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1 Introduction

There has been a great deal of activity recently regarding correlation functions of local

operators in planar N = 4 SYM and in its holographic dual, IIB superstring theory in

AdS5×S5. On the one hand, relying on Mellin space techniques [1, 2] and bootstrap ideas,

new approaches have been developed [3–10] to deal more efficiently with the supergravity

regime, corresponding to the strong coupling limit, g2 = λ/(4π)2 � 1, of the large-Nc

gauge theory. They led to spectacular results, starting with a conjecture [3] for the 1/N2
c
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correction to the 4pt functions of single-trace chiral primary operators of arbitrary dimen-

sions ∼ g0, which generalises earlier results and proposals, see [11] and references therein.

Further considerations unveiled hidden symmetries of the supergravity regime [7, 8] and

yielded lots of new OPE data for double-trace operators at strong coupling [4–7, 12]. They

suggest the exciting possibility that more general correlators can be found in the super-

gravity regime without ever using a single Witten diagram.

On the other hand, in a different vein, the integrability technology, see [13] for a

review, fostered the development of form-factor methods aiming at solving correlation

functions, or scattering amplitudes, for any g in the large Nc limit [14–22]. Among these

techniques, the hexagon method appears as the most versatile. Developed initially for the

3pt functions [17], it has been extended such as to cover higher-point functions [18, 19]

and non-planar corrections [20, 21].1 The method passed all the tests at weak coupling,

see [25–31] for recent examples, and has been checked at strong coupling as well, although

to a lesser extent, in the semiclassical regime [32] corresponding to minimal surfaces in

AdS5 × S5 [33–38]. However, to date, the striking simplicity of the supergravity limit is

still evading it.

In this paper we take a step towards the low-energy regime and apply the hexagon

method at strong coupling to 3pt functions of single-trace operators involving one light chi-

ral primary operator, dual to a supergravity mode, and two heavy operators dual to highly

boosted strings. The latter are the standard BMN operators, carrying large R charges and

finite anomalous dimensions γ and mapping to states with finitely many magnons moving

on a very large spin chain. For simplicity, we will take one of the two states to be BPS,

corresponding to the spin-chain supersymmetric vacuum. The 3pt functions of interest are

thus the familiar ones, with two BPS and one non-BPS single-trace operators, O1,2 and

Oγ , of lengths L1,2 and L, respectively,

C◦◦• = 〈O1(∞)O2(1)Oγ(0)〉 , (1.1)

and with L ∼ L1 ∼ g � 1 and L2, γ ∼ g0 in the heavy-heavy-light (HHL) kinematics. This

set-up is interesting in that it enables to probe correlators at low energy and still avoids

bottlenecks of the hexagon approach.

To understand this point, recall that the hexagon idea is to build the string vertex by

attaching two hexagons together along the seams of the pair-of-pants diagram, as shown

in figure 1. The picture gets more quantitative at weak coupling where the spin-chain

description takes over [14]. Each seam is then identified with a bridge of planar contractions

among the spin-chain sites and acquires a thickness or length. The hexagons fully decouple

when the three bridge lengths in the problem (`A,B,C) are asymptotically large, which

means much larger than g at strong coupling. This requires in particular that all three

operators carry extremely large charges and dimensions.

For smaller `’s a sum over a complete basis of virtual excitations, which move across

the seams, must be included. These excitations - dubbed mirror magnons - encode the

1The method also applies to situations with integrable boundary as recently discussed in [23]. See also [24]

for a TBA alternative to the hexagon method for structure constants involving determinant operators dual

to giant gravitons in AdS5 × S5.
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Figure 1. Left panel: the pair-of-pant diagram representing the structure constant for single-trace

operators of lengths L1, L2 and L. The geometry is characterised by three bridges, of thickness

`A,B,C , representing, and counting, the tree-level contractions among the operators. Cut opening

along the bridges separates the hexagons. The dots in the picture are the excitations -magnons-

of the bottom operator, with non-zero anomalous dimension γ; the other states are BPS. Right

panel: the HHL limit `C → ∞ corresponds to decompactifying the cylinder along edge C while

keeping fixed the middle -light- operator with length L2. The vertex can be obtained by gluing the

hexagons along edges A and B, using a complete sum of mirror magnons on each edge.

finite-size effects of the 3pt function geometry. Computing their sum is a difficult task in

general and becomes unwieldy in the finite-length regime, which maps to a short-distance

limit for the hexagon form factor series. It looks almost hopeless when the mirror magnons

are given the freedom to move across many bridges.

The HHL regime corresponds to `C → ∞ and it minimises the problem by confining

the mirror magnons to the neighbourhood of the light operator, `A+`B = L2. Importantly,

it prevents the mirror magnons from winding around the unprotected operator.2 The latter

processes are source of spurious divergences and require a dedicated treatment, which has

not been fully worked out, see [45–49] for attempts and related discussions.

The HHL kinematics was explored using worldsheet techniques in [16, 47, 50–54]. In

particular, ref. [47] studied a similar open-open-closed-string vertex, although in a slightly

different regime, by wrapping an octagon around a closed-string operator. The hexagon

picture is obtained by cutting smaller and thinking of the octagon as resulting from the

gluing of two hexagons, as shown in the right panel of figure 1. Two mirror sums are

needed here, for the two bridges that stay finite,

`A,B =
L2 ± L∓ L1

2
= O(1) , (1.2)

when `C = 1
2(L1 + L − L2) → ∞. In this paper, we shall calculate these sums exactly at

strong coupling for γ ∼ g0, using, among other things, the Pfaffian formula [55] and the

associated summation techniques applied recently in [30, 31] for the 4pt functions. It will

allow us to show that the 3pt functions factorise into ratios of Gamma functions and simple

2More precisely, we need `C � g to kill the finite-size effects along the bridge C, implying that the

heavy operators have lengths � g. This approximation is also needed to keep the anomalous dimension of

order ∼ g0 and to avoid the extremal points, see section 5. The 3pt functions are singular at these points,

see [39–44] for examples and discussions, and so are the mirror sums, which must be analytically continued.
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stringy prefactors, in line with Witten diagrams [39, 56] and with the pp-wave holographic

dictionary [57–60].

For illustration, when all the magnons on the unprotected operator spin in AdS, that

is Oγ ∼ trDMZL with Z a complex scalar field and D a lightcone derivative, we will get

C◦◦•/C◦◦◦ =M× Γ(`B − 1
2γ)Γ(`A +M + 1

2γ)

Γ(`B)Γ(`A)
, (1.3)

with C◦◦◦ the structure constant for the chiral primary operator (M,γ = 0).3 A similar

expression will be found for a larger family of operators carrying an additional spin along

the sphere. The prefactor M will be common to all of them and expressed in terms of the

BMN energies of the magnons, M =
∏M
i=1(LEi)

−1/2 with
∑

iEi = M + γ. Combining

insights from the semiclassical string result [33] and the hexagon representation, we will

argue that these formulae are free from wrapping corrections and stay valid when `C ∼ g

as long as L2 � `C and γ = O(1).

Finally, we will explore the transition to the classical regime L2 ∼ g where the Gamma

functions give way to factorised dressing factors. The latter will be found to be similar,

although not identical, to the Neumann coefficients of the pp-wave String Field Theory

(SFT) vertex [16, 47, 57–59, 62, 63].4

The plan of the paper is the following. In section 2 we set up our notations, introduce

the spin-chain states of interest and recall the main hexagon formulae for their structure

constants. In section 3 we analyse the one-mirror-magnon integral at strong coupling for

both classical and quantum bridges, corresponding to ` ∼ g and ` ∼ 1, respectively. We

argue that the tower of mirror bound states can be replaced by a continuum of states

in the latter case and proceed with their integration. We generalise the analysis to any

number of mirror particles in section 4 using the Pfaffian representation for the hexagon

form factors and compute the mirror series. In section 5 we put all the ingredients together

for the structure constants, discuss their main properties and argue for the absence of

wrapping corrections in the HHL regime. We conclude in section 6. The appendices

contain additional material for the bravest readers.

2 Generalities

In this section we recall the general hexagon formulae for structure constants in the HHL

regime. To begin with, we make more precise the operators that we shall be considering.

2.1 Operators

In this paper we consider planar 3pt functions between two BPS operators and one non-

BPS operator using the hexagon formalism. The former are single-trace chiral primary

operators built out of complex scalar fields. Without loss of generality, we take them as

O1 ∼ tr Z̄L1 , O2 ∼ tr (Z + Z̄ + Y − Ȳ)L2 , (2.1)

3C◦◦◦ =
√
L1L2L/Nc at large Nc [61].

4This vertex describes the near-collinear splitting of a string and is naturally associated to geometries

in which a bridge length is much smaller than the others, e.g., `A � `B,C ∼ g.
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where Z, Z̄ = φ1 ± iφ2 and Y, Ȳ = φ3 ± iφ4. The fused operator is a single-trace chain of

length L, with a non-zero anomalous dimension γ. It reads as a spin-chain state on the

vacuum trZL,

Oγ ∼ trZ . . .Zχ1Z . . .ZχMZ . . .Z + . . . , (2.2)

with the extra fields χi’s mapping to magnons. The dots indicate the need to smear the

magnons, such as to obtain a conformal and R-symmetry primary.

Each magnon moves along the chain with a momentum p and a corresponding energy

E =

√
1 + 16g2 sin2 p

2
. (2.3)

The total energy yields the anomalous dimension γ of the operator,
∑M

i=1Ei = M + γ, up

to exponentially small corrections at L → ∞. As usual with integrable models, the most

useful variables are not the momenta but the rapidities that uniformize the interactions.

In the case at hand, we get two rapidities x±, related to each other x± = x(u ± i/2) and

to the more common Bethe rapidity u through the Zhukowski map

x(u) =
1

2g
(u+

√
u2 − 4g2) . (2.4)

The dispersion relation can be written in these terms using

E = 1 + 2ig(1/x+ − 1/x−) , p = −i log (x+/x−) . (2.5)

At strong coupling the magnons can cover a wide range of energies, from E ∼ 1 to E ∼ g.

The BMN operators correspond to the low-lying states in this spectrum; they carry γ ∼ 1

and are composed of low-momentum modes pi ∼ 1/g. (This domain is also known as the

plane-wave region, as the magnon S matrix goes to 1 at strong coupling for such momenta.)

As well known, and as one can see from (2.3), this kinematics is relativistic. Relatedly,

we can drop the ± superscripts in (2.5) and proceed with a single Zhukowski variable, for

each magnon,

x±i = xi ±
ix2
i

2g(x2
i − 1)

+O(1/g2) , (2.6)

with |xi| > 1, giving the relativistic spectrum in the form

γ =
M∑
i=1

2

x2
i − 1

+O(1/g) , pi =
xi

g(x2
i − 1)

+O(1/g2) . (2.7)

The variable x relates then to the more common hyperbolic rapidity via x = coth(1
2θ).

In the large volume limit, L � g, there is no need for the quantization of the mo-

menta. Hence, until we relax the latter assumption, in section 5, the rapidities {xi} will

be treated as free parameters, as much as the energy γ. We shall however impose the

zero-momentum condition,

0 =
M∑
i=1

pi =
M∑
i=1

xi
g(x2

i − 1)
, (2.8)

implementing the cyclicity of the state, as it will lead to further simplifications.
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Besides the rapidity, each magnon carries a bi-fundamental index for its transforma-

tion property under the (centrally extended) rminPSU(2|2)2 symmetry of the spin-chain

vacuum [64]. In this paper we shall restrict this index to the graded subspace generated by

χ ∈
(
φ1

ψ1

)
⊗
(
φ̇1

ψ̇1

)
=

(
Y Ψ̄

Ψ DZ

)
, (2.9)

where Y and D are the scalar field and lightcone derivative introduced earlier, and Ψ and Ψ̄

are the gauginos they can mix with, YDZ ∼ ΨΨ̄. The corresponding linear space of local

operators is known as the su(1, 1|2) sector, see [65], and it is closed under renormalisation

at any coupling.

We get rid of the flavour indices by building scattering eigenstates.5 The procedure is

performed in the usual manner using the nested Bethe ansatz [66]. We shall make use of

the compact grading, treating the scalars as the main excitations and the rest as defining

the nested layers, see [65]. Later on, we will convert the expressions so-obtained to the

alternative, non-compact grading, where the derivatives play the leading role.

Two nested levels are needed here, for the left- and the right-handed fermions, and two

sets of auxiliary rapidities {yi, i = 1, . . . , N}, {ẏi, i = 1, . . . Ṅ} are introduced. At strong

coupling, for scattering eigenstates, they obey the linearised Bethe ansatz equations [65]

M∑
j=1

x2
j

(x2
j − 1)(y − xj)

= 0 , ∀y ∈ {yi} ∪ {ẏi} , (2.10)

modulo terms that vanish for cyclic states (2.8). We will not need to know much about the

solutions to these equations; enough to note, numerically, that their modules are greater

than 1, for all |xj | > 1. The exception to the rule is the root y = 0, which always exists

for cyclic states.

For application to structure constants with two half-BPS operators we can fold the

wave functions as only the diagonal states with {yi} = {ẏi} return a non-zero answer. This

superselection rule was derived in [55] from the diagonal rminPSU(2|2) Yangian symmetry

of the hexagon form factors. It extends the global selection rule N = Ṅ which states

that only left-right symmetric representations show up in the OPE of two chiral primary

operators. Hence, summarising, the diagonal operators to be studied look like

Oγ ∼ trDSZL−Y YY , (2.11)

up to mixing. They carry Lorentz spin S = N and scalar charge Y = M −N , with M,N

the excitation numbers in the compact grading.

2.2 Hexagon sums

The hexagon construction allows us to obtain a representation for the HHL structure

constants by attaching two hexagons around the light operator, as in figure 1. The gluing

5One could also work with indices in the decompactification limit. However, in the hexagon framework,

the interactions on the pair-of-pants involve the magnon scattering amplitudes and their diagonalisation

simplifies the algebra.
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×∼ A

A

B

B

Figure 2. The vertex is covered using two hexagons, which are stitched together along two edges

of thickness `A and `B . According to the hexagon formula, for a half-BPS insertion the structure

constant factorises into two octagons, shown in the right panel. The dots stand for the magnons

on the spin chain at the boundary.

is performed by inserting sums of mirror states on the identified edges. As said earlier, the

hexagons generically develop divergences when they are wrapped around a local operator.

Importantly, the operator surrounded here is half BPS and as such is protected from any

such divergences. More than that, according to the hexagon formula worked out in [67],

the mirror magnons on the two sides of the half-BPS operator do not talk to each other.6

In other words, the structure constants factorise, see figure 2,

C◦◦•/C◦◦◦ = NLA(`A)B(`B) , (2.12)

with A(`A) the result of gluing uniquely along the bridge A and similarly for B(`B), and

the problem boils down to studying each mirror sum separately. We should stress that

although the mirror magnons on the two bridges do not see each other, they feel separately

the presence of the real magnons at the boundary. In fact, it is these who make the

difference between A and B.

Let us now look closer at the various factors in (2.12), following [67] up to changes in

the notations.

First, NL is a simple factor, denoted as Gaudin in [67], which accounts for the overall

normalisation.7 It depends on the magnons’ rapidities, ui = g(xi + 1/xi), and reads, in

absolute value,

|NL|2 =
1

GL

M∏
i=1

| µ(ui)

dp(ui)/du
| ×

M∏
i<j

∆(ui, uj) , (2.13)

where ∆(ui, uj) = h(ui, uj)h(uj , ui) is the squared module of the two-scalar hexagon form

factor and µ is the hexagon measure. The former trivialises at strong coupling for (distinct)

low-momentum magnons,

h,∆→ 1 . (2.14)

6The analysis in [67] was performed for Bethe states in rank-one sectors. Its higher-rank generalisation

is straightforward following considerations in [55].
7In particular, it takes into account the fact that the structure constants computed here are for operators

that are canonically normalised.
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|ψ

ψ|

ψ∈Hmirror

e− Ẽ(ψ)=

Figure 3. The gluing is achieved by inserting a complete basis of mirror magnons on the mirror

edge.

The momentum-space measure is a simple factor, which takes the same form at any

coupling, ∣∣∣∣ µ(u)
du

dp

∣∣∣∣ =
4g2

E(E2 − 1)
, (2.15)

when expressed in terms of the magnon energy, see eq. (2.3). Lastly, GL is the Gaudin

determinant normalising the asymptotic wave function at large L.8 In the plane-wave

regime, it is simply given by GL = LM , with a factor of L for each magnon. To summarise,

this factor reads

NL →
M∏
i=1

2g√
LEi(E2

i − 1)
, (2.16)

and it is of order O(gM ), for relativistic energies, Ei =
√

1 + (2gpi)2 = O(1).

Next come the mirror sums. There is no need to detail both of them here since, as we

shall argue later on, one follows from the other by analytical continuation. We focus below

on the B sum — the bottom or opposing channel amplitude in the terminology of [67] —

which is easier to address and defer its continuation to A to section 5.

Expanding over a basis of mirror states, as depicted in figure 3, yields the form factor

series for the B gluing,

B(`) = 1 + B1(`) + B2(`) + . . . , (2.17)

where Bn(`) is the amplitude for n mirror magnons crossing the bridge of length ` = `B.

It is described by a n-fold sum-integral over the mirror phase space

Bn(`) =
1

n!

∑
a1,...,an>1

∫ n∏
i=1

µ̃ai(ui)dui
2π

e−`Ẽai (ui)Fai(ui)Tai(ui)
n∏
i<j

∆̃aiaj (ui, uj) . (2.18)

Each mirror magnon carries a rapidity u and a bound-state index a = 1, 2, . . ., labelling its

rminPSU(2|2)2 module with dimension (4a)2. Equivalently, it comes equipped with a pair

of complex conjugated Zhukowski variables,

x[±a] = x(u± ia/2) → u± ia/2
g

= x[±a] + 1/x[±a] , (2.19)

8Strictly speaking, when the nested levels are excited, GL is the square of the Gaudin norm computed

at fixed mode numbers for the auxiliary roots, see [55]. This distinction is irrelevant here since there is no

interaction.
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which determines its energy and momentum,

Ẽa(u) = log (x[+a]x[−a]) , p̃a(u) = 2u− 2g

x[+a]
− 2g

x[−a]
. (2.20)

The latter energy couples in (2.18) to the length ` of the bridge crossed by the particle. It

becomes relativistic at strong coupling, for a momentum p̃ ∼ 1,

Ẽa(p̃) ∼
√
p̃2 + a2

2g
. (2.21)

This low-energy limit corresponds to Zhukowski’s close to the unit circle, x[−a] → 1/x[+a].

The magnons are weighted in (2.18) with a multi-particle measure, which is the mirror

image of the one in NL, up to the Gaudin norm. It comprises the individual measure

µ̃a(u)du =
ik(x[+a], x[−a])du

(x[+a] − 1/x[+a])(x[−a] − 1/x[−a])
=

8ag2dp̃

(p̃2 + a2)2
√

1 + 16g2/(p̃2 + a2)
, (2.22)

and the pairwise interaction

∆̃ab(u, v) =
∏
σ,τ=±

k(x[σa], y[τb]) , (2.23)

where

k(x, y) =
x− y
1− xy . (2.24)

The above interaction is of order O(g0) at strong coupling in all the regimes of interest.

One also notices that it goes away as soon as one magnon is relativistic,

lim
x[+a]x[−a]→1

∆̃ab(u, v)→ 1 , (2.25)

much like its spin-chain analogue, see eq. (2.14). This important property follows from the

crossing involution of k,

k(x, y)k(1/x, y) = 1 , (2.26)

which can be read out from (2.24).

The final ingredient stands for the interaction between a mirror magnon x[±a] and the

spin-chain magnons at the boundary. It is customarily split into a diagonal part and a

matrix part, Fa and Ta. While everything before was rather universal, these ones depend

on the channel under study. Their general expressions for the bottom channel are given in

appendix A. Below, we discuss them in the BMN regime.

The diagonal part can be expressed in terms of the BES dressing phase [68] which is a

rather convoluted function for general kinematics. Fortunately, at strong coupling and for

state with γ ∼ 1, we only need the AFS phase [69], which is significantly simpler. Taking

all factors into account, we find

Fa(u) = e
1
2
γẼa(u) = (x[+a]x[−a])

1
2
γ , (2.27)

– 9 –
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up to 1/g corrections. Its structure is reminiscent of the shock-wave scattering phase

S12 ∼ ei(p1E2−p2E1), see e.g. [70, 71], after performing a double-Wick rotation of one leg

to the mirror kinematics. Strikingly, the resulting amplitude grows with the energy as if

the Wick rotation has been done in the wrong way.9 This is a signature of the bottom

channel amplitude and relates to the fact that the mirror magnons are not standing near

the physical ones on the chain, that is on an adjacent mirror channel, but lie instead on the

edge that is facing it, see figure 3. As a result, in place of a (euclidean) time delay, we find

that the mirror magnons exit the bridge earlier than expected, since (2.27) is equivalent to

length shift

`→ β = `− 1

2
γ . (2.28)

We will see the consequences of this shift later on.

The matrix part Ta(u) is slightly more involved. It contains a sum over the 4a di-

agonal flavours of the mirror magnon and, according to the conjectures in [17], it can be

expressed in terms of the diagonal matrix element of the rminPSU(2|2) transfer matrix.

This eigenvalue was worked out in [64] for a general Bethe state and can be cast into

the form

Ta(u) = T (x[+a], x[−a]) = T + + T − + T 0 , (2.29)

where each term here is a rational function of x[±a]. Their general expressions are obtained

by continuing the formula in [64] to the mirror kinematics and are given in appendix A.

Here, we give T for a cyclic state with γ = O(1) in the su(1, 1|2) sector at strong coupling.

It yields

T ± = ± iQ
±

g

M∑
j=1

xj

(x2
j − 1)(x[±a]xj − 1)

, (2.30)

with Q± accounting for the rapidities on the nested level,

Q± =

N∏
k=1

x[∓a] − yk
1/x[±a] − yk

. (2.31)

If not for the Q factors, these are just generating functions for the higher conserved

charges.10 Notice that they are small at strong coupling, T ± = O(1/g) , ∀x[±a], as ex-

pected for a state standing “close” to the BPS ground state. The last component, T 0, is

more bulky but plays fortunately a supporting role. It reads

T 0 =
Q0

Q+Q−T
+T − , (2.32)

where

Q0 =

N∏
k=1

1

(1/x[+a] − yk)(1− 1/x[−a]yk)

a−2∑
n=0

P (u[a−2−2n]) . (2.33)

9This large asymptotic behaviour holds at any coupling, as shown in appendix A.
10The charges are given by Qr =

∑M
j=1 x

2−r
j /(g(x2j − 1)) and they are generated at both large or small

x[±a]. The expansion starts with the anomalous dimension γ = 2gQ2 in either case, if the state obeys the

zero-momentum condition (2.8), that is, if Q1 = 0.
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Here, u[m] = g(x[m] + 1/x[m]) and P (u) =
∏N
k=1(x− yk)(1− 1/xyk) is a Baxter polynomial

for the auxiliary rapidities. Notice that T 0 is quadratic in the charges and ∼ 1/g2. It will

be negligible in the classical regime ` ∼ g but will contribute when ` = O(1), as explained

in section 4.

3 The one-particle integral

In this section we analyse the one-particle integral B1(`) at strong coupling. This contri-

bution controls the entire amplitude in the classical domain ` ∼ g, after exponentiation of

the mirror series. It captures only a bit of the answer for bridge length ` ∼ 1, but hints

nonetheless at some important simplifications.

3.1 Classical bridge

We shall first walk through the classical regime ` ∼ g � 1. Precisely, we take the strong

coupling limit with l = `/(2g) held fixed. Since the length is large, the integrals in (2.18)

are dominated by the low-energy modes, with momenta p̃i = O(1), spins ai = O(1) and rel-

ativistic energies (2.21). As said earlier, this kinematics corresponds to Zhukowski variables

on the unit circle,

x[+a] → x x[−a] → 1/x , ∀a , (3.1)

with |x| = 1, and, in this variable, the measure (2.22) reads

µ̃a(u)du→ du(x)

a
, u(x) = g(x+ 1/x) , (3.2)

while the energy is given by

Ẽa → aε(x)/2g , ε(x) =
2ix

x2 − 1
. (3.3)

The measure scale large ∼ g, at given x, but its scaling is compensated by the transfer

matrix T = O(1/g). Hence, the resulting integrand is of order O(1). The latter takes the

same universal form, regardless of the favours of the magnons in the Bethe state. Namely,

the flavour dependence drops out, Q± → 1, when x[±a] approach the unit circle, and we

get, see (2.29) and (2.30),

Ta → T (x) =
M∑
j=1

ix2
j (x

2 − 1)

g(x2
j − 1)(xxj − 1)(x− xj)

, ∀a . (3.4)

We can also disregard the diagonal factor, Fa → 1, since the length shift it produces is

subleading here, β ∼ `, see eq. (2.28).

Moreover, there are no interactions among mirror magnons in this regime, see

eq. (2.25). As a result, the mirror sum exponentiates,11

logB(`) ' B1 +O(1/g) , (3.5)

11This is different than for a state with classical energy γ ∼
√
λ. In that case, T = O(1) and the pinch

singularities in the multi-particle integrals produce sizeable one-particle-like contributions, see [32].
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with

B1(`) '
∫
C+

du(x)

2π
T (x)

∞∑
a=1

1

a
e−alε(x)

=
M∑
j=1

x2
j

x2
j − 1

∫
C+

dx

2πi

(x− 1/x)2

(x− xj)(xxj − 1)
log (1− e−lε(x)) ,

(3.6)

where C+ goes from x = −1 to x = +1 along the unit circle with positive imaginary part.

Introducing hyperbolic rapidities,

x = coth
1

2

(
θ − iπ

2

)
, ε(x) = cosh θ , (3.7)

and similarly for the Bethe roots, see relations listed after eq. (2.7), we obtain the equiva-

lent form

lim
g→∞

B(` = 2gl) =
M∏
j=1

bl(θj) , (3.8)

where bl(θj) is given by

log bl(θj) =

∫ ∞
−∞

dθ

2π

f(θj + iπ2 )

f(θ) cosh (θ − θj)
log (1− e−l cosh θ) , (3.9)

with the weight f(θ) = cosh2 θ. Note for later purposes that the coefficient bl(θ) obeys a

simple functional relation,

bl(θj + iπ)bl(θj) = (1− e−il sinh θj ) , ∀f . (3.10)

It relates to the crossing property of the amplitude, see section 5.

The factorisation in (3.8) is reminiscent of the one observed for the Neumann coeffi-

cients of the pp-wave SFT vertex, see [16, 47, 54, 62] and references therein. Furthermore,

the coefficient bl(θ) in (3.8) and the one denoted dl(θ) in [47] which captures the finite-size

corrections to the Neumann coefficients look very similar. The latter also solves the cross-

ing equation (3.10) and, as such, can be cast into the integral form (3.9). Yet it corresponds

to a different solution, with a different weight f . Namely, in the SFT context, it is the

boost-invariant solution f = 1 that is picked,

dl(θ) = bl(θ)|f→1 . (3.11)

Despite this difference, as we will see in section 5, the b’s enter the structure constants

much like the d’s in the Neumann coefficients.

Formula (3.8) resums all the mirror corrections Bn ∼ e−nl at strong coupling ∀l ∈
(0,∞). It shows that B, which begins at 1 for l ∼ ∞, grows with decreasing length l, all

the way to l = 0 where it blows up. At this end point, it exhibits a power-law behaviour,

B ∼ (2l)−
1
2
γ

M∏
j=1

cosh

(
1

2
θj

)
. (3.12)
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This is a rather common short-distance scaling for a form factor series. What is unusual

is that it originates from the sum over the bound states and not from large rapidities. Yet

another uncommon feature is that the exponent depends on the state at the boundary,

through the anomalous dimension γ =
∑

j(cosh θj − 1). It can be traced back to the

θ dependence of f . It would be absent for a boost-invariant weight f = 1, which also

brings (3.12) for l ∼ 0 but with γ → −1, no matter the state {θj}.
To conclude, let us mention the connection with the string theory result [33]. The

latter holds for classical Bethe states with energy ∼ g dual to classical strings in AdS5×S5.

Picking a purely scalar state for simplicity, it predicts that

logC◦◦•|mirror = A(l) + other channels , (3.13)

where

A(l) =

∫
C+

du(x)

2π

{
2Li2(e−lε(x))− Li2(q+(x)e−lε(x))− Li2(q−(x)e−lε(x))

}
, (3.14)

with Li2 the dilogarithm. In this formulation, all the information about the (zero-

momentum) state is encoded in the twists q±(x),

q±(x) = exp

{
∓

M∑
j=1

ixj
g(x2

j − 1)(x±1xj − 1)

}
. (3.15)

Since the number of magnons is large for a classical string, M ∼ g � 1, the sums here

are of order O(1) and should be read as integrals over the dense support of the roots.

Drawing inspiration from the discretisation of the spectral curve introduced in [69], we

may extrapolate the result to a state with fewer magnons, and energy ∼ 1, by keeping the

exponents as in (3.15) and expanding at large g. This readily maps A(l) into (3.6), after

linearising the twists and differentiating the dilogs. We could also check this reduction, with

some more control on the approximation, directly at the level of the hexagon series, which

was shown to reproduce A(l) for classical states in [32]. It links then to the map between

the classical and the BMN transfer matrices, T (x)classical = 2 −∑i=± exp {−T i(x)BMN},
which embodies the exponentiation observed in (3.15).

3.2 Quantum bridge

We turn to the finite-bridge regime ` = O(1). Classically, this is the point l = 0 where the

amplitude blows up. We will see here how this singularity is “resolved” at higher energy,

when the non-relativistic corrections are taken into account.

Let us first work out the kinematics. For a finite bridge, the energy should be of

order O(1),

Ẽ2
a ∼ (p̃2 + a2)/4g2 ∼ 1/`2 , (3.16)

implying that p̃ or a should be ∼ g. In either case we observe that the Zhukowski’s x[±a]

are moving away from the unit circle. These magnons with large individual momenta are

the mirror - or AdS - analogues of the spin-chain giant magnons [72]. They map to solitonic

solutions of the double Wick rotated worldsheet theory and were constructed classically
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Figure 4. Graphs of the Zhukowski variable x[+a] = x(u+ia/2), for real u, a = 1, 2, . . . and g = 10.

The quantum bridge regime is controlled by the continuum formed by this dense semi-infinite set,

shown here in blue-grey. Because of a singularity at the boundary, the continuum approximation

must stop somewhere over the rainbow, a short distance away from the unit circle.

in [73] at small a.12 Their characteristic feature is that they are non-compact: they stretch

in AdS and reach the boundary at infinite momenta, as one can see classically using the

soliton of [73]. As such, they can trigger short-distance singularities in the boundary theory,

as we shall see later on.

In our case, it appears necessary to have a ∼ g, as otherwise the measure would be

suppressed,

µ̃a(u)du ∼ adp̃

g2
, (3.17)

see eq. (2.22). This condition was also suggested by the limit l → 0 of the classical

integral (3.9), which, as said earlier, is dominated by large a’s. In these circumstances, we

can approximate the bound-state sum by an integral,
∑

a →
∫
da, and substitute to the

sum over the 1-particle states the 2d integral over the Zhukowski’s,∑
a

∫
µ̃a(u)du

2π
→ ig

∫
dx[+a]dx[−a]

πx[+a]x[−a]
k(x[+a], x[−a]) , (3.18)

where we used (2.22) for the measure and performed a change of variables using (2.19).

Recall that k(x, y) = (x− y)/(1− xy).

Combining all the pieces together gives the one-particle integral for a quantum bridge,

B1 =

∫
dx[+a]dx[−a]

π(x[+a]x[−a])β+1
k(x[+a], x[−a])× igT (x[+a], x[−a]) , (3.19)

where β = ` − 1
2γ and with x[−a] = (x[+a])∗. The domain of integration is the upper half

plane for x[+a], minus the unit disk, see figure 4, with the relativistic low-energy modes

sitting on the unit circle at the boundary. Note that gT , k, and thus the whole integrand,

are of order O(g0) throughout the entire domain.

A remarkable property of this integrand is its reflection symmetry under a → −a.

Namely, we see from (2.30) that

T ±(x[−a], x[+a]) = −T ∓(x[+a], x[−a]) . (3.20)

12The AdS soliton found in [73] carries a large momentum p̃ ∼ g but no spin. Its bound-state analogue

should also rotate in AdS when a ∼ g.
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The sum (T + +T −) is thus antisymmetric and so is the measure, since k(x, y) = −k(y, x).

The same can be said about T 0, in the regime a ∼ g, see eq. (4.9) below. Hence, since the

integrand is a symmetric function of a, we can extend the integration domain to the entire

plane minus the disk. Introducing polar coordinates,

x[±a] = r s±1 , (3.21)

with s = eiφ and r ∈ [1,∞], we arrive at

B1 =

∫ ∞
1

dr

r2β+1

∮
|s|=1

ds

2πis
k(rs, r/s)× igT (rs, r/s) , (3.22)

with the s-contour going clockwise along the unit circle.

We will now evaluate this two-fold integral for T → T + +T −, deferring the integration

of T 0 to the next section. (The latter component is quadratic in the charges and combines

naturally with the higher-magnon integrals.)

Given the parity property (3.20), we only need to consider the integral for T +. Fo-

cussing on the angular integral, and using (2.30), we get to evaluate

R1 =
M∑
j=1

xj
x2
j − 1

∮
|s|=1

ds

2πis

k(rs, r/s)

1− rsxj
Q+(rs, r/s) . (3.23)

The integrand is a rational function of s with poles at

{0, 1/rxj , 1/ryk,∞} . (3.24)

Recall that all the roots are > 1 in absolute value; hence, if not for the last one, all the

poles in the list above sit inside the unit disk.13 So, by Cauchy theorem, the integral follows

from its behaviour at infinity,

lim
s→∞

k(rs, r/s)

1− rsxj
Q+(rs, r/s) =

1

xj(r2 − 1)
, (3.25)

and thus

R1 =
1

r2 − 1
×

M∑
j=1

1

(x2
j − 1)

=
1
2γ

r2 − 1
. (3.26)

Remarkably, all the charges in T + have been swept away by the angular average, if not for

the leading one γ. We will see shortly that this phenomenon extends to the higher-magnon

integrals, which turn out to be proportional to higher powers of γ only.

We proceed with the integration over r, after doubling (3.26) for T + + T −. Here we

face the difficulty that the integral does not converge, since R1 has a pole at r = 1. We

regularise it by introducing a lower cut-off rmin = 1 + ε, with ε ∼ 0. It gives

B1|cut = 2

∫ ∞
1+ε

dr

r1+2β
R1 = −γ

2
log (2εeγE )− γ

2

∂

∂β
log Γ(1 + β) , (3.27)

where γE = − log Γ′(1) is the Euler-Mascheroni constant.

13Note that one can relax the condition that the y’s are outside the disk, as long as they obey the BAEs,

since then the associated residues vanish.
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The logarithmic divergence at r = 1 goes back to the 1/a scaling of the measure in

the classical regime, see eq. (3.2). It indicates that our approximation (3.18) is not valid

in this neighbourhood. Hence, to complete our calculation and get rid of the discrete cut-

off dependence in (3.27), we shall reinstate the bound-state sum for the modes close to

the disk.

Precisely, we divide the domain into two regions, for the IR and UV modes,

B1 = B1|discrete + B1|continuum , (3.28)

where the continuum part is nothing but the integral (3.27) with rmin = 1 + ε. It is

completed here by the sum over the low-lying bound states, a = 1, . . . , amax, with amax

large but finite. To ensure the continuity at the boundary of the sum and the integral, we

demand that

amax = −ig(s− 1/s)(rmin − 1/rmin) ' 4gε

ε(s)
, (3.29)

using the coordinates transformations (2.19) and (3.21). This gluing condition is consistent

with our assumptions, as long as 1 � amax � g or equivalently 1/g � ε � 1. Note that

it implies that amax depends on the position s on the unit circle, through the classical

energy (3.3). Other than that, the integrand of the discrete part is as for the classical

limit, if not that the bridge is small. Namely, it reads as the first line of (3.6), with l = 0,

x→ s and with a sum up to amax. The sum is readily done

amax∑
a=1

1

a
' log (amaxeγE ) = log

[
4gεeγE

ε(s)

]
, (3.30)

and so is the integral,

B1|discrete =

∫
C+

du(s)

2π
T (s) log

[
4gεeγE

ε(s)

]
=
γ

2
log (2gεeγE ) +

M∑
j=1

log cosh

(
1

2
θj

)
. (3.31)

Hence, as expected, the logarithmic divergences cancel out between (3.31) and (3.27).

The final expression for the one-particle integral is obtained by collecting the finite

parts in (3.28). It reads

B1 = logC − γ

2

∂

∂β
log Γ(1 + β) , (3.32)

with β = `− 1
2γ and with the ` independent constant

C = g
1
2
γ
M∏
j=1

√
1

2
(1 + Ej) = g

1
2
γ
M∏
j=1

cosh

(
1

2
θj

)
, (3.33)

where Ej = cosh θj . The funny scaling in g of this constant is the imprint left by the sin-

gularity at r = 1. It responds to the logarithmic singularity ∼ γ
2 log (1/l) found classically.

This singularity is replaced, as far as the ` dependence is concerned, by a series of poles,

log `→ ψ

(
1 + `− 1

2
γ

)
, (3.34)

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
0
7
6

with ψ the digamma function. This is the first step towards the Gamma functions men-

tioned in the introduction.

Let us mention finally that one can double check (3.32) using, instead of a hard cut-off,

a modified measure
1

x[+a]x[−a] − 1
→ 1

(x[+a]x[−a] − 1)1−α , (3.35)

with α a regulator, to be sent to zero at the end of the calculation. The analysis in this

scheme is performed in appendix B for completeness.

4 Summing the multi-particle integrals

In this section we generalise the analysis to the multi-particle exchanges and resum the full

form factor series, for a boundary Bethe state in the su(1, 1|2) sector.

4.1 Free energy

For more magnons, it proves useful to use the Pfaffian formula for the hexagons [55], see

also [30, 31] for recent discussions. Namely, defining

zi = x
[+ai]
i , z̄i = x

[−ai]
i , (4.1)

for the variables of the i-th mirror magnons, we can write the interactions among magnons

in the form
n∏
i<j

∆̃ai,aj (ui, uj) =

n∏
i=1

1

k(zi, z̄i)
× Pfn , (4.2)

with k as in (2.24) and where Pfn is the Pfaffian of the 2n× 2n antisymmetric matrix with

ij element

k(ti, tj) , ti =

{
z[i/2] i/2 non-integer

z̄[i/2] i/2 integer
i = 1, · · · , 2n . (4.3)

Explicitly,

Pfn =
1

2nn!

∑
σ∈S2n

(−1)|σ|
n∏
j=1

k(tσ(2j−1), tσ(2j)) , (4.4)

where S2n is the symmetric group of the 2n variables tj and (−1)|σ| is the signature of the

group element σ.

We should multiply (4.4) with a string of transfer matrices
∏
j T (zj , z̄j) and integrate

each pair of variables with a measure. Combining them with the product of 1/k’s coming

from the interaction (4.2) yields

n∏
j=1

∫
dzjdz̄j

2π

igT (zj , z̄j)

(zj z̄j)1+β
, (4.5)

for the individual weights. We can achieve a further important simplification by using

permutation symmetry and parity invariance zj ↔ z̄j . They allow us to bring each pair of
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arguments in a given k-string in (4.4) to a canonical form of the type (z̄i, zj). Hence, below

the integral sign, several terms in the Pfaffian can be identified and put together using

Pf1 → −k(z̄1, z1) ,

Pf2 → k(z̄1, z1)k(z̄2, z2)− 2k(z̄1, z2)k(z̄2, z1) ,

. . .

Pfn → (−1)n
∑
σ∈Sn

2d(σ)(−1)|σ|
n∏
i=1

k(z̄1, zσ(1)) . . . k(z̄n, zσ(n)) ,

(4.6)

where d(σ) =
∑

i(di(σ) − 1) with di(σ) the length of the i-th cycle in the cycle decompo-

sition of σ.

Accordingly, B is akin to a Fredholm determinant and its logarithm is given as a sum

over n-magnon cycles,

logB(`) = −
∞∑
n=1

2n−1

n

∫ n∏
j=1

dzjdz̄j
2π

ig

(zj z̄j)1+β
(T +
j + T −j + T 0

j )× Cn , (4.7)

with the cyclic kernel

Cn = k(z̄1, z2)k(z̄2, z3) . . . k(z̄n, z1) . (4.8)

The domain of integration is the complex plane minus the unit disk in each variable.

As seen earlier, the 1-magnon integral is problematic at r =
√
zz̄ = 1 and necessitates

the use of a regulator. The problem is manifest in C1 = k(z̄, z) = r(s − 1/s)/(r2 − 1).

It is of no concern when dealing with the component T 0, since, as shown below, this one

vanishes at r = 1. The problem is also absent for the multi-particle integrals in (4.7) which

do not contain k-factors with conjugated arguments. Therefore, all the integrals considered

in this section can be taken over the entire domain, with no regulator.

Finally, let us quote the expression for T 0 in the regime of interest. As said earlier,

this component is naively small at strong coupling, since ∼ 1/g2, see eq. (2.32). This is

ignoring that it comes along with a sum of ∼ a terms, see eq. (2.33), which enhances the

result for a ∼ g. Replacing the sum in Q0 by an integral makes it clear,

Q 0(z, z̄) =
−ig∏N

k=1(1/z − yk)(1− 1/z̄yk)

∫ z+1/z

z̄+1/z̄
dv

N∏
k=1

(v − (yk + 1/yk)) , (4.9)

such that T 0 ∼ T ± ∼ 1/g. It manifestly vanishes at r = 1, since then z̄ = 1/z.

4.2 Telescoping the sum

The n-magnon integrand is a polynomial of degree n in the T ’s which produces a myriad

of terms after opening the brackets in (4.7). Fortunately, we will not need to evaluate all

of them individually, since, as we will now demonstrate, only the pure powers in T + or

T − survive in the end, after performing the sum over n. The reason is that a cancellation

occurs between the “neutral” pairs T +T − and the T 0’s upon integration.
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= −1

2+

· · · ··· · · · ···−

2f(2)
−

+f(1) = 0

3f(3)
+

+2f(2) = 0

+

− − −

Figure 5. Upon integration, a pair T +T − is equivalent to the insertion of T 0, up to an overall

factor, for any given choice of the remaining T ’s in the loop.

The proof goes a follows. First, we shall prove the following identity,∫
d2z1

2π|z1|2β+2

d2z2

2π|z2|2β+2
k(z̄•, z1)

(
igT +

1

)
k(z̄1, z2)

(
igT −2

)
k(z̄2, z◦)

= −1

2

∫
d2z2

2π|z2|2β+2
k(z̄•, z2)

(
igT 0

2

)
k(z̄2, z◦) ,

(4.10)

for fixed z̄•, z◦, see figure 5. The equality extends to a length-2 cycle, after identifying the

end points, (z◦, z̄•) = (z2, z̄2), and removing the duplicated link k(z̄2, z◦).

To prove this relation, we introduce polar coordinates, zi = risi, z̄i = ri/si, and starts

with the integral over s1. We evaluate it by picking up the residues outside of the unit

disk. There is then only one pole to consider. It comes from k(z̄1, z2) and sits at s1 = r1z2.

Its residue is obtained using

− Ress1= r1z2

k(z̄•, s1r1)k(r1/s1, z2)k(z̄2, z◦)

s1
= (z2 − 1/z2)k(z̄•, r

2
1z2)k(z̄2, z◦) , (4.11)

and evaluating the product T +
1 T −2 at (z1, z̄1) = (r2

1z2, 1/z2),

igT +igT −j → −
M∑

b,c=1

N∏
k=1

1/z2 − yk
1/r2

1z2 − yk
z2 − yk

1/z̄2 − yk
xbxc

(x2
b − 1)(x2

c − 1)(r2
1z2xb − 1)(z̄2xc − 1)

.

(4.12)

Consider next the remaining integrals and rescale r2 → r2/r1, s2 → s2/r1. It yields∫ ∞
1

dr1dr2

(r1r2)2β+1

∮
|s2|=1

ds2

2πis2
→
∫ ∞

1

dr1

r1

∫ ∞
r1

dr2

r2β+1
2

∮
|s2|=r1

ds2

2πis2
, (4.13)

for the measures and contours of integration. The pole structure on the s2 plane is such

that we can shrink the contour back to s2 = 1 without changing the final result. This is

because the only poles enclosed by |s2| = r1 are at s2 = 0 and |s2| = |1/r2
1r2r•| 6 1.14 We

then permute the order of integration for the radial part,∫ ∞
1

dr1

r1

∫ ∞
r1

dr2

r2β+1
2

∮
|s2|=1

ds2

2πis2
=

∫ ∞
1

dr2

r2β+1
2

∮
|s2|=1

ds2

2πis2

∫ r2

1

dr1

r1
, (4.14)

and perform the integration over r1. Collecting the terms that are independent of r1 after

the rescaling yields

k(z̄•, z2)k(z̄2, z◦)

N∏
k=1

1

(1/z2 − yk)(1/z̄2 − yk)
∑
b,c

xbxc
(x2
b − 1)(x2

c − 1)

1

(z2xb − 1)(z̄2xc − 1)
.

(4.15)

14The latter pole is worrisome when r1 = r2 = r• = 1 since it sits along the contour of integration. This

situation occurs at the boundary of the domain of integration in r and does not produce any sensible effects.
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The rest gives∫ r2

1

dr1

r1
(r2

1/z2 − z2/r
2
1)

N∏
k=1

(
z2/r

2
1 + r2

1/z2 − yk − 1/yk
)

= −1

2

∫ z2+1/z2

z̄2+1/z̄2

dv

N∏
k=1

(v − (yk + 1/yk)) ,

(4.16)

for v = z2/r
2
1 + r2

1/z2. (This change of variable is a non-self-intersecting path on the

complex v plane, implying that we can deform it into a straight line.) This factor is minus

the integral part of Q 0(z2, z̄2), see eq. (4.9), and combining all factors together readily

produces the sought-after result. The proof for the length-2 cycle follows similar lines.

We will now show that relation (4.10) leads to the telescoping of the sum (4.7) and

to the cancellation of all the terms that are not pure powers of T + or T −. Let then

H be the Hilbert space spanned by the basis {|z〉 : z ∈ C, |z|2 > 1} with delta-function

normalised elements,

〈z|z′〉 = 2πδ(2)(z − z′) ⇒ 1 =

∫
d2z

2π
|z〉〈z| , (4.17)

and let us view the T ’s as the matrix elements of certain linear operators T on H, by

defining

〈zi|T±,0|zj〉 =
igT ±,0i

|zi|2β+2
× k(z̄i, zj) =

igT ±,0i

|zi|2β+2

z̄i − zj
1− z̄izj

. (4.18)

(So defined, the operators are not Hermitian, but we will not need that property here.)

With their help, we can write the free energy as

logB(`) =
1

2
trH log (1− 2(T+ + T− + T 0)) , (4.19)

where the log is defined as a power series and the trace trH is taken over H using (4.17).

Equation (4.10) translates into15

trH (· · · T 0 · · · ) = −2 trH (· · · T+T− · · · ) (4.20)

and therefore we conclude that

logB(`) =
1

2
trH log ((1− 2T+)(1− 2T−)) = trH log (1− 2T+) , (4.21)

using, in the last step, that plus and minus terms are related by parity z ↔ z̄ and contribute

equally. A cartoon of the cancellation is given in figure 6 for a few examples.

4.3 Evaluating the sum

In the end, we are left with the much simpler problem of evaluating the sum over the

homogeneous cycles,

logB(`) = −
∑
n>1

2n

n

∫
Cn igT +

1 igT +
2 · · · igT +

n . (4.22)

15The identity holds inside the trace, as it entails contour manipulations and change in the order of

integrations.
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= −1

2+

· · · ··· · · · ···−

2f(2)
−

+f(1) = 0

3f(3)
+

+2f(2) = 0

+

− − −

Figure 6. Examples of cancellation between loops in the free energy. Here, f(n) = 2n−1/n and

the integers are symmetry factors.

As before, we will first carry out the integrals over the angular variables,

Rn = (−1)n
∑

b1,b2,··· ,bn

n∏
j=1

xbj
x2
bj
− 1

∮
|s1|=1

· · ·
∮
|sn|=1

n∏
j=1

dsj
2πisj

k(z̄j , zj+1)

zjxbj − 1

N∏
k=1

z̄j − yk
1/zj − yk︸ ︷︷ ︸
=Q+

j

,

(4.23)

where zn+1 = z1. We can integrate the variables recursively, from s1 to sn−1, by picking

up the residues of the poles outside the unit disk at each step. The latter poles only come

from the string of k-factors,

1− z̄jzj+1 = 0 ⇒ sj = rjzj+1 . (4.24)

Their contributions are read off using an anticlockwise contour and follow from

− Ressj= rjzj+1

[
Q+
j k(z̄j , zj+1)

sj(xbjzj − 1)

]
= Q+(zj , z̄j)×

(zj+1 − 1/zj+1)

zj+1r2
jxbj − 1

, (4.25)

with Q+ evaluated at

(zj , z̄j)→ (r2
j zj+1, 1/zj+1) . (4.26)

We can prove recursively that these simple poles are the only ones that contribute. For

example, looking at step 1 first, the relevant component of the integrand is

k(z̄n, z1)Q+
1 k(z̄1, z2)

s1(z1xb1 − 1)
. (4.27)

It has poles at s1 = {r1z2, 0, 1/r1z̄n, 1/r1xb1 , 1/r1yk}, which all sit inside the unit disk,

except for the first one.16 Note that there is no pole at infinity, since the above factor is of

order O(1/s2
1) when s1 ∼ ∞. Assuming a similar pole structure is found at step j, we can

prove that no new poles poles are generated for the sj+1 integral. To this end, we simply

16We are using here that rj , xbj , yk > 1 and disregard the exceptional situations where the poles are on

the circle.
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notice that applying the recursion rule (4.26) to the r.h.s. of (4.25) only introduces poles

in the unit j + 1-th disk. (Iterating (4.26) also shows that this is so for any sk, ∀k ≥ j

as well.) Furthermore, the large s behaviour stays the same and Q+
j = 1 + O(1/sj) =

1 +O(1/sk), ∀k ≥ j, while

lim
sj+1→∞

zj+1 − 1/zj+1

(zj+1r2
jxbj − 1)

= 1/r2
jxbj , (4.28)

and similarly for all k ≥ j after iterating with (4.26).

This is justifying our assumption about the pole structure, leaving us with the sn
integral

Rn = (−1)n
∑

b1,b2,··· ,bn

n∏
j=1

xbj
x2
bj
− 1

∮
|sn|=1

dsn
2πisn

k(z̄n, z1)

znxbn − 1
Q+
n

n−1∏
j=1

Q+
j

(zj+1 − 1/zj+1)

zjxbj − 1
,

(4.29)

where, for j < n,

zj = zn

n−1∏
k=j

r2
k, z̄j =

1

zn

n−1∏
k=j+1

r2
k . (4.30)

The only pole for this integral is at sn =∞. Since in this limit, Q+
k → 1, ∀k and

k(z̄n, z1)

znxbn − 1

n−1∏
j=1

(zj+1 − 1/zj+1)

zjxbj − 1
→ 1∏n

j=1 xbj (
∏n
j=1 r

2
j − 1)

, (4.31)

we conclude that the residue at sn =∞ gives

Rn =
(−1

2γ)n∏n
j=1 r

2
j − 1

. (4.32)

Remarkably, the angular average is proportional to the n-th power of the anomalous di-

mension. For n = 1, it of course reproduces expression (3.26).

We should then dress this result with the radial weight (r1 . . . rn)−1−2β and integrate

each variable from 1 to∞. The radial integration is immediately performed for n > 1, using∫ ∞
1

dr1 . . . drn
(r1 . . . rn)2β+1

× 1∏n
j=1 r

2
j − 1

=

∞∑
k=1

[ ∫ ∞
1

dr

r2β+2k+1

]n
=

1

2n

∞∑
k=1

1

(β + k)n
=

(−1)n

2n(n− 1)!

∂n

∂βn
log Γ(1 + β) .

(4.33)

Here, we expanded the geometric series and exchanged the order of summation and inte-

gration, which is justified since both the sums and the integrals converge absolutely for

r > 1. For n = 1 the integral is singular at r = 1 and we are back to the discussion in

section 3.

Putting all factors together we arrive at

logB(`) = logC −
∞∑
n=1

1

n!
(1

2γ)n
∂n

∂βn
log Γ(1 + β) , (4.34)
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that is,

B(`) = C
Γ(1 + β)

Γ(1 + β + 1
2γ)

= C
Γ(1 + `− 1

2γ)

Γ(1 + `)
. (4.35)

It features two Gamma functions, which relate through their arguments to the so(4, 2)

and su(4) quantum numbers of the operators, in such a way that B(`) → 1 in the BPS

limit γ → 0.

The prefactor C stems from the regularisation of the logarithmic divergence, which only

affects the n = 1 integral in the free energy. It was determined in section 3, see eq. (3.33),

and it is the only piece that depends on more than just the anomalous dimension γ. Other

than that, the continuum approximation works as a mini-superspace approximation by

projecting on the global quantum numbers.

Equation (4.35) is our final expression for B(`) when ` = O(1). Taking ` large in (4.35)

leads to a power law,

C
Γ(1 + `− 1

2γ)

Γ(1 + `)
∼ C`− 1

2
γ , (4.36)

which agrees with the small-l classical scaling (3.12). This is satisfying but not so surprising

since the one-particle integral is the only one that survives in the exponent when β →∞.

Barring an order of limit issue, this matching suggests that formula (4.35) “resums” the

leading singularities at l→ 0 of the semiclassical expansion.

4.4 Changing the grading

Formula (4.35) applies to any su(1, 1|2) primary with non-zero fermionic roots in the su(2)

grading,

yi 6= 0, ∀i = 1, . . . , N . (4.37)

This condition was used implicitly to show that Q± → 1 when x[∓a], 1/x[±a] → 0 with

x[+a]x[−a] = r2 fixed. Adding a root y = 0 is a straightforward operation; it is equivalent

to shifting the length,

y = 0 ↔ `→ `− 1 , (4.38)

in agreement with a general property of the transfer matrix, see appendix A,

Ta(u)|{y→0,yi} = x[+a]x[−a] Ta(u)|{yi} . (4.39)

The root y = 0 is special in that it is associated to the symmetry transformation [65]

mapping a primary from the su(2) to the sl(2) grading, denoted as η = +1,−1, respectively,

in the following.17 The general formula that covers both gradings is

B(`) = C
Γ(`+ 1+η

2 − 1
2γ)

Γ(`+ 1+η
2 )

. (4.40)

Note that primaries related by y = 0 descend from the same superconformal primary18 and

they must share the same structure constant by diagonal rminPSU(2|2) symmetry. We can

17A root at infinity should also be added, in principle, but it plays no role in the discussion.
18Schematically, Oη=+1 = Q 1

1 Q
1
2 Q̄1̇4Q̄2̇4 · Obottom and Oη=−1 = Q 1

1 Q
2
1 Q̄1̇3Q̄1̇4 · Obottom with Q A

α , Q̄α̇B
the supercharges and with Obottom a superconformal primary.
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Primary Length Dimension Spin (R, Y) charges

bottom L ∆− 2 S − 2 (J − 2, Y )

η = −1 L ∆ S (J, Y )

η = +1 L+ 2 ∆ S − 2 (J, Y + 2)

top L+ 2 ∆ + 2 S − 2 (J + 2, Y )

Table 1. List of bosonic primaries used in this paper. They all lie on the diagonal of a super-

multiplet and share the same BMN energy =
∑M
j=1Ej , anomalous dimension γ and magnon number

M . We choose as a reference point the quantum numbers of the primary in the sl(2) grading η = −1.

The bottom operator is the superconformal primary, i.e. the operator with the lowest dimension

in the supermultiplet. The top representative refers here to the primary with maximal R-charge.

(Note that neither the bottom nor the top component live inside the su(1, 1|2) sector.) The su(4)

Dynkin labels [q, p, q] are given by q = Y-charge and p+ q = R-charge.

verify it by using the conversion rules given in table 1. One reads that going from η = +1

to η = −1 amounts to replacing two scalars Y by two derivatives D, implying a loss of two

units of length. Since ` = `B = 1
2(L2 + L1 − L) and since B does not depend on the spins,

we verify that it is equivalent to (4.38).

5 HHL structure constants

In this section, we complete the analysis and obtain formulae for the structure constants

of interest. We then discuss their main properties and argue that wrapping corrections

should be negligible in the HHL regime L2 � `C ∼ g.

5.1 Crossing and full amplitude

It remains to determine the amplitude A. This one too admits a form factor series, much

like B, which is spelled out in [67]. However, it appears technically harder to analyse it by

following the same lines as used for B. The reason is that it involves a crossed version of

the transfer matrix, i.e.,

T (1/x[+a], 1/x[−a]) , (5.1)

which displays singularities for x[±a] = xj , as one can see by flipping the Zhukowski’s in

eqs. (2.30). These singularities are harmless for the classical analysis, which leads straight-

forwardly to the result quoted below, see eq. (5.4). But it makes the analysis much arduous

for a quantum bridge, which is very sensitive to the singularities of T . Fortunately, we can

get around this problem by crossing the real magnons in the state, using

Ej → −Ej , (5.2)

instead of flipping the mirror particles. Geometrically, it corresponds to transporting the

state along the contour of the octagon and maps B into A, as shown in figure 7.19

19There are a few complications there as well. Firstly, since we are working with scattering eigenstates, we

should pay attention to the crossing of the auxiliary roots. However, given that these ones drop out in the
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crossing

=

Figure 7. Crossing the magnons from one edge to another maps the amplitudes B and A.

Let us illustrate the operation for a classical bridge l = `/2g = O(1). We then cross

all the magnons using

θj → θj + iπ , (5.3)

which immediately yields, using the functional relation (3.10),

lim
g→∞

A(` = 2gl) =

M∏
j=1

bl(θj + iπ) =

M∏
j=1

(1− e−i l sinh θj )

M∏
j=1

1

bl(θj)
. (5.4)

The oscillating factor in the r.h.s. is the asymptotic part of the amplitude, which dominates

at large l. It is usually written as a sum over 2M partitions of the Bethe roots on the two

sides of the bridge [14, 17] weighted by the hexagon form factors h. The sum factorises

here because h→ 1 at strong coupling. The next factor falls off exponentially at large l,

bl(θ) = 1 +O(e−l) . (5.5)

It accounts for the mirror magnons crossing the bridge A.20

We must proceed more carefully when performing this operation at finite bridge for

scalars (or more precisely for a state with Y 6= 0). These excitations are known to induce

jumps in the spin-chain lengths under crossing. The right thing to do is to cross in the

string frame, that is, at fixed R charge, see [74] for a review. In this frame, the Y’s do

not cause any problem; they are as “lengthless” as the D’s. Replacing the lengths by the

R-charges in (1.2) gives the splitting lengths,

jA,B = `A,B ∓
1

2
Y , (5.6)

final result, we believe we can ignore them here. More importantly, one cannot cross all the magnons along

the same path and at the same time satisfy the zero-momentum condition. The latter requirement imposes

that magnons rotate in opposite directions. We can get around this problem without relaxing P = 0 by

assuming that the magnons were split from the outset and laid on different edges, at the bottom and top

of the octagon in the right panel of figure 7. The amplitude B does not depend on how we partition the

state, see [17]. The magnons can then be crossed towards the same edge by following different directions,

as needed to balance their momenta.
20In the opposite limit, for l→ 0, A has a power-law behaviour, much like B. However, the amplitude is

becoming small there, A(`) ∼ lM+ 1
2
γ ∏M

j=1

√
1
2
(1− Ej), unlike B.
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Y

−→
crossing

Figure 8. Scalar’s swing under crossing. The crossing of a scalar field produces jumps in the

bridge lengths, which we can interpret as saying that the field is moving along with its propagator,

as shown here.

where we used J1,2 = L1,2 and J = L − Y . The correct crossing map is taken at fixed j

and reads

A(`) = BE→−E(`− Y ) . (5.7)

It agrees with the classical transformation when Y � ` ∼ g. Notice that we can interpret

this shift pictorially as saying that propagators are carried along with the scalars upon

crossing, as shown in figure 8. Applying this recipe to (4.40) for η = −1 gives

A(`) = g−M−
1
2
γ
M∏
j=1

√
1
2(1− Ej)

Γ(`+ S + 1
2γ)

Γ(`− Y )
, (5.8)

where S = M − Y is the Lorentz spin of the operator. Note that the ratio of Gamma

functions no longer goes to 1 when γ → 0, because the anomalous dimension picks a

canonical part under crossing,

γ → −2M − γ . (5.9)

We are now equipped to write down the structure constants. Several expressions can

be obtained by scaling independently the lengths of the two bridges.21 We focus here on

`A,B = O(1). Using expressions (5.8) and (4.40) for A and B in (2.12), we get

C◦◦•/C◦◦◦ =M× Γ(`B − 1
2γ)Γ(`A + S + 1

2γ)

Γ(`B)Γ(`A − Y )
, (5.10)

for a primary in the grading η = −1.22 It reduces to the form given in (1.3) when Y =

0. Interestingly, the funny powers of g in A and B disappear in their product. The

other prefactors assemble such as to cancel part of the denominator in NL, see eq. (2.16),

leaving just

M =

M∏
j=1

(LEi)
−1/2 , (5.11)

up to an overall phase. Hence, if not for the Gamma functions, the magnons are produced

independently of each other, with a constant weight (up to the relativistic measure).

21One could also consider processes with excitations on the two heavy operators by crossing part of the

state to the other channel.
22The expression for the η = +1 primary is obtained by replacing `A,B → `A,B + 1 everywhere.
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γ → 2

Figure 9. Anomalous dimension γ versus bridge length `. Increasing γ brings the worldsheet closer

to the operator at the boundary by exciting energetic giant mirror magnons. The divergence occurs

when the worldsheet reaches the boundary and crosses the double-trace process associated to the

cut-opened bridge.

Reinstating the quantum numbers of the operators makes the symmetry between the

AdS numerators and the sphere denominators more manifest. It yields

C◦◦•/C◦◦◦ =M× Γ[1
2(∆2 + ∆1 −∆ + S)]Γ[1

2(∆2 −∆1 + ∆ + S)]

Γ[1
2(J2 + J1 − J − Y )]Γ[1

2(J2 − J1 + J − Y )]
, (5.12)

where ∆i = Ji = Li for the chiral primary operators and with J = L − Y,∆ = L + S + γ

for the unprotected operator. The formula could also be written in terms of the weights

of other representatives in the supermultiplet using table 1, but at the cost of unpleasant

shifts in the arguments of the Gamma functions. The η = −1 primary appears as the

nicest choice in this respect.

5.2 Poles and zeros

Formula (5.10) displays a simple pole when

β = `B − 1
2γ = −n , (5.13)

for integer n. As explained in detail in [43], these poles relate to the mixing between single-

and double-trace operators at order 1/Nc. The double-trace operators that are relevant

here are those overlapping with the two chiral primary operators in the structure constants

at order N0
c . They are local products of descendants of O1 and O2 in the same Lorentz

and R-symmetry representations as Oγ and read, schematically,

ODT ∼ tr (ZL1)�nDStr (ZL2−`B−Y YY Z̄`B ) + . . . , (5.14)

with � = DD̄ + . . . the Laplacian and with the dots indicating the need to mix the fields

properly. The mixing occurs when the scaling dimensions of Oγ and ODT are matching,

that is precisely when (5.13) is satisfied.

On the integrability/worldsheet side, the leading pole at β = 0 maps to a short-

distance singularity. Indeed, as one can see from eq. (3.27) after performing the shift

to the grading η = −1, it signals the point where the mirror integral stops converging at

r →∞. The phenomenon is thus driven on this side by giant mirror magnons carrying very
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large energies. As said earlier, a key feature of these magnons is that they can reach the

boundary of AdS. Heuristically, the giant magnons push the bridge towards the boundary

where the worldsheet splits and the divergence occurs, see figure 9.

Formula (5.10) also has zeros at specific positions. These ones relate to R-symmetry

and supersymmetry. The former puts constraints on the su(4) weights [q, p, q] of an operator

falling in the OPE of two BPS operators, which must find room in the r.h.s. of the tensor

product, see, e.g, [75]

[0, L1, 0]⊗ [0, L2, 0] =

L2⊕
n=0

L2−n⊕
m=0

[m,L1 + L2 − 2n− 2m,m] , (5.15)

where we used that L1 > L2. Further constraints come from supersymmetry, when the

operator belongs to a long multiplet, see [11, 75–78]. In terms of the labels of the primary

in the η = −1 grading, they read

n > 0 , n+m < L2 , (5.16)

and they shrink the triangular sum in (5.15) on two sides. We can understand these

inequalities as saying that not only should the η = −1 primary fit in the r.h.s. of (5.15) but

also the superpartners listed in table 1. Operator (2.11) has length L and scalar charge Y ,

i.e. the su(4) labels [Y, L− 2Y, Y ]. Hence, m = Y and n = `B, and according to (5.16) we

must have

`A − Y > 0 , `B > 0 , (5.17)

where we used that `A + `B = L2. Nicely, the denominator in (5.10) kills the structure

constant precisely when these conditions are not met.

We should stress that these arguments hold regardless of the strength of the coupling.

Hence, poles and zeros should be observed at weak coupling as well. Yet, they are not as

easy to see in this regime. For example, the poles and zeros in B collide when γ ∼ 0. In

particular, the leading zero at `B = 0 only becomes manifest after the neighbouring pole

at `B = 1
2γ has been handled properly. Disentangling this pair requires to analytically

continue in `B and to resum terms in the weak coupling series which are enhanced when

`B ∼ 1
2γ. The analysis is done in appendix C for completeness to leading order at weak

coupling. In appendix D we show that the pole persists at any g, in the simple case of

scalar operators.

5.3 Wrapping and string

We will now discuss what happens for a classical length L ∼ g where one should in principle

expect wrapping corrections to kick in. Recall first that for a classical length L = L/2g =

O(1), the continuum of states breaks up into discrete energy levels. This follows from the

quantization of the momenta,

sinh θi = 2πni/L , (5.18)

with ni ∈ Z 6=0, and leads to the well-known BMN spectrum,

γ =

M∑
i=1

(√
1 +

(
2πni
L

)2

− 1

)
. (5.19)
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Besides this effect, which accounts for corrections that are power suppressed in L, there are

wrapping corrections. The latter come from virtual magnons going around the chain and

are exponentially small [79, 80]. A nice property of the BMN spectrum is that it is free from

such corrections: neither the energy formula (5.19) nor the quantization conditions (5.18)

receive exponentially small additions. This is because the worldsheet theory is free at

strong coupling. (There is not even a vacuum energy shift, because of supersymmetry.)

We will argue that something similar happens for the HHL structure constants of

interest, meaning that one only needs to plug the quantized momenta in (5.10) to keep

track of the full dependence on L, as long as the third bridge length `C = L− `A is much

bigger than the dimension of the half-BPS operator O2.

To be more precise, let us write the structure constants in the form

C◦◦•/C◦◦◦ = NLA(`A)B(`B)W`A,`B (lC) , (5.20)

where the first three factors are as before. The new factor W incorporates the wrapping

corrections when lC = `C/2g ∼ L ∼ L1 is held fixed. It drops out when lC →∞,

W → 1 , (5.21)

since then nothing can pass through the bridge C. For lC = O(1), there are plenty of

mirror magnons, with relativistic energies, going through, and one might naively expect W
to be a complicated function of all the quantum numbers in the problem, i.e., the splitting

lengths `A,B and the Bethe roots. The claim is that W(lC) = 1 for any `A,B = O(1) and

for any state with γ = O(1).

As said earlier, we cannot rely entirely on the hexagon series for the wrapping cor-

rections. To overcome this problem we will first extract information about them from the

classical string analysis. This one requires that all lengths be classical. Hence, we shall

take lA,B,C = `A,B,C/2g = O(1) to begin with. Removing then the areas associated to the

bridge A and to the bridge B, we read from [33]

logW(lC , lB, lA) = A1 − A2 + A3 , (5.22)

with

Ai = η

∫
C+

du(x)

2π
{2Li2(e−liε(x))− Li2(q−ηni+ (x)e−liε(x))− Li2(q−ηni− (x)e−liε(x))} (5.23)

where ni = 1, 2 for i odd, even and where η = ±1 refers to pure-Y and pure-D states. The

formula only applies to the latter states in rank 1 sectors. The length li takes three values,

l1 = lC , l2 = lC + lA , l3 = lC + lB + lA , (5.24)

associated, respectively, to magnons on the bridge C, on the two bridges C ∪ A, and on

the three bridges C ∪ B ∪ A. The arguments of the dilogarithms are twisted using (3.15)

which are raised here to the power η to account for the two families of states.
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Next, to get an expression for energy γ = O(1), we discretise the states and linearise

the twists in (5.23), as done previously for the B amplitude, see section 3. The areas

in (5.22) can then be replaced by coefficients bli , defined in eq. (3.9), and yield

W(lC , lB, lA) =

M∏
j=1

blC+lA(θj)
2

blC (θj)blC+lB+lA(θj)
. (5.25)

Note that the dependence on η and thus on the flavours dropped out. We take it as evidence

that the equation holds universally.

Similar combinations are found for the pp-wave Neumann coefficients discussed in [16,

47]. As said earlier, the latter are associated to the near-collinear splitting of a string,

meaning that one bridge length must be taken to be small classically. Taking e.g. lA → 0,

we get

BW =

M∏
j=1

blB (θj)blC (θj)

blB+lC (θj)
, (5.26)

for the finite-size corrections associated to the classical bridges, lB, lC = O(1). Interestingly,

the same combination of length-dependent factors is found for the Neumann coefficients,

see eq. (66) in ref. [47], up to the replacement bl → dl = bl|f→1. Note for the comparison

that the bridge lengths can be identified in the SFT kinematics with the lengths of the

operators.23,24

Although similar, formula (5.26) is not identical to the pp-wave expression studied

in [47] since bl 6= dl. A possible explanation for this mismatch is that the former formula

applies to spinning states while the latter is for singlets, with no overall transverse quantum

numbers. Hence, a more general formula encompassing both situations appears needed for

a precise test. Still, it stays puzzling to find a mismatch at the level of the finite-size

corrections, which are supposedly flavour independent, and we cannot exclude that there

is a contradiction between the two methods.

Formula (5.25) shows that the wrapping factor is highly non-trivial when the three

bridge lengths are comparable. However, it also predicts that there are no wrapping effects

when one length is much larger than the others. We observe indeed that the b-coefficients

in the numerator and in denominator cancel when lA,B → 0,

lim
lA,B→0

W(lC , lB, lA)→ 1 , ∀lC , (5.27)

a feature which can be traced back to the fact that (5.22) has no linear term around q = 1

when l1 = l2 = l3.

Taking the limit lA,B → 0 is not quite the same as setting `A,B = O(1). The mirror

magnons leave the relativistic region and become giant when the lengths are finite. Hence,

in order to complete the argument, we should allow for giant mirror magnons on the bridges

A and B and study their interactions with the magnons sitting on the bridge C. The latter

23E.g. lB ∼ L2, lC ∼ L and lB + lC ∼ L1 when lA → 0.
24One could proceed similarly for the limit lB → 0 and find a similar structural agreement with the

expressions in [16, 47] as far as the dependence on lA and lC is concerned.
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stick to the relativistic domain, since lC ∼ L stays finite, meaning that there is a large

energy gap between these magnons and those in A. For such disjoint kinematics, the

hexagon formula should be free of wrapping divergences and we can turn to it to estimate

the effects of giant magnons.

The hexagon formula [67] is predicting that the mirror magnons in B decouple while

those in A and C have mutual interactions controlled by∏
ui∈A,wj∈C

∆̃aicj (ui, wj)
−1 , (5.28)

with ∆̃ as in (2.23). However, these interactions go away, ∆̃→ 1, in the case at hand, since

the magnons in C are relativistic. We conclude from it that the mutual interactions in

W`A,`B (lC) are localised on the relativistic modes. These modes are well described by the

classical string analysis which predicts that they cancel out, see eq. (5.27). In other words,

W`A,`B (lC) = lim
lA,B→0

W(lC , lB, lA)→ 1 , (5.29)

which is the statement that the structure constants are free from wrappings for

lC ' L = O(1).

6 Conclusion

In this paper we studied HHL structure constants at strong coupling using the hexagon

framework. We found that the mirror sums describing these correlators simplify drastically

and can be computed exactly for any bridge lengths. For finite bridges, we observed that

the answer splits into a global factor, written in terms of Gamma functions, and an internal

part, given by the product of the BMN energies. This factorisation mimics the separation

between the two kinematical domains that contribute, namely the giant mirror magnons

and the low-lying relativistic magnons.

This factorisation is robust and applies to a large family of operators, containing

derivatives and scalar fields. However, as broad as this family is, it does not include neutral

pairs, like DD̄ or YȲ. It would be interesting to consider such pairs as they might enable

a more precise comparison with the form factors found in the context of the SFT vertex,

which are expected to be singlets under the symmetries of the free worldsheet theory.

(They might also be needed for applications to higher-point functions.) These pairs are

associated to a deeper layer of auxiliary roots in the nested Bethe ansatz construction. They

are described by more complicated transfer matrices and it is not immediately clear if the

strategy followed in this paper applies to them. Optimistically, the mirror sum analysis can

be bypassed and the finite-bridge amplitudes be bootstrapped using analyticity, crossing,

supersymmetry, etc.

It would also be nice to find the precise counterparts of all these amplitudes in the

worldsheet theory. An operatorial definition might facilitate the calculation of more gen-

eral HHL form factors and shed light on the absence of wrapping advocated in this pa-

per. It may also help filling the gap with the near-flat space limit [42, 81, 82]. One
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Figure 10. Cartoon of a large-charge correlator with two light operators inserted on a large

cylinder. Flattening the worldsheet and connecting the blobs with bridge lengths give the graph

in the right panel, up to a flip. Up to double traces, the low-lying states flowing between the two

insertions in the closed-string channel are BMN states like those studied in this paper.

could perhaps reverse-engineer the formula obtained using integrability to reconstruct the

worldsheet vertex.

Although we could not match our findings with direct worldsheet calculations, we

observed that they have all the desired features to stand as string correlators in AdS5×S5.

Notably, the singularities associated to the mixing with double-traces are packed inside

Gamma functions, in agreement with general results from Witten diagrams.25 The latter

predict in fact more Gamma functions than we have found here. The missing ones come

with large arguments and drop out in the HHL kinematics. The semiclassical string formula

is hinting at their “reappearance” in the form of a ratio of b-coefficients, see eq. (5.25),

which, as we have seen, are the classical counterparts of the Gamma functions.

Double-trace induced Gamma functions are omnipresent in holographic calculations

and enter very naturally in the Mellin integrands of CFT/AdS correlators [1–3]. It would

be fascinating to establish a connection with the integrability formulae found here by

considering for instance large-charge correlators of the type shown in figure 10. These

HHLL correlators can be obtained by sewing two pair-of-pants together using a complete

sum of BMN operators, modulo double-traces. It is tempting to see in this inclusive sum

the start of a Mellin integral. If so, the formulae obtained in this paper could help exploring

the Mellin amplitudes in a more stringy regime.

It would also be interesting to compare our findings with the formulae obtained in [30,

31] for large-charge 4pt functions. Although both arise from hexagons the comparison is not

immediate since they run with different transfer matrices, which is also why they describe

different observables of the boundary theory. For the 4pt functions, the transfer matrix T is

twisted such as to accommodate for the cross ratios [18]. This innocuous operation makes a

difference for the strong coupling scaling, since then T is of order O(1), as for semiclassical

states, and the sum over bound states is regularised. It means that the saddle point will

be trapped in the relativistic region, for generic values of the cross ratios. To escape from

it and connect to our story, one might have to scale the cross ratios and work very close to

the OPE limit / BPS point T = 0. This is also suggested by the funny scaling ∼ g 1
2
γ that

25Similar formulae were also found at weak coupling in the large spin limit [41, 44] using conformal

bootstrap ideas. They hold when Γcusp ∼ 0 for a flux-tube energy γ ∼ 2Γcusp logS = O(1).
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we observed in this paper. It would be worth exploring this connection further in view

of understanding how the 4pt function hexagon formula resums the tower of higher-rank

structure constants, as well as to extract useful information about the latter if possible. It

would also be interesting to explore how the “softening” of the scaling with the coupling,

which we observed here for the two-bridge amplitude, is realised in the hexagonalised 4pt

functions. It is certainly hinting at the need to average over the various mirror channels.

The latter operation proved to be important at weak coupling [18] to reproduce properties

of the gauge-theory correlators. Similar magics might also be key at strong coupling to

move away from the classical regime and match with the supergravity correlators.
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A Hexagon amplitude and transfer matrix

The state-dependent factor in the hexagon integrals (2.18) comprises an abelian piece and

a matrix part. We can write them in more conventional terms using

Fa(u) =

M∏
j=1

1/x[−a] − x−j
x[+a] − x−j

ha1(u3γ , uj) ,

Ta(u) =
M∏
j=1

x[+a] − x−j
1/x[−a] − x−j

× Ta(u3γ) ,

(A.1)

with ha1(u, v) the dynamical part of the hexagon form factor between a bound state and a

fundamental magnon [17] and with Ta(u) the forward rminPSU(2|2) transfer matrix in the

a-th antisymmetric representation [64]. These two quantities are analytically continued to

the mirror kinematics, by means of three mirror rotations u → u3γ , see e.g. [17] for the

details of this transformation. We recall the general formulae for Fa and Ta below and

relate them to the ones used in the bulk of the paper.

Hexagon amplitude. Following [45] we can write the abelian part as

Fa(u) =
M∏
i=1

Fa1(u, ui)σ̃a1(u, ui) . (A.2)

Here, σ̃a1 is closely related to the (fused) BES dressing phase; it admits a bi-linear

expansion,

log σ̃a1(u, v) =
∑
n,m≥1

c2n,2m+1(q̃2nq2m+1 − q2nq̃2m+1) , (A.3)
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over a set of charges,

q̃r(u) =
1

r − 1
((x[+a])1−r + (x[−a])1−r) , qr(v) =

i

r − 1
((y+)1−r − (y−)1−r) , (A.4)

with y± = x(v ± i/2) and x[±a] = x(u± ia/2), and with the BES coefficients [68],

c2n,2m+1 = 2(−1)n+m(2n− 1)(2m)

∫ ∞
0

dt

t

J2n−1(2gt)J2m(2gt)

et − 1
, (A.5)

with Jk(z) the k-th Bessel function of the 1st kind. The other factor is given by

logFa1(u, v) =
∑
m>1

2(2m)(−1)m
∫ ∞

0

dt

t

sin (ut)e−at/2J2m(2gt)

et − 1
q2m+1(v)

+
∑
m>1

2(2m− 1)(−1)m
∫ ∞

0

dt

t

(cos (ut)e−at/2−J0(2gt))J2m−1(2gt)

et − 1
q2m(v) .

(A.6)

The large-momentum behaviour of mirror-magnon integrand is controlled by the

asymptotic behaviour of the abelian factor, when√
u2 + a2/4→∞ , (A.7)

with u ∼ a. In this limit, the integrals in (A.6) receive dominant contributions from small

t. All the integrals in the first line are power suppressed while the ones in the second line

tend to constants, if not when m = 1. For m = 1 the integral scales logarithmically. Taking

all of this into account, we find

logFa(u) = γ log
√
u2 + a2/4 + logF (g) +O(1/

√
u2 + a2/4) , (A.8)

where we also used that the dressing phase (A.3) is suppressed in this limit. Here, F (g) is

a state-dependent constant,

logF (g) = γγE +
∑
m>1

2(2m− 1)(−1)m
∫ ∞

0

dt

t

gtδm,1 − J0(2gt)J2m−1(2gt)

et − 1
Q2m , (A.9)

and

Qr =
M∑
j=1

qr(ui) (A.10)

is the total charge of the Bethe state, with γ = 2gQ2.

The strong coupling formula (4.38) is obtained by considering a mirror magnon with

rapidities x[±a] = O(1) and a Bethe state with charges

Qr '
M∑
i=1

x2−r
i

g(x2
i − 1)

= O(1/g) . (A.11)

The dressing phase (A.3) reduces at strong coupling to the AFS phase [69]

c2n,2m+1 = gδn,m − gδn−1,m . (A.12)
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This follows immediately from (A.5) after rescaling the integration variable t → t/2g, ex-

panding at large g and using known integrals for products of two Bessel functions. Plugging

these coefficients into (A.3) and using (A.11) one obtains

M∏
i=1

σ̃a1(u, ui) =
M∏
i=1

(
1− 1

x[+a]xi

)(
1− 1

x[−a]xi

)
exp

{
gQ1

x[+a] + x[−a]

x[+a]x[−a]

}
. (A.13)

We proceed similarly for (A.6), taking the strong coupling limit, with u[±a]/2g = (u ±
ia/2)/2g fixed, and applying∫ ∞

0

dt

t2
e±iu

[±a]t/2gJk(t) =
1

2k

{
1

k + 1
(±i/x[±a])k+1 +

1

k − 1
(±i/x[±a])k−1

}
. (A.14)

The u independent term in the second line of eq. (A.6) can be dropped for k 6= 1, since∫∞
0 dtJ0(t)Jk(t)/t

2 = 0, for k odd. One must be more careful for k = 1, as in this case the u

independent term is needed for removing the small t divergence in the l.h.s. of (A.14). This

subtraction happens to be equivalent to expanding the r.h.s. around k = 1 and discarding

the polar part ∼ 1/(k − 1). Straightforward algebra gives then

M∏
j=1

Fa1(u, uj) = (x[+a]x[−a])gQ2

M∏
i=1

σ̃a1(u, ui)
−1 , (A.15)

or equivalently Fa(u) = (x[+a]x[−a])
1
2
γ . This result is consistent with the asymptotic for-

mula (A.8), given that F (g)→ g−γ at strong coupling.

Transfer matrix. The general formula for the eigenvalue of the transfer matrix can be

found in [64]. Performing three mirror rotations and fixing the normalisation appropriately,

we find

Ta(u) =
N∏
i=1

1

(1/x[−a] − yj)(1− 1/x[+a]yj)

×
[
ta+1(u)− ta(u+)f−a (u)− ta(u−)f+

a (u) + ta−1(u)f+
a (u)f−a (u)

]
,

(A.16)

with u± = u± i/2. Here, the y’s are fermionic roots at the first nested level in the η = +1

grading. The f ’s are functions of the main roots only,

f±a (u) =
M∏
j=1

ξ∓1
j

1− 1/x[±a]x∓j

1− 1/x[±a]x±j
, (A.17)

with ξj = (x+
j /x

−
j )1/2 and with

∏M
j=1 ξj = 1 for a cyclic state. ta(u) is the eigenvalue of a

sl(2) XXX transfer matrix with auxiliary spin 1
2(a− 1). For a state in the su(1, 1|2) sector,

we get to consider its vacuum eigenvalue with the y’s acting as inhomogeneities. It reads

ta(u) =

a−1∑
k=0

P (u[a−1−2k]) , (A.18)
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with P the Baxter polynomial for the fermionic roots, which we recall here for convenience,

P (u) = g−N
N∏
i=1

(u− vi) =
N∏
i=1

(x− yi)(1− 1/xyi) , (A.19)

with u = g(x + 1/x) and vi = g(yi + 1/yi). These formulae are written assuming that

the roots {yi} are non vanishing. The case y = 0 is obtained as a limit and leads to the

relation (4.39).

We can group the four terms of the transfer matrix differently, as done in eq. (2.29),

by introducing

T ± = Q± (1− f±a (u)) , (A.20)

with Q± as in eq. (2.31), and

T 0 =

N∏
j=1

1

(1/x[−a] − yj)(1− 1/x[+a]yj)
ta−1(u)

(
1− f+

a (u)
) (

1− f−a (u)
)
. (A.21)

This recasting relies on

ta+1(u)− ta(u+)− ta(u−) + ta−1(u) = 0 , (A.22)

and on other simple recurrence relations, which all follow from the definition (A.18).

At strong coupling, when the roots {xj} are of order O(1), the terms in brackets

in (A.21) and (A.20) are of order O(1/g). Plugging (2.6) into (A.17) and expanding in 1/g,

we get

1− f±a (u) ' ± i
g

M∑
j=1

xj

(x2
j − 1)(x[±a]xj − 1)

, (A.23)

leading to the expressions (2.30) and (2.32).

Yet another regime where f ∼ 1 is weak coupling. Then x[±a] ∼ u[±a]/g and

f±a (u) = 1∓ iγ

2u[±a]
+O(g4) . (A.24)

We have similarly that yi ∼ vi/g and therefore,

T ± ' ± iγP (u[∓a])

2u[±a]P (0)
, T 0 = O(g4) , (A.25)

after using (2.31) and (A.19).

B Analytic regularisation

In this appendix we evaluate the one-particle integral at strong coupling using a different

regularisation. Namely, instead of introducing a hard cut-off for the IR and UV regions,

we modify the behaviour of the measure close to r2 = x[+a]x[−a] ∼ 1, using

µ̃a(u)→ µ̃a(u)(x[+a]x[−a] − 1)α , (B.1)
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where α ∼ 0, and compute the integrals in the two regions (over a complete domain in

each case).

In the IR region we keep a = O(1) and expand the integrand for g →∞. The additional

α-dependent factor yields

(x[+a]x[−a] − 1)α = (eẼa − 1)α ∼
(
aε(s)

2g

)α
, (B.2)

using Ẽa ∼ aε(s)/2g, with s along the unit circle. The sum over a gives the Riemann zeta

function evaluated at 1− α,

∞∑
a=1

a−1+α = ζ(1− α) ' − 1

α
+ γE , (B.3)

and thus

BIR1 =

∫
du(s)

2π
T (s)ζ(1−α)

(
ε(s)

2g

)α
'
∫
du(s)

2π
T (s)

(
− 1

α
+γE +log (ε(s)/2g)

)
, (B.4)

with domain of integration {|s| = 1,=m(s) > 0}. The integral is easily taken and yields

BIR1 = − γ

2α
+
γγE

2
+ logC , (B.5)

with C as in (3.33).

For the UV region, we take a ∼ g and replace the sum
∑

a by an integral. Performing

the average over the angular variable, we obtain (3.27) integrated from 1 to ∞ with the

deformed weight,

BUV1 =

∫ ∞
1

γdr

r2β+1(r2 − 1)1−α =
γΓ(1 + β − α)Γ(α)

2Γ(1 + β)
=

γ

2α
− γ

2
(γE + ψ(1 + β)) +O(α) .

(B.6)

(Note that BUV is defined for α > 0 and then continued, while BIR was defined for α < 0

and then continued.)

Now, both BIR and BUV are singular when α → 0, but their poles readily cancel in

the sum. We get

B1 = BIR1 + BUV1 = logC − γ

2
ψ(1 + β) , (B.7)

in agreement with the result obtained using a hard cut-off.

C Near-extremal correlators at weak coupling

In this appendix we analyse the octagon amplitude B(`) at weak coupling. First, recall the

weak coupling scaling of the m-particle integral Bm at weak coupling [67, 83]

g2m(m+`) × T m (C.1)

where T is for the eigenvalue of the transfer matrix. In the following we shall study what

happens when we analytically continue the integrals close to ` = −1 for a primary in
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η
1
2γ0

Figure 11. The one-particle integral is well defined for any `η > 0 to any order at weak coupling,

with `η = `+ 1
2 (1 + η). However, the weak coupling series only converges for `η >

1
2γ. To see what

happens for `η = 0 one must analytically continue around the pole at `η = 1
2γ. To leading order at

weak coupling, the residue at the pole determines the value of the integral at `η = 0.

the η = +1 grading. This point is the turning point for the exponent of the one-particle

integral. The higher-m integrals are still parametrically smaller and can be discarded in

a first approximation. Hence, we shall restrict our discussion to the vacuum and one-

particle integral

B(`) ' 1 + B1(`) . (C.2)

To begin with, let us consider a scalar state and expand all the ingredients at weak

coupling. We get

Ta(u) ' aγ

2(u2 + a2/4)
, Fa(u) ' 1 , µ̃a(u) ' ag2

(u2 + a2/4)2
, (C.3)

and, after combining all factors together,

B1(`) =
γ

2

∑
a>1

∫
du

2π

a2g2+2`

(u2 + a2/4)β+3
, (C.4)

where here β = `. The integral over u is easily taken and the sum is expressed in terms of

the Riemann zeta function,

B1(`) =
γ23+2βg2+2`Γ(5

2 + β)ζ(3 + 2β)

Γ(1
2)Γ(3 + β)

. (C.5)

It is smooth for ` > −1 and, despite the many factors, it analytically continues to a function

with a single pole at β = −1, coming from the Riemann zeta function,

B1(`) ∼
1
2γg

2+2`

β + 1
. (C.6)

The singularity comes from the large r =
√
u2 + a2/4 behaviour of the integrand. We can

verify it by converting the sum over a into an integral, as done earlier at strong coupling,∑
a

∫
du

2π
→ 1

2

∫ ∞
1

dr

∮
ds

2πis
, (C.7)

with the polar coordinates u[±a] = rs±1 and with a cut-off set at r = 1 for convenience.

(Since we are only interested in the residue at the leading pole, only the large r behaviour

matters and the precise value of the lower bound is irrelevant. We also symmetrised the
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domain of integration in a, using the parity symmetry of the integrand.) Straightforward

algebra gives

B1(`) ∼ −1
2γg

2(1+`)

∫ ∞
1

dr

r3+2β

∮
ds

2πis
(s− 1/s)2 =

γg2(1+`)

2(1 + β)
, (C.8)

in agreement with (C.6).

If we were to expand further the integrand at weak coupling we would find higher poles

at β = −1. They originate from the logarithms in the F -factor and they can be resummed

using the asymptotic behaviour (A.8), that is

Fa(u) ∼ F (g)

(
u2 +

a2

4

)1
2γ

, (C.9)

with F (g) = 1 +O(g2). The rest is power suppressed at large r or just modifies the overall

factor by subleading corrections in g2. Therefore, resumming the leading singularities is

done by plugging β = `− 1
2γ in the formulae above.

In particular, we find that the singular part of the loop corrections reads

B1(`) =
1
2γg

2(1+`)(1 +O(g2))

1 + `− 1
2γ

. (C.10)

This behaviour determines the result at ` = −1 to leading order at weak coupling. It

gives B1(` = −1) = −1 which cancels the tree-level part in (C.2). Hence, as expected,

the amplitude vanishes at ` = −1. (Checking the zero at higher loops would require to

take into account multi-particle corrections at some point, as well as to expand further the

one-particle integral around β = −1.)

This analysis generalises to a generic primary in the su(1, 1|2) sector with P (0) 6= 0,

after replacing the transfer matrix by its general expression, see eq. (A.25),

Ta(u) ' iγ

2

u[−a]P (u[−a])− u[+a]P (u[+a])

u[+a]u[−a]P (0)
. (C.11)

It is saying that adding y’s reduces a priori the degree of convergency of the integral, since

the numerator is then of a higher degree in both u and a. Nonetheless, we can still evaluate

the integral for large enough β. For a generic P , we use

∞∑
a=1

a

∫
du

2π

(u± ia/2)2k+1

(u2 + a2/4)3+β
= ±i4

2+β−kΓ(2k − β − 1)Γ(5
2 + β − k)

2Γ(1
2)Γ(k − β − 1)Γ(3 + β)

ζ(3+2β−2k) , (C.12)

together with the fact that only odd powers survive. The large a behaviour (i.e., power

counting) of the sum in the l.h.s. directly maps to the pole of the ζ-function in the r.h.s.

. We note however that this pole at β = k − 1 is absent from the full result when k 6= 0,

since it multiplies a zero of the polynomial Γ(2k− β− 1)/Γ(k− β− 1). The sole exception

is k = 0, which brings us back to (C.5). Therefore, we find here again a single, simple pole
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at β = −1 with the same residue as before. It predicts a zero at ` = −1. We can verify all

of that using the angular average, which returns∮
ds

2πis
aTa(u) =

γ

2r

∮
ds

2πis
(s− 1/s)

(r/s)P (r/s)− (rs)P (rs)

P (0)
= γ . (C.13)

for any polynomial P such that P (0) 6= 0.

The bottom line is that the position of the pole and its residue are independent of the

spin N , despite the fact that the integral is seemingly less convergent at higher N . It agrees

with the analysis in [17] which shows that the convergency of the integral improves and

becomes spin independent if one first takes the sum over a. We see the same phenomenon

here as coming from the angular integration.

Note finally that the state independence of the pole is unlikely to hold beyond the

su(1, 1|2) sector. The next layers of magnons will add conjugate derivatives D̄n, or equiv-

alently boxes, which increase the twist of the operator, t = L+ γ + 2n. One thus expects

the leading pole to show up at ` = −1 + n+ 1
2γ, with a small residue ∼ g2(1+`) ∼ g2n.

D Leading pole at finite coupling

In this appendix we study the leading pole of the amplitude B(`) at finite coupling and its

relation to the one-particle integral B1(`). We consider a scalar state for simplicity. The

asymptotic behaviour of the one-magnon integrand for large u and large a is then simply

given by

e−`Ẽa(u)µ̃a(u)Fa(u)Ta(u) ∼ a2g2(1+`)F (g)γ(1 + 1
2γ)

2(u2 + a2/4)1+β
, (D.1)

with β = 1 + ` − 1
2γ. We used here the asymptotic behaviour (A.8) for Fa(u) and the

fact that Ta(u) ∼ aγ(1 + 1
2γ)/(2u[+a]u[−a]) which holds for scalar states. It implies, after

integrating over a and r, that the leading pole in B1 is given by

Bsing1 =
1
2γ(1 + 1

2γ)gγF (g)

1 + `− 1
2γ

, (D.2)

with F (g) the state-dependent constant (A.9). In principle, this behaviour could be shifted

by the higher contributions in B(`). This is not the case because of the interaction (2.23).

It is such that sending a mirror magnon to infinity increases the bridge length for its

companions, since

lim
x[±a]→∞

∆̃ab(u, v) = (y[+b]y[−b])−2 . (D.3)

In other words, the pole is triggered by a single mirror magnon, which decouples from the

rest up to a length shift. Namely,

B(`) ∼ Bsing1 × B(`+ 2) , (D.4)

close to the pole, or equivalently

Res`=−1+ 1
2
γ B(`) =

1

2
γ

(
1 +

1

2
γ

)
gγF (g)B

(
1 +

1

2
γ

)
, (D.5)
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using (D.2). This equation should hold at any coupling g. It is verified at weak coupling,

see appendix C, and at strong coupling, using (4.35) together with F (g) → g−γ . What is

more, in the latter case, a recurrence relation holds away from the pole,

B(`+ 2)/B(`)|g→∞ =
(1 + `− 1

2γ)(2 + `− 1
2γ)

(1 + `)(2 + `)
, (D.6)

according to eq. (4.35).
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