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1 Introduction

Field theories continue to be relevant in many different areas of physics. Of particular inter-

est are relativistic quantum theories, needed for particle physics and gravity. Studying the

relationships between different theories can be just as important as examining individual

theories themselves, given that this may reveal new conceptual insights, or computational

methods. One such relationship is the double copy [1–3], whose original incarnation related

scattering amplitudes in non-abelian gauge, and gravity, theories — including their super-

symmetric generalisations (see refs. [2, 4–46], and ref. [47] for a comprehensive review).

This was subsequently extended to classical solutions [48–86], which has a number of ap-

plications. Firstly, there is the possibility that the double copy could greatly streamline

calculations in classical General Relativity, such as those needed for gravitational wave

physics. Secondly, extending the remit of the double copy broadens our conceptual under-

standing as to whether this is a deep and fundamental connection between different types

of field theory, or merely a coincidence for certain observables. If the former is true, it

suggests that our traditional way of formulating field theories may be incomplete and / or

hiding crucial underlying features.

If the double copy is a complete relationship between gauge and gravity theories,

it must somehow be applicable to all possible types of solution. All previous examples
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involving amplitudes or classical solutions (exact or otherwise) involve positive powers of

the coupling constants in the relevant theories. It remains to be seen whether or not

the double copy can be made truly non-perturbative, i.e. applicable to strong-coupling

solutions, containing negative powers of the coupling. As a first step, a recent series of

papers has derived such solutions for biadjoint scalar field theory, with the hope of matching

them with known strong-coupling solutions in gauge theory [87–89]. One of these represents

a monopole-like object, and ref. [87] speculated that this might be relatable to the well-

known Wu-Yang monopole in gauge theory [90]. However, it has remained unclear how to

systematically construct such a double copy, whose rules must in any case be fundamentally

different to any previous case.

In this paper, we investigate the question of whether the biadjoint monopole of ref. [87]

maps to the Wu-Yang monopole, and conclude that it does not. We present two arguments,

where the first involves infinitely boosting classical solutions in the various theories we con-

sider, and constructing shockwave solutions from them. In gravity, this was first considered

by Aichelburg and Sexl [91], who found that certain parameters have to be rescaled when

boosting, in order to keep physically measurable effects finite. We will follow convention

by referring to this general procedure as an ultraboost in what follows. Related examples

including gravity and / or gauge theory can be found in refs. [92–97].1 Certain shockwave

solutions are known to double copy [32, 48, 98], and thus comparing the ultraboosted biad-

joint and Wu-Yang monopole solutions allows us to confirm or refute whether or not they

are connected by the double copy. Indeed, we will see that, whilst the Wu-Yang monopole

survives its ultraboost, the biadjoint monopole does not, which seems to indicate that they

are not after all related. This conclusion is not watertight, however, given that the physics

in different theories can turn out to be very different, even if the double copy relates them.

In the second part of our study, we thus seek to explain why we could have expected a

priori that the biadjoint and Wu-Yang monopole solutions are not related via the double

copy. We recall the existence of a singular gauge transformation that can be used to

transform the Wu-Yang solution into a non-abelian version of the Dirac magnetic monopole

in electromagnetism, whose form linearises the Yang-Mills equations [99, 100]. The Dirac

monopole is known to double copy to the pure NUT solution in gravity. Furthermore,

its counterpart in biadjoint theory is already known [49], and does not coincide with the

non-perturbative biadjoint monopole of ref. [87]. Thus, there is no room for the non-

perturbative biadjoint monopole in matching up shockwaves, which is consistent with it

not surviving in the ultraboost limit.

Despite the negative result of our investigation, it proves to be worthwhile for several

reasons. Firstly, although both static solutions and shockwaves are known to double-copy,

the latter (in gauge and biadjoint theory) have not been explicitly obtained from the former

using an ultraboost procedure in this context. The details of how to perform an ultraboost

in biadjoint theory are new, and the comparison of this procedure with its gauge and

gravity counterparts proves interesting. Secondly, the above-mentioned identification of

1See also ref. [68] for an intriguing study drawing parallels between gravity and Yang-Mills in the

ultraboosted limit.
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the Wu-Yang and Dirac monopoles indicates an emerging picture in which both abelian-

and non-abelian-like objects can double copy to the same gravity solution, which in turn

suggests that the classical double copy of ref. [48] (which always concerns abelian-like

objects in the gauge theory) is more general than previously thought. Such behaviour has

been seen before in the study of amplitudes [27], and is consistent with the fact that colour

information is removed when taking the double copy.

The structure of our paper is as follows. In section 2, we review salient details con-

cerning the classical double copy procedure of ref. [48]. In section 3, we show how to obtain

shockwaves which have previously been shown to double copy via an ultraboost procedure

in biadjoint, gauge and gravity theories. We also find and interpret the ultraboost of the

non-perturbative biadjoint monopole of ref. [87]. In section 4, we review a known singular

gauge transformation relating the Wu-Yang and Dirac monopoles, and explain the impli-

cations of this relationship for the double copy. Finally, in section 5, we discuss our results

and conclude.

2 The Kerr-Schild double copy

The classical double copy of ref. [48] is a systematic procedure for relating certain exact

classical solutions in biadjoint, gauge and gravity theories. In the latter, we may define a

graviton field hµν via

gµν = ηµν − κhµν , κ =
√

16πGN , (2.1)

with gµν (ηµν) the full (Minkowski) metric with signature (+,−,−,−), and GN the Newton

constant. We may then consider the family of Kerr-Schild solutions, for which the graviton

has the special form

hµν =
κ

2
φkµkν , (2.2)

where φ is a harmonic function, and the Kerr-Schild vector kµ is geodesic, and null with

respect to either the Minkowski or full metrics:

k · ∂kµ = 0, gµνk
µkν = ηµνk

µkν = 0. (2.3)

Upon substituting the ansatz of eq. (2.2) into the Einstein equations, they linearise, such

that eq. (2.2) represents an exact solution that is particularly tractable. Given the quan-

tities φ and kµ appearing in eq. (2.2), one may construct a non-abelian gauge field

Aµ ≡ AaµTa, Aaµ = caφkµ, (2.4)

where Ta is a generator of the gauge group with adjoint index a, and ca an arbitrary colour

vector. Reference [48] proved that for any time-independent Kerr-Schild solution, the gauge

field of eq. (2.4) satisifes the linearised Yang-Mills equations, and thus represents an exact

physical solution of a non-abelian gauge theory. Note that the procedure for obtaining

Aaµ is simply to replace one copy of the Kerr-Schild vector kµ with the colour vector ca

(correspondingly, a spacetime index of the field hµν is replaced with a colour index in the

field Aaµ). One may repeat this procedure, so as to obtain a field

Φ = Φaa′Ta T̃a′ , Φaa′ = cac̃a
′
φ, (2.5)
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Figure 1. The different theories related by the double, single and zeroth copies.

where c̃a
′

is a second colour vector, that is potentially associated with a different gauge

group to that of ca. As shown in ref. [48], eq. (2.5) is a solution of a linearisation of the

biadjoint scalar field equation

∂2Φaa′ − λfabcf̃a′b′c′Φbb′Φcc′ = 0, (2.6)

where λ is a coupling constant, and {fabc}, {f̃a′b′c′} are sets of structure constants associ-

ated with the two Lie groups. Starting with a time-independent Kerr-Schild solution, we

thus obtain solutions in a ladder of different field theories, as depicted in figure 1, where for

convenience we also display the name of the map between any given two types of theory.2

The above situation mirrors the existence of similar double copy relations between

amplitudes in these theories, such that our current understanding is that the classical

and amplitude double copies are manifestations of the same underlying correspondence,

and indeed overlap where relevant [48–50, 104, 105]. Despite this, a number of open

questions exist regarding the classical double copy. Firstly, there is the issue of whether

arbitrary sources, as well as the fields themselves, can be furnished with a double-copy

interpretation [50, 80, 106, 107]. This is an interesting issue, which we will not explore in

this paper. Secondly, the family of time-independent Kerr-Schild metrics is clearly very

special, and a number of studies have tried to go beyond this. Regarding time dependence,

ref. [48] pointed out that certain infinite boosted (shockwave) solutions [91, 108], whose

correspondence in gauge and gravity theories was first noted in ref. [98], can also be phrased

in terms of the Kerr-Schild double copy. The case of an arbitrarily accelerating point

particle was considered in ref. [50], and related to known scattering amplitudes for gluons

and gravitons in the Bremsstrahlung limit. Generalisation from time translation invariance

to an arbitrary Killing vector was considered in ref. [107]. There have also been attempts

to move beyond the simple Kerr-Schild form. Reference [49] considered the Taub-NUT

solution in gravity, which has a double Kerr-Schild form, in which the graviton contains

two terms of the form of eq. (2.2), involving different harmonic functions and Kerr-Schild

vectors. The latter obey certain mutual orthogonality conditions, but this is no longer

sufficient to linearise the Einstein equations in general. Remarkably, linearisation still

occurs for the special case of Taub-NUT [109], and the single copy is found to be a point-

2Figure 1 is not the whole story, but forms a subset of an ever-increasing web of theories related by

double-copy-like transformations. See e.g. refs. [47, 101–103] for further details.
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like dyon, carrying both electric and magnetic charge.3 More generally, one may consider

the classical double copy of non-Kerr-Schild solutions, but at the price of having to work

order-by-order in perturbation theory [51, 61, 63–65]. Thus, Kerr-Schild coordinates are

not a fundamental prequisite for being able to construct a classical double copy. Rather,

they constitute a maximally convenient case, in which it is possible to make statements to

all orders in perturbation theory.4

A third puzzle regarding the Kerr-Schild double copy concerns the fact that the single

copy of the gravity solution is always abelian-like, in that it linearises the Yang-Mills equa-

tions (n.b. the gauge theory solution is still formally non-abelian, in that it is dressed by

the colour dependence of eq. (2.4)). Whilst this follows from the mathematical arguments

of ref. [48], this situation is slightly at odds with the double copy story for amplitudes, in

which the non-abelian nature of the gauge theory plays a pivotal role, through the so-called

BCJ duality [1] relating colour and kinematic information. It would perhaps be more desir-

able if one could associate fully non-linear solutions in the gauge theory with gravitational

counterparts, and there is also the possibility that both abelian-like and fully non-linear

solutions in the gauge theory may map to the same gravity solution. There is in fact a

precedent for this in an amplitudes context [27], and we will return to this in what follows.

Before moving on, it is worth providing those examples of the Kerr-Schild double copy

that we will later rely on. Arguably the simplest example is that of a pointlike mass

sourcing a Schwarzschild black hole, for which the quantities appearing in eq. (2.2) are

given by

φ =
M

4πr
, kµ =

(
1,

x

r

)
, (2.7)

where x = (x, y, z) is the radial position vector in Cartesian coordinates. The single copy

of this is a point charge at the origin, given by

Aaµ =
gca

4πr
kµ, (2.8)

and the zeroth copy is then

Φaa′ =
λcac̃a

′

4πr
. (2.9)

Another case we will utilise is that of the Aichelburg-Sexl solution in gravity, representing a

shockwave moving along the x direction at the speed of light, and such that the gravitational

impulse imparted to a stationary test particle is finite [91]. This has a Kerr-Schild form,

with:

φ = −M
4π

log

(
ρ

ρ0

)
δ(u), kµ = (1,−1, 0, 0), (2.10)

where

u = t− x (2.11)

3Recently, the known electromagnetic duality relating electric and magnetic charges has been explored

from a double copy point of view [84, 110, 111].
4A related programme of work has shown that a classical double copy is possible in arbitrary coordinate

systems, if one restricts to linearised level only [52–56, 59, 60, 112].
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is a light-cone coordinate,

ρ =
√
y2 + z2 (2.12)

the cylindrical radius as measured from the x axis, ρ0 an arbitrary constant, and the

vector kµ is again expressed in Cartesian coordinates. The single copy of this solution is a

non-abelian plane wave [108]

Aaµ = −gc
a

4π
log

(
ρ

ρ0

)
δ(u)kµ, (2.13)

and there is also a corresponding biadjoint zeroth copy

Φaa′ = −λc
ac̃a
′

4π
log

(
ρ

ρ0

)
δ(u). (2.14)

In each theory, the factor δ(u) confines the influence of the field to a plane transverse to the

x-direction, moving at light speed. There is a non-trival profile function, which depends

only on the transverse coordinates (y, z).5

All of the above examples involve positive powers of the coupling constants in the

biadjoint, gauge or gravity theories. It remains unknown whether or not the double copy

can be extended to non-perturbative solutions, involving inverse powers of the coupling.

Solutions of the biadjoint theory play a crucial role in both the amplitude and Kerr-Schild

double copies [48]. Thus, it seems natural to assume that this should also be the case in a

nonperturbative correspondence, should the latter exist. To this end, refs. [87–89] initiated

the programme of cataloguing non-linear solutions of biadjoint theory. The simplest such

solution has the form of a static spherically symmetric monopole-like object residing at the

origin of spacetime:

Φaa′ = − 2δaa
′

λTAr2
, (2.15)

where it is assumed that both Lie groups in the biadjoint theory are the same, and the

constant TA is defined in terms of the structure constants via

fabcfa
′bc = δaa

′
TA. (2.16)

For the specific case in which the common gauge group is SU(2), there is also a continuous

family of solutions given by

Φaa′ =
1

λr2

[
−k

(
δaa
′ − xaxa

′

r2

)
±
√

2k − k2 ε
aa′dxd

r

]
, 0 ≤ k ≤ 2. (2.17)

There was already some speculation in ref. [87] about whether any of these solutions could

be related to pointlike objects in non-abelian gauge theory. In the case of SU(2), a natural

candidate is the Wu-Yang monopole of ref. [90], which in a particular gauge takes the form

Aa0 = 0, Aai = −εiakx
k

gr2
, (2.18)

5The above shockwave solutions provide a nice link between the classical and amplitude double copies:

the gauge and gravity shockwaves were constructed from an all-order Feynman diagram analysis in ref. [32].
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where g is the coupling constant. Like the solutions of eq. (2.15), (2.17), this contains an

inverse power of the coupling, and also has a pure power-like dependence in the spherical

radius r, where the power itself can be dictated on dimensional grounds.6 Given the lack of

any precedent for how to formulate a non-perturbative double copy, ref. [87] left as merely

speculative the suggestion that the biadjoint monopoles of eqs. (2.15), (2.17) are related to

the Wu-Yang monopole. Our aim here is to examine this systematically, and the starting

point will be the above-mentioned fact that shockwave solutions are known to double copy.

By ultraboosting the biadjoint monopole, it may turn out to have properties corresponding

to a known shockwave, or exhibit other simplifying features that enable a suitable double

copy interpretation to be obtained. If it instead does not survive the ultraboost, then this

is evidence that the speculative link between the biadjoint and Wu-Yang monopoles may

in fact be incorrect.

3 Shockwaves and ultraboosts

Above, we have suggested ultraboosting monopole solutions in biadjoint and gauge theories,

in order to see what can be learned about the possible existence of a nonperturbative double

copy. Before considering the case of the biadjoint monopole, however, it pays to revisit the

Aichelburg-Sexl family of shockwaves, written here in eqs. (2.10), (2.13), (2.14). We will

recast the ultraboost procedure of ref. [91] using Kerr-Schild coordinates, so that double

copy properties are manifest. This will also allow us to examine the ultraboost in the

biadjoint scalar theory, which has not been previously considered.

3.1 The Aichelburg-Sexl shockwave in Kerr-Schild coordinates

Let us begin with the point mass (Schwarzschild) solution of eqs. (2.2), (2.7), taken to

be stationary in an inertial frame S′ with Cartesian coordinates (t′, x′, y′, z′). We may

then consider that S′ is moving with boost parameter β ≡ v (in natural units) in the +x

direction relative to a second frame S whose coordinates are (t, x, y, z). The two sets of

coordinates are related by the Lorentz transformation
t′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



t

x

y

z

 =


γ(t− βx)

γ(x− βt)
y

z

 . (3.1)

The graviton in S′ is given in Kerr-Schild form by

h′µν =
κ

2
φ(x′)k′µk

′
ν ,

6Note that g in the gauge theory is dimensionless in four spacetime dimensions, whereas the coupling

constant λ in eq. (2.6) has dimensions of mass.
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where the function φ and Kerr-Schild vector are given in terms of the primed coordinates

by eq. (2.7). Boosting these ingredients to the unprimed frame, one finds

φ(x) =
M

4π

1

[γ2(x− βt)2 + ρ2]1/2
,

kµ =

(
γ − γ2β(x− βt)

[γ2(x− βt)2 + ρ2]1/2
,−γβ +

γ2(x− βt)
[γ2(x− βt)2 + ρ2]1/2

,
y

[γ2(x− βt)2 + ρ2]1/2
,

z

[γ2(x− βt)2 + ρ2]1/2

)
. (3.2)

To look for a shockwave solution, we must take the limit γ → ∞, whilst also regularising

the solution so that physically measurable quantities are finite. One such quantity is the

deflection of a test particle upon crossing the shockwave, which is linear in the field. Thus,

we require that hµν is finite in the ultraboost limit. However, the limiting procedure itself

is rather subtle, given that one finds different results for the limiting values of the quantities

in eq. (3.2) depending upon whether one is inside (x = βt) or outside (x 6= βt) the plane

of the shockwave. For the former case one obtains

φ
γ→∞−−−→ M

4π

1

ρ
+O(γ−1), kµ

γ→∞−−−→ γk̄µ +O(γ0), x = βt, (3.3)

where we have defined the dimensionless 4-vector

k̄µ = (1,−1, 0, 0). (3.4)

Outside the shockwave plane one obtains

φ
γ→∞−−−→ M

4π

1

γ|t− x|
+O(γ−2), kµ

γ→∞−−−→ 2γθ(t− x)k̄µ +O(γ0), x 6= βt, (3.5)

where θ(t−x) is the Heaviside function. The complete boosted graviton field is then given by

hµν
γ→∞−−−→ κ

2

M

4π

{
γ2

ρ k̄µk̄ν +O(γ), x = βt
4γ
|t−x|θ(t− x)k̄µk̄ν +O(γ0), x 6= βt.

(3.6)

It is clear that things are badly divergent, both on and off the plane, which makes physical

sense: boosting a massive particle to light speed requires infinite energy, and thus will result

in a divergent field configuration! The transition to a finite shockwave solution proceeds

as follows [91]. First, one may rescale the mass7 according to

M → M

γ
. (3.7)

Then the graviton field of eq. (3.6) remains infinite inside the plane x = βt, but not

outside it. This suggests that the ultraboosted field could indeed contain a delta function

7In the literature this rescaling is noted to keep the energy finite whilst taking the rest mass to zero.

Physically one may view this as a necessary step in changing description between a massive and a massless

particle.
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δ(u), localising the extent of the field to the shockwave plane only. To recognise the delta

function, we may reinstate the γ-dependence for the field near the shockwave plane, writing

this as

hµν
γ→∞,M→M/γ−−−−−−−−−−→ κ

2

γM

4π

1

[γ2(x− βt)2 + ρ2]1/2
k̄µk̄ν . (3.8)

We may then attempt to use the general formula (see e.g. ref. [97])

lim
γ→∞

γf(γu) = δ(u)

∫ ∞
−∞

dw f(w) (3.9)

for expressing a Dirac delta function as the limit of a delta sequence f(u), namely a function

that can be continuously transformed to make an infinitely sharp peak at u = 0. In the

present case, we may identify

f(u) =
M

4π

1

(u2 + ρ2)1/2
, (3.10)

such that eq. (3.9) indeed corresponds to taking the limit of the prefactor in eq. (3.8).

However, application of eq. (3.9) then fails due to the fact that the integral on the right-

hand side is not convergent. We will interpret the physics of this shortly, but for now note

that we can modify the function f(u) according to8

f(u)→ M

4π

[
1

(u2 + ρ2)1/2
− 1

(u2 + ρ20)
1/2

]
, (3.11)

such that the integral on the right-hand side of eq. (3.9) becomes∫ ∞
−∞

du f(u) =
M

4π
lim
ε→0

∫ ∞
−∞

du
[
(u2 + ρ2)−1/2+ε − (u2 + ρ20)

−1/2+ε
]

=
M

4π
lim
ε→0

{ √
π Γ(−ε)

Γ(1/2− ε)
[
(ρ2)ε − (ρ20)

ε
]}

, (3.12)

where we have chosen to introduce a regularisation parameter ε. The latter reveals that

each of the separate terms in eq. (3.12) is divergent, but that the combination produces

the well-defined limit ∫ ∞
−∞

du f(u) = −M
4π

log

(
ρ2

ρ20

)
. (3.13)

The complete form for the ultraboosted field is now

hµν
γ→∞,M→M/γ−−−−−−−−−−→ −κ

2

M

4π
log

(
ρ

ρ0

)
δ(u)k̄µk̄ν , (3.14)

which is precisely the Aichelburg-Sexl shockwave of eq. (2.10). We can now interpret the

divergence that appeared in trying to apply eq. (3.9) to the original function of eq. (3.10):

its regularisation merely amounts to introducing an overall constant, that sets the scale of

the logarithmic prefactor in eq. (3.14), and which has to be present on dimensional grounds.

8Reference [91] justifies this transformation based on the fact that it corresponds to a diffeomorphism

of the graviton field.
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It has no physical consequences, given that deflections of test particles depend only upon

derivatives of the metric.

Note that in Kerr-Schild coordinates, the combination of the mass rescaling and regu-

larisation procedures can be rephrased in a particularly simple form. The correct ultraboost

of the Schwarzschild solution to form an Aichelburg-Sexl shockwave consists of the following

two steps:

(i) One must rescale the mass parameter according to eq. (3.7).

(ii) One must modify the boosted Kerr-Schild function in eq. (3.2) according to

φ(x)→ M

4π

[
1

[γ2(x− βt)2 + ρ2]1/2
− 1

[γ2(x− βt)2 + ρ20]
1/2

]
. (3.15)

This is slightly different to the above analysis, in that one modifies the φ function before

taking the limit γ → ∞. Importantly, this modification maintains the fact that φ is

harmonic, so that the Kerr-Schild conditions still apply. Repeating the above analysis

yields eq. (3.14) as before.9 By modifying φ itself, however, we have cast the ultraboost

procedure into a form which has a natural counterpart under the single and zeroth copies.

3.2 Single and zeroth copies

In the previous section, we have given an explicit procedure for ultraboosting a point mass

in Kerr-Schild coordinates. We may carry out a similar procedure for the point charge in

a gauge theory, for which one may start with the single copy of the Schwarzschild solution

in the primed coordinate system, and boost it to obtain the following gauge field:

Aµ = φkµ. (3.16)

Here φ is given by the function of eq. (3.2), but with the mass replaced by the colour

charge caTa, and kµ is also given in eq. (3.2). For the ultraboost, we may again modify φ

according to eq. (3.15), after which we find the following limit:

Aµ
γ→∞−−−→ −c

aTa

4π
log

(
ρ

ρ0

)
δ(u)k̄µ, (3.17)

where k̄µ has been defined in eq. (3.4). This is precisely the form of the gauge theory

shockwaves considered in refs. [32, 108] (see also ref. [96] for an interesting discussion

of gauge theory shockwaves in a different context). Note that to obtain a finite field

configuration, there is no need to rescale the charge, as was needed for the mass parameter

in the gravity theory. We will return to this point below.

For the zeroth copy, we may simply consider the biadjoint field (in the primed coordi-

nate system)

Φaa′ =
λcac̃a

′

4πr′
. (3.18)

9An advantage of this alternative way of formulating the ultraboost is that the boosted field manifestly

vanishes off of the shockwave plane, in contrast to eq. (3.6). Indeed, the latter behaviour is associated with

the fact that the original φ function could not be used to form a delta sequence.
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Theory Parameter Rescaling

Biadjoint scalar cac̃a
′

γ

Gauge theory ca 1

Gravity M γ−1

Table 1. Different scalings needed for the source parameters in different theories, where the factor

in the third column multiplies the parameter in question.

Boosting to the unprimed system and making the modification of eq. (3.15), one obtains

the limit

Φaa′ γ→∞, cac̃a′→γcac̃a′−−−−−−−−−−−−→ −λc
ac̃a
′

4π
log

(
ρ

ρ0

)
δ(u), (3.19)

where in order to achieve a non-vanishing field configuration, we must rescale the charges

as shown. Upon doing so, the shockwave solutions of eqs. (3.14), (3.17), (3.19) are related

directly by the usual single and zeroth copy procedures. That is, one may write eq. (3.14)

in the form

hµν =
κ

2
φ̄k̄µk̄ν , φ̄ = −M

4π
log

(
ρ

ρ0

)
δ(u), (3.20)

where k̄µ (from eq. (3.4)) is indeed null and geodesic, and φ̄ harmonic. The single and

zeroth copies imply that one must remove factors of k̄µ, and replace mass with charge

accordingly, leading directly to eqs. (3.17) and (3.19). We can also make sense, from a

double copy point of view, of the modification of eq. (3.15). As stressed in ref. [48], the

function φ in eq. (2.2) can be interpreted as a scalar propagator, and is analogous to the

denominator factors in amplitudes, which are not modified upon taking the double copy

from gauge theory to gravity. In the present case, the function φ̄ that we arrive at after the

ultraboost is indeed the known propagator in two spatial dimensions (i.e. corresponding to

the transverse plane), and the modification of eq. (3.15) is necessary so as to construct the

most general form of the propagator by including the constant ρ0. This in turn explains

why eq. (3.15) is necessary when performing ultraboosts in all three theories of figure 1.

Above, we have seen that different scalings of mass / charge parameters in different

theories are necessary, to obtain a finite field. The sources for the biadjoint, gauge and

gravity theories respectively are as follows:

ρaa
′

= cac̃a
′
δ(3)(x), jaµ = caδ0µδ

(3)(x), Tµν = Mδ0µδ
0
ν δ

(3)(x). (3.21)

The rescalings act on the parameters entering these source terms, and we summarise the

different findings in table 1. Confirmation that these are indeed the correct scalings to

obtain finite physical effects can be verified by placing a test particle away from the origin10

in the plane x = 0, and calculating the impulse

δpµ =

∫ ∞
−∞

dt
dpµ
dt

(3.22)

10The shockwave profile diverges at y = z = 0, so that we must place the test particle elsewhere.
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that it receives as the shockwave passes. In biadjoint theory the integrand is given by [61]

dpµ
dt

= − λ
m
ca2 c̃

a′
2 ∂µΦaa′ , (3.23)

where ca2 and c̃a
′

2 are the colour charge vectors associated with the test particle. Substituting

eq. (3.19) into eq. (3.23) and integrating according to eq. (3.22), one finds (see appendix A

for more details)

δpµscal. = −λ
2

m

c · c2 c̃ · c̃2
2πρ

(0, 0, ρ̂), (3.24)

where ρ̂ is a unit vector in the radial direction in the plane x = 0. This is indeed finite

as required. Furthermore, it does not depend on the constant ρ0, justifying the remarks

made above. For the gauge theory, one may use the Lorentz force law

dpµ
dt

= gca2F
a
µν v

ν , (3.25)

where F aµν is the field strength tensor of the shockwave, ca2 the colour charge vector of the

test particle, whose initial velocity is vµ = (1,0). One then finds an impulse

δpµgauge = g2
c2 · c
2πρ

(0, 0, ρ̂). (3.26)

Finally, for gravity one may use the geodesic equation

dpµ

dt
= −mΓµνσv

νvσ, (3.27)

where Γµνλ is the Christoffel symbol. One subsequently obtains the impulse

δpµgrav. = −κ
2Mm

8πρ
(0, 0, ρ̂). (3.28)

In all cases, the impulses are finite, which indeed is entirely consistent with the fact that

the rescalings of table 1 were such as to make the profiles of the fields in the shockwave

plane finite: the three force laws of eqs. (3.23), (3.25), (3.27) are all linear in their respective

fields.11 Turning this around, we can use physical finiteness of the impulses to dictate the

rescaling needed in each theory, and the power of γ needed to rescale the parameters of

the field can then simply be traced to the number of factors of the Kerr-Schild vector each

field contains, and hence its spin.

In this section, we have shown how the ultraboost procedure can be implemented in

biadjoint, gauge and gravity theories, so as to be fully compliant with the double copy. We

focused on point charges or masses that are solutions of the linearised field equations in

each case (up to a source term localised at the origin). In all cases, the charges survived

the ultraboost, resulting in a well-defined shockwave solution that could be meaningfully

mapped between theories as in figure 1. Armed with this experience, let us now see what

happens if we try to ultraboost the non-perturbative biadjoint monopole.

11It is worth pointing out that different physical quantities may require different scalings upon performing

an ultraboost, such as the non-linear electromagnetic interactions considered in ref. [96].
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3.3 Ultraboosting the biadjoint monopole

Starting with the solution of eq. (2.15) in the rest frame S′, we may boost to the unprimed

frame to obtain

Φaa′ = −2δaa
′

λTA

1

[γ2(x− βt)2 + ρ2]
. (3.29)

Taking the ultraboost limit, one finds

Φaa′ γ→∞−−−→ −2δaa
′

λTA

{
1
ρ2
, x = βt

O(γ−2), x 6= βt.
(3.30)

Due to the different dependence on the radial coordinate, this does not diverge on the

transverse plane, in contrast to the boosted point charge considered in the previous section.

Without this divergence, eq. (3.30) does not constitute a shockwave: it is at most a tepid

ripple. That is, it imparts no finite impulse to a test particle, given that a finite field is

confined to an infinitely thin plane.

It is interesting to note that one could still obtain a shockwave by rescaling the coupling

λ in eq. (3.30). Carrying out a similar analysis to the previous section, one may show that

Φaa′ γ→∞, λ→γ−1λ−−−−−−−−−→ −2δaa
′

λTA

1

ρ
δ(u), (3.31)

which does indeed exert a finite impulse. However, the nature of this rescaling is very

different to that of the boosted point charges considered earlier. In the latter cases, the

parameters entering the source terms (i.e. masses and charges) were rescaled. For the

non-perturbative monopole, there is no such source, which makes it questionable that one

should be able to rescale the coupling.12

Based on the above considerations, we conservatively conclude that the non-

perturbative biadjoint monopole does not survive an ultraboost. Similar considerations

are reached for the more general monopoles of eq. (2.17), as we show in appendix B. There

are then two possibilities as regards a potential non-perturbative double copy, and in par-

ticular the suggestion that the biadjoint monopole could be related to a Wu-Yang monopole

in gauge theory. The first is that the two objects are indeed related, but that the physics

of ultraboosting is potentially very different in the two theories, such that the biadjoint

monopole disappears. Whether or not the Wu-Yang monopole survives an ultraboost is

irrelevant for the argument. The second possibility is that the biadjoint monopole dis-

appears because it does not need to match up with a known shockwave solution, and in

particular is not related to the Wu-Yang monopole. In the next section, we will explain

why it is in fact this second possibility that appears to be correct.

4 Relating the Wu-Yang and Dirac monopoles

Above, we saw that the failure of the biadjoint monopole to survive its ultraboost is possible

evidence for its not being related to the Wu-Yang monopole after all, contrary to the

12Coupling constants are of course not constant when quantum corrections are included, leading to

renormalisation. But that is not what is happening here.
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speculation of ref. [87]. We now explain why this must be the case, and our explanation

will itself provide new insights into the remit of the classical double copy itself.

First, we recall that there is a gauge transformation that relates the Wu-Yang monopole

in SU(2) gauge theory to a non-abelian embedding of the Dirac monopole, as noted in

refs. [99, 100].13 By the latter, we mean a gauge field of the form

Aaµ = caADirac
µ , (4.1)

where ca is a constant colour vector as usual, and

ADirac
µ =

(
0,− g̃y

r(r + z)
,

g̃x

r(r + z)
, 0

)
(4.2)

is a solution of the Maxwell equations corresponding to a Dirac (magnetic) monopole of

charge g̃. This has a well-known string singularity, which we have chosen to extend from

the origin along the −z direction. Note that eq. (4.2) is reminiscent of the single copy

solutions in the Kerr-Schild double copy, in that it is manifestly of a form which linearises

the Yang-Mills equations. We may thus refer to this solution as abelian-like, even though

it is not, strictly speaking, a solution of an abelian gauge theory.

Without loss of generality for the following arguments, we may choose the constant

colour vector to lie in the 3-direction in the internal space, so that ca = δa3. Given that

we are focusing on an SU(2) gauge group, we may thus write the complete (matrix-valued)

gauge field as

Aµ = ADirac
µ σ3, (4.3)

where

σi =
1

2
τi, (4.4)

is a generator of SU(2), in terms of the Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (4.5)

We may transform eq. (4.2) to spherical polar coordinates (t, r, θ, φ), yielding

Aµ = σ3

(
0, 0, 0,

g̃(1− cos θ)

r sin θ

)
spherical

. (4.6)

Next, we can make a gauge transformation

Aµ → A′µ = U Aµ U−1 +
i

g
U
(
∂µU

−1) . (4.7)

Here g is the electric charge in the gauge theory, which is related to the magnetic charge

by the quantisation condition14

g ∼ 1

g̃
. (4.8)

13A similar gauge transformation is used to relate different forms of the ’t Hooft-Polyakov monopole of

refs. [113, 114].
14Equation (4.8) is defined up to an overall constant, which is fixed by stability of the monopole [99], and

irrelevant for the present argument.
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Choosing the specific transformation matrix15

U = eiφσ3eiθσ2e−iφσ3 , (4.9)

one finds that the transformed field in spherical polar coordinates is given by

A′µ =

(
0, 0,

g̃

r
(sinφσ1 − cosφσ2),

g̃

r
(cos θ cosφσ1 + cos θ sinφσ2 − sin θ σ3)

)
spherical

.

(4.10)

Finally, transforming back to Cartesian coordinates, one finds

A′
a
0 = 0, A′

a
i = − g̃εiakxk

r2
, (4.11)

such that using eq. (4.8) returns precisely the Wu-Yang form of eq. (2.18). This is distinctly

different from the abelian-like form of eq. (4.1): the Levi-Cevita symbol mixes the spatial

and gauge indices. In addition, the form of eq. (4.11) no longer linearises the Yang-Mills

equations, thus is genuinely non-abelian in this gauge.16

This result immediately explains why the analysis of section 3 failed to find conclusive

evidence that the ultraboosted biadjoint monopole could be potentially matched with a

Wu-Yang monopole: the Wu-Yang monopole is nothing other than the abelian-like Dirac

monopole in disguise. In the Kerr-Schild double copy, the latter is known to be related to

the NUT solution in gravity [49]. The ultraboosted Dirac monopole then double copies to

a so-called NUT wave [97]. We may confirm this explicitly, by taking the gauge field of

eq. (4.3) to be static in the inertial frame S′ of section 3, and boosting to the frame S of

eq. (3.1). The result is

Aaµ =
g̃δa3

[γ2(x− βt)2 + ρ2]1/2{[γ2(x− βt)2 + ρ2]1/2 + z}


γβy

−γy
γ(x− βt)

0

 . (4.12)

Taking the limit γ →∞ and using eq. (3.9), one finds

Aaµ = δa3φM k̄µ, (4.13)

where k̄µ has been given in eq. (3.4), and

φM = g̃

[
π − 2 tan−1

(
z

y

)]
δ(u). (4.14)

This has the form of a delta function in the lightcone coordinate u, dressed by a profile

function φM whose dependence is only on the coordinates in the transverse plane, thus is

indeed a shockwave. Note that the function φM has a cut in the (y, z) plane, that is a

15Our presentation differs from that of ref. [99] due to our choice of Hermitian, rather than anti-Hermitian,

generators.
16The fact that one can gauge away the non-abelian nature of the monopole may be related to its static

nature [115].
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Abelian

Non−abelian

Gravity

Double copy

Double copy

Gauge

Transformation

Figure 2. Generalisation of the Kerr-Schild double copy, in which one may identify abelian or

non-abelian exact solutions of a gauge theory with the same gravity solution.

remnant of the original Dirac string. As for the latter, we may choose where to place this

cut in the shockwave plane, by performing gauge transformations. This would affect the

constant term in eq. (4.14), which is therefore not physical by itself.

We may also note that the function φM is harmonic, and that k̄µ (as has already been

pointed out above) is null and geodesic. Following the rules of ref. [48], we are thus entitled

to take the double copy of eq. (4.13) to obtain the graviton

hµν = N

[
π − 2 tan−1

(
z

y

)]
δ(u) k̄µ k̄ν , (4.15)

where we have replace the magnetic monopole charge g̃ with a gravitational charge N . Upon

identifying the latter with NUT charge, eq. (4.15) agrees with the NUT wave solution first

derived in ref. [97].17 We may also take the zeroth copy of eq. (4.13), to obtain a biadjoint

scalar field

Φaa′ = λcac̃a
′
[
π − 2 tan−1

(
z

y

)]
δ(u). (4.16)

This is clearly non-zero, and thus not at all identifiable with the ultraboost of the non-

perturbative monopole of eq. (2.15), which effectively vanished!

The results of this section are of interest in extending the remit of the classical double

copy. A frequently encountered question amongst newcomers to the subject is why the Kerr-

Schild double copy should always produce an abelian-like solution, when the amplitude

double copy crucially relies on the fact that the gauge theory is non-abelian (i.e. through

BCJ duality [1]). The natural interpretation of the above results, however, is that one may

identify the NUT solution in gravity as a double copy either of the abelian-like magnetic

monopole of eq. (4.3), or the fully non-abelian Wu-Yang monopole of eq. (2.18). That

this is possible is due to the fact that colour information is stripped off when taking the

double copy, and the overall scheme is as depicted in figure 2. Interestingly, a similar

17In order to compare with ref. [97], one must change the boost direction to the +z direction, and also

move the position of the cut of the function φM in the transverse plane.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
2

picture already has a precedent in the study of scattering amplitudes: ref. [27] examined

the infrared singularities of amplitudes in either QED or QCD, and showed that these both

matched up with the same structure of IR singularities in GR, to all orders in perturbation

theory. Furthermore, it is certainly the case that non-abelian classical solutions can be

constructed perturbatively, and double copied [51, 61, 63]. However, we believe that our

results constitute the first example of an exact non-abelian solution that can be double

copied to a gravitational counterpart, and the extension of this to other gauge groups and

solutions deserves further investigation.

5 Conclusion

In this paper, we have systematically investigated the possibility of a non-perturbative

double copy between gauge and gravity theories. More specifically, we have followed the

suggestion that the non-perturbative biadjoint monopole of ref. [87] may be related to the

singular Wu-Yang monopole solution in SU(2) gauge theory. There is no existing guidance

on how to proceed, given that in all previous examples of the double copy, solutions of

the linearised biadjoint field equation play a crucial role. For amplitudes, these are the

denominator factors that act as scalar propagators. For the Kerr-Schild double copy, one

relies upon a harmonic function φ, that remains untouched (up to replacements of charge

and mass factors) when moving between theories.

Our starting point was to note that shockwaves are known to double-copy, and that one

can construct such solutions by ultraboosting static objects, by analogy with the seminal

gravity study of ref. [91]. Furthermore, ultraboosting a solution results in a somewhat

simpler structure, which might make it easier to spot how a nonperturbative double copy

might work. To this end, we first showed how the Aichelburg-Sexl procedure, for the point

charge and mass solutions considered in the original classical double copy of ref. [48], can be

expressed in a form that makes the double copy manifest. This exercise was useful in itself:

the ultraboost procedure has not been previously considered in biadjoint theory, and there

are interesting aspects of how the double copy relates the ultraboosts in different theories

(e.g. the need to rescale the charge parameters differently). Returning to the biadjoint

monopole, we found that this effectively vanished upon performing an ultraboost, making

any attempt to match it up with a gauge theory solution difficult.

We then explained the above observations by noting that the Wu-Yang monopole is

related to a trivially dressed Dirac monopole by a (singular) gauge transformation. The

latter, as implied by the study of ref. [49], maps to the well-known NUT solution in gravity.

Consequently, upon ultraboosting the transformed Wu-Yang monopole, one may double

copy the result to obtain the so-called NUT wave of ref. [97], which we verified by explicit

calculation. Interestingly, we expressed the Dirac monopole in a gauge that was not in the

right form for the usual Kerr-Schild double copy (e.g. the field was not null). However, the

shockwaves we obtained were indeed of Kerr-Schild form, which may possibly be due to

the highly constrained symmetry of the shockwave solutions. In addition, this then allowed

us to take the zeroth copy of the boosted Dirac monopole, which is non-zero and thus not

relatable to the biadjoint monopoles of ref. [87].
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Our results provide a number of insights at the frontier of understanding of the remit

of the double copy. Most significantly, we have uncovered the first example of an exact

non-abelian solution — the Wu-Yang monopole — that can be identified with the same

gravity solution as an abelian-like counterpart. This is analogous to similar behaviour

observed in the study of scattering amplitudes [27, 36, 37], and indeed suggests that many

more such examples can be found. This may provide clues about how to double copy exact

non-abelian solutions without having to rely on the Kerr-Schild procedure, which would in

turn greatly increase our understanding of the fundamental origin of the double copy itself.
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A Impulse calculations

A.1 Biadjoint impulse

The impulse of a test particle of mass m interacting with the ultraboosted biadjoint scalar

field is related to the equations of motion for the interacting particle coupled with the

biadjoint scalar [61],
∂pµ
∂t

= − λ
m
ca2 c̃

a′
2 ∂µΦaa′ . (A.1)

Here, the biadjoint field Φaȧ is given by the shockwave solution given by (3.19). Stripping

out charge and mass parameters for the sake of simplicity, we have

∂pµ
∂t

= ∂µ

(
ln

(
ρ2

ρ20

)
δ(x− t)

)
. (A.2)

Switching to lightcone coordinates u = t − x, v = t + x, the impulse experienced by the

particle is

δpµ =

∫ ∞
−∞

dt
∂pµ
∂t

=

∫ ∞
−∞

du
∂pµ
∂u

=

∫ ∞
−∞

du ∂µ

(
ln

(
ρ2

ρ20

)
δ(u)

)
. (A.3)

We will work this out for each component,

δpu =

∫ ∞
−∞

du∂u

(
ln

(
ρ2

ρ20

)
δ(u)

)
= ln

(
ρ2

ρ20

)
δ(u)

∣∣∣∣∞
u=−∞

= 0

δpv = 0, δpy =

∫ ∞
−∞

du
2y

ρ2
δ(u) =

2y

ρ2
, δpz =

∫ ∞
−∞

du
2z

ρ2
δ(u) =

2z

ρ2
.
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Altogether, the interacting particle experiences an impulse with charges and couplings

reinstated:

δpµ = −λ
2

m

c · c2 c̃ · c̃2
2πρ2

(0, 0, y, z) . (A.4)

A.2 Gauge theory impulse

The impulse of a particle interacting with the ultraboosted gauge field is related to the

Lorentz force, given by
∂pµ

∂t
= gca2F

aµ
νv
ν . (A.5)

As we are working in the rest frame of the interacting particle, we only need to consider

the following components of the field strength tensor:

F aµ0 = ∂µAa0 − ∂0Aaµ (A.6)

where Aµ is the shockwave gauge potential given by the ultraboosted field given by (3.17),

as well as Aµ = AaµT
a, and ∂µ = (∂t,−∂x,−∂y,−∂z). The components of interest of the

field strength tensor are

F a10 =
gca

4π
ln

(
ρ2

ρ20

)
(∂t + ∂x)δ(x− t) = 0

F aj0 =
gca

4π
δ(x− t)∂j ln

(
ρ2

ρ20

)
=
ca

4π
δ(x− t) 2xj

ρ2
(A.7)

where j = 2, 3 or equivalently xj = y, z. We can now extract the impulse,

δpµ =

∫ ∞
−∞

dt
dpµ

dt
→ δpj =

∫ ∞
−∞

dt
c2 · c
4π

δ(x− t)2xj

ρ2
=
c2 · c
4π

2xj

ρ2
(A.8)

which leaves us finally with the impulse

δpµ :
g2c2 · c
2πρ2

(0, 0, y, z). (A.9)

This is identical (setting aside couplings and charges) to the biadjoint case. If the interact-

ing particle were to have the same charge as that producing the shockwave, the effect of the

impulse would be to send the particle away from the shockwave nucleus. Opposite charges

would result in the particle being drawn in closer to the nucleus. The strength of the push

or pull depends on how far the particle is initially from the source of the shockwave. The

closer the initial separation, the stronger the impulse.

A.3 Gravitational impulse

The impulse of a particle of mass m interacting with the ultraboosted graviton field is

related to the geodesic equation given by

∂pµ

∂t
= −mΓµνσv

νvσ. (A.10)
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The metric associated with shockwave geometry is

gµν = ηµν +
κ2

2

M

4π
δ(x− t) ln

(
ρ2

ρ20

)
k̄µk̄ν (A.11)

with inverse

gµν = ηµν − κ2

2

M

4π
δ(x− t) ln

(
ρ2

ρ20

)
k̄µk̄ν . (A.12)

As we are in the rest frame of the particle interacting with our shockwave, the geodesic

equation simplifies greatly to

∂pµ

∂t
= −mΓµ00. (A.13)

We only need 4 Christoffel symbols:

Γ0
00 =

−1

2

κ2

2

M

4π
ln

(
ρ2

ρ20

)
∂tδ(x− t), Γx00 =

1

2

κ2

2

M

4π
ln

(
ρ2

ρ20

)
∂tδ(x− t),

Γy00 =
κ2

2

M

4π

y

ρ2
δ(x− t), Γz00 =

κ2

2

M

4π

z

ρ2
δ(x− t).

The impulse δpµ is then the time integral of these Christoffel symbols,

δp0 = −δpx =
κ2

2

Mm

4π

∫ ∞
−∞

dt
1

2
ln

(
ρ2

ρ20

)
∂tδ(x− t)

=
κ2

4

Mm

4π
ln

(
ρ2

ρ20

)∫ ∞
−∞

du ∂uδ(u)

=
κ2

4

Mm

4π
ln

(
ρ2

ρ20

)
δ(u)

∣∣∣∣∞
u=−∞

= 0

δpy =
−κ2

2

Mm

4π

∫ ∞
−∞

dt δ(x− t) y
ρ2

=
−κ2

2

Mm

4π

y

ρ2

δpz =
−κ2

2

Mm

4π

∫ ∞
−∞

dt δ(x− t) z
ρ2

=
−κ2

2

Mm

4π

z

ρ2
. (A.14)

The impulse bears a resemblance to those of the biadjoint scalar and gauge theories, i.e.

δpµ =
−κ2Mm

8πρ2
(0, 0, y, z). (A.15)

The particle gets a kick restricted to the y − z plane, with the magnitude of the kick

diminishing the further the particle is from the nucleus of the shockwave. We would

expect, as gravity is an attractive force, that the impulse should draw the particle toward

the nucleus of the shockwave. By contrast, the gauge theory case is repulsive (provided c2 ·c
is positive in eq. (A.9)), which results in the sign difference between eq. (A.9) and eq. (A.15).

– 20 –
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B Ultraboosting the general SU(2)×SU(2) monopole

In section 3.3, we ultraboosted the biadjoint monopole solution of eq. (2.15), finding that it

disappears in the ultrarelativistic limit. In this appendix, we show that a similar conclusion

is reached for the more general monopole solutions of eq. (2.17), that were are also derived

in ref. [87]. Recall that these solutions have the form

Φaa′ =
1

λr2

[
−k

(
δaa
′ − xaxa

′

r2

)
±
√

2k − k2 ε
aa′dxd

r

]
, 0 ≤ k ≤ 2.

Intermediate details of the ultraboost calculation are cumbersome due to selecting a par-

ticular boost direction, so we will simply quote the results. As in section 3.3, we boost in

the x-direction, and examine the behaviour of the boosted solution inside and outside the

plane x = βt. Outside of the plane, we find that the solution vanishes completely:

Φaa′ γ→∞−−−→ 0 for x− βt 6= 0.

Inside of the plane, just as for the ultraboost of the (3.30), the field takes finite values and

displays no divergent behaviour. More specifically, in the limit γ →∞ we find

Φ11→ −k
λ(y2+z2)

, Φ22→ −kz2

λ(y2+z2)2
, Φ33→ −ky2

λ(y2+z2)2
,

Φ12 =−Φ21→
z
√

(k2−2k)

λ(y2+z2)3/2
, Φ13 =−Φ31→−

y
√

(k2−2k)

λ(y2+z2)3/2
, Φ23 = Φ32→ yzk

λ(y2+z2)2
.

We thus conclude that, similarly to (3.30), the solutions of eq. (2.17) remain finite in the

plane x = βt after the ultraboost (i.e. do not produce a delta function). Thus, they do

not constitute shockwaves. Similarly to (2.15), one can produce a shockwave solution by

rescaling the coupling according to λ → λ/γ. As mentioned below (3.31) however, this

entails changing the theory, and is not analogous to the Aichelburg-Sexl-like rescalings,

which affect the charges of the objects being boosted.
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[77] M. Carrillo González, R. Penco and M. Trodden, Shift symmetries, soft limits and the

double copy beyond leading order, arXiv:1908.07531 [INSPIRE].

[78] Y.F. Bautista and A. Guevara, On the Double Copy for Spinning Matter,

arXiv:1908.11349 [INSPIRE].

[79] N. Moynihan, Kerr-Newman from Minimal Coupling, JHEP 01 (2020) 014

[arXiv:1909.05217] [INSPIRE].

[80] I. Bah, R. Dempsey and P. Weck, Kerr-Schild Double Copy and Complex Worldlines, JHEP

02 (2020) 180 [arXiv:1910.04197] [INSPIRE].
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