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Abstract: In this work we prove a bound for the torsion in Mordell-Weil groups of smooth

elliptically fibered Calabi-Yau 3- and 4-folds. In particular, we show that the set of torsion

groups which can occur on a smooth elliptic Calabi-Yau n-fold is contained in the set of

subgroups which appear on a rational elliptic surface if n ≥ 3 and is slightly larger for

n = 2. The key idea in our proof is showing that any elliptic fibration with sufficiently

large torsion1 has singularities in codimension 2 which do not admit a crepant resolution.

We prove this by explicitly constructing and studying maps to a modular curve whose

existence is predicted by a universal property. We use the geometry of modular curves

to explain the minimal singularities that appear on an elliptic fibration with prescribed

torsion, and to determine the degree of the fundamental line bundle (hence the Kodaira

dimension) of the universal elliptic surface which we show to be consistent with explicit

Weierstrass models. The constraints from the modular curves are used to bound the

fundamental group of any gauge group G in a supergravity theory obtained from F-theory.

We comment on the isolated 8-dimensional theories, obtained from extremal K3’s, that

are able to circumvent lower dimensional bounds. These theories neither have a heterotic

dual, nor can they be compactified to lower dimensional minimal SUGRA theories. We also

comment on the maximal, discrete gauged symmetries obtained from certain Calabi-Yau

threefold quotients.
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1By sufficiently large, we mean Zn with n ≥ 4 for cyclic torsion, and Zn × Zm with n + m > 4 in the
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1 Introduction

Calabi-Yau manifolds play a central role in the description of lower dimensional field

and supergravity (SUGRA) theories through their use as compactification backgrounds

of String/M/F-theory. Properties of the effective field theories (EFT) such as matter and

gauge theory content descend directly from geometric properties of the compactification

spaces. The set of all EFTs, that can be obtained via string compactifications is referred

to as the string landscape. The string landscape is distinguished from the so-called swamp-

land [1], the set of only seemingly consistent EFTs that do not have a consistent high

energy completion together with gravity (for a review see [2]) and therefore not a geomet-

ric description as a string compactification. This makes a full classification and study of

the string landscape an interesting program both for physics and mathematics. The goal of

the program is to find the rules that allow one to distinguish the swampland from the land-

scape. In the past, these quantum gravity conjectures existed often as folk theorems making

use of heuristic black hole arguments, which by themselves might not be fully understood.

In recent years a lot of attention has been given to finding and connecting the set of

quantum gravity conjectures and developing tools to put them on more solid grounds, as

for example happened for weak gravity [3, 4] and distance conjectures [5–7]. These tools

make use of the geometric description of physics via Calabi-Yau compactifications and their

geometric properties.

F-theory [68] extends the geometrization of physics by also incorporating the type IIB

string coupling, enabling descriptions of the largest patch of the string vacua (see e.g. [20])

in a single framework to date. The key idea of F-theory is to focus on elliptically fibered

Calabi-Yau manifolds Y and to reformulate the monodromies of [p, q] 7-branes that wrap

suitable cycles in the base B acting on the IIB axio-dilaton into a geometric action on the

complex structure of the elliptic fiber. The gauge algebra living on the branes is encoded in

the singularity types of the elliptic fiber and goes beyond the limits of perturbative type IIB.

Certain global aspects of the gauge group G of the F-theory compactifications are

encoded in the Mordell-Weil (MW) group MW (Y/B) of the fibration Y . For fibrations

with a varying axio-dilaton, the MW group admits a decomposition:

MW (Y/B) = Zr × T , (1.1)

where either T ∼= Zn or T ∼= Zn×Zm for some integers n,m, r. We refer to T is the torsion

subgroup of the Mordell-Weil group. A priori,1 there are no constraints on the possibilities

1That is, without making assumptions about the canonical bundle of the total space.
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for n,m, r: any combination can, in principle, be obtained by pulling back the fibration

along a suitable map B′ → B. Classical results on elliptic surfaces show that assumptions

about the canonical bundle of the total space constrain the possibilities for the Mordell-Weil

group when dimY = 2. In that case, a complete classification of Mordell-Weil groups and

configurations of singular fibers is known for rational elliptic surfaces and for elliptically

fibered K3s (see e.g. [78–80] as well as [81] and references therein). A table with the torsion

subgroups that occur on rational surfaces and K3 surfaces can be found in [32]. There are

no analogous classifications for smooth Calabi-Yau elliptic 3-folds and higher. The present

work is a step into that direction, by putting bounds on the torsion subgroup T .

Within M- and F-theory, the rank r of the MW group gives rise to r U(1) gauge

symmetry factors. This has been extensively studied in the context of F-theory [8–10, 31,

47, 51]. Abelian symmetries are in fact quite subtle. To constrain their maximal possible

number r with the help of the strong 6-dimensional SUGRA anomalies is only partially

possible [11] whereas the range of possible U(1) singlet charges cannot be constrained

at all [15]. In this regard, the geometric description of Abelian symmetries via the free

part of the MW group allows for a more systematic and consistent exploration of matter

charges [12–14, 16, 17] and maximal Abelian factors [69].

On the other hand, the torsion part of the MW group has been given much less atten-

tion in the recent literature. In F-theory compactifications, its effect can be understood

as a refinement of the co-weight lattice of representations [52, 54, 55, 58] geometrically

induced by the torsion Shioda map: the torsion Shioda map is in correspondence to a

certain fractional linear combination of Cartan generators of the gauge algebra G that lives

on the world volume of the IIB 7- branes. Intersections with the torsion Shioda map al-

lows to define a central charge for matter representation R of G which constrained to be

integral valued which modifies the global gauge group G . Although in F-theory only the

massless matter spectrum is directly visible, one might expect this constraint to apply to

the massive sector as well. Such situations can be viewed as the gauging of G by a dis-

crete symmetry [71] resulting in a non-simply connected gauge group G with fundamental

group π1(G) = T . A similar effect can happen, although of slightly different origin, when

additional U(1) factors embed non-trivially inside the center of other non-Abelian group

factors. In the following however we want to focus purely on the non-Abelian case without

additional Abelian gauge factors.

With a view on the swampland program, this begs the obvious question, which non-

simply connected groups can be consistently realized in quantum gravity, specifically in

F-theory compactifications. In particular one might ask for bounds on the fundamental

group π1(G), due to the expectation that the string landscape must be finite.2

In [54] Aspinwall and Morrison list various Weierstrass models featuring a wide variety

of Mordell-Weil torsion subgroups, going up to Z6 for cyclic groups and Z3×Z3 in general.

From the perspective of pure 6D SUGRA, it appears possible to set up models whose

massless spectrum is consistent with (almost) any putative fundamental group π1(G) = Zn
2The set of elliptically fibered CY threefolds, and therefore landscape of 6D F-theory compactifications

in fact has been proven to be “bounded”, in the sense that there all such threefolds fit into one of finitely

many families, see [41]. This fact alone proves finiteness of possible MW groups in elliptic threefolds.
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factor, where n goes way beyond six. However, since the massless fields, are only a small

sector of the full theory one should be careful to draw conclusions about symmetries of

the full theory, without having some good candidate entity that controls it. In F-theory,

there exists such an entity in terms of the torsion sections.3 In fact, the mere presence

of torsion sections forces the existence of a minimal configuration of singularities whose

structure often comes as a surprise, especially for higher order torsion.

In this paper, we want to prove that the list of MW torsion models appearing in Aspin-

wall and Morrison [54] contains every group that can be realized on a smooth, Calabi-Yau

n-fold with n = 3, 4. This geometric result allows us to put sharp swampland constraints

on the fundamental group of gauge groups in SUGRA theories constructed from [p, q]-7

branes in F-theory. As a byproduct, we give a new perspective on elliptic fibrations with

torsion sections by connecting them to the modular curve of certain congruence subgroups

of SL(2,Z).4 The modular curve for each torsion group then allows us conveniently read

off all minimal singularities and to proof the boundedness in the cases when the n-fold

becomes non-crepant resolvable.5

In a different context, torsion sections in the Mordell-Weil group can be used as a

building block to construct the covering geometry of a specific class of smooth, non-simply

connected Calabi-Yau quotient torsors [22]. Their associated F-theory physics admits dis-

crete symmetries coupled to superconformal matter and gravity [18, 19, 21] of the same

order as the torsion factor of the covering geometry. Therefore, our bounds also translate

to bounds on manifolds that can be obtained using those constructions.

This paper is structured as follows: in section 2 we summarize our main mathematical

result and sketch the argument. The full proof is deferred to section 5 and aims at the

mathematically inclined reader. In section 3 we give a pedagogical review of congruence

subgroups, modular curves and their connection to torsion points of elliptic curves. This

allows us in section 3.3 to interpret the presence of singular fibers in torsion models directly

from properties of the modular curves. In section 4 we interpret our result in terms of

swampland constraint on the order of non-simply connected groups within F-theory. We

close with a summary and outlook in section 6.

2 Summary of main arguments

To get started, we fix a finite abelian group T , and then we try to construct an elliptic

fibration whose Mordell-Weil group contains a subgroup isomorphic to T .

3By analyzing the Ramond-Ramond-charges of BPS solitons in IIA dual theories, the authors of [54]

also argued for MW torsion to be the origin of non-simply connected gauge groups which to the best of our

knowledge is the only source for such an effect.
4In a related F-theory context, fibrations with restricted monodromies have also been considered in [23,

24] and recently [25].
5In recent years it has been shown, that 3-folds with certain terminal singularities can give valid F-theory

vacua [88, 89] with clear SUGRA description. The singularities in our case however lead to codimension

one non-minimal singularities in the fiber which do not admit an understood F-theory limit. Work towards

that direction has been made in [75] in terms of non-geometric heterotic dual backgrounds.
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Note the Mordell-Weil torsion group of any elliptic fibration injects into the Mordell-

Weil torsion group of any fiber. Since the fibers are isomorphic to S1 × S1, this means

the Mordell-Weil torsion subgroup of an elliptic fibration is isomorphic to a subgroup of

(Q/Z) × (Q/Z). Furthermore, if the Mordell-Weil group of an elliptic fibration is finitely

generated, then the torsion subgroup is a finite abelian group which can be generated by

2 elements.

1. Let T ⊂ (Q/Z)× (Q/Z) be a finite subgroup. We say that T is sufficiently large if

T contains a point of order at least 4, or T ∼= Z3 × Z3.

For sufficiently large groups T ,6 it is known that there exists an elliptic surface

S → C, with MW (S/C)tors
∼= T , and satisfying the following universal property:

for any elliptic fibration π : Y → B whose Mordell-Weil group contains a subgroup

isomorphic to T , there are rational maps making the following square commute:

Y S

B C ,

Φ

π p

φ

The curve C in the diagram is the modular curve associated to T .

A Weierstrass equation for Y can be obtained by pulling back a Weierstrass equation

for S → C using φ. This reduces the problem of classifying fibrations Y → B over

a fixed base B, with a prescribed torsion group T , to understanding rational maps

B → C.

2. Next, we use the Calabi-Yau condition to limit the bases we have to consider. The

fundamental line bundle of an elliptic fibration π : Y → B is the line bundle

LY/B = (R1π∗OY )−1. We write ωY (resp. ωB) to denote the canonical bundle of Y

(respectively B.)

It is known that any Calabi-Yau fibration Y → B, with dimY ≤ 4, is birational to a

fibration Y0 → B0 over a Fano base, i.e. a base where ω−1
B is ample.

This allows us to deduce two things:

• First, if B is a Fano variety and C is a positive genus curve, then every rational

map B → C is constant. This means we only need to consider torsion groups T

for which the associated modular curve has genus 0. By work of Cox and Parry,

it is well-known that there are only 19 such groups, so the problem is reduced

to determining which of those 19 can occur on a smooth Calabi-Yau.

• Second, if Y is Calabi-Yau and B is Fano, then LY/B ∼= ω−1
B . We show that

LY/B ∼= φ∗(LS/B), which further constrains the possibilities for φ. In particular,

this allows us to show that φ can’t be a morphism under these assumptions.

6The only finite subgroups of (Q/Z) × (Q/Z) which fail to be sufficiently large are 0,Z2,Z3,Z2 × Z2.

These torsion groups appear in Calabi-Yau n-folds of any dimension, so we do not need to consider them

to prove our theorem.

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
3

3. Finally, we show that for any b ∈ B where φ is not defined, the Weierstrass coefficients

(f, g,∆), defined in (3.1) over b are guaranteed to vanish to order at least (4d, 6d, 12d),

where d is a positive integer multiple of degLS/C .

It is well known that a crepant resolution of the total space does not exist if the order of

vanishing of (f, g,∆) is at least (8, 12, 24) over a codimension 2 locus in B. This allows us

to conclude that the singular model can be crepantly resolved only if d = 1. In appendix B,

we show how to compute the integer d, and find that d = 1 is only possible if the torsion

group is one of the 10 groups shown above.

In appendix A , we show explicitly how to construct the surface S → C and the map

φ for T cyclic. In appendix C we give a construction and proof of the universal property

for S → C and φ for groups of the form Z2 × Z2m and Zm × Z2m. In section 4.1 we will

then study the application of our main theorem within the physics of F-theory.

3 Modular curves

Modular curves play a crucial role in our arguments and are not standard in the physics

literature, so we start by giving a brief review of the theory.7 In this section, we will describe

the geometry of modular curves as analytic objects. In the appendix, we give an algebraic

construction for certain families of modular curves, together with equations for associated

universal elliptic curves. The analytic perspective described in this section is helpful in

explaining the minimal configurations of singularities observed on elliptic fibrations with

prescribed torsion. This perspective also allows us to compute the degree of LS/C , even in

the absence of a Weierstrass model for the universal surface.

“The” modular curve. The modular curve X(1)o parametrizes isomorphism classes of

elliptic curves C.

• Algebraically, every elliptic curve admits a short Weierstrass equation:

y2 = x3 + fx+ g , (f, g ∈ C,∆ = 4f3 + 27g2 6= 0) . (3.1)

Two such elliptic curves, with coefficients fi, gi, i = 1, 2, are isomorphic if and only

if there exists λ ∈ C× such that f1 = λ4f2 and g1 = λ4g2.

Thus, X(1)o can be identified with the quotient:

X(1)o =
{

(f, g) ∈ C2 : ∆ 6= 0
}
/
(
(f, g) ∼ (λ4f, λ6g)

)
. (3.2)

Note that this quotient has two singular points, namely the orbits [(1, 0)], [(0, 1)],

corresponding to the two elliptic curves with complex multiplication.

• Analytically, Riemann’s uniformization theorem shows that every elliptic curve is

isomorphic, as a Riemann surface, to C/Λ , where Λ is the lattice of periods of the

elliptic curve. Two quotients give rise to isomorphic elliptic curves if and only if the

corresponding lattices are homothetic, i.e. scalar multiples of one another.

7For a more detailed exposition, see [73].
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Figure 1. The Fundamental domain of τ for X(1) = H/SL(2,Z).

To compute the moduli space, we assume the lattice has been scaled so that one

of the basis vectors is at 1 and the other basis vector lies in the (open) upper half

plane, depicted in figure 1. This allows us to identify points τ ∈ H with isomorphism

classes of elliptic curves: the point τ represents the elliptic curve C/(Z ⊕ Zτ). Two

points τ, τ ′ ∈ H represent the same elliptic curve if and only if they are in the same

SL(2,Z)-orbit (here SL(2,Z) is acting on H by fractional linear transformations).

The region:

D =

{
τ ∈ H : 1 < |τ |,−1

2
< Re(τ) ≤ 1

2

}
∪
{
eiθ :

π

3
≤ θ ≤ π

2

}
, (3.3)

is a fundamental domain for the quotient, so points in D are in bijection with points

in X(1)o. The orbits of i and eiπ/3 in H/SL(2,Z), correspond to the aforementioned

singular orbits (1, 0) and (0, 1) of (f, g). They represent the square and hexagonal

lattices, which have extra symmetries.

The celebrated j-function, which is defined using Eisenstein series in the analytic setting

or simply as:

j([(f, g)]) = 1728 · 4f3

4f3 + 27g2
, (3.4)

in the algebraic one, gives a bijection between X(1)o and A1.

We can compactify X(1)o by adding a single point to the moduli space representing

the isomorphism class of an I1 curve. Analytically, we achieve this by taking the quotient

of the extended upper half plane H∗ = H ∪ Q ∪ {∞}. The compactified modular curve is

denoted X(1), and is isomorphic to P1 as a Riemann surface.

The modular curve X(1) is crucial in the study of general modular curves, as every

other modular curve comes equipped with a canonical map to X(1).

– 6 –
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3.1 General modular curves

We now consider general modular curves. We start discussing modular curves associated

to cyclic torsion groups of order n. Formally, these are fine moduli spaces for pairs (E, p)

where E is an elliptic curve over C and p is a point of order exactly n on E, where

(E, p), (E′, p′) are identified whenever there exists an isomorphism E → E′ taking p to p′.

We will construct these modular curves analytically8 as quotients of H by an appropriate

subgroup of Γ1(n) ≤ SL2(Z).

• Every elliptic curve over C is isomorphic to Eτ = C/Λτ , where Λτ = τZ ⊕ Z ⊂ C is

a rank 2 lattice, and τ ∈ H.

• Every point of order n on Eτ has the form cτ+d
n + Λτ for some pair of integers c, d

satisfying gcd(c, d, n) = 1.

Thus, it suffices to study pairs (Eτ ,
cτ+d
n ) for τ ∈ H and c, d ∈ Z satisfying gcd(c, d, n) = 1.

We now need to determine when two pairs (Eτ ,
cτ+d
n ), (Eτ ′ ,

c′τ ′+d′

n ) are isomorphic. We

will show that the action of SL(2,Z) on the space of bases of Λτ induces an action on the

n-torsion points of Eτ .

Let p ∈ Eτ a point on the elliptic curve, that we can write uniquely as

p : xτ + y + Λτ for x, y ∈ [0, 1) . (3.5)

For γ =

(
a b

c d

)
∈ SL(2,Z), we define the action on that point p as

γ · p = (aτ + b)x+ (cτ + d)y + Λτ . (3.6)

It’s clear that γ induces an automorphism of Eτ as a group, so it necessarily restricts to an

automorphism of the n-torsion of Eτ . Thus SL(2,Z) acts on n-torsion pairs (Eτ ,
cτ+d
n ). We

next show that it acts transitively on such pairs: in other words, for any pair (Eτ , p+ Λτ ),

we can find γ ∈ SL(2,Z) such that γ−1 · p+ Λτ = 1
n + Λτ . This will show that the moduli

space of pairs (E, p + Λτ ) is isomorphic to H/Γ1(n), where Γ1(n) is the stabilizer of the

pair (Eτ ,
1
n + Λτ ). Let cτ+d

n + Λτ be an arbitrary point of order n. Since gcd(c, d, n) = 1,

there exist integers a, b, k such that ad− bc+ kn = 1. That is equivalent to saying there is

a matrix in SL(2,Zn) with entries congruent to γ′ with entries as ad − bc + kn = 1. The

reduction map SL(2,Z) → SL(2,Zn) is surjective, so there exists γ ∈ SL(2,Z) such that

γ ∼=

(
a b

c d

)
(mod n). Observe now the inverse action of γ on the pair

γ−1 ·
(
Eτ ,

cτ + d

n
+ Λτ

)
=

(
Eτ ,

c(dτ − b) + d(−cτ + a)

n
+ Λτ

)
=

(
Eτ ,

1

n
+ Λτ

)
. (3.7)

Thus, if we take a larger fundamental domain in H, we do not have to keep track of

the specific coefficients c, d for the point of order n. The problem is now reduced to

understanding the stabilizer of (Eτ ,
1
n + Λτ ).

8The universal property ensures that the fine moduli space is unique up to isomorphism, if it exists,

which is why the analytic construction gives the same modular curve as the algebraic construction.
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a.) b.)

Figure 2. Above we have chosen a fundamental domain colored in blue for Eτ the depiction of a

2-torsion point τ
2 + Λτ in orange. We act on the basis by the generator T in a.) which translates

the point τ
2 + Λ to τ+1

2 + Λ. In b.) we act on the fundamental domain by T 2 in to obtain the pink

one while fixing the torsion point.

Specifically, we want a characterization of those γ ∈ SL(2,Z) that fix the torsion point

γ · 1

n
+ Λτ =

1

n
+ Λτ . (3.8)

The new basis is given by aτ + b, cτ +d, and 1
n + Λτ is being mapped to c

nτ + d
n + Λτ . It is

clear that 1
n is fixed exactly when c

n ∈ Z and d
n ∈

1
n + Z. An illustration of this action on

the torus lattice is depicted in figure 2 for a chosen order two torsion point. In particular,

we need the entries to satisfy

c ≡ 0 (mod n) and d ≡ 1 (mod n) . (3.9)

It then follows, that the matrices need to satisfy(
a b

c d

)
≡

(
∗ ∗
0 1

)
(mod n) ≡

(
1 ∗
0 1

)
(mod n) , (3.10)

where we have used ad − bc = 1 and c ≡ 0 (mod n) such that we must have ad ≡ a ≡ 1

(mod n).

To summarize, a matrix

(
a b

c d

)
∈ SL(2,Z) fixes (Eτ ,

1
n + Λτ ) as a torsion pair if and

only if (
a b

c d

)
≡

(
1 ∗
0 1

)
(mod n) .

We thus define:

Γ1(n) =

{
γ ∈ SL(2,Z) : γ ≡

(
1 ∗
0 1

)
(mod n)

}
. (3.11)

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
3

We can then go ahead and define the (open) modular curve as the quotient X1(n)o =

H/Γ1(n).9 We identify points on X1(n)o with pairs consisting of an elliptic curve Eτ and a

point of order n. The compactified modular curve X1(n) is obtained by taking the quotient

of the extended upper half plane by Γ1(n). The cusps of the modular curve are the points

in X1(n)\X1(n)o.

There are also other examples of modular curves that appear frequently in the liter-

ature. These are denoted X(n) and X0(n), and are defined as quotients of the extended

upper half-plane by the subgroups:

Γ(n) =

{
γ ∈ SL(2,Z) : γ ≡

(
1 0

0 1

)
(mod n)

}
, (3.12)

Γ0(n) =

{
γ ∈ SL(2,Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod n)

}
. (3.13)

As moduli spaces, X(n) classifies pairs (E, (p1, p2)) where p1, p2 are “suitable”10 generators

of the n-torsion subgroup of E, and X0(n) classifies pairs (E, 〈p〉) where 〈p〉 is a cyclic

subgroup of order n.

Finally, we remark that while a lot has been written on the modular curves

X1(n), X(n), X0(n), much less has been written about the modular curves associated to

“generic” torsion groups. We relied on ad hoc methods to analyze and rule out fibrations

with torsion groups which are not cyclic or isomorphic to Zm × Zm. See appendix C for

details.

3.2 Cusps

Finally, we need to define the width of a cusp, as this idea plays an important role to discuss

minimal singularities in section 3.3. To that end, we introduce the following notation. Set:

SL(2,Z)∞ =

{(
1 n

0 1

)
: n ∈ Z

}
. (3.14)

This is the stabilizer subgroup of ∞ for the action on H∗ by fractional linear transforma-

tions.

For a general subgroup Γ ⊂ SL(2,Z), we define:

Γ∞ = Γ ∩ SL(2,Z)∞ =

{
γ ∈ Γ : γ =

(
1 a

0 1

)
: n ∈ Z

}
, (3.15)

9This notation is not standard. In the modular curves literature, the curve we are denoting as X1(n)o is

usually denoted Y1(n). We’ve deviated from the standard notation to avoid confusion with the Calabi-Yau

total spaces, which we are denoting Y .
10Technically, X(n) only classifies pairs where p1, p2 have a prescribed value under the Weil pairing. This

is unavoidable, as any isomorphism of elliptic curves E → E′ takes pairs of n-torsion points on E to pairs

of n-torsion points on E′ with the same value under the Weil pairing. However, this is sufficient for our

purposes, as we can change of value of the Weil pairing by replacing (E, (p1, p2)) by (E, (p1, kp2)) for a

suitable integer k prime to n.
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Now, fix a congruence subgroup Γ. Each cusp of the associated modular curve corre-

sponds to the orbit of some s ∈ Q under Γ. Choose such an s, and choose δ ∈ SL(2,Z)

such that δ · s =∞. The width of the cusp x, denoted h(x), is abstractly defined as:

h(x) = [SL(2,Z)∞ : (δ {±I}Γδ−1)∞] . (3.16)

This number encodes the smallest integer h such that

(
1 h

0 1

)
∈ δΓδ−1; geometrically, we

have acted on the upper half plane to put s at the “top” of the picture, and we’re counting

the number of vertical strips in the fundamental domain. We can also compute the width us-

ing the triangulation we pull back from X(1), by dividing the number of triangles that meet

at a given cusp by 2. We will discuss several concrete examples in the following sections.

From the moduli perspective, the width of the cusp encodes the ramification over the

I1 point on X(1), and thus determines the minimal singularities on the Néron model of the

universal elliptic curve. Specifically, whenever there is a cusp of width h on the modular

curve, the associated elliptic surface should have an Ih singularity (or worse).11 This will

be discussed further in the minimal singularities section.

3.3 Minimal singularities

When considering explicit Weierstrass models we find (e.g. see section 4) that the presence

of torsion in MW imposes a minimal number of singular fibers. In the context of F-theory

this is surprising, as it forces a minimal gauge group when the full fibration admits tor-

sion. This is particularly true for larger order torsion, where not one but multiple singular

fibers/gauge algebra factors are introduced. For example, any fibration with a section of or-

der 5 necessarily has at least two fibers of type I5 (or possibly I5d for some integer d). For fi-

brations with 7-torsion, the number of I7 fibers has to be at least 3. The exact configuration

of fibers which is imposed can be computed from the Weierstrass equation of the universal

elliptic curve (e.g. see appendix (A)), but obtaining such equations can often be tedious.

Fortunately, the degenerate fibers and the Euler characteristic of the universal elliptic

surface S → C can both be read off directly from the associated congruence subgroup.

Geometrically, the singularities appear because of the cusps on the compactified modular

curve. The information needed to determine which singular fibers appear in S → C is

encoded in the cusps of the modular curve:

• The points on the discriminant locus are in bijection with cusps on the compactified

modular curve.

• The fiber over a point in the discriminant locus is of type Id, where d is the width of

the associated cusp.

Both the number of cusps and their widths can easily be computed using the standard

triangulations of the modular curves: the cusps are the points on the real line, and the

11These points must be of Ih type, since f and g are non-vanishing, as they come from special points in

the fundamental domain of X(1), that are not mapped onto the real axis.
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width of each cusp can be computed by dividing the number of triangles meeting at the

cusp by 2. They can also be computed using algebraic methods, see e.g. [73].

The number of triangles in the triangulation is equal to twice the sum of the widths.

As a result, it can be interpreted as twice the degree of the discriminant of an elliptic

fibration with only the minimal singularities forced by the modular curve. The degree of

the discriminant is useful, because it determines the degree of the fundamental line bundle

of the universal surface, which is crucial to our analysis.

Since the triangulation is pulled back from the map X → X(1), the number of triangles

is exactly the degree of the map, which is the index [SL(2,Z) : Γ].

In appendix B, we derive formulas for the index of all congruence subgroups. For

example, the index of Γ1(n) is:

[Γ(1) : Γ1(n)] = n2
∏
p|n

1− 1

p2
, (3.17)

where the product is taken over all primes dividing n. One can check (see appendix B)

that this index is equal to 12 when n = 4 and is divisible by 24 for all n > 4. For n > 4,

the index can be used to compute the degree of LS/C , where S → C is the Néron model of

the universal elliptic curve:

[Γ(1) : Γ1(n)] = 24 degLS/C . (3.18)

Thus, when C = X1(n), we have degLS/C = 1 for n = 5, 6, degLS/C = 2 for n = 7, 8,

degLS/C = 3 for n = 9, 10, etc. This matches up exactly with the tables in [32], and

confirms that the Z5,Z6 rational elliptic surfaces are extremal.12 Similarly, for torsion

groups Z7,Z8, one can check that the K3 surfaces are extremal. The surfaces associated

to torsion groups of larger order have Kodaira dimension 1 and hence are not Calabi-Yau.

E.g. the triangulation for X1(6) and X1(7) are depicted in figure 3 using Sage [82, 83] and

X1(6) admits the following cusp points

S(6)
cusp : {0(6), 1/3(2), 1/2(3),∞(1)} , (3.19)

with their respective widths denoted as superscripts. This means the universal surface

should have fibers of type I6, I2, I3, I1. These are exactly the discriminant loci, that we

also find in the generic Weierstrass model that we discuss in section 4.3.

Similarly, for X1(7), we find that there are 6 cusps (including ∞) at

S(7)
cusp : {0(7), 2/7(1), 1/3(7), 3/7(1), 1/2(7),∞(1)} , (3.20)

three of which have width 7 and three of width 1, so the universal surface has 3 I7 fibers

and 3 I1 fibers. This explains why we cannot have a model with only 7-torsion section but

only a single I7 fiber. On the contrary the cusp counting of X1(7) correctly predicts all

three I7 fibers in the K3 (see section 4.4).

12An elliptic surface S is extremal if Pic(S) = h1,1 and its MW group is finite. This is equivalent to

Pic(S) = 10 for rational elliptic surfaces Pic(S) = 20 for elliptic K3 surfaces.
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Figure 3. Triangulation of X1(6) and X1(7). Sides with equal colors are to be identified.

We note that formula (3.18) also holds with Γ1(n) replaced by any of the other sub-

groups, and thus reduces the computation of the degree of the fundamental line bundle of

the universal surface to computing the index of a subgroup. We derive these formulas13 in

appendix B. For example, the congruence subgroups Γ(n), which are associated to elliptic

curves with a pair of n-torsion points, have index:

[Γ(1) : Γ(n)] = n3
∏
p|n

1− 1

p2
. (3.21)

For n = 2, 3, 4, 5, 6 the indices are computed to be 6, 24, 48, 120. With the identification of

the fundamental line bundle analogous to Equation (3.18), this shows, that Z3 × Z3 is the

maximum allowed torsion possible in rational elliptic surfaces, 3- and 4-folds. The Z4×Z4

torsion extremizes K3 and is depicted in figure 6 of section 4.4, where we will come back

to this topic. Higher order torsion points are not allowed.

3.4 Remarks about the Z4 case

When n ≥ 5, the singularities predicted by the widths of the cusps correspond exactly to

the fibers observed on the universal surface. This is not the case when n = 4. We wish to

briefly address this peculiarity14 in this section.

For n > 4, the sum of the widths of the cusps is an integer multiple of the Euler char-

acteristic of the universal surface, allowing us to deduce the degree of the fundamental line

13We will derive formulas for the indices of the congruence subgroups associated to Mordell-Weil torsion

groups of the form Zm and Zm×Zmd. We do not have formulas for groups of the form Zmd×Znd for d > 1

and m,n relatively prime, but the associated modular curves all have positive genus, and thus could not

be the targets of a non-constant morphism from a Fano variety. See section 5 for more details.
14There are other reasons to believe the Z4 group is special. For example, the group structure in the

special fiber of an elliptic surface with an I∗2k+1 is abstractly isomorphic to Z4, which means we can have

non-semistable fibrations with 4 torsion.
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bundle using Equation (3.18) and to determine the minimal singularities without needing

a Weierstrass model. When n = 4, the index of the congruence subgroup is 12, so the

formula breaks down. As a result, we see a discrepancy between the singularities predicted

by the widths of the cusps observed on the modular curve and the singularities on the

universal surface with a 4-torsion section: the modular curve only forces I4 + I1 + I1 on

the elliptic curve, but since the discriminant of any rational elliptic surface has degree 12,

we need additional singularities to obtain a smooth elliptic surface over P1.

From the algebraic perspective, we have the equation for the universal elliptic curve:

y2 + xy − ty = x3 − tx2 , (3.22)

which extends to:

y2 + t21xy − t0t21y = x3 − t0t1x2 . (3.23)

Note that this equation has an I∗1 singularity, which is the only time we see a cuspidal

fiber in an elliptic fibration with a torsion point of order at least 4. After a quadratic base

change,15 we can also obtain a semistable rational surface which has a 4-torsion point. The

short Weierstrass equations for the two models are given below:

y2 = x3 + t21
16t20 − 16t0t1 + t21

48
x− t31 ·

64t30 + 120t20t1 − 24t0t
2
1 + t31

864
, (3.24)

y2 = x3 +
16t40 − 16t20t

2
1 + t41

48
x− 64t60 + 120t40t

2
1 − 24t20t

4
1 + t61

864
. (3.25)

We will come back to the Z4 model in section 4.3 from a more general perspective.

4 Bounds on non-simply connected gauge groups from F-theory

In this section we want to apply the bounds on torsion within the context of F-theory.

Hence we first review F-theory and the role of Mordell-Weil torsion in its effective theory

as first investigated in [54] and further explored in [52] which can be skipped by any

expert in the field. The bounds on torsion, which were discussed in the sections before and

proven more rigorously in section 5 can be translated into bounds on non-simply connected

gauge groups in SUGRA theories obtained from F-theory. As we show, those bounds are

surprising from pure 6-dimensional SUGRA arguments and their massless spectra. Finally,

we also comment on bounds on smooth Calabi-Yau quotient torsors and their connection

to discrete symmetries and superconformal matter.

4.1 F-theory and the role of torsion

This section is intended as a recap of Mordell-Weil torsion in F-theory models, based

on [52].

15This will be relevant in the construction of the modular curve associated to T = Z2 × Z4. See the end

of appendix C for details.
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In F-theory, one considers an elliptically fibered threefold:

E → Yn

↓ π
Bn−1

, (4.1)

given by a Weierstrass equation:

y2 = x3 + fx+ g (4.2)

The local axio-dilaton τ = C0 + ig−1
IIB of type IIB string theory is identified with the

complex modulus of each fiber and is allowed to vary over the complex base Bn−1. The

singular fibers are located over the vanishing set of the discriminant:

∆ = 4f3 + 27g2 . (4.3)

The codimension one components of the discriminant locus

δi ⊂ V (∆) , (4.4)

have the interpretation of generalized stacks of [p,q]-7-branes that host a local gauge algebra

Gi according to their Tate-fiber type. The order of ∆ can be enhanced, e.g. over the collision

of components at codimension two δi,j = δi ∩ δj , which gives rise to matter multiplets that

form representations R of the algebra G. The matter representation can be inferred from

the enhancement to the local algebra Gi,j via the decomposition [70] as:

Ri,j = adj(Gi,j)/(adj(Gi)⊕ adj(Gj)) . (4.5)

This construction gives a powerful tool to construct and classify a large class of consistent

D = 10− 2d dimensional SUGRA theories via geometric methods.

The physics of F-theory compactifications on CY d-folds Yd with non-trivial MW

torsion group, say MWtor(Yd) = Zn, is understood as a global gauging of the center of

the gauge algebra Gi resulting in a non-simply connected gauge group G:

G =

∏
i Gi
Zn

× Ĝ , π1(G) = Zn . (4.6)

The quotient factor induces a constrained matter spectrum by projecting out represen-

tations that have a non-trivial central charge qcen. In general, the restriction to central

charges can be seen explicitly via the construction of the torsion Shioda map Σ in the

resolved geometry. For any non-trivial torsion point Sk and zero-section Z, the Shioda

map defines a map from the elliptic curve to the Néron-Severi lattice of Yd.
16 As we have

argued in the sections above, the mere presence of torsion points Sk, enforces the presence

of singularities that need to be resolved leading to the following form of the Shioda map:

Σ(Sk) = Sk − Z + (S · ci)C−1
i,j fj = S − Z +

1

n

∑
i

ajfj . (4.7)

16We ignore contributions from vertical divisors at this point.
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The fractional linear contribution of the resolution divisors fi above is determined by the

i-th fibral curve ci in the resolved geometry, that is intersected by the torsion section S.

The overall normalization n is inherited from the inverse determinant of the Cartan matrix

C, which is itself of the order of its center. Coming from a torsion section Sk implies the

Shioda map to be a trivial divisor in H2(Y ) which therefore can be rewritten as

Ξ(Sk) = Sk − Z = − 1

n

∑
i

ajfj , (4.8)

and represents an n-torsion element in the quotient cohomology of H1,1(Y )/〈[fi]〉Z. At the

intersection δi,j , the fibral curves in the resolved model generically split further ci → ci,m
reflecting the nature of the enhanced singularity. The exact representation Ri,j and com-

patibility with the gauged Zn centers can be inferred from intersections with the resolution

divisors fi and the fractional element of the torsion Shioda map:

µr = (ci,m · fr) qcen = ci,m · Ξ(Sk) . (4.9)

All other weights can be obtained from adding fibral curves ci which also shows, that the

central charge is n-fractional and only well-defined modulo 1. However, since the torsion

Shioda map is a trivial divisor the central charge must be integral to be consistent with

the global gauge group factor. Field theoretically one can understand this, by promoting

the fractional piece of the torsion Shioda map to a projector of the form Φ = e2πiΞ(Sk).

This projector removes representations with the wrong (combination) of weights of the

gauge group G. Therefore the above element defines a generator of the n-refined (co-

) weight lattice.17 Note that the spectrum computed above, is just the massless one and

therefore comprises only a small sub-sector of the full theory. However, due to the geometric

realization of the torsion Shioda map, it seems convincing that the constrained (co-) charge

lattice extends to the full massive sector of the theory as well. More generally it is expected

that the non-simply connected gauge groups G also affect the presence of dyonic line and

surface operators in the theory [71]. Similarly, we note that the presence of torsion affects

the interpretation of (p, q)-strings as combined states of fundamental strings and D1 branes.

A general (p, q)-string (with p and q co-prime) that couples to the IIB (B2, C2)-fields with

the respective quanta can always be rotated into the fundamental (1, 0) string picture by

virtue of an SL(2,Z) transformation. However, under the reduced congruence subgroups

we do not have the full transformation group at our disposal and therefore not every (p, q)

combination allows for such a transformation. As an example, for a parametrization of a

Γ1(n) matrix, one may consider the following action on a fundamental string:(
1 + an r

k n 1 + b n

)(
1

0

)
=

(
1 + an

k n

)
, with a, b, r, k ∈ Z . (4.10)

17Note that a similar effect can be resembled in the presence of a free Mordell-Weil group, that gives rise to

a U(1) symmetry that can embed non trivially inside the center of other non-Abelian group factors [49, 50].

Although having a similar origin, these factors can only be present in the presence of additional Abelian

symmetries, which we do not want to focus on in this work.
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One finds that the D1 brane charge has to be divisible by the order n to allow for a rotation

into the fundamental string picture. This might be interpreted in two ways: either the (p, q)

string states with odd q-D1 charge are fully absent from the spectrum, or these states can

be present but come from a different sector of the theory which cannot be described as a

fundamental string in any given Γ1(n) frame. However, we take the non-trivial behavior of

more general string states as evidence, that torsion also affects the massive sector of the the-

ory in a non-trivial way and would like to return to this interesting question in future work.

An su(2)/Z2 example. The simplest direct example is that of an su(2)/Z2 ∼ SO(3)

group. As SO(3) does not admit two dimensional representations, it is directly evident,

that the fundamental of the su(2) covering algebra, must be absent from the spectrum.

Let’s now engineer this model in F-theory, via an Z2 torsion point. There, the su(2) gauge

algebra is in fact forced upon us directly, as can be seen using the modular curve of X1(2).

Explicitly, the Γ1(2) congruence subgroup is generated by upper triangle matrices modulo

two. To find the generic singularity(s) we have to find the cusp(s) of the modular curve

and their widths. As reviewed in section 3.3, we first have to find the triangulation of

X1(2) by pulling back the standard triangulation of X(1). The degree of this map is given

in Equation (3.18) for n = 2 which we explicitly compute to be:

[Γ(1) : Γ1(2)] = 3 . (4.11)

We can act on the fundamental domain of X(1) by the coset representatives:

α1 :

(
1 0

0 1

)
, α2 :

(
0 −1

1 0

)
, α3 :

(
0 −1

1 1

)
, (4.12)

to obtain a fundamental domain for X1(2). The triangulation of the modular curve into

2 · 318 sub-regions is explicitly shown in figure 4. There are two cusps at the points:

S(2)
cusp : {0(2),∞(1)} (4.13)

with the one at the origin having width two. This is consistent with the requirement to

have the appropriate gauge algebra G present on which the Z2 quotient can act. We can

now turn to the explicit Weierstrass model, which exactly reflects what we anticipated from

the modular curve:

y2 = x(x2 + a2x+ a4) , a4 ∈ O(K−4
b ) , a2 ∈ O(K−2

b ) . (4.14)

f = a4 −
1

3
a2

2 , g =
1

27
a2(2a2

2 − 9a4) , ∆ = a2
4(4a4 − a2

2) . (4.15)

There we find the expected I2 locus over a4 = 0 and the residual I1 locus. The torsion

factor restricts the algebra to su(2)/Z2 ∼ SO(3). Hence, geometrically we expect the

enhancement from the I2 to an I3 locus to be forbidden, simply because of the incompatible

18The number of subregions is the number of regions in the triangulation of X(1) multiplied by the degree

of the map. The triangulation of X(1) has 2 regions, and the degree of the map is equal to the index of the

subgroup.
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Figure 4. Triangulation of X1(2). A cusp point of width two is found at the origin.

center. Instead, the collision point we find is of type III, which has an associated su(2)

algebra as well, and is compatible with the correct center, but which gives rise to no new

matter multiplets. In the resolved geometry (e.g. see [52]) it is possible to obtain the torsion

Shioda map Σ(S1) (modulo vertical divisors) as:

Σ(S1) = S1 − Z +
1

2
f1 , (4.16)

with f1 being the su(2) resolution divisor. By abuse of notation, we denote with f1 also

the possible su(2) weight of some representation. At codimension two, any reducible matte

curve must have vanishing (mod 1) intersection with Σ(S1). This shows, that every repre-

sentation with odd su(2) Cartan charge must be absent from the spectrum.

Starting from any torsion model is a great way to systematically study and classify

SUGRA theories in various dimensions with a non-trivial fundamental group. The Weier-

strass model with the respective torsion point will in turn only allow for the factorization

of ADE singularities that have a compatible center. This perspective is confirmed from the

perspective of the congruence subgroups, that must be compatible with the local SL(2,Z)

monodromy of the singularity. We have summarized the Kodaira fiber types and their

congruence subgroups19 in table 1. In order to compare a fiber monodromy matrix M to

be compatible with a Γ1(n) or Γ(n) congruence subgroup, requires us to bring it into a

compatible form via an g ∈ SL(2,Z) conjugation

M̃ = g ·M · g−1 . (4.17)

19Compatible Γ0(n) subgroups are considered in [24].
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In practice this can be achieved by a combination of the matrices g1 =

(
0 1

1 1

)
and the S

and T generator. E.g. for a type I∗2n+1 fiber we can use g = g2
1 to obtain

M̃I∗2n+1 =

(
1 + 4n −1− 2n

2n+ 8n −3− 4n

)
∈ Γ1(4) ∈ Γ1(2) . (4.18)

For the monodromies of type In, III, IV
∗ and III∗ fibers, conjugation by g = S · g1. For

type IV and I∗2n one can conjugation by g = S · T · S and g = g1 respectively to achieve

the right forms. Apart from the In fibers, we find a perfect match between the centers

of the covering algebra and their associated congruence subgroup. In the su(n) case we

also find compatibility to Γ(n) groups, that one expects to encode Zn × Zn centers. More

generally, there might be the possibility, for some torsion to only mod out a subcenter

of some su(n) algebra, when some Zn·m factor is present. The embedding of the torsion

inside the su(n) center is hardly visible from the monodromy picture but in the resolved

geometry, which we will comment on in section 4.3. When considering larger torsion, the

options of compatible ADE fibers get sparser but are still unbounded in principle, thanks

to the su(n) factors. In the next section, we want to switch gears and investigate whether

6 dimensional anomalies can constrain the order n in a meaningful way.

4.2 6D SUGRA with large putative torsion

From a field theory perspective, there is no direct reason why torsion of higher orders

should not exist, given that there is always some su(n) covering algebra with the given

center that can satisfy the strong 6d SUGRA anomalies. These constraints are given as:

H − V + 29T = 273 , 9− T = a· a , (pure-gravitational)

−1

6

(
Aadjκ −

∑
R

xRAR

)
= a· bκ , (Non-Abelian-gravitational)

Badjκ −
∑
R

xRBR = 0 , (Pure non-Abelian)

1

3

(∑
R

xRCR − Cadjκ

)
= b2κ ,

(4.19)

with H,V and T being the number of massless hyper-, vector-and tensor multiplets in

the theory and xR the number of hypermultiplets in representations R. The anomaly

coefficients a and bκ transform as SO(1, T ) vectors and the anomalies can be evaluated

using the following group theory coefficients:20

Representation Dimension AR BR CR ER

Fundamental n 1 1 0 1

Adjoint n2 − 1 2n 2n 6 0

. (4.20)

20We do not consider su(2) and su(3) groups that have different C and vanishing B and E type coefficients.
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Fiber (f, g,∆) Monodromy Subgroups algebra center

II∗ (≥ 1, 1, 2)

(
1 1

−1 0

)
- − -

In (0, 0, n)

(
1 n

0 1

)
Γ1(n),Γ(n) su(n) Zn

III (≥ 1,≥ 2, 3)

(
0 −1

1 0

)
Γ1(2) su(2) Z2

IV (≥ 2, 2, 4)

(
0 1

−1 −1

)
Γ1(3) su(3) Z3

I∗2n (≥ 2, 3, 6 + 2n)

(
−1 −2n

0 −1

)
Γ1(2),Γ(2) so(8 + 4n) Z2 × Z2

I∗2n+1 (≥ 2, 3, 7 + 2n)

(
−1 −2n− 1

0 −1

)
Γ1(2),Γ1(4) so(10 + 4n) Z4

IV ∗ (≥ 3, 4, 8)

(
−1 −1

1 0

)
Γ1(3) E6 Z3

III∗ (3,≥ 5, 9)

(
0 −1

1 0

)
Γ1(2) E7 Z2

II∗ (4,≥ 5, 10)

(
0 −1

1 1

)
- E8 -

Table 1. Summary of ADE fiber types, their Weierstrass singularity and associated sl(2,Z) mon-

odromy. Column four shows compatible Γ1(n) and Γ(n) subgroups matching the center of the

associated algebra. In monodromies are both compatible with Zn and Zn × Zn torsion points.

To match the F-theory geometry we make the following identification of base divisors

a ∼ Kb and bκ ∼ Zκ of su(n)κ whereas · denotes the intersection in the base.

When considering su(n)/Zn groups, there are several massless representations that

can be exclude straight away due to their incompatible Zn central charges. These include

fundamentals and (single times) antisymmetric representations as those are associated to

su(n)→ su(n+1) and su(n)→ so(2n) algebra enhancements at codimension two that have

incompatible centers for large enough n.21 Let’s exclude anti-symmetric matter directly

and reformulate the anomalies as the following conditions on fundamental and adjoint

hypermultiplets:

xfund = 2n(xadj − 1) , xadj = g = 1 +
1

2
(Z2 −Z ·K−1

b ) , (4.21)

where g is the genus of the divisor Z in the base. Let us consider solutions compatible

with a putative su(n)/Zn group over the divisor Z. A first solution is that of theory, with

21The later ones have at most an Z2, Z2 × Z2 or Z4.
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only adjoint hyper multiplets, realized by a genus one curve of self-intersection zero. This

leaves only the pure gravitational anomaly that can be solved, given the following amount

of pure neutral hypermultiplets:

Hneutral = 272 + n− 29T . (4.22)

Let’s try to engineer that model more concretely in F-theory. As a base we choose dP9

and the su(n) divisor to be z = 0 : Z ∈ K−1
b to guarantee it to be of genus g = 1. The

factorization of a Tate model

y2 + x3 + a1yx+ a2x
2 + a3y + a4x+ a6 , [ai] ∈ K−ib , (4.23)

is given as:

a2 → b1z a3 → c0z
3 , a4 → d0z

4 , a6 → e0z
6 , (4.24)

with the c0, d0, e0 being generic non-vanishing constants. The above factorization gives an

su(6) over z = 0, without any further codimension two loci since (K−1
b )2 = 0. By further

setting e0 and c0 to zero, this singularity can be enhanced to su(7) and su(8) respectively

or by further setting b1 = 0 increasing the singularity to su(9). This spectrum admits only

a single adjoint representation in its massless spectrum and looks naively like a possible

su(n)/Zn model for values n > 4. Especially the later one admits a torsion point of order

three as it is a variant of the Schoen [40, 63] but not of order nine as the massless spectrum

might suggest.

A second solution to the anomaly constraints above is to put the su(n) factor over

a P1 of self-intersection -2 in the base, hosting no adjoint hypermultiplets but instead

2n-fundamentals. In order to get that spectrum consistent with the enhancement rules we

introduce another su(n) gauge factor, over another -2 curve giving rise to the enhancement:

su(n)1 ∩ su(n)2 → su(2n) , (4.25)

consistent with the Zn factor. This configuration can be continued with up to k su(n)

factors, intersecting each other as:

−su(n)1 − su(n)2 − . . . su(n)k− ,

forming the structure of an affine su(k) Dynkin diagram in the base. The resulting gauge

group is of su(n)k type with k, bi-fundamental representations of type (1,Ni,Ni+1, . . . ,1)

consistent with a naive Zn factor. Such a configuration can cancel the gravitational anomaly

given the existence of

Hneutral = 273− k − 29T , (4.26)

neutral hyper and tensor multiplets present.

All the above models have a massless spectrum which is seemingly consistent with

an su(n)/Zn gauge group or multiple copies of those. It seems here that the pure gauge

theory anomalies do not give much guidance, on what bounds on the fundamental group

we might expect. However, we not, that we mainly argued with the massless sub-sector of
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the theory and there is a priori no reason to assume, that massive modes must respect the

putative su(n)/Zn group as well. It is arguably more convincing, that the massive modes

respect the (co-)charge refinement that is explicitly enforced by the torsion Shioda map

and the reduced monodromy of Γ1(n), that also acts non-trivial on (p, q)-strings as argued

in section 4.1. Similarly, it was shown in the IIA dual geometry [54] that torsion restricts

Ramon-Ramon charges of BPS solitons resulting in a non-simply connected group in the

same way as in F-theory.

4.3 Higher order and non-prime torsion

In this section we want to comment on torsion points and their field theory counterparts

in the case, when the torsion affects only a sub-center of the gauge algebra as well when it

is non-prime and how this is realized in the geometry itself.

Let’s consider e.g. the case when only a Zm sub-factor of some su(n·m) algebra becomes

gauged. This is visible e.g. in the Z2 torsion model by further specializing a4 → b22,

which enhances the su(2) to an su(4). The spectrum however is still constraint to an

su(4)/Z2 ∼ SO(6) sub-factor, consistent with the existence of antisymmetric 6-plet states.

This is also consistent with the Z2 symmetry among 0-and Z2 torsion which dictates the

torsion section to intersect the second su(4) resolution divisor, leaving a torsion Shioda

map of the form:

Σ(S1) = S1 − Z +
1

2
(f1 + 2f2 + f3) . (4.27)

The factor 1/2 shows, that the torsion Shioda map is indeed of order two, which gauges

the Z2 sub-center of the su(4) algebra. This does not allow for 4-plets with weight (1, 0, 0)

but the anti-symmetric 6-plets with (0, 1, 0) weight, which can be seen in the associated

Weierstrass model explicitly [52]. It is easy to extend this observation by noting, that glob-

ally, there is the freedom to redefine the zero-and order k-torsion section. This symmetry

on the other hand, must extend to the appearing gauge algebra factors and hence a cyclic

automorphism of the affine Dynkin diagram itself [50]. Indeed, this can be geometrically

seen by noting that each order k− section can intersect an su(n · k) at the k-th-node. The

inverse Cartan matrix of the su(n · k) then comes with a factor 1
det(G) = 1

nk . However, the

k-th. row of C−1 comes with a k-multiple and hence, the overall contribution of the su(nk)

is only n− fractional. Hence the torsion Shioda map Σ(Sk), effects only a sub-center.

Starting from the torsion forms, it is interesting to observe that, with order

MW (Y )tor = Zn for n > 3, several additional singularities beyond the expected mini-

mal su(n) start appearing. To consider this effect in more detail, we go back to the Z4

example with general Weierstrass model:

y2 + b1xy + b1b2y = x3 + b2x
2 , [b1] ∈ K−1

b , [b2] ∈ K−2
b ,

f4 = − 1

48
b41 +

1

3
b21b2 −

1

3
b22, , g4 = − 1

864
(b21 − 8b2)(b41 − 16b21b2 − 8b22) ,

∆ = − 1

16
b21b

4
2(b21 − 16b2) .

(4.28)

The above geometry suggests a minimal (su(2)× su(4))/Z4 gauge group. The presence of

the su(2) factor is especially surprising, as it does not appear in the Γ1(4) modular curve,
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[f1,1] [Dr,1]b1 = 0

s0

s2
s1

s3

b2 = 0

[f2,1]

s3

[f2,3]

s0 [f2,2]

s1

[Dr,2]
s2

Figure 5. Depiction of the generic resolved Z4 torsion model and its intersection with the torsion

sections si. The intersection pattern with the resolution divisors is compatible with the cyclic order

four movement for the su(4) fibers and an order two subgroup for su(2) fibers.

which we discussed in section 3.4. From the argument above, it seems also puzzling how

the torsion section can consistently intersect the local su(2), although being of order 4.

Therefore we will analyze the resolved model in more detail in the following, based on the

codimension two resolution with PALP id (3415, 0) [28, 58] and equation:

p1 = f2,1f1,1f2,2f
2
2,3z

2
0 + b1f2,1f2,2f2,3z1z3 + b2f1,1z

2
2 , (4.29)

p2 = f2,2z
2
1 + f2,1z

2
3 + f1,1z0z2 , (4.30)

with zi toric sections and fi some resolution divisors that have Stanley-Reisner ideal:

SRI : {f2,2z2, z0z2, z1z2, f2,1z2, f2,3z2, z3z2, z0z1, f1,1z1, f2,3z1, z1z3,

f2,2z3, z0z3, f1,1z3, f2,3z3, f2,2z0, f1,1f2,2, f1,1f2,3, f2,1z0, f2,1f1,1} . (4.31)

The resolved fibers are shown in figure 5 together with the intersection of the four

torsion sections {z0, z1, z2, z3} which we call si denoted by their order i in the MW group

law [50]. It is worth comparing the intersection structure of the torsion sections withing

the affine su(2) and su(4) fiber. For the later one we observe how each torsion section

si intersects exactly the i-th node in the fiber while for the su(2) they intersect the same

node in even/odd pairs. E.g. the zero-section and the s2 section intersect the affine node,

whereas the second fibral curve is intersected by the odd sections s1 and s3. This structure

might suggest the enforced presence of the su(2) sub algebra as it is predicted for a X1(2)

modular curve, due to the non-trivial Z2 subgroup of Z4. This can also be observed via

the two different torsion Shioda maps Σ(Si), that give a trivial i-torsional divisor in the

NS lattice via the expressions:

Σ(S1) = [s1]− [s0]− 1

2
f1,1 +

1

4
(f2,1 + 2fr + 3f2,2) , (4.32)

Σ(S2) = [s2]− [s0] +
1

2
(f2,1 + 2fr + f2,2) , (4.33)
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Gauge group: (su(4)2 × su(2))/Z4 × U(1) (su(6)× su(3)× su(2))/Z6

(h1,1, h2,1) (19, 19) (19, 19)

H: 2× 15⊕ 3⊕ 20× 1 35⊕ 8⊕ 3⊕ 20× 1

T : 9 9

Table 2. Summary of massless 6D F-theory spectra with Z4 and Z6 fundamental group, geomet-

rically realized by the Schoen manifold.

with fr = −(f2,2 + f2,3 + f2,1). We observe the first Shioda map gives a 4-torsion element

whereas the second one is only 2-torsion and only sees the Z2 subgroup of su(4) but not the

su(2) at all. The above model can be completed to a 6D SUGRA model, which requires the

absence of non-flat fibers, or (4,6,12) points, that are generically present over b1 = b2 = 0

and hence requires (K−1
b )2 = 0 which can be achieved over a rational elliptic surface as

the base. In order to make the model simple, we can factor a2 → c1b1, giving rise to two

copies of su(4) factors discussed above. This model can also be arranged as a variant of the

Schoen manifold [40], which, in addition to the (su(4)2×su(2))/Z4 admits a non-higgsable

U(1) factor. The full matter spectrum of the model is specified in table 2 and can be shown

to satisfy gauge and gravitational anomalies The observations above, are pathological for

non-prime Zn order torsional models. The presence of su(m) gauge factors, where m are

divisors of n forces (4, 6, 12) points over generic Fano bases that can be avoided over dP9.

The maximal cases possible are Z6 for a single factor and Z3 × Z3 for two factors, as

concretely constructed in [54]. The Weierstrass coefficients of the former one is given as

y2 + a1xy +
1

32
(a1 − b1)(3a1 + b1)(a1 + b1) = x3 +

1

8
(a1 − b1)(a1 + b1)x2

f =
1

192
b1(3a3

1 − 3a2
1b1 − 3a1b

2
1 − b31)

g =
1

110592
(3a2

1 − 6a1b1 − b21)(9a4
1 − 6a2

1b
2
1 − 24a3

1b1 − 11b41)

∆ =
1

224
(a1 − 5b1)(3a1 + b1)2(a1 + b1)3(a1 − b1)6 , a1, b1 ∈ O(K−1

b ) ,

(4.34)

and is also naturally described by a Schoen manifold, in order to keep all (4,6,12) points

absent. Note that the generic I6, I3 and I2 singular fibers expected from the cusp points

of the modular curve, as discussed in section 3.3 and depicted in figure 3 are present. This

model gives rise to a good F-theory vacuum in six dimensions with (su(6)×su(3)×su(2))/Z6

gauge group, whose massless spectrum is summarized in table 2.

The modular curve perspective gives a good understanding of which minimal singu-

larities are to be expected in certain torsion models. Let’s go to a higher n-torsion point

say Z8 e.g. over a F0 ∼ P1
[t0,t1] × P1

[s0,s1] base which we derive explicitly in appendix A and

analyze the associated Weierstrass model directly. We repeat the model here, as:

y2 + (s0s1t0t1 + (s0t0 − s1t1)(2s1t1 − s0t0))xy + s0s
3
1t0t

3
1(s0t0 − 2s1t1)(s1t1 − s0t0)y

= x3 + s2
1t

2
1(s0t0 − 2s1t1)(s1t1 − s0t0)x2 , (4.35)
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MWtor Fibers

Z7 3I7

Z8 2I8 + I4 + I2

Z6 × Z2 3I6 + 3I2

Z4 × Z4 6I4

Table 3. Summary of large torsion models, that cannot be realized in 3- and 4-folds and their

singular fibers. All of them are extremal K3’s.

with discriminant:

∆ =
−1

16
s2

0s
8
1t

2
0t

8
1(s0t0 − 2s1t1)4(s0t0 − s1t1)8(s2

0t
2
0 − 8s0s1t0t1 + 8s2

1t
2
1) . (4.36)

This model admits two I2, one I4 and three I8 fibers as well as two (8,12,24) codimension

two singularities. Therefore, the (su(8)3 × su(4) × su(2)2)/Z8 six dimensional SUGRA

model cannot exist. In the next section we show, however that a related model in eight

dimensions can exist.

4.4 K3: 8-dimensional exceptions

The only way to avoid the (8,12) singularities at codimension two is by restricting the base

to be one-dimensional, that is a K3 surface. This allows some additional possible higher

order torsion models to exist exclusively as 2-folds, as opposed to 3- and 4-folds. Hence

their underlying 8D SUGRA theories, obtained from F-theory comprise of isolated theories

as we discuss in the following. The Z8 model is one of the few exceptional torsion models,

only22 present in elliptic K3’s. The groups and their fiber configurations are summarized in

table 3, that is adapted from a table in [32]. As can be found in table 3, all elliptic K3’s are

of extremal type, which means that their Néron-Severi group has maximal possible rank 20.

In short, no elements of h1,1(Y ) can contribute to complex structure deformations which

results in a rigid geometry. In fact, the T = Z8 threefold given in (4.35) can be viewed as

an enforced K3-fibration over a base P1 in terms of [t0, t1] coordinates that preserves the

torsion. Deleting the P1 by effectively setting the coordinates to one, gives the consistent

K3 with the correct fibers.

In this regard, also their associated 8D F-theory vacua are special. Their rigidity, does

not allow for a minimal SUSY preserving compactification to lower dimension23 compatible

with the torsion. Moreover, the rigidity, also does not allow for a stable degeneration limit

at finite distance in the moduli space into two rational elliptic surfaces, as those require

at least one free complex structure modulus to assign the proper scaling. Therefore, these

models do not have a (geometric)24 heterotic dual either. This is consistent with the fact,

that the groups do not fit into E8 × E8, which is also reflected by the fact, that none of

the torsion factors, are discrete finite subgroups of E8.

22As opposed to Calabi-Yau fibrations of higher dimension.
23Note that trivial, fibrations over a torus or K3 [53] are still possible.
24In [75] non-geometric heterotic-F-theory dual models in eight and lower dimensions have been proposed,
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Figure 6. Triangulations of X(4), X1(8) and X1(9). Colors highlight identified lines, allowing to

read off the cusp points and their widths.

The same conclusions can be obtained, by simply considering the modular curves of

the higher torsion models which naturally explains the absence of even larger torsion in

K3. In figure 6 we depicted the three modular curves that correspond to Z4 × Z4, Z8 and

Z9 torsion model explicitly. The Z4 × Z4 modular curve, admits six cusp points at

S(4×4)
cusp : {0(4), 1/2(4), 1(4), 2(4), 3(4),∞(4)} , (4.37)

where we highlighted their widths as superscripts. The associated fibers are consistent

with the expectation from the K3 classification. Similarly, the Z8 curve, discussed earlier

admits six cusps

S(8)
cusp : {0(8), 1/4(2), 1/3(8), 3/8(1), 1/2(4),∞(1)} , (4.38)

consistent with K3 construction as well. Finally, we depicted also the Z9 case in figure 6.

There are eight cusps in total at

S(9)
cusp : {0(9), 2/9(1), 1/4(9), 1/3(3), 4/9(1), 1/2(9), 2/3(3),∞(1)} . (4.39)

some of them also admitting non-crepant singularities.
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Collecting all singular fibers, we end up with three I9 and two I3 fibers in total. Resolving

these singularities while adding the class of the generic fiber and base required 30 inde-

pendent Kähler parameters. This clearly over shots the maximum of 20 that K3 has at its

disposal by large. With view on F-theory this also implies the absence of eight-dimensional

SUGRA theories with a non-simply connected gauge group G with π1(G) = Zn × Zm
beyond the bound (n = 1,m ≤ 8) and (n ≤ 4,m ≤ 4).

4.5 Bounds on Calabi-Yau quotient torsors

These results also reveal constraints on a certain class of non-simply connected, genus-one

fibered Calabi-Yau 3-folds Ŷ3 which are relevant for heterotic [22, 44, 45] and F-theory

compactifications [19, 21]. The construction of the 3-folds is described in detail in [22, 40].

We start with a smooth elliptic 3-fold X3 → B2, and assume that we have the following

extra structure:

• An automorphism α of B2 which is of finite order, and which is compatible with the

fibration structure.

• A non-identity element P ∈MW (Y/B) satisfying:

– P is fixed by σ, and nP = 0 in MW.

– P is not fixed by σ, and the sum of the elements in the α orbit of P is 0.

We then combine the automorphism of the base with a translation by P along the

fibers to obtain a finite order, fixed point-free automorphism of Y3, that we denote α̃P . We

can take a simultaneous quotient of Y3 and B2 by the action of 〈α̃P 〉 and 〈α〉, respectively,

we obtain a new fibration Y3/ 〈α̃P 〉 → B2/ 〈α〉.
The resulting quotient geometries have two central properties that we want to comment

on.

1. Although Y3// 〈α̃P 〉 is itself smooth, B2/ 〈α〉 has isolated singularities over the fixed

points of α action. The fibration has multiple fibers25 over these singular points [56].

2. Second, the new fibration no longer has a global section. This is immediate from the

fact that we have multiple fibers over the singularities in the base. The zero section

of the original fibration becomes a multisection of degree n in the quotient fibration.

In the physics of F-theory, the n-multisections have been shown to lead to discrete Zn
gauge symmetries in the 6D SUGRA theory. The fixed points on the other hand carries

superconformal matter theories coupled to gravity. In [19, 21] consistency of such theories

for all Zn quotients have been shown.

The bounds on the MW torsion groups therefore also constrains the possibilities for

this construction using torsion points. In the physics of F-theory, these constraints can

be translated into bounds on discrete symmetries and gaugings of superconformal matter.

25In the context of F-theory, these fibers also appeared in the duality to the CHL string [37] and classi-

fication of little string theories [40].

– 26 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
3

In particular the large order quotients, n > 4 turn out to be all quotients of the Schoen

manifolds, classified in [40] whose F-theory physics has been investigated in [21].Therefore,

the orders of the quotients cannot exceed the symmetries possible in rational elliptic surface

and hence these are all possible quotient manifolds26 possible via that construction.

Furthermore, the technical results we use to bound MW torsion can also be used

to bound the order of fibration-preserving automorphisms of a Calabi-Yau 3-fold. Let

π : Y → B be an elliptic 3-fold given by a Weierstrass equation. Let L = K(B) be the

function field of the base and K = C(f, g) the field generated by the Weierstrass coefficients.

Then one of the following must be true:

• K = C. In this case, the fibers in the elliptic curve do not vary, since f, g are

constants.

• L/K is a finite field extension. In this case, elementary Galois theory tells us the

group of automorphisms of L which fix f, g is contained in Sn, where n = [L : K]. In

particular, there are only finitely many automorphisms of the base which fix f, g.

• Otherwise, L has transcendence degree 1 over C. In this case, L is the field of

meromorphic functions of some Riemann surface C, and the inclusion of fields K → L

means we have a rational map B → C. Lemma 5.1 below shows that B is flat and C

has genus 0, and so Y → B is a special fibration. Resolving indeterminacy of the map

B → C requires blowing up B in the base points of a pencil of cubics, after which

B becomes a rational surface. It is not too hard to show that Y is then Schoen,

since the fibration Y → B factors through the fiber product Y → B̃ ×C YC , and

minimality of Y → B forces that map to be an isomorphism. Since this construction

has been fully analyzed on Schoen manifolds, this shows that any fixed Calabi-Yau

3-fold admits only finitely many quotient torsors.

5 Technical results

Our main result is the bound on torsion groups in smooth Calabi-Yau n-folds, n ≥ 3. The

key idea in the proof is the fact that the diagram (2.4) forces (f, g,∆) to vanish to order

(4d, 6d, 12d) over points in the indeterminacy locus of φ which obstruct the existence of a

flat crepant resolution of the total space. To ease exposition, we will prove the theorem for

3-folds specifically and comment on its validity for 4- or 5-folds at the end.

To avoid having to constantly refer to the diagram, we introduce the phrase “special

fibration”. An elliptic fibration Yn → Bn−1 is special if it fits into a commutative diagram:

Yn S

Bn−1 C ,

Φ

π p

φ

(5.1)

satisfying the following conditions:

26Alternatives might be quotients of type (K3×T k)/Zn [25, 37] as well as quotients, that do not require

a finite Mordell-Weil group.
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• S → C is a smooth, minimal elliptic surface, and C is an irreducible curve.

• The horizontal maps are non-constant, rational maps.

• The vertical maps are proper.

• φ is flat.

5.1 Global lemmas

A variety B is rationally connected if two general points b1, b2 can be joined by a rational

curve, i.e. there exists a regular morphism P1 → B taking [0 : 1] to b1 and [1 : 0] to b2.

Lemma 5.1. Let B be a rationally connected variety, C an irreducible, separated curve,

and φ : B → C a non-constant rational map. Then C has genus 0 and φ is flat.

Proof. Since φ is non-constant, we can find points b1, b2 ∈ B such that φ(b1) 6= φ(b2). Since

B is rationally connected, there is a regular map P1 → B taking 0 to b1 and ∞ to b2. The

composition P1 → C is a non-constant rational map, so by [72],27 C has genus 0.

To prove flatness of φ, it suffices to prove that the map is flat over each point in P1.

Any proper open neighborhood of P1 has the form SpecR0 for R0 a principal ideal domain

(PID), so we can determine whether the map is flat by studying the morphism of algebras

R0 → K(B). Since R0 is a PID, flatness is equivalent to K(B) being torsion-free, which

follows immediately from the fact that the map B → P1 is non-constant and K(B) is

purely transcendental.

As in section 2, we write LY/B = (R1π∗OY )−1 for the fundamental line bundle of

the elliptic fibration π : Y → B and ωY (resp. ωB) to denote the canonical bundle of Y

(resp. B). A variety B is Fano if ω−1
B is ample. Note that every Fano variety is rationally

connected by Theorem 0.1 of [87].

Lemma 5.2. Let π : Y → B a special elliptic fibration. Then LY/B ∼= φ∗LS/C .

Proof. The conditions in the definition of a special elliptic fibration allow us to use Prop.

III.9.3 in [72] to compute:

LY/B = (R1π∗OY )−1 = (R1π∗Φ
∗OS)−1 = φ∗(R1p∗OS)−1 = φ∗LS/C . (5.2)

Lemma 5.3. Let B be a rationally connected variety, π : Y → B be a special fibration and

let d be the degree of LS/P1.

Then ωY ∼= π∗(ωB ⊗ φ∗(OP1(1))⊗d).

Proof. This follows from the canonical bundle formula for elliptic fibrations, together with

the computation from the previous lemma.

27The assertion is proven in IV.2.5.4 and IV.2.5.5.
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Proposition 5.4. Let π : Y → B be a special elliptic fibration, with ωY trivial and B

Fano. If φ is a morphism, then dimB = 1.

Proof. First, since B is Fano, B is rationally connected so C ∼= P1. Next, since π has

section, π∗ : Pic(B) → Pic(Y ) is injective, so triviality of ωY forces φ∗(OP1(1))⊗d ∼= ω−1
B .

Since B is Fano, ω−1
B is ample so φ∗(OP1(1)) is ample.

Finally, suppose φ is a morphism. Then φ∗(O(1)) is generated by global sections. By

Corollary 1.2.15 in [85], φ∗(O(1)) is ample if and only if φ is finite. Thus, if φ is a morphism,

dimB = 1.

In applications, we will be using in the contrapositive of the last proposition, i.e. if

dimB ≥ 2 then φ is not a morphism.

5.2 Local lemmas

In this section k is an algebraically closed field, R a factorial, finitely generated k-algebra

and K is the fraction field of R.

Definition 5.5. Let p ⊂ R be a prime ideal and I ⊂ R an ideal. The order of vanishing

of I at p is the largest integer m such that I ⊂ pm.

Definition 5.6. Let φ = p
q ∈ K, with p, q ∈ R relatively prime. We can think of φ as a

map SpecR→ P1. The locus of indeterminacy of φ is V (p) ∩ V (q) ⊂ SpecR.

Definition 5.7. Let φ be as above, and assume the locus of indeterminacy of φ contains

a closed point b. Let mb ⊂ R be the corresponding ideal. We define mφ(b) to be the order

of vanishing of the ideal (p, q) at mb.

Note that mφ(b) makes sense whenever we have a rational map B → P1 from a normal

scheme B, since the property is local on B. Furthermore, the definition mφ(b) makes sense

for any irreducible component of the indeterminacy locus, and not just for closed points.

To ease the exposition, we will refer to irreducible components of the indeterminacy locus

as points, although the arguments do not require this.

Proposition 5.8. Let φ : B → P1 be a non-constant rational map and f a global section

of OP1(d) for some d > 0. If b ∈ B is in the indeterminacy locus of φ, then φ∗(f) vanishes

to order mφ(b)d at b.

Proof. The claim is local on B, so we assume B is affine, say B = SpecR. Choosing

coordinates [x0 : x1] on P1, we can express f(x0, x1) as a homogeneous polynomial of

degree d in x0, x1. Furthermore, we can write the map φ : B → P1 as b 7→ [p(b) : q(b)],

where p, q ∈ R have no common factors. In this notation, we have φ∗(f)(b) = f(p(b), q(b)).

Since f is a homogenous polynomial of degree d, f ∈ (x0, x1)d ⊂ k[x0, x1]. If b ∈ B is

in the locus of indeterminacy of φ, then m
mφ(b)
b ⊃ (p(b), q(b)) = φ#((x0, x1)) so:

φ∗f ∈ (p(b), q(b))d ⊂ m
mφ(b)d
b
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We now easily deduce the following:

Corollary 5.9. Let π : Y → B be a special fibration, let d be the degree of the fundamental

line bundle of LS/P1, and let b ∈ B be a point in the indeterminacy locus of φ. Then the

Weierstrass coefficients f, g of Y vanish to order (4n, 6n), where n = dmφ(b).

Proof. Commutativity of the square (5.1) tells us fB = φ∗(f1
P) and gB = φ∗(g1

P). The

Weierstrass coefficients of the elliptic surface are homogenous polynomials of degree 4d, 6d

respectively, proving the claim.

Corollary 5.10. Let π : Y → B be a special elliptic fibration and suppose the order of

vanishing of (f, g) does not exceed (4, 6) over any point b ∈ B. Then either φ is a morphism,

or S is rational and the locus of poles and the locus of zeros of φ intersect transversely.

Proof. Assume φ is not a morphism. Recall that an elliptic surface is rational if and only

if the fundamental line bundle has degree 1. If the fundamental line bundle has degree

d > 1, then the order of vanishing over all points in the locus of indeterminacy is at least

(4d, 6d). The condition on (f, g) forces d = 1, hence rationality of S. If the locus of poles

meets the locus of zeros non-transversely at some point b, then mφ(b) > 1 so (f, g) vanish

to order at least (8, 12) over b.

5.3 Summary of technical results

The results of the previous two sections are summarized in the following theorem:

Theorem 5.11. Let π : Y → B be an elliptic fibration satisfying:

1. Y has trivial canonical bundle.

2. B is a Fano variety of dimension at least 2.

3. The order of vanishing of the Weierstrass coefficients (f, g) does not reach (8, 12)

over any codimension 2 subvariety of B.

If the fibration is special, then:

• C ∼= P1

• S is rational, or equivalently LS/C ∼= O(1).

• φ∗(OP1(1)) ∼= ω∨B

We make some remarks before proving the main theorem.

• When B is a surface, we can use the birational classification of algebraic surfaces to

make stronger statements and simplify some of the assumptions. Simply requiring

the fibration to not be isotrivial forces the base to be rational. After contracting all

exceptional curves in the base, we may assume that B ∼= P2 or Fn. A computations

show that φ has 8 or 9 points of indeterminacy, with 9 occurring if and only if B ∼= P2.
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If we assume that B = P2 e.g., it is easy to see that resolving indeterminacy of φ

means blowing up P2 at the 9 points in the base locus of a pair of cubics, so the

new map φ̃ : B̃ → P1 is itself an elliptic fibration. Commutativity of (5.1) gives us a

natural map Ỹ → B̃×P1 S. Minimality of the fibration Ỹ → B̃ then forces that map

to be an isomorphism, showing that any special Y → B is birational to a Schoen

manifold.

• Requiring the base to be Fano, and more generally requiring Y → B to be birational

to a fibration over a Fano base, is a mild but necessary requirement for this type of

theorem. Even in dimension 2, one has to exclude fibrations of the form E1×E2 → E2,

where E1, E2 are elliptic curves, when giving a bound on Mordell-Weil torsion of

K3 surfaces. In dimension three, this condition rules out fibrations over Enriques

surfaces, which are also isotrivial and thus can have an non-finitely generated Mordell-

Weil group. It also rules fibrations of the form S × E → P1 × E, where S → P1 is a

K3 surface. However, our conclusion fails in all of these cases, showing the condition

is necessary in dimensions 2 and 3.

• By Theorem 1.8 in [66] every smooth28 elliptically fibered Calabi-Yau n-fold Y → B

is birationally equivalent to a (possibly singular) fibration over a Fano base, as long

as the original base is not of product type. Roughly speaking,29 B is of product

type if B is birational to a quotient of a product. This condition is necessary to

rule out higher dimensional analogues of isotrivial fibrations in the statement of the

boundedness theorem in [66]. However, our theorem also fails for fibrations over

a base of product type, and in fact it is easy to construct counterexamples to our

theorem in any dimension by taking the product of a K3 with Mordell-Weil group Z8

with a product of elliptic curves.

• The condition on the order of vanishing of (f, g) is precisely the condition needed

to guarantee that the Weierstrass model admits a proper, flat crepant resolution,

see e.g. [65]. Thus, any smooth fibration Y → B is birational to one satisfying the

conditions of the previous theorem.

5.4 Application

In this section, we prove the following:

Theorem 5.12. Let π : Y → B be an elliptic fibration satisfying the hypotheses of the

previous theorem. Then MW (Y/B)tors is isomorphic to one of the following groups:

Zn : (n = 1, 2, 3, 4, 5, 6) ,

Z2 × Z2m : (m = 1, 2) , Z3 × Z3 .

Note that this list of groups is exactly the list studied in [54], and they can all be realized

as torsion subgroups of Schoen manifolds in dimension 3.

28This condition can be relaxed; see [66] for details.
29See [66] for the precise definition.
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In order to apply the results of the previous section to rule out the existence of fibrations

with a particular torsion group T , we need an elliptic surface S → C with the following

property: for any elliptic fibration Y → B whose Mordell-Weil group contains a subgroup

isomorphic to T , there exists a special diagram:

Y S

B C ,

Φ

π p

φ

We call S → C a universal elliptic surface for T .

Proof. If T is cyclic and |T | ≥ 4, then there is a well-known construction for a universal

elliptic surface. We give a construction for S → C and φ in appendix A. For these groups,

C ∼= X1(n), where n = |T |. A computation shows that C has positive genus if n = 11

or n ≥ 13, and LS/C ∼= O(1) for n = 4, 5, 6 and degLS/C > 1 for n ≥ 7. Thus, we can

immediately rule out the existence of a point of order exceeding 6 in MW (Y/B).

If T is not cyclic, then T is isomorphic to Zm × Zn for some pair of positive integers

m,n with 1 6= m|n.30 The previous argument also shows we may assume n ≤ 6. If m = n

and m ≥ 3,31 then it is also well-known that a surface S → C with the desired property

exists ([84] Cor. 4.7.2.) and that C ∼= X(m). A construction for S → C is described in [86].

For these groups, one computes that X(m) has genus 0 if m = 3, 4, 5 and has positive genus

otherwise. Thus, we can rule out any group containing Z6 × Z6. A computation using the

formulae in appendix B shows that LS/C ∼= O(1) for m = 3 and degLS/C > 1 for m = 4, 5,

which allows us to rule out Z4 × Z4 and Z5 × Z5.

Finally, we have to rule out Z2 × Z6 and Z3 × Z6.32 In appendix C, we explain how

to construct surfaces S → C for T ∼= Z2 ×Z2m (m ≥ 2) and T ∼= Zm ×Z2m (m ≥ 3 and m

odd) with the desired universal property. One can compute the degree of the fundamental

line bundle directly from the Weierstrass model obtained from construction, or using the

formulae in appendix B, to check that d = 1 is possible only in the Z2 × Z4 case.

That will suffice to complete the proof.

Note that when dimB ≥ 3, the locus of indeterminacy of φ still has codimension

2, since it is a nonempty intersection of 2 hypersurfaces in B. Thus, it is impossible to

crepantly resolve singularities of the Weierstrass model and obtain a smooth Calabi-Yau

total space. We devote appendix A to the explicit construction of Weierstrass models

beyond the list above.

6 Summary and conclusions

In this work we proved that the Mordell-Weil torsion group T of elliptically fibered Calabi-

Yau n-folds, with n > 2, is no larger than T = Z6 in the cyclic case and T = Z3 × Z3 or

30First, note that Zm × Zn ∼= Zgcd(m,n) × Zlcm(m,n), so we may assume m|n . Furthermore, we may

assume m 6= 1, since in that case T is cyclic.
31We do not need to consider Z2 × Z2 since the group is in our list of possible subgroups.
32We do not need to rule out Z2 × Z4, as that group is on our list of subgroups.
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Z2 × Z4 in the general case. We showed explicitly that generic Weierstrass models with

higher prescribed torsion have singularities over a codimension two locus in the base which

do not admit a crepant resolution. This shows that the list of Weierstrass models that

appears in [54] contains every possible torsion group that is allowed on a smooth Calabi-

Yau. Furthermore, we use the same results to bound possible quotient Calabi-Yau torsors

as well. We use modular curves to interpret those minimal singularities as a direct feature

of the congruence subgroups Γ1(n) and Γ(n) of SL(2,Z). There, the amount and type of

minimal singularities can directly be read off from cusps in the fundamental domain of

the modular curve of the respective congruence subgroup. We find that the torsion groups

that can appear on a smooth elliptically fibered Calabi-Yau d-fold, with d ≥ 3, all appear

on rational elliptic surfaces. On the other hand, we do not need to worry about crepantly

resolving codimension 2 singularities on K3 surfaces, which allows for more possibilities. By

connecting the index of the congruence subgroups, with the degree of the fundamental line

bundle, we can show however that also K3 cannot exceed Z8 and Z4×Z4 as classified in [32].

These K3 manifolds however are all of extremal type and do not admit any free complex

structure deformation. Thus, they neither have a stable degeneration limit into rational

elliptic surfaces, nor can they be used as building blocks for K3 fibered 3- or 4-folds while

preserving the torsion. We further interpret these bounds within the physics of F-theory,

where torsion realizes the fundamental group of the global gauge group as a swampland

constraint. We argue that, from pure field theory considerations, the above constraints

are surprising as it is possible to construct rather large rank su(n) gauge theories where

the massless spectrum respects a putative Zn quotient factor. This might point towards

the possibility, that it is the massive spectrum that does not respect the putative first

homotopy group, which is geometrically enforced when torsion is present.

In addition, we observe a variety of surprising effects when large torsion is present

that have no field theory explanation yet. The necessity for multiple gauge factors seems

especially puzzling from a pure field theory point of view. A possible explanation of this

effect might be to view the torsion as a kind orbifold in SL(2,Z) of the F-theory torus to an

Γ1(n) subgroup requiring the presence of additional gauge theory sectors for consistency of

the modularity. It would also be interesting to explore whether Dai-Freed anomalies [77]

could be the right framework to gain a better understanding on why we see these specific

gauge algebra factors for a given large fundamental group. These bounds however can

partially be avoided in isolated 8D SUGRA vacua. These vacua admit at most trivial

circle compactifications, but none that preserve only a minimal amount of SUSY and the

torsion group. They also do not admit a (geometric) heterotic dual due to their rigidity and

the fact that their minimal gauge group does not fit into E8 × E8 (or SO(32)) . It would

be interesting, to investigate those eight dimensional exceptions from a field theoretical

perspective, maybe in the spirit of [76]. Finally, since all admissible torsion groups must

be embeddable into a rational elliptic surface (and into its E8 lattice) it seems plausible,

that the heterotic string plays a similar prominent role as in [69] to explain the constraints

we find from the F-theory perspective.
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A Universal elliptic curves with points of order n ≤ 8

In this appendix we give explicit constructions for the universal elliptic curves with a point

of order n, for 2 ≤ n ≤ 8, and we show how to extend the natural rational maps B → P1

over codimension 1 components of the discriminant when n = 7, 8. The construction for

modular curves is well-known in the arithmetic theory of elliptic curves, see [60] See [32, 34]

for the generalization to elliptic surfaces. We are including the explicit constructions since

these maps have not been used to study higher dimensional elliptic fibrations and the

information we need is in the locus of indeterminacy.

The “main” construction applies only to elliptic curves with points of order n ≥ 4.

For completeness, we also explain what happens when we try to parametrize elliptic curves

with a 2 or 3 torsion point.

The construction can be carried out over any ground field - for simplicity, we assume

our ground K has characteristic 0 throughout.

A.1 n = 2, 3

Let E/K be an elliptic curve and P ∈ E(K) a 2-torsion point. We can choose coordinates

so:

E : y2 = x(x2 + ax+ b) , P = (0, 0) , (A.1)

for some a, b ∈ K. The isomorphism class of the pair (E,P ) is determined by a, b, but the

choice of a, b are not unique. Two choices a, b and a′, b′ give rise to isomorphic pairs if and

only if there exists λ ∈ K× such that λ2a = a′ and λ4b = b′. Thus, the modular curve

parameterizing pairs (E,P ), where P is a 2-torsion point, is:

X1(2) =
{

(a, b) ∈ K2
}
/(a, b) ∼ (λ2a, λ4b) , (A.2)

Similarly, any pair (E,P ) with P a point of order 3 is isomorphic to:

y2 + axy + by = x3 , P = (0, 0) , (A.3)
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for some a, b ∈ K. Two choices a, b and a′, b′ give rise to isomorphic pairs if and only if

there exists λ ∈ K× such that λa = a′ and λ3b = b′. Thus:

X1(3) =
{

(a, b) ∈ K2
}
/(a, b) ∼ (λa, λ3b) . (A.4)

Both of these quotients are singular - this is due to the presence of finite order points in

Γ1(2),Γ1(3). For n ≥ 4, there are no more finite order points in the congruence subgroup,

so we obtain smooth modular curves. As a result, the moduli spaces are better behaved.

This is why we study elliptic curves with a point of order at least 4 separately.

A.2 Universal elliptic curves with a point of order n ≥ 4

Let E/K be an elliptic curve and let P ∈ E(K) be a point which has order at least 4 in the

MW group. We can do a change of variable that takes the tangent at P to the line y = 0.

Since the order of P is not 2, the equation of the tangent has the form y = λx+ ν, so the

equation we obtain after this change of variables only contains “Weierstrass monomials”.

Explicitly, if the tangent at P is y = λx+ ν, then we set y′ = y − (λx+ ν); setting y′ = 0

is then the same as requiring y = λx+ ν. Thus, in the new coordinates, the equation of E

has the form:

y2 + a1xy + a3y = x3 + a2x
2 , (A.5)

since the polynomial on the r.h.s. is the equation of E restricted to the tangent at (0, 0),

and therefore has to vanish twice at (0, 0). Finally, multiplying through by
a62
a63

and replacing

x, y by
a23x

a22
,
a33
a32
y gives a Weierstrass equation:

y2 +
a1a2

a3
xy +

a3
2

a2
3

y = x3 +
a3

2

a2
3

x2 (A.6)

The main things to notice about the last equation are that only the coefficients a1, a2, a3

are nonzero, and that a2 = a3.

Thus, for any elliptic curve E with a point P of order at least 4, there exist unique

u, v ∈ K such that the pair E,P is isomorphic to:

y2 + (1− u)xy − vy = x3 − vx2 . (A.7)

We note that we are using parameters 1 − u,−v instead of just u, v to simplify future

computations.

Viewing this as an elliptic curve over K(u, v), we can compute multiples of P = (0, 0):

P = (0, 0) , 2P = (v, uv) , 3P = (u, v − u) ,

−P = (0, v) , −2P = (v, 0) , −3P = (u, u2) ,

4P =

(
(v − u)v

u2
,
v2(u2 + u− v)

u3

)
, 5P =

(
uv(u2 + u− v)

(u− v)2
,
u2v(u3 + uv − v2)

(u− v)3

)
,

−4P =

(
(v − u)v

u2
,
(v − u)2v

u3

)
, −5P =

(
uv(u2 + u− v)

(u− v)2
,
v2(u2 + u− v)2

(u− v)3

)
.
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We can construct the universal elliptic curve with an n-torsion point for n = 4, 5, 6 by

setting P = −3P, 3P = −2P, 3P = −3P , respectively.

4P = O ⇐⇒ P = −3P ⇐⇒ u = 0 ,

5P = O ⇐⇒ 3P = −2P ⇐⇒ u = v ,

6P = O ⇐⇒ 3P = −3P ⇐⇒ u2 + u = v ,

This gives us the universal elliptic curves:

y2 + xy − ty = x3 − tx2 , (0, 0) ∈ E[4] , (A.8)

y2 + (1− t)xy + ty = x3 − tx2 , (0, 0) ∈ E[5] , (A.9)

y2 + (1− t)xy − (t2 + t)y = x3 − (t2 + t)x2 , (0, 0) ∈ E[6] , (A.10)

Next, we compute the universal elliptic curves for n = 7, 8. For these fibrations, the

relation between u, v will define a singular curve, and we will compute the normalization

of the curve explicitly to find the universal curve.

For n = 7, we set 5P = −2P to obtain:

7P = O , ⇐⇒ u3 − uv + v2 = 0 .

The cubic is clearly nodal. The normalization of the curve is:

SpecC[t]→ C ′ = SpecC[u, v]/u3 − uv + v2 , t 7→ (t2 − t, t3 − t2) ,

and has a rational inverse given by (u, v) 7→ v
u . Thus, the universal elliptic curve is:

y2 + (1 + t− t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2 .

For n = 8, we set 4P = −4P to obtain:

v(u2 + u− v) = (v − u)2 .

The normalization of this curve is:

t 7→
(

(2t− 1)(t− 1)

t
, (2t− 1)(t− 1)

)
.

Note that the inverse of the normalization map is again (u, v) 7→ v
u .

A.2.1 Extending φ

Let π : Y → B be an elliptic fibration with an n-torsion section P , 4 ≤ n ≤ 8. Let S → P1

be the Néron model of one of the following universal elliptic curves over C(t):

y2 + (1 + t− t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2 , (A.11)

y2 + (t2 − (t− 1)(2t− 1))xy − t3(t− 1)(2t− 1)y = x3 − t2(t− 1)(2t− 1)x2 . (A.12)
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Note that (0, 0) has order n where n = 7 for the first equation and n = 8 for the second.

Let U = B − V (∆) and YU = Y ×B U . We have a commutative diagram:

YU S

BU P1 ,

Φ

π p

φ

(A.13)

with B flat and non-constant. We can take the closure of the graph to extend to a diagram:

Y0 S

B0 P1 .

Φ

π p

φ

(A.14)

The map B0 → P1 is obtained by composing the map to the singular modular curve (in

u, v coordinates):

b 7→
(
a3 − a1a2

a3
(b),
−a3

2

a2
3

(b)

)
, (A.15)

with the inverse of the normalization map. The inverse of the normalization map is the

same for both n = 7, 8, and the composite map is:

b 7→
[
a3(a3 − a1a2)

a3
2

(b) : 1

]
. (A.16)

A.3 Weierstrass equation for Z2 × Z6

In this section we compute a Weierstrass equation for the elliptic surface with torsion group

Z2 × Z6.

First, fix coordinates [t0 : t1] on X1(6) and compute a Weierstrass model for the

universal curve using the methods of the previous section:

y2 + (t1 − t0)xy − (t0t1 + t20)y = x3 − t1(t0t1 + t20)x2 , (A.17)

Let t = t0
1 be an affine coordinate on X1(6). Note that we have an I1 fiber over t = −1

9 and

an I3 fiber over t = −1. To construct X(2, 6), we take the double cover of X1(6) branched

over those two points. Explicitly, the map X(2, 6)→ X1(6) is given by:

[u0 : u1] 7→ [10u2
1 − 2u0u1 : u2

0 − 9u2
1] (A.18)

Pulling back the Weierstrass equation along this map gives us:

y2 + (u2
0 + 2u0u1 − 19u2

1)xy − (10u2
1 − 2u0u1)(u0 − u1)2y

= x3 − (10u2
1 − 2u0u1)(u0 − u1)2(u2

0 − 9u2
1)x2 , (A.19)

Now, each coefficient ai is a homogeneous section of degree 2i, so the fundamental

line bundle of the universal surface over P1 has degree 2. This degree can also be deduced

using (B.16), which we derive in appendix B and by identification of the fundamental line

bundle degree as in (3.18).
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A.4 Examples

In this section, we give Weierstrass models of singular Calabi-Yau 3-folds with Mordell-Weil

torsion in {Z7,Z8,Z2 × Z6}. To construct these 3-folds, we used the method described in

the introduction:

• To obtain the Weierstrass model of the modular surface S → P1, we use the con-

struction in the universal elliptic curve section.

• We chose the map [s0 : s1]× [t0 : t1] 7→ [s0t0 : s1t1] as φ, although any other bi-degree

(1,1) map would have given an equivalent 3-fold. Note that we need a bi-degree (1,1)

function because the LS/P1 = O(2) for both 7 and 8 torsion. Note that for our choice

of φ, the locus of indeterminacy is [1 : 0] × [0 : 1] and [0 : 1]× [1 : 0].

To obtain the equation for the 3-fold, we pulled back the sections of the elliptic surface by

φ to obtain the coefficients shown below.

Note that both 3-folds have (f, g,∆) vanishing to order exactly (8, 12, 24) over [1 :

0]× [0 : 1] and [0 : 1]× [1 : 0], as predicted by our lemma.

A.4.1 Explicit equations

Explicit equations for the 3-folds over P1 × P1 are given below. We use coordinates [s0 :

s1]× [t0 : t1] for the base.

• Z/7:

y2 + (s2
0t

2
0 + s0s1t0t1− s2

1t
2
1)xy+ s3

0s
2
1t

3
0t

2
1(s0t0− s1t1)y = x3 + s0t0s

2
1t

2
1(s0t0− s1t1)x2 ,

(A.20)

The coefficients f, g and the discriminant ∆ = 4f3 + 27g2 are given below:

f =
1

48
−(s2

0t
2
0−s0s1t0t1 +s2

1t
2
1)

×(s6
0t

6
0 +5s5

0s1t
5
0t1−10s4

0s
2
1t

4
0t

2
1−15s3

0s
3
1t

3
0t

3
1 +30s2

0s
4
1t

2
0t

4
1−11s0s

5
1t0t

5
1 +s6

1t
6
1) ,

g=
1

864
s2

0t
2
0(s10

0 t
10
0 +6s9

0s1t
9
0t1−15s8

0s
2
1t

8
0t

2
1−46s7

0s
3
1t

7
0t

3
1 +174s6

0s
4
1t

6
0t

4
1−222s5

0s
5
1t

5
0t

5
1

+273s4
0s

6
1t

4
0t

6
1−486s3

0s
7
1t

3
0t

7
1 +570s2

0s
8
1t

2
0t

8
1−354s0s

9
1t0t

9
1 +117s10

1 t
10
1 ) , (A.21)

∆ =− 1

16
s7

0s
7
1t

7
0t

7
1(s0t0−s1t1)7(s3

0t
3
0 +5s2

0s1t
2
0t1−8s0s

2
1t0t

2
1 +s3

1t
3
1) . (A.22)

• Z/8:

y2 + (s0s1t0t1 + (s0t0 − s1t1)(2s1t1 − s0t0))xy + s0s
3
1t0t

3
1(s0t0 − 2s1t1)(s1t1 − s0t0)y

= x3 + s2
1t

2
1(s0t0 − 2s1t1)(s1t1 − s0t0)x2 . (A.23)
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The coefficients f, g and ∆ are:

f =
1

48
(−s8

0t
8
0 + 16s7

0s1t
7
0t1 − 96s6

0s
2
1t

6
0t

2
1 + 288s5

0s
3
1t

5
0t

3
1 − 480s4

0s
4
1t

4
0t

4
1 + 448s3

0s
5
1t

3
0t

5
1

− 224s2
0s

6
1t

2
0t

6
1 + 64s0s

7
1t0t

7
1 − 16s8

1t
8
1) ,

g =
1

864
(s4

0t
4
0 − 8s3

0s1t
3
0t1 + 16s2

0s
2
1t

2
0t

2
1 − 16s0s

3
1t0t

3
1 + 8s4

1t
4
1)(s8

0t
8
0 − 16s7

0s1t
7
0t1

+ 96s6
0s

2
1t

6
0t

2
1 − 288s5

0s
3
1t

5
0t

3
1 + 456s4

0s
4
1t

4
0t

4
1 − 352s3

0s
5
1t

3
0t

5
1 + 80s2

0s
6
1t

2
0t

6
1

+ 32s0s
7
1t0t

7
1 − 8s8

1t
8
1) ,

∆ =
−1

16
s2

0s
8
1t

2
0t

8
1(s0t0 − 2s1t1)4(s0t0 − s1t1)8(s2

0t
2
0 − 8s0s1t0t1 + 8s2

1t
2
1) . (A.24)

• Z2 × Z6:

y2+(−19s2
0t

2
0+2s0s1t0t1+s2

1t
2
1)xy+2s0t0(s0t0−s1t1)2(5s0t0−s1t1)(9s2

0t
2
0−s2

1t
2
1)y

=x3+2s0t0(s0t0−s1t1)2(5s0t0−s1t1)x2 , (A.25)

f=
1

48
(−119761s8

0t
8
0+36920s7

0s1t
7
0t1+15700s6

0s
2
1t

6
0t

2
1+11432s5

0s
3
1t

5
0t

3
1−11958s4

0s
4
1t

4
0t

4
1

+1992s3
0s

5
1t

3
0t

5
1+180s2

0s
6
1t

2
0t

6
1−40s0s

7
1t0t

7
1−s8

1t
8
1),

g=
1

864
(−41545241s12

0 t
12
0 +19809780s11

0 s1t
11
0 t1+4915350s10

0 s
2
1t

10
0 t

2
1+7207028s9

0s
3
1t

9
0t

3
1

−9699039s8
0s

4
1t

8
0t

4
1+2418984s7

0s
5
1t

7
0t

5
1+172820s6

0s
6
1t

6
0t

6
1−12216s5

0s
7
1t

5
0t

7
1

−56679s4
0s

8
1t

4
0t

8
1+12388s3

0s
9
1t

3
0t

9
1−330s2

0s
10
1 t

2
0t

10
1 −60s0s

11
1 t0t

11
1 −s12

1 t
12
1 ),

∆=2s4
0t

4
0(s0t0−s1t1)6(−5s0t0+s1t1)4(−9s2

0t
2
0+s2

1t
2
1)2(2969s6

0t
6
0−318s5

0s1t
5
0t1

−339s4
0s

2
1t

4
0t

2
1−556s3

0s
3
1t

3
0t

3
1+331s2

0s
4
1t

2
0t

4
1−38s0s

5
1t0t

5
1−s6

1t
6
1). (A.26)

B Index of congruence subgroups

In this section, we explain how to compute the indices [SL(2,Z) : Γ] where Γ is either one of

the congruence subgroups defined earlier or a congruence subgroup associated to a torsion

subgroup of the form Zd × Znd. Further details can be found in [73].

B.1 Γ(n)

We start by computing the index of [SL(2,Z) : Γ(n)] for n > 1. The short exact sequence:

0 −→ Γ(n) −→ SL(2,Z)→ SL2(Zn) −→ 0 , (B.1)

shows that [SL(2,Z) : Γ(n)] = |SL2(Zn)|. Furthermore, by the Chinese Remainder Theo-

rem, we have isomorphisms:

SL2(Znm)→ SL2(Zn)× SL2(Zm) , (B.2)

whenever n,m are relatively prime. Thus, to compute [SL(2,Z) : Γ(n)] for general n, it

suffices to find a formula for |SL2(Zn)| when n is a prime power.

We derive that formula in the following. Assume n = pk for some prime p and some

positive integer k. We will count the 4-tuples (a, b, c, d) ∈ Z4
n with ad− bc = 1.
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• We count 4-tuples where a is a unit first. There are pk−pk−1 units in Zn, so we have

that many choices for a. Having chosen a, we can choose b, c freely, and take d = 1+bc
a

to guarantee the corresponding matrix has determinant 1. Altogether, there are:

(pk − pk−1) · pk · pk · 1 = p3k

(
1− 1

p

)
, (B.3)

such 4-tuples.

• Next, we count 4-tuples where a is not a unit. We can choose a in one of pk−1 ways.

Since a is not a unit, b, c necessarily have to be units. We can choose b freely in the

set of units, and we can choose d freely in Zn. We then solve for c as c = ad−1
b . This

means the number of 4-tuples is:

pk−1 · (pk − pk−1) · pk · 1 = p3k

(
1

p
− 1

p2

)
, (B.4)

• Altogether, this means we have:

p3k

((
1− 1

p

)
+

(
1

p
− 1

p2

))
= p3k

(
1− 1

p2

)
, (B.5)

elements in SL2(Zn).

Finally, if n = n1 · · ·nr, with ni = peii , pi 6= pj for i 6= j, then:

[SL(2,Z) : Γ(n)] =
∏
i

[SL(2,Z) : Γ(ni)] = n3
∏
i

1− 1

p2
i

. (B.6)

B.2 Γ1(n)

Next we use the computation of [SL(2,Z) : Γ(n)] to obtain formulas for the index of Γ1(n).

Recall that elements of Γ1(n), after passing to the quotient, have the form

(
1 a

0 1

)
for some

a ∈ Zn, and that: (
1 a

0 1

)(
1 a′

0 1

)
=

(
1 a+ a′

0 1

)
. (B.7)

Thus, we have a short exact sequence:

0→ Γ(n)→ Γ1(n)→ Zn → 0 , (B.8)

where the map Γ1(n) → Zn is the projection onto the top-right factor. This shows that

[Γ1(n) : Γ(n)] = n, so we obtain:

[SL(2,Z) : Γ1(n)] =
1

n
[SL(2,Z) : Γ(n)] = n2

∏
p|n

1− 1

p2
. (B.9)

We can use this formula to check one of the claims made in the main body - namely, that

24|[SL(2,Z) : Γ1(n)] for n ≥ 5. By multiplicativity of the index, it suffices to prove the

divisibility claim when n is a prime power.
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• First, assume n = pk for p ≥ 5 and k ≥ 1. The formula above shows that:

[SL(2,Z) : Γ1(n)] = p3k − p3k−2 = p3k−2(p+ 1)(p− 1) . (B.10)

Since 3 6 |p, p2 − 1 is necessarily divisible by 3. Furthermore, since p is odd, both

p+1, p−1 are even and exactly one of them is divisible by 4. Thus, p2−1 is divisible

by 3 and 8, so it is divisible by 24.

• Next, assume n = 3k for k ≥ 2. Since 3 is odd, 32k − 1 is divisible by 8 for the same

reason as above. Furthermore, since k > 1, 3k− 2 ≥ 1, so the index is divisible by 3,

so again we see that the index is divisible by 24.

• Finally, assume n = 2k. Then:

[SL(2,Z) : Γ1(n)] = 23k − 23k−2 = 23k−2 · 3 (B.11)

In particular, the index is divisible by 24 precisely when 3k − 2 > 3, i.e. k ≥ 3.

The observations above prove the claim for almost all n. We can check the claim by hand

for n = 6, 12, since they are not divisible by 8, 9 or any larger prime, to complete the

argument.

B.3 Γ0(n)

While this is not necessary for our proof, we show how to compute [SL(2,Z) : Γ0(n)] using

a similar argument as above. A general element of Γ0(n) reduces to a matrix of the form(
a b

0 d

)
in SL2(Zn). The diagonal entries are necessarily units after we reduce mod n. Now,

observe that: (
a b

0 d

)(
a′ b′

0 d′

)
=

(
aa′ ab′ + bd′

0 dd′

)
. (B.12)

Thus, we can write down a group homomorphism Γ0(n) → Z×n whose kernel is exactly

Γ1(n), so [Γ0(n) : Γ1(n)] = φ(n). Using the identity φ(n) = n
∏
p|n 1− 1

p , we obtain:

[SL(2,Z) : Γ0(n)] =
1

φ(n)
[SL(2,Z) : Γ1(n)] = n

∏
p|n

1 +
1

p
. (B.13)

B.4 Non-classical congruence groups

Finally, we include a formula for the index of the congruence subgroup associated to torsion

groups of the form Zd × Znd with n, d ≥ 2. With these formulas, we can determine the

index of congruence subgroups associated to all finite Abelian groups of length 2, since:

Zm × Zn ∼= Zgcd (m,n) × Zlcm(m,n) , (B.14)

and clearly gcd(m,n)|lcm(m,n).
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The idea is to take the fiber product of X1(nd) and X(d). At the level of groups,

this corresponds to taking the intersection of the groups. To compute the index of the

intersection, we use the identity:

[SL(2,Z) : Γ1(nd) ∩ Γ(d)] = [SL(2,Z) : Γ1(nd)][Γ1(nd) : Γ1(nd) ∩ Γ(d)] . (B.15)

An element of Γ1(nd) has the form

(
1 a

0 1

)
mod nd. In order for it to be an element of

Γ(d), a has to be a multiple of d. Thus, the index of the intersection in Γ1(nd) is n so:

[SL(2,Z) : Γ1(nd) ∩ Γ(d)] = n3d2
∏
p|nd

1− 1

p2
. (B.16)

Thus, the index of the group associated to the Mordell-Weil torsion Z2 × Z4 has index 24,

Z2×Z6 has index 48, Z3×Z6 has index 72 and Z2×Z8 has index 96. Applying the formula

for the degree of the fundamental line bundle for Γ1(n), this predicts the corresponding

universal surface has a fundamental line bundle of degree 1,2,3,4, respectively. These

numbers match up exactly with the table in [32].

C Universal curves for Z2 × Z2m and Zm × Z2m

C.1 Set-up

Let T be a group in one of the following families:

Z2 × Z2m (m ≥ 2) , (C.1)

Zm × Z2m (m ≥ 3) . (C.2)

We construct an elliptic surface S′ → C ′ which has the following properties:

• S′ → C ′ comes with morphisms making the following square commute:

S′ S

C ′ C ,

Ψ

π p

ψ

(C.3)

where S → C is the universal surface for Z2m if T ∼= Z2 × Z2m, and S → C is the

universal surface for Zm × Zm if T ∼= Zm × Z2m. Furthermore, ψ has degree 2 if

T ∼= Z2 × Z2m, and degree 3 if T ∼= Zm × Z2m.

• If Y → B is any elliptic fibration with MW (Y/B)tors containing a subgroup isomor-

phic to T , then the diagram:

Y S

B C ,

Φ

π p

φ

(C.4)
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factors through:

Y S′ S

B C ′ C,

Φ

π p′

Ψ

p

φ ψ

(C.5)

C.2 Construction

Let k be the function field of C, and fix a short Weierstrass equation for the generic fiber

of S → C:

E y2 = x3 + fx+ g (f, g ∈ k) . (C.6)

We construct a field extension k′/k:

k′ =

{
k(
√
−16(4f3 + 27g2)) if T ∼= Z2 × Z2m ,

k[x]/(x3 + fx+ g) if T ∼= Zm × Z2m .
(C.7)

Let C ′ be the algebraic curve with function field k′, let ψ : C ′ → C be corresponding

morphism of curves and let S′ = S ×C C ′ be the fiber product.

Clearly ψ has degree 2 if C ∼= X1(2m) and degree 3 if C ∼= X(m). All that we need to

show is that the universal map B → C factors appropriately. For that, we use the following

well-known facts from Galois theory:

Lemma C.1. Let k be a field of characteristic not equal to 2 or 3, q(x) = x3+fx+g ∈ k[x]

and ∆ = −16(4f3 + 27g2) the discriminant of q. We assume that q(x) has distinct roots

in the algebraic closure of k, or equivalently, that ∆ 6= 0. Let K/k be an arbitrary field

extension. Then:

1. Assume q has a root in k and splits completely in K. Then K contains a subfield

isomorphic to k(
√

∆).

2. Assume q is irreducible over k and has a root in K. Then K contains a subfield

isomorphic to k[x]/(q(x)).

If C ∼= X1(2m), then the generic fiber has exactly one point of order 2 defined over

k, so (C.6) has exactly one root in k. For any elliptic fibration Y → B with Mordell-Weil

torsion subgroup T , we have a map φ : B → X1(2m). This induces an inclusion of function

fields k → K(B). We will identify k with its image in K(B).

Now, since Y/B has all of its 2-torsion points defined over K(B), the polynomial:

x3 + fx+ φ∗(g) ,

in (C.6) splits completely over K(B). Thus, K(B) contains a subfield isomorphic to k(
√

∆),

so we have an inclusion of fields k ⊂ k(
√

∆) ⊂ K(B). This shows that the B → C factors

through C ′ → C as claimed.

Similarly, if C ∼= X(m), with m odd, then the cubic:

x3 + fx+ g
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is irreducible over k. If we have a fibration Y → B with MW (Y/B) containing a subgroup

isomorphic to Zm × Z2m, then the cubic acquires a root in K(B), so K(B) contains a

subfield isomorphic to k[x]/(x3 + fx+ g).

Thus, C ′ has the properties we claim it does. Applying these results to the groups

Z2 × Z6 and Z3 × Z6, we obtain an algebraic proof that the associated universal surfaces

have fundamental line bundles of degree 2, 3, respectively. This is consistent with the

degrees we computed using the index formula, and with the computations by Miranda [46].

C.3 Z2 × Z4

If we apply the construction to X1(4) using the model computed above, we obtain an

equation for an elliptic surface S → C with LS/C = OC(2). However, since the universal

surface over X1(4) has an I∗1 fiber, S → C has a nonminimal33 singularity over the I∗1 fiber.

When we run Tate’s algorithm to compute the Néron model of S → C, that singularity is

replaced by an I2 fiber and the degree of the fundamental line bundle drops by 1. One can

also check this using the formulae in appendix B.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE].

[2] E. Palti, The swampland: introduction and review, Fortsch. Phys. 67 (2019) 1900037

[arXiv:1903.06239] [INSPIRE].

[3] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and

gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[4] S.-J. Lee, W. Lerche and T. Weigand, Tensionless strings and the weak gravity conjecture,

JHEP 10 (2018) 164 [arXiv:1808.05958] [INSPIRE].

[5] H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl.

Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].

[6] D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP

01 (2017) 088 [arXiv:1610.00010] [INSPIRE].

[7] T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers

of states, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

[8] C. Mayrhofer, E. Palti and T. Weigand, U(1) symmetries in F-theory GUTs with multiple

sections, JHEP 03 (2013) 098 [arXiv:1211.6742] [INSPIRE].

[9] V. Braun, T.W. Grimm and J. Keitel, Geometric engineering in toric F-theory and GUTs

with U(1) gauge factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].
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[49] M. Cvetič and L. Lin, The global gauge group structure of F-theory compactification with

U(1)s, JHEP 01 (2018) 157 [arXiv:1706.08521] [INSPIRE].

[50] T.W. Grimm, A. Kapfer and D. Klevers, The arithmetic of elliptic fibrations in gauge

theories on a circle, JHEP 06 (2016) 112 [arXiv:1510.04281] [INSPIRE].
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