dimensional CFTs. In particular, we will show that the expressions

278C 3 23
:u 14+ —ty+

4
Cr (3)
Ty, E® =2y
4 (0) 15 40727630 1)

(3) oy _
Fey (0)= 630 S2

s3 (1.3)
hold for infinite families of holographic higher-curvature gravities as well as for free fields.?
The very different nature of the holographic and free-field methods utilized makes us con-
fident that they indeed hold for general theories.

The structure of the paper is the following. In section 2 we introduce various previous
results and conjectures involving Fsg for small values of the squashing parameter and its
relation to the flat-space stress-tensor two- and three-point functions. We also review how
those quantities can be computed for holographic higher-curvature gravities. In section 3
we show that the d = 3 version of our conjecture in eq. (1.3) is satisfied by an infinite family
of holographic CFTs dual to general-order GQT gravities. In section 4 we establish our
new conjecture for d = 5 CFTs using holographic results for quartic GQT gravities. Then,
we verify its validity for quintic GQT theories and all-order Quasi-topological gravities.
In section 5 we use a combination of heat-kernel and zeta-function regularization methods
to obtain analytic results for various derivatives of Fg3 and Fgs at € = 0 in the case
of conformally-coupled scalars (d = 3,5) and free fermions (d = 3). We use those to
perform exact verifications of the respective conjectures. We conclude in section 6. In
appendix A, inspired by results obtained for general GQT gravities in section 3, we analyze
a possible general-CFT relation between the scaling dimension of twist operators and Fss,
showing that it fails for free fermions. Another plausible relation, in this case between the
second derivative of the characteristic function determining the vacua of a given higher-
curvature theory and the stress-tensor parameters to and ¢4, conjectured in [12], is explored
in appendix B and argued to be false in general. Finally, appendix C contains some
additional details concerning the quintic GQT theories used in section 4.

Note on conventions. We use latin indices a,b, ..., for bulk tensors and greek indices
p, vy ..., for boundary/CFT tensors, respectively. d is the spacetime dimensionality of
CFTs whereas gravity theories are defined in (d + 1) dimensions. L is the action length
scale associated to the cosmological constant. The radius of generic AdS(4,1) spaces is
denoted by L/\/x. When the background is a solution of the corresponding theory, we
replace x by xo. In the notation of some previous related papers like [54-56], x0 = foo-
Our conventions for the holographic charges Cr, t2 and t4 match e.g., those of [4, 54]. Also,
we use the notation Fs(g ) 0) = dkFSg /de¥|.—o for the k-th derivative of the free energy at
€ = 0. In order to avoid confusion with the twist-operators scaling-dimension, which we
denote by hgq, we use T(xo) instead of h(fs) (used e.g., in [12]) to denote the characteristic
polynomial which determines the AdS vacua of a given bulk theory.

3The strategy of using higher-curvature gravities as computationally tractable holographic toy models
able to teach us lessons concerning universal properties of CFTs has been exploited in various previous works
— see e.g., [4, 5] for results regarding monotonicity theorems or [48-53] for results regarding entanglement-
entropy universal terms.



2 CFTs on slightly squashed spheres

In this section we start by reviewing some previous results and conjectures concerning the
Euclidean partition function of odd-dimensional CFTs on slightly squashed spheres. In
the second part we explain how this quantity is computed for holographic theories dual to
higher-curvature gravities of the GQT class. Finally, we also summarize how the stress-
tensor three-point function charges t5 and t4 can be computed holographically, as well as
their relation to the scaling dimension of twist operators and Rényi entropies for spherical
regions. The methods and results presented in this section will be often called upon (and
they will appear intertwined) throughout the paper, so we have preferred to introduce them
here for the sake of clarity, simply referring to them when necessary in the remainder of
the paper.?

2.1 Previous general results and conjectures

For a CFT on some manifold M with metric g,,, the partition function and associated
free energy are defined as

Z = /D<I> e Iel®ow]  p = _log|Z], (2.1)

where Ig is the Euclidean action, and ® schematically represents the dynamical fields of
the theory.

Our interest here will be on background metrics corresponding to the special class of
squashed spheres defined in the introduction.

For small values of the squashing parameter, |¢| < 1, we can consider a power-series
expansion of Fgg around € = 0,

L (k) k
Fa=Fga+ Y EFS; (0)eF . (2.2)
k=1""
This kind of expansion can be considered with respect to a more general reference metric
G by setting g, = G +€hy, with |e| < 1. Some general results can in fact be obtained
without imposing an explicit form for the perturbation % . In particular, assuming My,

to be conformally flat, it can be shown that [§]
FO) =0, (2.3)

i.e. conformally flat manifolds locally extremize their free energy. Similarly, one can show
that the leading non-vanishing contribution is given by [8]

F(2)(0) = 'Y(gum h/uxa d)Cr, (2.4)

where (g, by, d) is a function of the background metric g,,, the metric perturbation
h,. and the spacetime dimension — see [8] or [9] for the explicit expression. The function

4Besides holographic calculations, later we will also present new results for free scalars and fermions.
The field-theoretical methods utilized for those will be introduced in the corresponding section.



Y(Juvs by, d) is a theory-independent quantity, fully determined by the geometry under
consideration. All theory-dependent information contained in F' &) (0) appears through Cj.
This is the real and positive quantity — for unitary CF'Ts — which characterizes the flat
space two-point function of the stress-energy tensor. Namely, for general CFTs one has [57]

(T (2) Ty (0) o ﬁ;’dzw,pa(x), (2.5)

where Z,,,, ,»() is a fixed tensorial structure.”
In the case of a slightly squashed sphere of the form (1.1), ¥(guw, by, d) was computed
explicitly using general field-theory techniques for d = 3 and d = 5 in [§8], the result being

4 6

FiY(0) = —%CT, F2(0) = +71L50T. (2.7)
These were later generalized to arbitrary dimensions in [12] using holographic results to
produce the expression in eq. (1.2). In the general analysis of [8], it was also shown that
FG) (0) was controlled by certain geometry-dependent integrals involving the two- and
three-point functions of the stress-tensor, (7., (%) Tpo (¥))ga> (T (%) Tpo(y)Tys(2))ga, as
well as an additional term of the form (67}, (x)/09” (y)Twp(2)) M. Similarly to the two-
point function, the stress-tensor three-point function tensorial structure is completely fixed
by conformal symmetry for d-dimensional CFTs up to three theory-dependent numbers,
one of which can be identified with C';. The other two are customarily denoted by ¢ and
t4 using the notation of [58] — see section 2.2.2. For parity-preserving CFTs in d = 3, to
is absent, and the three-point function is fully controlled by C; and t4 alone.

The presence of the third term described in the previous paragraph, along with the
technical complication associated with the general field-theoretical evaluation of the contri-
bution associated with the three-point function, left open the question of whether FS(? (0)
is fully controlled by some universal combination of C;, to and t4 for general CFTs. This
question was partially addressed in [12] using holographic techniques. In that context [28—
30], the semiclassical partition function corresponding to a set of boundary conditions is
dominated by the (d + 1)-dimensional bulk geometry with the smallest Euclidean on-shell
action compatible with such boundary conditions. The relevant geometries in the case
of squashed-sphere boundary metrics of the form (1.1) are those of the Euclidean AdS-
Taub-NUT /bolt family [33-35]. These are characterized by a parameter, n, called “NUT
charge” which, by comparing the boundary metric with eq. (1.1), can be related to the
squashing parameter. For all holographic theories considered in the present paper, the
explicit identification is given by

2
1
w_(Fe) (2.8)
2 (d+1)
5Tts explicit form is
1 0pr0po 2
T 0 (@) = 5 Lp (@)1 (@) + Lo (@) Lop ()] = P22 where Ly (x) = 0y - mfp . (2.6)



where L is the AdS radius of the bulk geometry. Using holographic techniques [35, 36, 56,
59, 60], we can access Fyga for theories defined by their bulk duals through the evaluation
of the regularized FEuclidean on-shell action of the corresponding AdS-Taub-NUT solution.
For small values of the squashing parameter, NUT geometries typically dominate over their
bolt counterparts. This is what happens, for instance, in the case of Einstein gravity, for
which the exact result for Fgg — valid forS ¢ > —(3 4+ v/3)/(3v/3) ~ —0.9107 — produced
by its AdS-Taub-NUT solution is given by [8]

1
FY = FE + §FSE;(2) (0)e2, (2.9)

where FSE;(Q)(O) naturally agrees with the general-CFT result in eq. (1.2), and [54, 61, 62]

d/2  jd-1 P(d—l—Q) a1
si = (=)= 4r(d/2) G Cr 8(d — DI'(d/2)xd+2)/2 G (2.10)

Therefore, the exact Einstein gravity result for the free energy is actually an order-2 poly-
nomial in €, so its small-¢ expansion is trivial and it stops at that order. Until recently,
no additional AdS-Taub-NUT solutions were known in d + 1 = 4 bulk dimensions for any
other metric theories of gravity. However, new solutions of that kind have been recently
constructed in [63] for cubic and quartic higher-order gravities of the so-called Generalized
Quasi-topological (GQT) class [64-77]. Remarkably, the thermodynamic properties of such
solutions can be obtained fully analytically — and nonperturbatively in the higher-order
couplings — in all cases. Using the holographic calculation of ¢4 performed in [56] along
with the free-energy result for the cubic theory — which is the so-called “Einsteinian cubic
gravity” [64-66] — it was conjectured that
(3) 7Oy

F = t 2.11
Do) =" n. (211)

holds for general three-dimensional CFTs [12]. This conjecture was tested using the numer-
ical calculations for a conformally-coupled scalar and a free fermion performed in [8], finding
agreement with eq. (2.11) in both cases. The very different nature of the holographic and
free-field calculations suggests the universal validity of the result and, in particular, that
the (0T, (x)/09"° (y)Twp(2)) m term does not contribute to FS(:?) (0) — or, alternatively,
that it does so in a universal way in terms of C and t4. Similarly, it is natural to speculate
that a similar relation holds in general d between Fg(g) (0) and some linear combination of
Cr, Crts and Crty. Below we will provide strong evidence in those directions for d = 3
and d = 5 theories.

2.2 Holographic calculations for GQT gravities

The goal of this paper is to produce additional evidence in favor of the validity of eq. (2.11)
for general CFTs in d = 3, and to generalize it to higher dimensions. In order to do so, we
will use the holographic dictionary which, as mentioned above, relates the squashed-sphere

6See e.g., [38] for related discussions.



partition function of a given holographic theory to the on-shell action of some AdS-Taub-
NUT bulk solution. In particular, we will consider certain GQT theories allowing for this
kind of solutions. GQT theories are (d + 1)-dimensional higher-curvature modifications of
the Einstein-Hilbert action of the form

1 d(d—1) _
I= /d(d“)fv\/ g1, where L= | TS+ R4 MLTIR | (212)
n
Here, we assumed a negative cosmological constant characterized by some length scale L,
the R, are order-n GQT densities, and the A, are dimensionless couplings.”
Before defining what GQT gravities are, let us consider a pure AdS solution of a general
theory of the form appearing in eq. (2.12). Its Riemann tensor is given by

2x [e ¢d]
cd
Rab — _ﬁé[aéb} y (213)

where we have written the curvature radius L in terms of the action scale L and some other
dimensionless quantity y as L? = L2 /x. Let us denote by L(x) the on-shell Lagrangian
resulting from evaluating £ on a maximally symmetric space (mss) for which eq. (2.13)
holds. In terms of this quantity we define the following “characteristic function”

2
T = 1L ey - 2 ] (2.14)

d(d—1) (d+1)
where L'(x) should be understood as evaluating the Lagrangian density first, and then
taking the derivative of the resulting expression with respect to x.
As shown in [78], imposing a maximally symmetric space to be a solution of eq. (2.12)
for a general higher-curvature theory boils down to imposing

T(x0) =0. (2.15)

While eq. (2.15) is the condition for a certain mss to be a solution of the corresponding the-
ory, we can also consider Y(x) as defined in terms of £(x) in eq. (2.14) “off-shell”, namely,
evaluated for some other argument and without imposing such condition. Whenever we are
considering a possible vacuum of the theory, we will denote the argument of £, T or their
derivatives with respect to x by “xo”. If we take £ to be a linear combination of densities
of the form (2.12), when we evaluate it on a mss satisfying eq. (2.13), T(x) becomes an
order-n polynomial of the form Y(x) = 1 — x + >_, caApnx™ for certain constants c¢,. A
somewhat canonical normalization for the R,y consists then in rescaling the densities as
Rn)y = Rn)/cn, so that T(x) takes the form

TO) =1-x+>_ Anx". (2.16)

"In fact, we often consider the possibility of having several densities at a given order, which entails
including an additional sum over i, running over all densities of order n.



We will be assuming our densities throughout the paper to be normalized in this way
whenever possible. Given this normalization of the densities, the on-shell Lagrangian £(x)
takes the form®

dd-1) [, (d+1) (d+1) .

L0 =Tz |' " @) 2 @12

(2.17)

The function Y(x) will play an important role in our discussion. As a first property,
it was shown in [12] that, for general Einstein-like theories,” the two-point function charge
Cr for holographic theories dual to this kind of bulk theories is given by

Cr = =T'(x0)Cr , (2.18)
where CF is the Einstein gravity result appearing in eq. (2.10).

2.2.1 GQT NUTs free energies and squashed spheres

Most of the above discussion is valid for a general action of the form eq. (2.12). Let us now
restrict ourselves to GQT theories. Their defining property is the following [67, 72, 73].
Consider a general static and spherically symmetric metric of the form

ds? = =N(r)*V(r)dt® + V(r)'dr? + r2d0Q¢, (2.19)

and let Lyy = /—gL| n,v be the effective Lagrangian resulting from the evaluation of
L on (2.19). We say the corresponding theory is of the GQT class if the Euler-Lagrange
equation of V associated to Ly = Ly—1,y is identically satisfied. In that case, one can set
N(r) = 1, and the corresponding solutions satisfy g;g.» = —1. In general, V (r) turns out to
satisfy a second-order differential equation. In some cases, however, this order gets reduced
and V(r) is characterized by an algebraic equation of order n. Theories satisfying this latter
property are called “Quasi-topological (QT) gravities” [55, 74-77, 79-81]. Naturally, from
this perspective, Lovelock theories [82, 83] are in turn a particular subset of QT theories.
GQT theories exist in general dimensions and at arbitrarily high orders in curvature [73],
and they have many interesting properties, such as possessing second-order equations of
motion when linearized around maximally symmetric backgrounds, or the fact that the
thermodynamic properties of their black hole solutions can be computed analytically —
see e.g., [72] for a detailed summary.

For the purposes of this work, the most relevant aspect is that a certain subset of GQT
theories admit solutions of the AdS-Taub-NUT class which are also characterized by a single
function and whose thermodynamic properties can be computed analytically [63, 84, 85].
As explained in [12, 63], the relevant solutions take the general form

ds? = Vips (7) [dr + nA(C]P,k]z + Vg (r) " Hdr?® + [1"2 - n2] ds? (2.20)

CP* »

8Notice the (d+4 1 —2n) factor in the denominator of the last term. This is because order-n densities do
not contribute to the equations of motion of mss in d + 1 = 2n dimensions.

9By “Einstein-like theories” here we mean higher-curvature gravities whose linearized spectrum around
general maximally symmetric spaces only includes the standard transverse and traceless graviton of Einstein
gravity [78].



where n is the NUT charge (not to be confused with the order of the higher-curvature
terms). For even (d+ 1), one can replace CPF by any other (d — 1)-dimensional Kéhler-
Einstein manifold B, and the Taub-NUT /bolt solutions will correspond to U(1) fibrations
over B. Similarly to ¥ in eq. (1.1), 7 is a periodic coordinate parametrizing the U(1),
whose period must be fixed to 5, = 2n(d + 1)7 in order to eliminate the Dirac-Misner
string [86] associated to Aqpr. The fact that the solution should be locally asymptotically
AdS imposes Vppi (1) = r2/L? + O(1) for r — co. From this, it follows that the boundary
metric is indeed conformally equivalent to the squashed-sphere one appearing in eq. (1.1)
with squashing parameter related to the NUT charge through eq. (2.8). In general, there
will be a value of r = ry such that V(ry) = 0. Whenever ry = n the solution is called
a “NUT”, whereas for ry = 1, > n it is a “bolt”. For both types of solutions, imposing
regularity in the bulk fixes V((/:Pk (ru) = 4m/B;. In all cases considered here, the relevant free
energy is the one corresponding to the NUT solution, since it is the one that dominates
the partition function for |e| < 1. In the GQT theories of interest for us, the equations of
motion collapse to a single equation for Vipr(r) which can be integrated once, producing

a second-order equation of the form & [Vm,k (r), (’:Pk (r), Vé’Pk

(7’),7’} = C, where C is an
integration constant proportional to the energy of the solution. In all cases, imposing the
solution to be locally asymptotically AdS 441 as well as regularity in the interior completely

determine it — see [63] for numerous explicit examples.

Now, given some AdS-Taub-NUT solution of this kind for certain GQT gravity, we need
to compute the corresponding Euclidean on-shell action in order to access the free energy
of the dual CFT on a squashed sphere. The standard way of performing such calculation
involves the introduction of generalized versions [87, 88] of the Gibbons-Hawking boundary
term [89, 90] as well as counterterms [35, 36, 59, 60] which render the resulting action
finite. A simplified method which only requires the Einstein gravity boundary term plus
knowledge of Fga — or, equivalently, the quantity customarily denoted a* — valid for
GQTs was introduced in [56] and successfully applied later in [63, 91].

Interestingly, it has been pointed out in [12] that the free energy of all NUT solutions
constructed so far for GQT gravities compatible with the ansatz (2.20) can be computed
using an auxiliary pure AdS 41y with a rescaled radius given by L+/(1 +¢)/xo. Explicitly,
the proposed expression reads

(d+2)

d=1) 71 2 £ d+1
For = (0 Ty E[Z}//((ll:e);]é” | o

where we stress that £ [xo/(1 + €)] should be understood as the corresponding GQT La-
grangian evaluated on a pure AdS of the form eq. (2.13) with x replaced by xo/(1 + ¢).

This formula satisfies a number of consistency checks [12]: i) it reduces to the round-
sphere result valid for general higher-curvature gravities [4, 5, 56, 62, 92] when we set ¢ = 0;
ii) it correctly yields a vanishing result for its first derivative with respect to € at ¢ = 0,
since FS(;) (0) < T(x0) = 05 iii) it also produces the right dependence on Cr for the second
derivative appearing in eq. (1.2), as can be easily verified using eq. (2.18) and eq. (2.10).



Assuming its validity, we can use eq. (2.17) to write explicitly

()T a2 d(d 1)L

COWN[E] /o) G

@+ xo T (d+1)  Aaxp
(d-1)(1+e) 4<(d+1-2n)(1+e)|’

which we conjecture to be valid for general GQT theories admitting AdS-Taub-NUT so-
lutions of the form given by eq. (2.20). The evidence in favor of this conjecture includes

(2.22)

Gauss-Bonnet gravity in general dimensions, cubic and quartic GQTs in d = 3, as well as
a quartic GQT and a quartic QT in d = 5. Below, we will provide additional evidence
for its validity for general-order GQTs in d = 3 and up to n = 5 in d = 5 as well as for
general-dimension and general-order QT gravities.

2.2.2 Stress tensor three-point function, energy fluxes and twist operators

So far, we have reviewed the known general results concerning the free energy of slightly
squashed spheres and the way such quantity is computed for holographic GQT gravities.
Our plan is to study possible universal relations between FS(;:') (0) and the stress-tensor
charges Cr, to and t4, so let us briefly explain now how the latter can be accessed for
holographic higher-curvature gravities.

A standard method for computing to and t4 in holographic theories follows from the
thought experiment proposed in [58]. The idea is to consider an insertion of the stress
tensor O ~ ¥T;; on the vacuum (for some arbitrary constant polarization tensor %),
and then compute the expectation value of the energy flux measured far away from the
perturbation in some direction 7 in the resulting state. Using standard coordinates in
Minkowski space, so that the metric reads ds?> = —dt? + 5ijdxidmj , the energy flux in the
direction 77 is given by

oo
& (M) = lim rdQ/ dtT"; (t,rn")n', (2.23)

r—00 oo

where 72 = §;;2'27. For any CFT, in d > 4, the expectation value of the energy flux in the
excited state O |0) is given by [54, 58]

E erenin® 1 mind|? 2
Lty [ Loy (Lo . . (229)
‘Eijeij d—1 Eijgij d?—1

E(n) =—
(€ @) =
where E is the total energy. Since the tensorial structures appearing in this expression

are completely fixed for any CFT, we can extract the values of t5 and t4 for a given
theory by evaluating (€ (7)) and identifying the coefficients proportional to such structures.
Holographically, this amounts to evaluating the corresponding Euclidean action on the
following perturbation of AdSg,1,'"

) d—2
i =2 [6<y+)W (v',u) (dy™) = dy*dy™ + 3 (dy)” + dos
=1

(2.25)
+ oy (dy™)? 4 2hiadyTdyt + 2hyady™dy? + 2hiady'dy?

0This method has been used to identify t4 and to for holographic theories dual to certain higher-order
gravities in d > 4, including Lovelock [54, 93], cubic QTG [55] and general cubic theories [94].
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where we used coordinates

1 it . x
= - T=gV - T = 2.26
fori=1,2,...,d — 2.

Let us briefly explain this. The metric (2.25) represents two different perturbations
of AdS411. The first line corresponds to a shockwave background which is dual to the
flux operator £(7). As it turns out, the equations of motion for the metric evaluated on
the shockwave ansatz, are exactly the same as for Einstein gravity for a general higher-
curvature theory [95]. They read

d—2
W — L;lauw +Y W =0. (2.27)
=1

One can explicitly check that a solution to this equation is
W(] ud
d—1-
(u? + (" = 99)? + (v* — 43)?)

where y§ = n'/(1 + n?"!) and Wy is a normalization constant that plays no role in the

Wy y?u) =

(2.28)

discussion. The second line of (2.25) represents the metric perturbation dual to the localized
insertions of the energy momentum O for the particular polarization chosen, e.g., €,1,2 = 1.
The remaining components of the perturbation hiy,hy; and hys must be turned on in
order to ensure that the perturbation is transverse V#h,, = 0. The transverse condition
then imposes

1 1 1
87h+1 = iaghgl, 67h+2 = Ealhlz, 07h++ = 5 (81h1+ + 82h2+) . (2.29)

This turns out to be crucial for the calculations, as it typically simplifies rather drastically
the equations of motion of the perturbation h,,. Ignoring interaction terms with the
shockwave, we have

d—2
-1
05 — dTauqb +3 020 —40,0-¢=0, (2.30)

=1

where ¢ = %—Zhlg. All that remains to compute the flux parameters to and t4 is to eval-
uate the corresponding action on the metric (2.25) keeping only terms linear in W and
quadratic in ¢. After using the transverse conditions (2.29), the equations of motion of
the shockwave (2.27) and of ¢ (2.30), and several integrations by parts, the piece of the
on-shell action of interest for us will take the following form

Li5(y )W ¢0_¢
ud—1

1

- d
T6nc | T vdv

Ip =

[ko + koI + ky T4] , (2.31)

where ko, ko and k4 are theory-dependent constants and 75 and Ty are functions that
depend on u, W and its derivatives'! and whose specific form depends on the dimension

"They are homogeneous functions of degree 0 in W, i.e., they are of the form ~ 9*W/W.
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d. These functions, evaluated at the point v = 1,4y’ = 0, are proportional to the tensorial
structures appearing in front of ¢ and ¢4 in the general expression for the expectation value
of the integrated energy flux (2.24), which will finally allow us to obtain the values of ¢y
and t4 for a given higher-curvature theory.

Besides energy fluxes, there exist additional interesting quantities universally connected
with ¢2 and ¢4. This is the case of Rényi entropies S, for spherical entangling regions and —
related to these — the scaling dimension of the “twist” operators whose expectation value
yields the trace of the g-th power of the reduced density matrix involved in the definition
of S;. More precisely, consider some spatial subregion V' and its complement V. The ¢-th
Rényi entropy is defined as [96, 97]

Sy(V) = : i p logTrpl,, ¢>0, (2.32)
where py is the partial-trace density matrix obtained integrating over the degrees of free-
dom in V. The trace Tr P}, can be obtained as the expectation value of certain dimension-
(d — 2) twist operators 7, defined over V' [98-101]. This expectation value is computed
in the symmetric product of ¢ copies of the theory defined on a single copy of the geome-
try, Trp}, = <Tq>q — in contradistinction to the usual replica trick, where one defines the
theory in a manifold which involves ¢ different copies of the geometry sewn together at
0V. The leading singularity in the correlator (7},,7,) defines the conformal dimension of
74 [99, 100, 102]. In particular, if we make an insertion of the stress-tensor near 0V, it can
be argued that such correlator is given — regardless of the geometry of V' — by

hg ¢

(Tuwtq), = oy + subleading, (2.33)

where y is the separation between the insertion of 7}, and 9V, and ¢, is a fixed tensorial
structure.

The most relevant aspect for our purposes is that derivatives of h, and S; evaluated
at ¢ = 1 produce expressions which are related to correlators of the stress energy tensor.
In particular, one finds [52, 100]

o4y 1(d/2)
211421 (d/2)C
2 - _ T 5_ g3 2 _
Oihal oy = ~ T TP+ I T |a(2d — 9° + 2%+ 7d - 2) (2.35)

+(d—2)(d - 3)(d+ 1)(d+2)(2d — 1)ta + (d — 2)(7d3 — 19d* — 8d+8)t4} ,

with similar expressions holding for 9,5,_, and 6§Sq|q:1 [103, 104]. Evaluated for d =3
and d = 5, respectively, 8§hq‘q:1 is given by

B TiCy
5760

d=3 d=5
Oghe|,_, = [420 + 4], OGhy| ) = - ot ——ly

3rtC, [31 3 23
640 |36 40 630} (2.36)

Holographically, both S, and h, are in general much simpler to compute than the
expectation value of the energy flux (£(77)) considered above. Indeed, both quantities can
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be obtained as [2, 99, 100]

S1= =i B@T@ = B@ L, by = g (B~ BQ) . (237
where T', S and E stand, respectively, for the temperature, thermal entropy and energy
of the hyperbolic AdS black hole of the bulk theory considered, R is the radius of the
hyperbolic space, and we defined = = 7,,/Xo/L. On general grounds, one has T'(1) = Tp =
1/(2mR), while z, is defined as the real solution to the equation T'(z4) = Tp/q which reduces
to the Einstein gravity one in the appropriate limit. This means that, given a bulk theory
with a hyperbolic-horizon static black hole solution whose thermodynamic properties we
can compute, the particular linear combination of ¢t and ¢4 appearing in eq. (2.35) can
be obtained using that equation after evaluating h, using eq. (2.37). This is particularly
useful in d = 3. In that case, to is absent, and ¢4 can be obtained from 8§hq|q:1 — this
was the method used in [56] for Einsteinian cubic gravity.

This concludes our extended summary of previous general results and conjectures re-
garding the free energy of slightly squashed spheres as well as of holographic methods for
the computation of such quantity and of the flux parameters ¢t and t4.

3 Three-dimensional holographic CFT's

In this section we compute the thermodynamic properties of hyperbolic black holes for
general-order GQT gravities in d = 3. Using this, we extract t4 from the scaling dimension
of twist operators. Then, we show that the original conjecture (2.11) relating the sublead-
ing term in the slightly squashed-sphere expansion to t4 holds for this infinite family of
holographic higher-curvature gravities.

3.1 General GQT theories

Recently, some of us have shown that GQT gravities exist at all orders in curvature by
providing both recursive and explicit all-order formulas [73]. On the other hand, it is
known that not all GQTGs admit single-function Taub-NUT solutions [63] and, at this
point, we do not possess a full all-order characterization of those theories, for which we
expect the master free-energy formula eq. (2.21) to hold. Nevertheless, we do know that
all such theories are a subset of the GQT class, and in addition, we know that D = 4
GQTGs modify in a unique way the static black hole solutions at every order in curvature.
Therefore, the thermodynamic properties of static black holes in theories admitting single-
function Taub-NUTs are the same as those of ordinary GQTGs. We will use this fact
to compute the entropy and temperature of hyperbolic black holes in theories allowing
for single-function Taub-NUTSs, from where we will extract the scaling dimension of twist
operators, hy, which we will use to obtain t4 for those theories using eq. (2.35).

Let us then consider a general GQT theory involving an infinite number of higher-
derivative terms,

_ 1 4
1_167rG/daj 9

6 0o
ﬁ + R+ E )\nL2n_2R(n) . (3.1)
n=3
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For n = 3 and n = 4 we can choose [63]
1
Ry = -3 [12Racbdedf R} + RYRY R — 12R4pogRR™ + SRgRgRg] , (3.2
1
Riay == 76 | B Ry RS Raygn — SRR R R (3.3)
FSRUR o “Rygna R, + 2R R R 5, Ry

Additional explicit densities for n = 3,...,8 can be found in [105]. For general n, the
densities R(,) are such that they allow for single-function Taub-NUT solutions, whose
existence at arbitrary n is assumed. While we do not have a closed expression for them
for general n, we know that when evaluated on a spherical/planar/hyperbolic black hole
ansatz, they are equivalent to the densities constructed in [73]. Therefore, they produce
the same on-shell actions, equations of motion, and so on.

A general hyperbolic black hole ansatz is given by

dr?

Vi(r)

ds? = —N(r)?V(r)dt* + +72d=2?, where d=? = d#? + sinh?0d¢?, (3.4)
represents the metric of the unit hyperbolic space, and where in principle N (r) and V (r) are
two independent functions. The equations of motion of (3.1) evaluated on the metric (3.4)
were computed in [73], where it was found that they are solved by N(r) = constant, while
V' (r) satisfies an equation which can be most conveniently written by defining

Vi(r) = ﬁf(r) —1. (3.5)
In terms of f(r), it reads
301 _ - Lf/ " 3,3 _ ﬁ a4 Jig _1)..6
ri(1 f)+nZ::3An <f+ 2r> [fr 5 (n=3)rt = =(n—1)r (3.6)
12,.3 ! £, 4
+ fgr [f (6 —Tn+3n*)r* —3L%*(n — 1)n] + f";r n(n—1) (fT‘Q—LQ)] =w?,
where w? is an integration constant related to the total energy — see below.

Assuming a 1/r expansion of the function f in the asymptotic limit, we find the
following result

Vi) —xoe —14 o2 (3.7)

T) = X075 — 3 :

X072 Y7 (xo)rL? r2 )’

where Y is a constant determined from eq. (2.15) and Y(x) is the “characteristic polyno-
mial” defined in eq. (2.14). From this asymptotic solution we can already identify the two

integration constants N and w3. First, we see that the boundary metric at  — oo reads
ds? } = xoN?
bdry lr—so00 12

—de? + L =20 . (3.8)
Xo0V?

Therefore, the 2 + 1 boundary theory lives in the space R x H?, where the radius R of
the hyperbolic factor is L/(y/xolN), so we have N = L/(,/XoR). On the other hand, w? is
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related to the total energy of the spacetime as can be verified using the well-known exten-
sions of the ADM formula to higher-order gravities [106, 107]. Taking into account that
the effective Newton’s constant of the theory in this AdS background is Geg = —G /Y’ (x0),
we obtain w® = 87GL,/xoRE/(Vy), where Vi is the regularized volume of the unit
hyperbolic space [2].

Let us now analyze the behavior of V (r) near the horizon. For that, we assume a series
expansion of the form

Vi(r)= 4?VT (r=rn)+ Y an(r—m)", (3.9)

n=2

near some undetermined point 7 = ry,. In this expansion we are already identifying V' (ry,)
with the temperature of the black hole, which is defined as the inverse of the periodicity
of the Euclidean time 7 = it. When we insert this expansion into eq. (3.6), we obtain an
infinite number of equations for the coefficients of the series above. The first two equations

3

are particularly relevant, since they only involve ry, T and w®. None of the a, appear.

They can be written in a convenient way as follows:

,r.2 T2
m 700 (1= 7x) + T00] = 2700 (22 - 2y + 02T 00 =0, (310

where we have introduced the notation

27T L2
Nr,

(3.11)

These equations can be solved in order to obtain r,, 7" and F in terms of y. We can write
the answers fully in terms of Y (x) as

_ T'(x) 12

=t [XT'(X) = 3T(x)] ’ (3.12)
_ Vigz L? T'(x) 3/2
T 47G\/XoR [XT/(X) — 3T(X)} ), (3.13)

X T'(x) 1/2
g 2m/XoR [XT’(X) - 3T(X)] ‘ (3.14)

Thus, by giving values to x we parametrically generate the different relations E(T"), T'(y),
and so on.!?
Let us now compute the entropy of the solutions using Wald’s formula [113, 114]. This

is given by

oL

S (3.15)

S = -2 / 2V hPopeae®e,  where Ppeg =
H

12Tt is an interesting fact that all these quantities, as well as the entropy, can be written in terms of
the characteristic polynomial Y and its derivatives. A similar phenomenon occurs for Lovelock theories in
general dimensions [108-112], and presumably extends to more general QT and GQT theories. This will
be subject of future study.
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and € is the binormal to the horizon, normalized so that €®’¢,, = —2. For the metric (3.4),
this formula can be simplified to yield

S = 87rr121VHthrt’") . (3.16)

r=rp

We can evaluate this expression using the results in [73], where an explicit expression for
P,pcq was provided. We find

Z )\nn — <L2V/> o <2(v + 1)(2:;) — rv’>

Evaluating this expression at r = r, and introducing the parameter x we can write the

P, 1

entropy in terms of Y(x) as

Vig2 L? T’(X)2 X T”(ac)
iC [3T<x>—xw<x> o ] (3.18)

where we made use of (3.12). It is now possible to check — using (3.18), (3.13) and (3.14)
— that the first law of thermodynamics holds,

S =

dE = TdS. (3.19)

The above expressions analytically capture the thermodynamic properties of an infinite
family of higher-curvature hyperbolic black holes in a remarkably condensed fashion. This
is a manifestation of the special properties of GQT gravities.

With this information at hand, we are ready to evaluate h, from eq. (2.37). Using the
values of the temperature and the energy, given respectively by (3.14) and (3.13), we can
write h, parametrically as

. L>Y' ()Y (x) VX0 T (y) —-1/2
hq = 4Gx(xY'(x) —3Y(x)) » 4= % |:XT,(X) — 3T(X):| . (3.20)

As a check, we see that for y = xo we get ¢ = 1 and h; = 0, as expected on general

grounds. On the other hand, we observe that all derivatives of hy at ¢ = 1 are related to
derivatives of T at yo. In particular, the first and second derivatives read

~ T (xo0) | _ 14T (x0) + TxoT"(x0)
8x0G ’ Oyhq =1 640G

8qh'q‘q=1 = (321)

Then, using relation (2.35), which connects Gghq‘qzl to t4 for general CFTs, we finally
obtain an expression for t4 valid for the infinite class of GQT theories considered. This

T"(xo0)
T'(x0)

It reduces to the one obtained for Einsteinian cubic gravity in [56]. The analogous relation

takes the simple form

t4 = 2100 (3.22)

between Jghg|,_, and Cr given in eq. (2.34) is in turn compatible with the general expres-
sion for Cr given in eq. (2.18), which in d = 3 reads Cr = —3(L/\/X0)?Y (x0)/(x0omG) .
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Now let us consider the holographic free energy for CFTs on squashed spheres. As
we have seen, for all theories in (3.1) such free energy is given by eq. (2.21) evaluated for
d = 3, which reads

472 L* L x0/(1 + ¢€)]
S — — :
3 [w/(1+e)
Expanding this expression around € = 0 and using the relation between the functions £(x)
and Y (x) in (2.14), as well as eq. (2.15), we obtain
TL*Y (x0) 2 7L*Y"(x0) 3

Fys = F 4. 24
53 53 + oIe € Ye e? 4+ 0(e%) (3.24)

(3.23)

Then, using (3.22) and (2.18), we can write this expansion in terms of Cr and t4. The

result reads Corid
T o t4 2
11— — @) 3.25
G € 6306 + 0|, ( )

which is in perfect agreement with the conjectural relation in eq. (2.11) proposed in [12].

FS‘g — FS3 -

As mentioned above, this was originally proposed using the Einsteinian cubic gravity result
and then cross-checked against numerical results [8] corresponding to a free fermion and
a conformally-coupled scalar. The fact that it holds for an infinite family of holographic
higher-order gravities provides strong evidence in favor of its validity for general CFTs.

Before closing the section, let us make an additional observation. In order to obtain
the results above, we used, as an intermediate step, the connection between t; and the
second derivative of the twist operators scaling dimension h,. In fact, our computations
show the existence of an equivalence between Fgz and hy which holds at least for the class
of theories considered here. This is made more explicit if we take the first derivative of
Fs3, which reads

FS(P —

L’ (1+5)T[ X0 ] . (3.26)

Gxo Xo 1+¢
Comparing with eq. (3.20), we observe that both Fs3 and hg are determined by the func-
tion T (x), and hence both contain the same information. Establishing a direct relation
between the two quantities is complicated, but nevertheless we can derive simple relations
between their derivatives. As we show explicitly in appendix A, these relate FS(? (0) to

hgj _1)(1), e hgl)(l). It is very tempting to speculate with the possibility that those rela-
tions may extend to general CFTs. We test this using analytic results for the quantities
involved in the case of a free fermion, and find that the predicted relation between Fg(g) (0)
and h((lg)(l), hgf)(l) and h((ll)(l) — which appears in eq. (A.5) — is not satisfied (the ones for
j =1,2,3 do hold, in agreement with the rest of general results/conjectures of the paper).

4 Five-dimensional holographic CFTs

In this section we use holographic calculations for quartic and quintic GQT theories as well
as QT theories of arbitrary orders to establish a new relation between FS(?(O) and a linear
combination of the stress-tensor three-point charges ¢t and t4, which we conjecture to hold
for general five-dimensional CFTs.
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4.1 Quartic GQT theories

Let us start our study of five-dimensional CFTs by analyzing the quartic theories for
which explicit AdS-Taub-NUT solutions were constructed in [63]. The free energy of those
solutions was also computed in the same paper, and it was later observed [12] that the
resulting expressions match the general formula (2.21). The Euclidean action of the theory
is given by

d®z,/g [20 AapL? 6
Ip = — — —A&+L zZ 4.1
i [Tog | B R e s 402)| (41)

where we have included the usual Gauss-Bonnet density X, = R? — AR R + Rypeg R,
and

—1
8 = 515 |992Ra R Ry Reg + 28Ry R Rea R — 192Ro"R™ Ry R — 108Ry R R?

+ 1008 R R RR yepd + 36 R? Rapea R — 2752 R, R R Ry e

+ 336 RR,%.! R Ryeqr — 168RRup™ R R ger — 1920R™ R,““ Ry 4" R jen,
+ 152R oy R Rege y R + 960R™ Ry Ry’ Rye

— 1504R™ R R Rye 1, + 352Rap R Ree" Ryp

— 2384R,f R Ry ' Ryppi + 4336 Rap™ R R Ry

— 143Ry,° f pabed Rcdhz‘ Refni — 436 Rape” Rabed Ry fhi Refni

+ 2216RaechadeRbhdiRehﬁ — 56RadeRadeRefhiRefh1 , (4.2)

-1
Z= ik 112R,*R® Ry R.y — 36 Ryp R Rog R + 18 Ry R R? — 144R™® R RR b

— 9R?Rapea R + T2R®RR,“™ Rycge + 576 Ry R RY Rygee

— 400RP R R Ryge + 48RR, ! R Ry gp + 160R, R Ry Ry
— 992RR,“* Ry i" Refen + 18 Rap R Rege RS — 8R™ R, Ry Rye g1,
+ 238 Rup™ R R " Rypi — 376 Ry RRY " R s

+1792Rap R R ' Ran i — 4Rap™ R R Re g

— 984 Ry R Ry Ry i + 320R, S R Ry i Ry, fz-] , (4.3)

are two canonically-normalized quartic GQT densities [68]. In particular, Z belongs to the
QT subfamily, as it modifies the equation of f(r) for static black holes algebraically. On
the other hand, S contributes to such equation with up to two derivatives of f(r), so it is
a standard GQT density. As we have mentioned, the free energy of the CFT5 dual to (4.1)
on S was computed in [12, 63]. The result reads

p o TP [2 0 x| Reex 26+ OXS (4.4)
52 % 3 1+e (1+¢?2 (L+eo)t |7 '

in agreement with eq. (2.22).
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In order to identify a possible generalization of eq. (2.11) valid for d = 5 CFTs, we
should expand eq. (4.4) around ¢ = 0 and express the third derivative,

o) — A L* (14 3x5(6 +¢))

, 45
52 % o

in terms of a linear combination of C;, Crto and Crty. The two-point function charge C'r
is given by the general formula (2.18), and therefore reads

4
Cr = [1 = 2x0Aes — x5 (x + )] W : (4.6)

On the other hand, in order to compute t3 and t4, we use the holographic energy-flux

calculation described in section 2.2.2. Evaluating the action (4.1) on-shell for the perturbed
metric (2.25), we obtain, after some massaging,

1 LAW 02
Ip=— /df’ydu‘f‘ZS 1 —2X\geXxo — 4 (E+O) x5
167G U (4.7)
\ .
+ (BXO + (26 - 1820) x3> T - 36<X3T4} ,
where
u? (92W + 02W) — 2u 8, W
Ty = (%1 ?}V ) : (4.8)
Ty = o? BW + 10,W/u—4 (W + 93W) B 0uO?W + 0,03W — ud2oIW @)
w w
Evaluating Ty and Ty for W given by eq. (2.28) we get
ORI i ki S Y P S (4.10)
2= 2 a0 T CAETIE ‘

Plugging this result in the action and comparing with eq. (2.24), we read off the flux
parameters. The result is
40 Aanxo + (6§ — 546¢) xg 15120 O
= -_— 5 4 == .
3 [1=2Xanxo — 4 (6 + ) x§] [1 = 2Xcnxo — 4 (6 +¢) x{]

This reduces to the Gauss-Bonnet result for ¢ = & =0 [54].
As a consistency check, we have considered the hyperbolic black holes of the theory

t2 (4.11)

and obtained the following expression for the twist-operator scaling dimension near ¢ = 1,

[1—2x0hee — 3+ O] (L//X0)*

he =+ 16G = -
B [31 — 26x0AcB + 5;?)263655 + C)] (L/\/%)4 (q—1)2+0(qg—1)3.

Comparing with eq. (2.34) and eq. (2.35), we find that the values of t2 and ¢4 obtained in
eq. (4.11) agree with this expression.
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Having computed t9 and t4, we are ready to write the desired expansion for Fss. One
can check that, indeed, it is possible to express (4.5) as a combination of Cy, Crty and
Crts.' This is a nontrivial fact which was not guaranteed a priori. Thus, the expansion
of Fgs up to cubic order in ¢ reads

Crmb 9 Crmd 3

23
14 —tg + —t4]| 4. 4.1
30€+ 15 +402+63045+O(5) (4.13)

FS? = FSS +

Naturally, the leading correction to the round-sphere result agrees with the general-CFT
one appearing in eq. (2.7). On the other hand, the subleading piece is a new prediction
which we conjecture to be valid for general theories. The rest of the section will be devoted
to testing this conjecture. We observe that while the constant piece differs, the relative
coefficients between the to and ¢4 terms precisely agree with the ones appearing in 83 hq ‘d:i)
— see eq. (2.36). This intriguing coincidence implies that we can test eq. (4.13) for addi-
tional higher-curvature theories without computing ¢2 and t4 separately. We can instead
evaluate hg, identify the linear combination 3ts/40 + 23t4/630, and then verify whether or
not Fygs satisfies eq. (4.13) for the corresponding theory.

4.2 Quintic GQT theories

Unfortunately, we do not have at our disposal a complete understanding of all the possible
GQT theories admitting Taub-NUT solutions in d = 5. Moreover, as we are going to see,
for d > 3 there exist multiple distinct GQT theories at a given order n > 3.'* eq. (4.13),
here we consider quintic gravities admitting Taub-NUT solutions.

Our approach for constructing the quintic theories is in line with previous methods
outlined in, e.g., [71, 105]. We begin with a basis of invariants including terms up to
quintic order in curvature — see appendix C. We construct from these invariants the most
general combination that is quintic in curvature and then constrain the couplings so that
the theory admits single-function Taub-NUT solutions of the form (2.20). This amounts
to imposing §1/V = 0 on the action. After imposing this condition, we evaluate the same
Lagrangian density on a static, spherically symmetric background. This allows the theories
to be classified as either QT or GQT. We find that the theories decouple into three objects:
a QT gravity, and two distinct GQTGs (in the sense that the field equations following from
these densities are independent). We restrict our attention now to the GQT theories — a
general treatment of the QT case will appear in the next subsection. Including only the
Einstein-Hilbert piece along with the quintic GQTG terms, the action reads

1

Ip=——"—r
E 167G

20
d®z/1g] [LQ + R+ L (BQ1+pQs)| (4.14)
where the canonically-normalized densities Q; and Qs are presented in appendix C.

We have computed the field equations for this theory evaluated on the Taub-NUT
ansatz, however, for our purposes here it will not be necessary to perform an analysis of

13To show this one needs to take into account the embedding equation satisfied by xo: 1 — xo0 + AcsXE +

(€+xo =0.
4This is a feature which had been previously overlooked in the literature.
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the solutions of these field equations to the level of detail presented in [63]. Furthermore,
due to the sheer complexity of the resulting expressions we do not present them here. It
is possible to compute the free energy of Taub-NUT solutions in these theories using the
techniques of [56] with the modifications described in [63]. For this we need only know
that, in the vicinity of the NUT, the behavior of the metric function is

r—nm

5 +Or - n)?. (4.15)

Vepz(r) =

A simple, if somewhat tedious, computation making use of the Euclidean on-shell action
reveals that the conjectural formula for the free energy holds also for the quintic theories
included here, that is

Fg = - -

T L1+ 2 xo  (B+wxd
- . (4.16)
Gx; 3 1+4¢ (1+¢)

From this we can easily extract the third derivative:

FO(0) = Am? LY (1 +5(n+ B)xg _ _4772(Lé\/%)4T/(X0) [ xo 1" (xo)

1 A0
82 3G 2 Y'(xo)

] . (417

where in the second line we wrote the result in terms of the embedding function, T(x) =
1—x+ (B4 ux°

In order to test the validity of eq. (4.13), we must have at hand the flux parameters for
these theories. We will access the relevant linear combination from the second derivative
of hg, as described above. For this, we need an understanding of the thermodynamics of
hyperbolic black holes. These are described by the following metric,

2

dr? _ T
ds® = —N(r)?V (r)dt? + +r2d=y,, V() = ﬁf(r) +k, (4.18)

Vi(r)

where now dEa) is the metric of the unit four-dimensional hyperbolic space H*. The field
equations are reduced to a single equation for f which reads

5 L2
—=1-f(r)+ e (nFo, + BFo,] (4.19)

where the quintic contributions to the field equations are presented in the appendix and
w is proportional to the ADM energy of the solution. On the other hand, N = constant,
as usual.

From these equations, the computation of h, proceeds in exactly the same fashion as
in the previous sections. For brevity, here we note only that the intermediate result for
x4 reads

B _ _1)\2
s 4 = 128(12X04xo5)_(% U o -1y, (4.20)

which is used in arriving at the final result for the second derivative of h,. We find

i~ B BIT 00 — 56T ()
1 lg=1 256x3G ’

(4.21)
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where again we wrote the result in terms of derivatives of the characteristic function Y.
Using eq. (2.36) we then solve for the combination

3 23 xo T (x0)
—ty + ——ty = —— . 4.22
107" 630" 2 T'(x0) (4.22)
Using this in the result for the free energy we can see that the quintic theories predict
210Crp 3 23
FP(0) = 14—ty + ——t 123
e T T L Tk (4.23)

in precise agreement with the result obtained for the quartic ones in the previous subsection.

4.3 General QT theories

As we have emphasized before, the equations of motion of QT theories evaluated on static
black hole solutions with various horizon topologies are algebraic for the metric function,
and particularly simple [68, 74-77]. In particular, consider a general (d + 1)-dimensional
QT action of the form

/dd+1£€\/§
Ip = —
167G

d(d—1)
L2

+R+ DY MLz (4.24)

where the Z,,) are order-n QT densities. These were explicitly shown to exist for arbitrary
n in [73] — see that paper for an explicit formula for Z,.
The equations of motion for an ansatz of the form

2

dr 2
2 _ 2 2 2 152 _
ds® = —N(r)*V(r)dt” + Vi +rodEy,, Vir) = ﬁf(r) +k, (4.25)
where dZ?k) denotes the arc element of a unit (d — 1)-dimensional sphere/hyperbolic
plane/Euclidean space for k = 1, —1, 0 respectively, reduce to N = constant, and

w?

=10+ D M f ()", (4.26)

where the integration constant is related to the ADM energy of the solution [107, 115-
117] as
(d—1)wiN Vs
E=—7"—">-—. 4.27
167G L? (4.27)
In terms of the characteristic function defined in eq. (2.14), the above equation takes an

even simpler form, namely

SP=00, where x=f(r). (4.28)

Considering a near-horizon expansion of f(r) as in eq. (3.9), we obtain two equations for
w and T', which read

wl=riT(x), T= 5 | (4.29)

N k+drhT(Xh)
rno 2020 (xn) |’
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where here x, = f(r,) = —L2k/7“}21. These expressions properly reduce to the previously
known ones corresponding to: n = 3 for general d [74, 75], n = 4 for general d [68, 76], and
n=>5ind=4[77].

Let us now see what happens with the entropy. For this, we use Wald’s formula
eq. (3.15). As before, we only need P, which can be obtained from the general expression
for P computed in [73]. We find

P, = ~5 gy S = —4nVery v ) (4.30)
where for QT gravities one finds
acly 1 | Lt Vard=t 1 16xL2
ovr ~ it g | T S e Taa n f ) (4.31)

This reproduces all the particular cases previously studied in [68, 74-77]. Using the above
expressions it is possible to verify that the first law is satisfied, as it should. Naturally,
all expressions can be straightforwardly written in terms of the A, for a general QT La-
grangian (4.24) using eq. (2.16) as usual.

The above expressions for F, T and S are valid for general-order QT theories in
arbitrary dimensions. Let us now go back to our original motivations — namely, obtaining
hq for five-dimensional CFTs dual to QT theories — and therefore set k¥ = —1 and N =
L/(y/XoR). We will keep d general and set d = 5 at the end.

The equation which determines x4, T'(z4) = 7To/q, can be obtained easily from
eq. (4.29). The result is

2X0 | % /| X0 X0
0=—"45|—-1|7T"|% TI(5 . 4.32
dx? { q } 2 * 2 (4:32)

In each case, one should select the real root which reduces to the Einstein gravity result
when all higher-order couplings are set to zero. On the other hand, the expression for h,
can be obtained from eq. (2.37). We find

d d—1
qzg(L/\/Xo) X0
hy = ——12 T 4.33
7 8Gx0 2 (4.33)
Expanding around ¢ = 1, one finds for z,
-1 d[(2d —3)Y’ —2x0Y”

(d—-1) 2(d —1)°Y"(x0)

Using this and eq. (4.33), we can also obtain an explicit expression for h, perturbatively
around ¢ = 1. The result for the first nonvanishing terms reads
(L/ vV XO)di1 /
Ogh =—> =" -7 4.35
q q‘ =1 4G(d— 1) [ (X())] ) ( )
(L/y/X0)*

Pl = g = 1y [CF = 4+ DT (x0) = 22 = Do (x0)] (4.36)
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Comparing with eq. (2.34) and eq. (2.18) we observe that Oghg|,_, agrees with the general
formulas. On the other hand, comparing the result for 8§hq|q:1 with eq. (2.35), we obtain
the following result

(7d® — 19d? — 8d + 8) 2d(d —1)xo Y"(xo0)

B A DA+ 29— DT T d=-2)[d-3) T'(x) (4.37)

which particularized to d = 5 becomes again

3 23 xo Y (xo)
— ity + —ty = — . 4.38
107" 630" 2 T'(x0) (4.38)
Now, expanding the general holographic formula eq. (2.21) around ¢ = 0 we find
2 4 "
3) —4m*(L/\/X0)" xo0 T"(xo)
F, = T 1—= . 4.

This is expected to hold for all GQT theories admitting single-function AdS-Taub-NUT
solutions, including the QT theories considered here. Therefore, using eq. (4.38) and
eq. (2.18) we are finally left with eq. (4.13), i.e. we find perfect agreement with our conjec-
tural relation.

5 Free fields

The three-dimensional conjectural relation eq. (2.11) was shown to hold numerically both
for the scalar and the fermion in [12]. Here we confirm this expectation by computing
FS(? (0) analytically in both cases. We also verify that the five-dimensional conformally-
coupled scalar exactly verifies our new conjectural relation in eq. (4.13), providing strong
evidence for its validity. In addition, we explain how higher-(and lower-)order derivatives
FS(?(O) can be obtained analytically in all cases. We use a combination of heat-kernel and
zeta-function regularization methods to obtain our results.

The starting point is the free energy of conformally-coupled scalars and free Dirac

fermions on an arbitrary Euclidean background and in general dimensions. This can be

written as 1
s __ (__1)\2s
Fé=(-1) 203 logdet ®,, (5.1)
where s = 0 for scalars and s = 1/2 for fermions and where
B S C ) _
= . < = .2
Do \4 +4(d_1)R7 91/2 Z¢7 (5 )

are the conformal Laplacian and the Dirac operator respectively. This expression follows
from the corresponding partition functions,

d—2)

Zo = / P Tt Lo = e A / Dy e evalt @] - (53)

In F* there is an implicit scale, which can be made manifest by introducing a UV cutoff,
Dy — Ds/A2079). Let us denote by )\ﬁi)qhq%” and mgf,élm,_,, the eigenvalues and corre-
sponding multiplicities of the operator . For general manifolds, those will involve several
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“quantum numbers”, n,qi,qs, ..., which for the rest of the subsection and the following
we will collectively denote simply by 4. If we know the eigenvalues and their multiplicities,
F® can be formally written as

S S 1
F* = (—1)? Wzm log A; , (5.4)

where the sum over ¢ schematically represents sums over all indices and where the UV cutoff
appears hidden but can be easily reintroduced by A\; — \;/ A2(1=5) " The above expression
is divergent in general, and therefore requires regularization.

5.1 Heat-kernel and zeta-function regularizations

Besides eq. (5.4), we can represent F* in additional ways, which can be useful for different
purposes. For instance, we can define a “heat-kernel”

=S me Y (5.5)
and then write — see e.g., [8, 24, 38, 118],

(_1)(2S+1) /OO dt (_1)(25+1) /OO dt _t)\(25+1)
Foo ot | K=oty my | e N :
Tz 1) Jye 1D T 0w s 4 1) zi:m ae L >0

which behaves as

/ ‘ff Y (254 1) log /820 00 A2), (5)
A~ 2

for \; < A2(1=9) where v is the Euler-Mascheroni constant, whereas

/oo %670\523“) _ e*)\gzﬁl)/m [AQ//\(Zerl) + O<A4/)\2(25+1)) 7 (5.8)
A2

for \; > A2(=9)_ Therefore, eq. (5.6) computes the required sum for modes smaller than
A, while cutting it off exponentially above it.
We can also define a “spectral zeta function” [119] associated to D

Z ¥ (5.9)

which converges for sufficiently large p. Formally we have

Ch(p Z m;log \; , (5.10)

which, comparing with eq. (5.4) makes the connection with F** obvious. The objective,
then, is to perform an analytic continuation of the spectral zeta function to obtain an
expression valid at p = 0 so that the derivative can be computed. The analytic continuation
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is facilitated by the heat kernel defined in eq. (5.5), which is related to the spectral zeta
function via a Mellin transform

G(p) = Co(p)T(p) = /0 T K (e (5.11)

From the left-hand side of this expression, noting the asymptotic form of the gamma
function, we have

6) = 22 —65(0) + 6(0) + O, (5.12)

and so we are able to extract the values of (p(0) and (5(0). On general grounds we know
that the heat kernel will possess divergent pieces in the ¢t — 0 (A — o0) limit of the form

(@+1)/2
K(t) = Z ago—xt” T+ O(1), (5.13)
k=0

and, as a result, the integral for G(p) is only well-behaved for p > d/2. To obtain an
analytical continuation valid at p = 0 we follow [119, 120], dividing the integration domain
into intervals [0, 1], [1,00) while adding and subtracting the divergent parts. The final
result is

1 (dt1)/2 (@r/2 _ Gdj2-k >
G(p) = ¢ d/24k | yp—1 / dtK ()P,
0= a [ - Y + 3 ) Ko

(5.14)
We note that G(p) has no pole at p = 0 and therefore conclude that (o(0) = 0. Then,
the p = 0 value of G(p) will yield directly (4 (0). In all the cases we consider below, the
entire contribution arises from the 0-limit of the first integral with all the additional terms
cancelling amongst themselves.

5.2 Three-dimensional CFTs

Let us now particularize the discussion to three-dimensional squashed spheres. The eigen-
values of the conformal Laplacian on S? are given by [18, 24]

en—2¢)2 (3—¢)
(1+¢) + 4

A0 () =n(n+2) - (5.15)

withn =0,2,... and ¢ =0,1,...,n. The degeneracies are m( ) =n+ 1.
For the fermion, one has in turn [18, 121, 122]

Plley=vite i2\/"2j;14%”_q), (5.16)

where n and ¢ are integers. For the positive branch, denoted by “47, n takes values from

1 to oo and ¢ from 0 to n, whereas for the negative branch, denoted by “—”, n goes from

(1/2) _

2 to oo and ¢ from 1 to n — 1. The degeneracies are m,, ,"4 = n for both branches. Sum
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over both of them must be performed when evaluating Fglg/ 2, Hence, the corresponding free
energies can be written as

1 (e.) n
Fgy =+5 ) ) (n+1DlogAD)(e), (5.17)

n=0 ¢g=0

= Z Z nlog A7) (e) + Z Z nlog \\7% (o) |, (5.18)

n=1 g=0 n=2qg=1

and analogous expressions can be written for the heat-kernel in eq. (5.6). While obtaining
analytic expressions for the regularized parts of FSOg and Fglg/ ? seems to be a very difficult
problem, our goal here will be to compute analytically the values of the coefficients appear-
ing in the respective expansions around € = 0. In particular, this will allow us to perform
exact tests of our conjectural relation eq. (2.11). We will consider different methods.

1. One possibility is to use expressions (5.17) and (5.18) or, alternatively, their heat-
kernel versions, ignore the infinite sums, take derivatives of the general term, evaluate them
at ¢ = 0, and only then, deal with the sums. Doing this, one finds schematically

s(k ) sz [ 1og AL (e )}

up to obvious details in each case. We find that for general values of k, the sums over ¢ can

, (5.19)
e=0

always be performed once we have evaluated the resulting general terms at € = 0. We are
then left with the infinite sums over n, which are divergent. In order to deal with those,
there exist different strategies. One of them consists in performing the sums up to some
finite value r, and then expand the result around r — oo, extracting the constant piece.
One may worry that the universal contribution may appear polluted by spurious additional
constants which depend on the regularization. In order to isolate those, one possibility is
to redefine the summation index n — [ = n + k for some fixed k, replacing the lower limit
of the sum accordingly — e.g., if we have >_>° ; g(n), we can consider instead Z?i] g(l—7).
Those constants which fluctuate as we change j cannot be universal, while those which do
not, do have chance. In some cases, the resulting sums over n can be written as linear
combinations of Riemann’s zeta functions, whose analytic continuations can then be used
to deal with the divergent parts and produce finite answers.

2. A second alternative consists in taking derivatives of (%5 (0) — as defined in terms of
the spectral zeta function in eq. (5.9) — with respect to ¢ and then evaluating this quantity
for € = 0 using the expression (5.14) in terms of the heat kernel. In order to do this in
practice, we need to evaluate the divergent terms appearing in the heat kernel for small
t,1° plug the resulting expression in (5.14) and then evaluate for s — 0.

3. Finally, we can actually use full-fledged numerical results for F§g and extract the

derivatives Fssig(k)(O) within the precision allowed by the numerics. This was the method

followed in [12] to obtain FS(?)(O) for the scalar and the fermion.

15Tn the cases at hand these can be obtained via the Euler-Maclaurin formula.
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5.2.1 Conformally-coupled scalar

Let us consider first the conformally-coupled scalar. Using the first method described
above, we find (we omit the “s = 0” label to avoid the clutter in the following expressions)

V(0) = +% ni)(n +1) qnzo iizggi (5.20)
L :°O<n £, (521)
0% | -3 o
g Vot

Ll nz 1) q" [AMEE; B 3A;1§:2>(3’31,2q(0) . 2;3;(1((0(;)33 (5.24)

30y = L (n 4 1)%(105 + 4n(2 + n)(2687 + 12n(2 + n)(165 + 76n(2 + n))))
©=31 Z (3+4n(2 +n))3 ’

(5.25)

and so on. The same sums are obtained using the heat-kernel as defined in eq. (5.6).
As anticipated, all the above expressions are divergent and require some treatment. For
instance, the first derivative can be readily rewritten in terms of Riemann’s zeta as

F3;)(0) = —%g(—z) . (5.26)

The argument —2 corresponds to a “trivial” zero of the zeta function, so this evaluates to
FS%)(O) = 0, as expected. Performing the sum up to some value r for different redefinitions
of the summation index n and expanding around r — oo — as described in the previous
subsection — we can extract the corresponding universal contributions analytically. The
results appear summarized in table 1 up to k = 5. In particular, we obtain

2

2
e ) ™
; =—— . = —. 2

Now, in our conventions, [54, 57]

3

Chr=——
T 3ox2”

ty = +4, (5.28)
for a conformally-coupled scalar in d = 3, so one immediately verifies that both eq. (2.7)
and the conjectural relation eq. (2.11) are exactly satisfied.

The fact that the results obtained using this method are consistent with the general
expectations for FS% )(O) and FS(? (0) and produce a value of FS(?(O) in agreement with our
conjecture gives us confidence that the method works well also for higher-order derivatives.
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1 2 3 4 5 6
FP0) | E20) [ 90 | ED ) F(0) F(0)

Scalar 0 _n? w2 628772 _ 737* | 96256772 _ 390059n* | 19800383672 _ 134266337x* _ 37801x°
32 1680 560 64 924 3696 1001 16016 32

2 2 2 4 2 4 2 4 6

- _n2 _ a2 631372 _ 73w 96397372 _ 390721x 39615369872 _ 1343820437% _ 37801
Fermion 0 16 340 280 32 162 1848 1001 8008 16

Table 1. Values of derivatives of Fgs with respect to the squashing parameter € evaluated at € = 0
for a conformally-coupled scalar and a free fermion.

A sanity check can be nonetheless performed using the second method described above.
To proceed we must identify the divergent terms in the small ¢ behavior of the heat kernel.
These can be obtained via the Euler-Maclaurin formula and we find that

_Vm/i+e[ 1 g—3+ (15 — 10e + 87e%)V/t

K(t - O(t) . 5.29
Q 4 32 12Vt 480 o0 (5.29)
The free energy is given by — see discussion around eq. (5.12) above,
Fg = L = 1G
53 = *§C(0)(0) =3 0), (5.30)

where the subindex in the spectral zeta function refers to the spin of the conformally-
coupled scalar field. To obtain the derivatives of the free energy with respect to the
squashing parameter we simply differentiate the spectral zeta function with respect to € and
evaluate the resulting contributions. For example, for the first derivative after some simple
algebraic manipulations — including summing over the multiplicities of the eigenvalues —
we obtain

le) —71 {i(n—l—l)Qexp{_t@njL?l)l(Qn%—l)] \/7?[1 1 \/,g]

ERTR RN AT
(5.31)
For any finite value of ¢ the sum converges rapidly provided one goes to large enough
(but finite) n. Obtaining the value of the sum when ¢ = 0 would require including the full
infinity of terms. However, there are a couple of ways by which we can extract this relevant
part. We will illustrate some of these considerations for FS% )(O) but note that they have to
be adjusted accordingly for each derivative. First let us note that, by analyzing the large-n
limit of the sum we see that the terms behave as e~(3+2M% L O(n=1). This means that
the large n terms have magnitude of 10™* when (assuming ¢ is small) nyax ~ aln10/(2t).
Next, note that viewed as a function of ¢ the sum behaves as sum = result + O(t#) and
thus we can obtain more accurate approximations to the result by including many terms in
the sum and analyzing its behavior as a function of ¢ for small ¢.' As we make ¢ smaller,
we will obtain more correct digits in the value of the result. For example, in the present
case, we find: Fy)(0) = —1.923247536 x 10710 with ¢ = 1074, npax = 10% F)(0) =

16Tn the case of the first derivative, we can also use the Euler-Maclaurin formula to deduce that the
first correction behaves like t°/2, allowing for a more careful check of the convergence. However, for the
higher-order derivatives, the integrals required in the Euler-Maclaurin formula cannot be obtained in closed
form, and therefore this double check is less useful in those cases.
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~1.923235636 x 1073 with ¢ = 1076, Ny = 10° and Fy(0) = —1.923235517 x 10716

with ¢t = 1078, nmax = 10°. The result is consistent with FS(:P(O) = 0, which we know to

be true on general grounds, and we also obtained using the first method.

We present the results for the higher-order derivatives of the free energy with less
detailed discussion, but the general idea of the analysis is the same. We have

F3(0)
1. 2 [(n 4 1)2(112n* 4 448n3 + 592n% 4 288n — 15)
=5 lim Z 2 2
210 | = 15(2n +3)%2(2n+1)
_ t(n+1)*(16n" + 64n° + 560 — 16n + 5) o _t(2n+3)(2n +1)
20(2n +3)(2n + 1) P 4
N 7 6414/t
Y =t —— 5.32
o4 | " 4Vt T T60 ’ (5:32)
E(0)
. LI i —2(3648n5+21888n° +51696n* +60864n3 +42428n2 4214960+ 105)
2150 (2n+1)3(2n + 3)3

n=0

N t(3072n5 + 18432n° 4 39024n* + 3321613 + 1672n? — 139361 — 105)
210(2n + 3)2(2n + 1)2
t2(960n5 + 5760n° + 8688n* — 3648n3 — 7132n? + 8392n + 105)
B 1680(2n + 3)(2n + 1) ]
_t(2n+3)(2n+1)] +ﬁ [1+5 B 731\/1 }
4 16 [13/2 4yt 160 '

x (n+1)%exp [ (5.33)

Evaluating each of these sums with the same method illustrated for the first derivative,
we obtain numerical results completely consistent with the ones obtained using the first
method and presented in eq. (5.27). We have also confirmed the values of the fourth and
fifth derivatives presented in table 1, although the corresponding sums for those terms are
more complicated than they are illuminating and so we do not present them here.

5.2.2 Free fermion

Let us now consider the free fermion. Using the first method we find,

1 [o¢] [o¢]
FS(;(O) =5 [Z n(n+1)+ > n(n— 1)] : (5.34)
n=1 n=2
—1 | (8 +32n + 2502 + 4503 + 72n* 4 28n°)
2 — —L ( .
s (0 =55 nzl n(1 + 2n)? (5.35)

N i (—8 4+ 32n — 25n% + 4513 — 72n* + 28n9)
n(1l —2n)? ’
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3) 1 i (120 + 720n + 1280n* — 581n" 4 525n° 4 1350n° + 1380n" + 4561°)

105 | & n3(1+2n)3
N i (120 — 720n 4 1280n2 — 581n* — 525n° + 13500 — 1380n7 + 456n%)
—~ n3(—1+ 2n)3

(5.36)

Just like for the scalar, the same sums are obtained using the heat-kernel as defined in
eq. (5.6). Using the first method described above, we obtain FS(?(O) = 0. In the case of
the fermion, we have [54, 57]

3

Cr = 1622 ty=—4, (5.37)
so based on eq. (2.7) and eq. (2.11) we expect
) ™ e m?
Fg3 (0) = 16 Fg; (0) = ~%40" (5.38)

From this, we exactly obtain the expected result for FS(? (0). On the other hand, for

Fg(g ) (0) we find that the above result appears polluted by an additional constant which does
not disappear as we make redefinitions of the summation index. A similar phenomenon
occurs for the higher-order derivatives. Hence, carrying out the zeta function regularization
method in this case becomes particularly useful.

In the case of the fermion, since the eigenvalues come in two branches, we must define
spectral zeta functions for each branch, which we denote as ( and (_. The zeta function
for the squared Dirac operator, from which the effective action is derived, is then

Ciya(s) = C1(25) + ¢~ (2s) . (5.39)

The analytic continuation of (; /2(5) then proceeds in exactly the same way as above and
we have 1 1

Fgs = —id/z(o) =—5G(0). (5.40)

The basic method of evaluation is mostly identical. We require the divergent expansion of
the heat kernel which in this case takes the form

m(l4+e)[ 1 2(e-3)

K(t) = Y0 — [W 12%] +Ot%?). (5.41)

We then obtain (convergent) sums in the same manner as for the scalar. However, in
this case we find that the convergence is less rapid than for the scalar. To overcome this
difficulty, we evaluate the relevant sums for several values of t ranging from ¢ = 1071 to
t = 1074, fit the resulting data to a form

d"FL (t,¢)

o = F4(0) + > bit?, (5.42)

e=0
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and then extract the ¢ — 0 behavior from the fit. This allows us to reach precisions of
order 10710 or better. Here, for these evaluations, we include up to 5 x 10° terms in the
sums, which guarantees strong convergence for these values of t.

Now, let us consider explicitly the first three derivatives. For simplicity of presenta-
tion we have combined the sums for the positive and negative branches by redefining the
summation index for the latter by n — n + 1 (this is perfectly justified since the sum is
convergent for any finite ¢). We have:

R0 == Sl {5 nto e e 2] 5 [+ 2}

n=1

1 2 N (2808 + 84n° + 77n* + 14n® + 13n® + 20n + 4
Fg(g)(())z—flim —E (28n° + 84n” + 77n” + n+2n+ n+4)
2 2t—=0 | 15 = TL(?”L—i—l)(l—i—Zn)
4 3 2 o VT [ 1 14
—t(12n" 4+ 24n° + 11n° —n — 16)) exp [—t(1 +2n)*] — 0% [753/2 viie
(3) 1 2 — 1
3 . " . . .
Fgy'(0) = — 5 lim ¢ — — 456010 — 2280n° — 4518n° — 4392
52 (0) =— 5 lim {105;::1 <n3(n+1)3(1+2n)2( n n n n

— 1348n° + 1752n° 4 802n* — 1880n° — 2120n? — 840n — 120)
N 2t(192n8 + 768n" + 101718 + 363n° + 1450 + 581n3 — 324n? — 682n — 240)

n?(n+ 1)2
t2(1 + 2n)%(60n° + 180n° + 87nt — 126n® — 397n? — 304n + 640)
n(n+1)
0o VT 110

Using the analysis described above, we find the following fits:

F3)(0) = —1.547434165 x 10~'2 4+ 0.0000001115593597 v/ — 0.001285814355 ¢ + 3.0¢%/2
F3)(0) = —0.6168502751 + 0.9453088555 v/t — 0.001555923570 ¢ + 3.0/

F3(0) = —0.01174952914 + 1.417966266 v/ — 0.01252516826 ¢ + 3.0¢%/2 (5.44)

where here we have included coefficients with 10 digits of precision but in the actual compu-
tations we have worked to 100 digits. The results for FS(?} ) (0) and FS(? (0) are consistent with

the expected values, whereas the one for FS(? (0) exactly agrees with the expectation based
on our conjectural relation in eq. (2.11) (which using the first method we had obtained
analytically but polluted with an additional spurious constant). Proceeding similarly with
the higher-order derivatives we can identify which of the constants obtained analytically
using the first method are universal and which ones are spurious. The final values appear
presented in table 1.

5.3 Five-dimensional CFTs

Let us now move to five dimensions. In this case we will restrict ourselves to the case of
the conformally-coupled scalar.
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5.3.1 Conformally-coupled scalar

The eigenvalues and multiplicities of the conformal Laplace operator on S? read [8]

e(n—1-2¢° 3

A ()= —1)(n+3) - 079 169, (5.45)

2 b
where the integers n and ¢ obey n > 1 and 0 < g < n — 1 respectively. Therefore, we can
write the free energy as

oo n—1

Fg = +5 Z > mP) log AL)(e) . (5.47)

nlqO

Proceeding analogously to three-dimensional scalar and fermion cases, we find using the
first method described above

> —n n 2 n
Fi(0) =Y irniern), (5.48)
n=1
@)y o= n(1 4 n)2(2 4+ n) (= 1131 + 160(2 + 1) (—16 + 11n(2 + n)))
Fey'(0) = 221 840(3 + 4n(2 + n))2 ’ (5.49)

3) o > —n(1+n)2(2 4+ n)(—54081 + 4n(2 + n)(—1509 + 4n(2 + n)(29 + 164n(2 + n))))
F, 2 (0) = Z 1260(3 + 4n(2 +n))3 , (5:50)

n=1
and similar expressions for the following higher derivatives. Summing the above expressions
up to some finite value r and expanding around r — oo for various redefinitions of the
summation index n, we obtain the following universal contributions

2 151 2
FD =0, FD=°T F® = Bl (5.51)

827 2567 27 4480
which appear in table 2 along with the k& = 4,5,6 derivatives. The values of FS(;) and

FS(? found agree with the general expectations, whereas the one obtained for Fég) precisely

agrees with the prediction following from our new conjectural relation eq. (4.13), as can be
readily verified using the known values [54, 57]

45
25674’

corresponding to a conformal scalar in d = 5. In this case, all spurious constants can

Cr = to =0, t4=+12, (5.52)

be removed as described above. Nonetheless, just like for the d = 3 scalar, it is good to
perform alternative checks of the values presented in table 2.

In order to do that, let us first consider the second method described above. Again,
we must identify the divergent terms in the small ¢ behavior of the heat kernel. These can
be obtained via the Euler-Maclaurin formula and we find that

VTVl+e[ 1 e—5  279¢? + 26¢ — 65
32 we T 480V/%
Vt(31733e3 4 16293¢2 — 441¢ + 735)
B 40320

K(t) =

+O@).  (5.53)
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FP ) | B 0) | F(0) Fi(0) F(0) E(0)

2 2 4 2 4 £ 2 _ 2 4 " 6
Scalar 0 37 1517 1477 2235553 1040265637 513344497 6392545818077 + 279989280537 + 775417

256 4480 128 197120 640640 32032 1537536 1537536 32

Table 2. Values of derivatives of Fgs with respect to the squashing parameter € evaluated at € = 0
for a conformally-coupled scalar.

We can then proceed exactly as in the case of the d = 3 scalar. The first derivative
reduces to

> n n 277/

1 5 13 TVt
_ym -+ + + Vi :
160 | /2 12t3/2 96yt 384

t(2n +5)(2n + 3)
4

exp [—

n=0

(5.54)

Evaluating this sum in the way described for the d = 3 scalar, we find: FS(;)(O) =

8.714716523 x 1072 with ¢ = 1074 | npax = 105 Fi2)(0) = 8.714661485 x 1071° with

t=1075 , nypax = 10° and F5(0) = 8.714676591 x 1078 with ¢ = 10 , nyay = 10°. The
result is consistent with FS(51 )(0) = 0, as it must be, and is completely independent of any
spurious constant.

For the second derivative we obtain

. i 176n* + 1408n® + 3616n2 4 3200n — 315
420(2n +5)(2n + 3)

n=0

(n+1)(n+2)%(n+3)

t
———(48n* + 384n3 + 808n? + 160n + 315)>

1680 (2n +5)(2n + 3)
t2n+5)2n+3)] Va1 5 2401 14205\/%
X exp | — -0 | == - — —

4 320 [t5/2 4#3/2 96/t 896

(5.55)
Evaluating this expression we find

FS(?(O) —0.1168817449 with t=10"%, nmpax = 10°, (5.56)
F(0) =0.1156594266  with £ =10"", npay = 107, (5.57)
F(0) =0.1156594266  with =107, nypay = 10°. (5.58)

We see that already at ¢ = 1079 the numerical evaluation of the sum agrees with the
“predicted value” appearing in eq. (5.51) to more than 10 decimal places. At t = 10~® the
agreement holds up to 15 decimal places.

Finally let us present the relevant sum for determining the third derivative:

(3) 1., > 2624n°+ 31488n° + 150032n + 36057613 4 45287612+ 270384n+ 2835
F’(0) = - lim g -
630(2n + 5)2(2n + 3)2

n=0

N t(1408n5 + 16896n° + 73744n* + 139392n3 4 87664n2 — 43584n — 2835)
2520(2n + 5)(2n + 3)
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T(e) T(€)

1.04 1.04
1.02¢- 1.02¢-
1.00- 1.00-
0.98r 0.98+
0.96F 0.96 ¢
0.94F 0.94~
0.92r- 0.92F
—6.4 —6.2 0.0 012 014 —6.4 —6.2 0.0 012 014

Figure 1. T'(¢) using numerical data for Fys as defined in eq. (5.63) for values of € near ¢ = 0. The
horizontal gray dashed line corresponds to the predicted value of T'(0) assuming the validity of our
conjecture eq. (4.13). The numerical data is not well behaved very close to € = 0 due to the 1/¢3
and 1/e powers involved in its definition (see left plot), but the tendency for not so small values of
€ is very neat, and a proper treatment of the data removing the problematic points shows a perfect
agreement with the prediction (right).

— 20t1260 (320n° + 3840n° 4 140961 + 1036813 — 15268n? + 19824n 4 2835)
(n+1)(n+2)%(n+3) t(2n +5)(2n + 3)

Cn+5)(2n+3) [_ 4 ]

AR e 559

This yields

F(0) =0.3326586184  with =101, nyac = 107, (5.60)
FS(? (0) =0.3326585413 with ¢ =105, npu = 10°, (5.61)
F(0) =0.3326585412 with £ =10"", npay = 10°. (5.62)

Again, by t = 1076 the result agrees with the one obtained using the first method appearing
in eq. (5.51) up to 10 decimal places. At ¢t = 10~% the agreement holds to 14 decimal places.
The result is then consistent with this exact form, and again is free from any spurious
constants. Higher derivatives can be computed analogously and the results for &k = 4,5,6
agree with the ones presented in table 2.

Before closing, let us perform yet another check of the validity of the analytic result
found for Fs(g)(O). For that we use the numerical data obtained in [8] for Fgs and the same
method used in [8] for the three-dimensional scalar and fermion. The idea is the following.
If the conjectural relation in eq. (4.13) holds, the numerical plot of the function

30(Fgs — Fgz) 1

T(e) = o= (5.63)
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should be such that
30 3 23

T0)=— |1+ —to+ —=ta]| .
O=% """ o™

Namely, the function T'(¢) should cross the ¢ = 0 axis at that value. In the case of the
scalar, this yields 7'(0) = 302/315 ~ 0.95873. Plotting T'(¢) and the predicted value

obtained using our conjecture we again find perfect agreement — see figure 1.

(5.64)

6 Conclusion

In this paper we have presented compelling evidence in favor of two conjectures — sum-
marized in eq. (1.3) — relating the subleading term in the small-squashing expansion of
the free energy of squashed-spheres with the stress-tensor three-point function charges t9
and t4 for three- and five-dimensional CFTs respectively. The evidence in favor of the
three-dimensional version — conjectured originally in [12] — includes now free scalars and
fermions, as well as an infinite family of holographic higher-curvature theories of the GQT
class. As for the five-dimensional one, which we have presented here, we have proven it to
hold for general QT gravities as well as for quartic and quintic GQT theories admitting
Taub-NUT solutions of the form eq. (2.20) and for a conformally-coupled scalar. We did
not consider the case of five-dimensional free fermions, which would provide an additional
test of the conjecture. Of course, the next natural step would be to prove both expressions
in general using field-theoretical methods, although this looks like a rather challenging
computation. Finally, it would be interesting to determine whether formulas similar to the
ones in eq. (1.3) hold for general dimensions, or if, on the contrary, these are related to
specific properties of three- and five-dimensional CFTs.
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A A general-order relation between h, and Fs3?

In this appendix we explore the possibility that Fgz and hg are actually related at all orders
in the expansions of ¢ and ¢, respectively. This is motivated by the GQT gravities results
obtained in section 3.1 — see comments at the end of that section.

Using eq. (3.26) and eq. (3.20), we can compare the expansion of Fgz around ¢ = 0
with the expansion of h, around ¢ =1

nL? | 2Y’ (XO) e’ " et " 3)
Fsg =Fgs + ? 27)(() - ET (XO) + ﬂ [3T (XO) + x0T (XO)}
5
_ ¢ " (3) (4)
120 [12T (X0) + X0 (ST (x0) + x0T (Xo))} +.. 0, (A.1)
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L? (q - 1)T/ (XO) 7 2 27’ (XO) "
hy=— | M2 X0 C )2 (2200
=G [ Sx0 + 128((1 ) ( " + (XO))
(q—1)° [ 4447 (x0) " 277" (x0) ° 3)
- — 156 _2 X004y
+ 5575 " 56" (x0) + xo T xo) 0T (xo0)
(¢ —1)* 178327’ (x0) " 135x31" (x0)®
4908 _ 299X0 2 AX0)
98304 X0 + (o) T (x0) 2
18x0Y” (x0) (87Y" (x0) + 40x0T® (x0))
+ U
T’ (xo0)
+ 16%0 (94T<3> (x0) + 13x0T® (Xo))] +} . (A.2)

All the terms in both expansions are determined by derivatives of T at x = Yo, and the
key observation is that all of these derivatives are independent, since Y is essentially an
arbitrary analytic function, with an expansion of the form Y(x) =1 — x + > o2 5 A, X" for
any sequence of parameters \,. Therefore, there is a unique correspondence between the
derivatives of T and the derivatives of Fg3 and, analogously, one involving the derivatives
of T and those of hy. In turn, this implies a correspondence between derivatives of Fg3 and
hg. The first equalities read

Fs(g?)(o) :—87rh’(1), (A.3)
167w
F(0) = - — [Thy(1) + 4] (A.4)
FO0) =+ 227 [a3sn (1) + 126m(1) + 200D gy ) (A5)
s2 245 q hi](l) q ) .
2 " 3
gy 1287 [ o nipy . 4536(1)7 | 12420(1)
F(0) =~ 15 [ 0131, (1) + 12054h(1) + R
1764R (1)hy®) (1
— 3430h,, (3 )( 1) — qh(/ ()1)q (1) +686hq(4)(1):| 7 (A.6)
q

and so on. These are identities that relate different quantities of a CF'T and they hold for
an infinite number of holographic higher-order gravities. Therefore, we may suspect that
these relations are universal for any CFT. However, as we will now discuss, computations
for free fermions cast doubt on the generality of this result.

As shown in [100], the scaling dimension of twist operators can be computed from the
energy density of the CFT state on the background S! x H?~!

2mq

h_
T d-1

——RYE(TH) - E(Tv/q)] - (A7)

The energy density can be in turn computed from the corresponding partition function.
Here we will be concerned only with the d = 3 Dirac fermion'” for which the relevant

17Certain subtleties concerning the evaluation of higher-order derivatives of h, for the conformally coupled
scalar were identified in [100] and later addressed in [104].
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partition function reads [100]
”T?x — mRx (B + wRz coth ”TIE’:)

23 sinh ”‘#

2 .
19 00 23 sinh
log ZY/%(B) = > / dwcothg
0

- 272BR » (A8)

where R2V% is the (regulated) volume of the H?. From the partition function the energy
density is obtained in the usual way,

—~log Z'2(8), (A.9)

and then, using (A.7), the derivatives of derivatives of hy at ¢ = 1 can be easily obtained.!8
By differentiating with respect to 3, substituting § = 27 R, and then evaluating the (con-
vergent) integral we find

9?log Z 1 9*log Z =T 9*log Z s S
B2 |poogr 256m7 OB |4y, 960w 9BY |5, 1024w 24675
(A.10)

from which we obtain

m —13m 2lr 7

W (1) = 1) = — My =" A1l
ol 1287 a() 960 = 1 L 160 128 ( )

Using these results in the first two expressions of (A.3) we find agreement with the results

obtained for Fs(g )(0) and FS(?? ) (0). However, the prediction for FS(;L) (0) yields

F(0)

7t 2418972
: = — — T~ —0.003411746 . 1
( 8¢ >prediction 10 24500 0.003411746 (A 2)

This answer disagrees with the result obtained via explicit computation of Fs(ﬁ) (0) for the

free fermion which yields
631372 737

(4)
F, = — ~ 0. 417 . Al
52 (0) 250 3 0.3098417 (A.13)

We have considerable confidence in this exact value for FS(?,‘) (0) — it can be obtained us-

ing the zeta function regularization discussed in the main text, and also from a numerical
evaluation of the derivative based on raw numerical data for Fgz(e) — see figure 2. Here
the numerical computation of Fg3 (e) was carried out using the zeta function regularization
described in the main text. For each value of e, a total of 3000 terms were included in
the sum with the result evaluated for several values of ¢ ranging from 10~ to 10~7. The
results of these computations were then fit and the ¢ — 0 behaviour extracted from the
fit, giving about 10 digits of precision in the final answer. This procedure was completed
for e € (—1/5,1/5) with a spacing of 10~%. We then used a 10th-order interpolation of the
final results for Fg3(e) and from this interpolation extracted the derivatives. Due to the
precision loss/rounding error in the derivative computation, the value of the fourth deriva-
tive obtained in this way is only trustworthy to about two decimal places. Nonetheless, we
see perfect agreement with the analytic result.

Thus, it seems that the general order relationship between h, and the expansion of
Fyg3(e) for small £ does not hold in general.

18Equivalently, one could have used the expressions appearing e.g., in [19, 123].
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Figure 2. Comparison of analytical prediction for Féj} ) (0) of free fermion (red dot) with numerical
derivative computed from interpolation of raw numerical data for Fgz(e).

B Y”(xo0) and energy-flux parameters

In the main text we introduced eq. (2.21), which exactly computes the free energy of a CFT
on a squashed sphere in terms of the gravitational Lagrangian for certain types of theories
— namely, those corresponding to the special GQT type allowing for single-function Taub-
NUT solutions. However, near ¢ = 0, the previous formula has a more universal character,
and it predicts the correct value of Fga, FS(;)(O) and FS(? (0) for any Einstein-like theory.

In particular, FS(?(O) x Y'(xo0) o< Cr, where the last proportionality applies for any theory
of that type. In view of this, its is natural to wonder whether the expression for the
third derivative of Fga in terms of the derivatives of T is also universal in some sense.
Using (2.21), we find for the third derivative,

- %ﬁwg 2 d—1
@)= CU T @D G s hg) - o)) . (B)
16T 4]0 G

Then, let us note the following: if our conjectures eq. (1.3) are true, then it follows that
there must be a relation between Y”(xo) and the three-point function parameters ta, t4.
More precisely, one can see that this relation would have the form

T"(x0)

T'(xo0) ’
for some constants a(q), bg) that only depend on the dimension. Based on the results that
we currently know, one finds a(3) = 0, b(3) = 1/210, a5y = 3/20, b5y = 23/315. Now the
question is whether these relations are universal, or if they only apply for certain theories.

a(g)te + b(d)t4 = Xo (B.2)

Let us clarify that (B.2) might not be universal even if the conjectured relationship between
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FS(? (0) and the three-point function charges is. The reason is that, as we said, (2.21) only
applies for certain theories. For others, the free energy might be given by a different ex-
pression in terms of the gravitational quantities, but nevertheless the relationships between
Fég) (0) and the three-point charges should still hold.

Let us then study the validity of (B.2) in different dimensions. In the case of d = 3 we
have proven that the formula above holds for all theories of the GQT family — not only for
those admitting single-function Taub-NUT solutions. However, we have not checked so far
if this result extends more generally to the theories of the Einstein-like type. In any case,
this is an interesting result that allows us to compute right away the CFT’s three-point
function of all holographic GQTGs in d = 3.

Next, let us consider the situation in d = 5. In all examples we have studied, we
have seen that all GQTGs that possess single-function Taub-NUT solutions satisfy the
relation (B.2) with the same coefficients — this is of course necessary if the conjecture
eq. (4.23) is true. However, we can study what happens for other GQTGs. Let us consider,
as an example, a 6-dimensional action containing quintic terms

1 20
S = 167TG/de V=g [LQ +R+ >\5L89‘i(5) ) (B.3)

where A5 is a dimensionless parameter and PRz is a combination of quintic densities
given by’
R = a1C1Q1 + a2C1Q1 + a3C1Q2 + a4CaR? + a5C2Q1 + a6C2Q2 + arC3R* + agCsQq
+ agC3Q2 + a10Q2 R* + a11Q1Q2R + a12Q3 R + a13C5 R + a14C5Q1 + a15C5Q2

+ a16C6 R* + a17CsQ1 + a15C6Q2 + a10Q1 R + a2 Qi R, (B.4)
where
Q1 = RapR™, Q2 = Rapea R,
¢y =RS'RS, f Reafb, Cy = R, RCdef Refab
Cs = Ryyeq R, R™, Cs = Ry R*“R™, Co = R/RSR,, (B.5)

and where a; are dimensionless constants. Now, if we restrict ourselves to the subset of
these theories that belong to the GQTG class, we find the following constraints

23a1  17a2  88a4 263

o _2? : N : 250 X S | .
" 11159;1 ! 45533 ' 416324 " 530060 56773 o
@ = 130a1 222 65a4 — 007t 12000 (B-8)
“o= _% - ;% 2(1)??84 +qt 5025746430700 ’ (B.10)

191t is not the most general quintic Lagrangian but it is enough for our purposes.
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13a1  9az | 1baz  2607ay 1lay 43859

an = T ey T g 130 4 4212000’ (B0
arg = —617062 - % + 6;24 + 1021808818100 ’ (242
a1 = _% - 2% st 9;121330 ’ (1
aiy = _3262;1 N 232 - 71625a4 a7 = %’ (B4
4“5 = _7(;‘;1 B 2133 " 4?14:3@4 - 5106524643010 ’ (19
. _%, (B.16)
air = _19695(11 - 1152 - 65645&4 Toe %’ B17)
alg = — 13216a1 - 1133 + 3217‘;4 T 152a7 + 50651414300 ’ (B.18)
oy = a1 a2 38 1627 (B.19)

130 26 65 25272000 °

943a; 150y 479y a7 31553
_ ar 31553 B.2
“20= 35 T 26 T 65 2 ' 12636000° (B.20)

so that the remaining free parameters are a1, ao, as, a4, a7, a9 and aq1, together with the

overall coupling A5. We have also imposed the standard normalization so that the function
Y reads Y(x) = 1 — x + As5X°. Now, we can compute the energy fluxes as described in the
main text and we get the following values for to and t4

40 (—355 + 1656 p) Asx0 —1680 pAsxa
ty = ( + 21) 5X0 ’ ty = #7 (B.21)
81 (1 —5Xsx¢) 1 —5A5xp
where
~ 220 12150 2025 810 (B.22)
P=1177T13 T T3 T 13 ‘
Then, we see that
3 23 Y (x0) 10 (17 + 2p) Asxg
2027 3151 T X0 () 27 (1= 5Asx3) (523

which is in general nonzero,?’ hence implying that (B.2) does not apply universally to
all GQTGs in d = 5. We expect the same behaviour to happen in higher dimensions.
Therefore, the conclusion is that (if the conjectures in eq. (1.3) are true) the relation (B.2)
holds for all d = 3 and d = 5 GQT theories possessing single-function Taub-NUT solutions,
but it is not satisfied by all GQT gravities (except in d = 3) or by general Einstein-like
theories. Let us also mention that in the case of even d we do not have any argument to
support the existence of relations of the form (B.2). In fact, in d = 4 we have checked
that there is no way to accommodate the coefficients a(y), b so that (B.2) is satisfied
simultaneously by GB gravity and QT and GQT gravities.

20For p = —17/2 the relationship (B.2) holds, but the corresponding theory (actually, set of theories) does
not allow for single-function Taub-NUT solutions. Therefore the implication only holds in one direction: if
a theory possesses single-function Taub-NUT solutions, then it satisfies (B.2), but the converse is not true.
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C Additional details for quintic theories

Here we collect some results and discussion that is too cumbersome for the main text.

complete basis of invariants used to construct the quintic densities is

¢ = RgR™,

Cr = Rabcdeedeeafca
Oy = Ry, R R

Co = R RyR."
Q, = RMP° Ruépy R(SXVE R
Q3 = R#VpaRuvMRpxéfRoxwﬁ
Qs = R™™ R, "R, *R
Qs = RWRWMRP%#RU&W )

Qio = R R,/ Ry e , RS,
Qu=R"R“R " Rs,,,

Q6 = R"R,R7, Ry,

Hy = R, Rcdef Ref™ Ry R,
Hy = RceabRa deRgiebejghRdhij )
Hs = R, R bcRghdeReingachi 7
Hr = R,"Ry bep de hafg Reghi 7
Hy = Rba Radbc thde Rcifg Reghi :
Hy = RS Rdb Regcd Rahef Rbfgh :
Hi3 =R} Rdb Raecd Rghef Rbfgh 7
His = R,° Rcb Regcd Rahef Rdf gh ,
Hy7 = R, Rcb Raecd Rghef Rdf gh :
Hyg = RY'R,/R;°R,, R,/

Yxo§

pox§

)

g2 = Rapea R

Cy = Ry ™R, R,
(75 — }%ade]%aCJ%bd7

vpop 0
Q2 =R"" R, pngfo

vxo€ )

Qu= RWPURWMRMKRMX& ’
1

Qg = RMr° pr R%XG Rv&x(s 7

Qg = R™ RPoY RPUEM R S
Q13 = RWRPUR(;M%RM(,,
Q15 = R“VRWRMWRMW,
Qan =R, RSR R
Hy = Rceab Ragcd Rbief Rfjgh Rdhij
H, = Rcdab Reng Raief Rfjgh Rbhij
Hg = Rba Rdf be Rahde Reifg chhi
Hy = R,"Ry.""R R, /'R, "
Hio = RAR} Rafcd Rghef Rbdgh
Hip = RS Rdb Refcd Rghef Rabgh
Hyy= RS Rdb Rabcd Rghef Refgh
Hig = R, Rcb Refcd Rghef Radgh
His = R'R,/R/°R,, R,/

The

(C.1)

From this basis, we identified two distinct GQT terms that admit single-function Taub-

NUT solutions:
7920397876 Hs

458341466043 H

924457527463 Hg  11148655827131 Hqg

Q= ~ 007602661

5069081933699 H 17

175190066525

33895725083749 Hig

1576710598725

34062780623603 Rq1 g2

18920527184700
49841316682649 q; Co

102170846797380

16347335487580800

649726495852789 ¢1 C's  5767082868853271 q1 Cs

3632741219462400

~5032299709877453 q1 Cs 233963380511 g2 C

5449111829193600

24521003231371200
47730869615569 g2 Cg

24521003231371200
642494777099 g2 C3

24218274796416

20850012672071 g2 C5

908185304865600
3431709507561 RQ1

8409123193200

544911182919360

— 492 —

11212164257600

11352316310820



~ 125078101388107 RQ1o  51784130212603 RQ13 | 43909166340607 RQ14

681138978649200 681138978649200 6130250807842800
6047423933369 RQ2  69576046485937 RQ)15 ~ 3688080828391 RQs
100909478318400  2724555914596800 201818956636800
85555281053 RQs ~ 10482876107767 RQy  416697046093847 R2Cs
10090947831840 + 60545686991040  21796447316774400

1111035771576389 R2Cs  334531709737151 R?Cs  2861130671335589 R2Cs

32694670975161600 * 16347335487580800 * 147126019388227200
~ 59879809392517 g1 Cy | 538470703453 g2 C'y 9498199270340447 Rq;?

908185304865600 6054568699104 98084012925484800
2359210333399 Rg»®  66114135677249 R2C;  1370761460727169 R3¢y
~ 201818956636800 5449111829193600 98084012925484800
17884717886671 R3gs ~ 441362262685967 R®

— + (C.2)
32694670975161600 1177008155105817600

2333677396 H3 167522524618 Hg ~ 827734758038 Hyg

2696708431 * 67417710775 * 606759396975
1580949633097 Hyg | 593519819837 Hy7  54396973475063 Hig

Qo = —

2184333829110 3640556381850 19659004461990
2206426936847281 Rq1 g2 | 1237975085831 ¢ Cp  160999722984743 g1 C3
3145440713918400 25888400937600 1048480237972800
363222093684877 ¢ Cs | 1536726748058911 ¢; Cs 180016228721 g5 C
4718161070877600 4718161070877600 13979736506304
6450313084397 g2 Cs = 342806058161 g2 C'3 6045492677197 g2 Cs
174746706328800 4854075175800 104848023797280
_ 14884840514911 RQ;  48630288598591 RQ19 | 3021059012761 RQ13
58248902109600 131060029746600 131060029746600
983210397728611 RQ14 342538077427 R(Q)2 4146157105207 RQ15
1179540267719400 174746706328800 174746706328800

6534697440049 RQs 119311421347 RQ5 | 815141983411 RQy

116497804219200 34949341265760 11649780421920
5653397143411 R2Cy ~ 40312570800617 R2C3  307449586546597 R2Cs

4193920951891200 6290881427836800 3145440713918400
~ 184522325982583 R%Cs ~ 10757768133107 g1 Cy n 349701812335 ¢2 C
28308966425265600 58248902109600 3494934126576
2371496498259589 Rq12 1777541084311 Rge?  28399488598837 R2C
©18872644283510400  116497804219200  1048480237972800

519486669787883 R3q;  26848314588043 R3qo  354830859472789 RS

18872644283510400 6290881427836800  226471731402124800

When evaluated on static geometries the field equations for these theories (including also

(C.3)

the usual Einstein-Hilbert term) read

4r5(f —1) 16rGM
T+M]:91+5fQQZTk, (C.4)
where we have, as in eq. (4.25), defined
r2f
V(T)Eﬁ‘i—k, (C.5)
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and

<1 77007602661 L0

22335140604 r°

|:r2ff12 (L2k+f7"2) f"+ 3L2f/4]{37‘2

7007602661 f° ]

7
3kL? — 23 ) 3 C.6
+< Tf+3fr>f T 5583785151 (C-6)

37225234341° [ o o, 1. - o
Qz_%mmmmuwirf (rf"+6) (L2 +72f) f" = = f°r° + 2 (27 L%k + fr') |
5393416862 f5
2 I2 2.3\ pr3 | 9999310004 ] '
+2(ORLE S+ TF) 1+ sty (C.7)

It is evident from these expressions that Q; and Qs are distinct GQT theories.
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any medium, provided the original author(s) and source are credited.
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