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for the Maxwell algebra. We study rigidity and stability of the infinite dimensional en-
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ily of infinite dimensional algebras are obtained by considering deformations of the other

commutators which we have denoted as M(a, b; c, d) and M̄(ᾱ, β̄; ν̄). Interestingly, for the
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1 Introduction and motivations

Symmetry is the cornerstone of the modern theoretical physics. Among different symme-

tries, the symmetries of spacetimes have attracted more attentions. One particular sym-

metry is the Poincaré algebra which is isometry of Minkowski spacetime and field theories

on flat space enjoy Poincaré invariance. Depending on the theory and its field content, field

theories typically exhibit invariance under bigger symmetry algebras which can be seen as

extensions and deformations of the Poincaré algebra.

A well-known extension and deformation of the Poincaré algebra is given by the

Maxwell algebra which is characterized by the presence of an Abelian anti-symmetric two

tensor generatorsMµν such that the generators of translations obey [Pµ,Pν ] =Mµν . This

algebra was first introduced in [1, 2] where it describes a particle in an external constant

electromagnetic field background, see also [3, 4]. This algebra can be obtained from the

study of Chevalley-Eilenberg cohomology of Poincaré algebra [5, 6]. In the context of the

gravity by gauging the 4d Maxwell algebra an extension of General Relativity (GR) is

obtained which includes a generalized cosmological term [7]. Subsequently, in the context
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of three dimensional gravitational theories, a Chern-Simons (CS) gravity theory invariant

under 2 + 1 Maxwell algebra was studied in [8–10]. In three spacetime dimensions, an

isomorphic (dual) version of the Maxwell algebra, denoted as Hietarinta-Maxwell algebra,

has been useful in the study of spontaneous symmetry breaking [11]. Remarkably, both

topological and minimal massive gravity theories [12, 13] can be seen as particular cases

of a more general minimal massive gravity arising from a spontaneous breaking of a local

symmetry in a Hietarinta-Maxwell CS theory [14].

Another class of extensions of the Poincaré algebra in 3d and 4d to infinite dimensional

algebras appear in the asymptotic symmetry algebra analysis where respectively bms3 and

bms4 algebras are obtained [15–22]. In these algebras 3d and 4d Poincaré algebra appear

as the maximal global part of the algebra. There has been a renewed interest in these

asymptotic symmetries as they could be used to provide an alternative derivation for the

Weinberg’s soft theorems as well as the memory effect [23–25].

One may then ask if 3d or 4d Maxwell algebras also admit a similar infinite dimen-

sional enhancement. The answer to this question is affirmative. In particular, there exist

the Max3 algebra which is an infinite dimensional enhancement of the 2 + 1 Maxwell alge-

bra [26]. Interestingly, the Max3 algebra can be obtained as an extension and deformation

of the bms3 [27]. Moreover, it has been shown that a centrally extended version of Max3
algebra also arises in the asymptotic symmetry analysis of certain 3d Maxwell CS gravity

theory [10]. In particular, as in GR, the geometries described by the field equations of the

Maxwell CS theory are Riemannian and locally flat. However, the so-called gravitational

Maxwell field couples to the geometry leads to particular effects different to those of GR.

Indeed, it modifies not only the asymptotic sector but also the vacuum energy and mo-

mentum of the stationary configuration. Furthermore the vacuum energy, unlike in GR

where it is always non zero [22, 28], can be vanished for particular values of the coupling

constant of the Maxwell CS term.

As a next natural question, one may ask if there are other infinite dimensional algebras

arising as asymptotic symmetries. The answer is “Yes”. The asymptotic symmetry algebras

strongly depend on the choice of the boundary conditions. For instance, if one chooses

the boundary condition on near horizon of a black holes instead of asymptotic infinity

region, one obtains a completely different symmetry algebra as it has recently been shown

in [29] that the symmetry algebra in near horizon of 3d and 4d black holes yields W (0, b)

or W (a, a; a, a) algebras, see [27, 30] for the definition of the latter. Given that there

are practically infinitely many possibilities for boundary conditions and infinitely many

surfaces (like null infinity or horizon) to impose boundary conditions over, there seems to

be infinitely many such infinite dimensional algebras. Hence, a natural question is whether

one can find/classify other such algebras?

To answer this question one may rely on “algebraic” techniques rather than the asymp-

totic symmetry analysis. One approach may be provided through deformation theory of

Lie algebras where given any Lie algebra one can in principle deform it to obtain another

algebra. The procedure of deformation can be continued until we reach a rigid (stable)

algebra, which cannot be further deformed. For finite dimensional Lie algebras there is the

Hochschild-Serre factorization (HSF) theorem [31] which sets the stage: the end process of
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deformation of an algebra is a semi-simple Lie algebra with the same dimension. For ex-

ample, d dimensional Poincaré algebra is not stable and it could be deformed to so(d−2, 2)

or so(d− 1, 1) algebras. The question of stability/deformation of infinite dimensional alge-

bras has not yet been tackled in full generality. There are some case-by-case analysis, e.g.

see [27, 30]. For example, the bms3 can be deformed to two copies of Virasoro algebras,

which is asymptotic symmetry of AdS3 spacetime, or W (0, b) which is symmetry algebra

of near horizon of 3d black holes [29]. Also by starting with bms4, one shows that it can

be deformed into W (a, a; a, a) which symmetry algebra of near horizon of 4d black holes.

Motivated by the diverse applications of the Maxwell algebra and by the recent results

obtained through deformation of asymptotic symmetries,here we explore deformations of

the infinite dimensional extension of the 3d Maxwell algebra given by the Max3 algebra.

We find different new infinite dimensional algebras which may potentially appear as asymp-

totic/near horizon symmetry of certain physical theories with specific boundary conditions.

For instance, we show that Max3 algebra can be deformed to three copies of Virasoro al-

gebras which has been obtained as asymptotic symmetry of another Chern-Simons gravity

theory [32]. Also we find that the Max3 algebra can be deformed to a four parameter

family algebra that we call M(a, b; c, d) where for specific value of parameters it is the

asymptotic symmetry of Schrödinger spacetimes [33]. The central extension of the new

algebra obtained through deformation of Max3 algebra is also considered.

Organization of the paper. In section 2, we review the Maxwell algebra, its infinite

dimensional enhancement in 2 + 1 dimension and its deformations. In section 3, we anal-

yse various deformations of the infinite dimensional enhancement of the Maxwell algebra

by studying the most general deformation of the Max3 algebra. In section 4, we study

the central extensions of the obtained algebras through deformations of the infinite di-

mensional Maxwell algebra. Finally we summarize our results and discuss their physical

interpretations.

Notation. Following [34] we use “fraktur fonts” for algebras e.g. bms3, bms4, Max3 and

their centrally extended versions will be denoted by a hat b̂ms3, b̂ms4 and M̂ax3. We also

denote two family algebras M(a, b; c, d) and M̄(ᾱ, β̄; ν̄) which in our conventions Max3 =

M(0,−1; 0,−1) = M̄(0, 0; 0). On the other hand, “M(a, b; c, d) family” of algebras (of

M(a, b; c, d) family, in short), shall denote set of algebras for different values of the a, b, c

and d parameters and similarly for M̄(ᾱ, β̄; ν̄) family.

2 Maxwell algebra and its infinite dimensional enhancement

In this section we briefly review the Maxwell algebra, its deformations and its infinite

dimensional enhancement in 2 + 1 spacetime dimensions. The discussion about how such

infinite dimensional algebra can be obtained as extension and deformation of bms3 algebra

is also presented.
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2.1 The Maxwell algebra

The Maxwell algebra in d dimension can be obtained as an extension and deformation of the

Poincaré algebra. In fact one can extend the Poincaré algebra by adding Lorentz-covariant

tensors which are abelian as follows

[Jµν ,Mαβ ] = −(ηα[µMν]β − ηβ[µMν]α), (2.1)

where Jµν are generators of the Lorentz algebra so(d− 1, 1). Furthermore, one can deform

the commutator of translations so that it is no more zero but proportional to the new

generators M to obtain Maxwell algebra as

[Jµν ,Jαβ ] = −(ηα[µJν]β − ηβ[µJν]α),

[Jµν ,Pα] = −(ηµαPν − ηναPµ),

[Jµν ,Mαβ ] = −(ηα[µMν]β − ηβ[µMν]α),

[Pµ,Pν ] = εMµν ,

(2.2)

where ε is the deformation parameter. As we have mentioned this algebra describes a

relativistic particle which is coupled to a constant electromagnetic field [1, 2] and has

subsequently been studied in the gravity context by diverse authors in [35–55]. In three

spacetime dimensions, the Poincaré algebra has six generators, three generators for rotation

and boost and three generators for translation. In the 3d Maxwell algebra, the Lorentz-

covariant tensor adds three independent generators. Thus the Maxwell algebra in three

spacetime dimensions has 9 generators which can be written in an appropriate basis (sl(2,R)

basis) as

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Jm,Mn] = (m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n,

(2.3)

where m,n = ±1, 0. One then shows that the 3d Maxwell algebra can be enlarged to a new

algebra with countable basis where m,n ∈ Z [26]. In this work we shall denote the infinite

dimensional version of the Maxwell algebra by Max3. Interestingly, as was shown in [10],

the latter can be obtained as the asymptotic symmetry of a 3d Chern-Simons gravity based

on the Maxwell algebra.

2.2 Infinite dimensional 3d Maxwell algebra through bms3 algebra

An infinite dimensional enhancement of 3d Maxwell algebra Max3 can be obtained as an

extension and deformation of the bms3 algebra. Let us review properties of the bms3
algebra.
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The bms3 algebra. The bms3 algebra is the centerless asymptotic symmetry of three-

dimensional flat spacetime [18, 56]:

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Pm,Pn] = 0,

(2.4)

where m,n ∈ Z. The bms3 algebra is an infinite dimensional algebra which contains two

sets of generators given by Jn and Pn. J generates a Witt subalgebra of bms3 which is

the algebra of smooth vector fields on a circle. On the other hand Pn generates an adjoint

representation of the Witt algebra and form the ideal part of the bms3 algebra. From (2.4)

one can see that bms3 has a semi-direct sum structure:

bms3 = witt Aad wittab, (2.5)

where the subscript ab is to emphasize the abelian nature of P while ad denotes the

adjoint action. The maximal finite subalgebra of bms3 is the three dimensional Poincaré

algebra iso(2, 1), associated with restricting m,n = ±1, 0 in relation (2.4). In particular

the generators J and P are called superrotations and supertranslations, respectively.

A central extension of the bms3 algebra, denoted as b̂ms3, appears by asymptotic

symmetry analysis of three dimensional flat space:

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (m− n)Pm+n +
cJP
12

m3δm+n,0,

i[Pm,Pn] = 0,

(2.6)

in which cJJ and cJP are the central charges and are related to the coupling constants of

the so-called exotic Lagrangian and the Einstein-Hilbert Lagrangian as follows [18, 57]

cJJ = 12kα0,

cJP = 12kα1,
(2.7)

Note that the central part can also contain a term proportional to m. However, this part

can be absorbed into a shift of generators by a central term.

Extension of bms3 algebra. We are interested in a particular extension of the bms3
algebra, denoted by b̃ms3, in which the additional generators have the same conformal

weight as the bms3 generators, h = 2. The non vanishing commutators of b̃ms3 are given by

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Jm,Mn] = (m− n)Mm+n,

(2.8)

in which m, n ∈ Z, and is defined over the field R. One can see that the algebra (2.8) has

a Witt subalgebra. In particular, the structure of b̃ms3 is the semi direct sum of the Witt
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algebra with an abelian ideal part. The latter is the direct sum of generators P and M.

Then, we have

b̃ms3 = witt A (P⊕M)ab, (2.9)

where the P and M abelian ideals are spanned by P andM generators, respectively. One

can show that b̃ms3 admits only three independent central terms as

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (m− n)Pm+n +
cJP
12

m3δm+n,0,

i[Jm,Mn] = (m− n)Mm+n +
cJM
12

m3δm+n,0,

(2.10)

One can deform the algebra in (2.8) to obtain a new non isomorphic algebra with non

vanishing commutators similarly to (2.3). Thus one can view the Max3 algebra (2.3) as

an extension and deformation of the bms3 algebra. The Max3 algebra as the centrally

extended b̃ms3 algebra (2.8) admits only three independent central terms as

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (m− n)Pm+n +
cJP
12

m3δm+n,0,

i[Jm,Mn] = (m− n)Mm+n +
cJM
12

m3δm+n,0,

i[Pm,Pn] = (m− n)Mm+n +
cJM
12

m3δm+n,0.

(2.11)

We denote the central extension of Max3 by M̂ax3 with the commutators as (2.11).

Such infinite-dimensional symmetry algebra in presence of three central terms can also

be obtained through the semi-group expansion method [26]. This algebra describes the

asymptotic symmetry of a three-dimensional Chern-Simons gravity theory invariant under

the Maxwell algebra [10]. Interestingly, the central charges cJJ , cJP and cJM can be related

to three terms of the Chern-Simons Maxwell gravity action as follows [10]:

cJJ = 12kα0, cJP = 12kα1, cJM = 12kα2, (2.12)

where α0, α1 and α2 are the coupling constants of the exotic Lagrangian, the Einstein-

Hilbert term and the so-called Gravitational Maxwell Lagrangian, respectively.

3 Deformation of Max3 algebra

In this section we study deformation of the Max3 algebra defined through (2.3). At the

finite-dimensional level, deformations of the Maxwell algebra has been considered in [58]

leading to non-isomorphic algebras. In particular, the Maxwell algebra can be deformed in

arbitrary dimensions to the so(d− 1, 2)⊕ so(d− 1, 1) and , so(d, 1)⊕ so(d− 1, 1) algebra.

The former is the direct sum of AdSd and d-dimensional Lorentz algebra and was studied

in [59, 60]. In specific dimension d = 2+1 a the Maxwell algebra can also be deformed to the

iso(2, 1)⊕so(2, 1) algebra. As discussed in [27] the infinite dimensional Lie algebras are not
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subject to Hochschild-Serre factorization theorem. Therefore, unlike the finite dimensional

case, their deformations should be studied case-by-case. Here we can, not only, deform

the ideal part, but also the other commutators. We explore possible deformations of the

Max3 algebra by deforming all commutators simultaneously. Then, we explore which of

the previous infinitesimal deformations are also a formal deformation. As it is discussed

in [27] there are different ways to show that an infinitesimal deformation is formal. As was

pointed out in [27], “the quick test” is the approach we apply here in which one shows that

the infinitesimal solution can satisfy the Jacobi identities for all order of the deformation

parameter. Specific cases where only some commutators are deformed are also discussed.

We also provide an algebraic cohomology analysis.

Further details about deformation and stability can be found in [27] where an exhaus-

tive description of deformation of Lie algebras has been presented.

3.1 The most general deformation of Max3 algebra

To our purpose we consider all deformations of the commutators of the Max3 algebra. The

most general deformation of the Max3 algebra is given by:

i[Jm,Jn] = (m− n)Jm+n + (m− n)F (m,n)Pm+n + (m− n)G(m,n)Mm+n,

i[Jm,Pn] = (m− n)Pm+n +K(m,n)Pm+n + I(m,n)Mm+n +O(m,n)Jm+n,

i[Jm,Mn] = (m− n)Mm+n + K̃(m,n)Mm+n + Ĩ(m,n)Pm+n + Õ(m,n)Jm+n,

i[Pm,Pn] = (m− n)Mm+n + (m− n)f1(m,n)Pm+n + (m− n)h1(m,n)Jm+n,

i[Pm,Mn] = f2(m,n)Pm+n + g2(m,n)Mm+n + h2(m,n)Jm+n,

i[Mm,Mn] = (m− n)f3(m,n)Pm+n + (m− n)g3(m,n)Mm+n + (m− n)h3(m,n)Jm+n,

(3.1)

where the arbitrary functions can be fixed from the Jacobi identities leading to diverse

deformations. It is important to emphasize that throughout this work the indices of the

generators J , P and M which appear in the right-hand-side are fixed to be m + n. On

the other hand, the functions have a polynomial expansion in term of their arguments.

Furthermore, we shall not write the deformation term as (m−n)g1(m,n)Mm+n which just

rescales the term (m − n)Mm+n by a constant parameter as α(m − n)Mm+n. Of course

this can be absorbed into a redefinition of generators. In what follows we study each Jacobi

identity and its respective implications.

Infinitesimal deformation. In this part we study the deformation which is called

“infinitesimal” deformation in which we consider the constraints obtained from the Ja-

cobi identities in first order of the functions. Let us consider first the Jacobi identity

[J , [J ,J ]] + cyclic permutations = 0 which implies in the first order in functions:

(n− l)(m− n− l)[G(m, l + n) +G(n, l)] + (l −m)(n− l −m)[G(n, l +m) +G(l,m)]+

(m− n)(l −m− n)[G(l,m+ n) +G(m,n)] = 0. (3.2)
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Analogously, the same relation will be obtained for F (m,n). In particular, there is no

other constraint for G. Then, we have:

G(m,n) = Z(m) + Z(n)− Z(m+ n), (3.3)

provides a solution to (3.2), for any arbitrary function Z and can be seen as the most general

solution. Nevertheless, it is possible to show that the deformations of the form (3.3) are

trivial deformations since they can be reabsorbed by redefining the generators1 as:

Jm := J̃m + Z(m)M̃m, Pm := P̃m, Mm := M̃m, (3.4)

where J̃m, P̃m and M̃m satisfy the commutation relations of the Max3 algebra (2.3).

On the other hand, one finds from the Jacobi identity [J , [J ,P]]+cyclic permutations

= 0 the following relation at the first order for K:

(n− l)K(m, l + n) + (m− n− l)K(n, l) + (l −m)K(n, l +m)+

+(l +m− n)K(m, l) + (n−m)K(m+ n, l) = 0, (3.5)

which can be solved, as was discussed in [27], by

K(m,n) = α+ βm+ γm(m− n) + · · · . (3.6)

The same relation and solution is found for O. One can see that the Jacobi identity

[J , [J ,M]] + cyclic permutations = 0 also leads to the same relation and solution as (3.5)

and (3.6) for K̃, Ĩ and Õ.

Furthermore, the Jacobi identity [J , [J ,P]] + cyclic permutations = 0 also leads to a

relation for functions F and I as

(n− l)I(m, l + n) + (m− n− l)I(n, l) + (l −m)I(n, l +m)+

+ (l +m− n)I(m, l) + (n−m)I(m+ n, l) + (m− n)(l −m− n)F (m,n) = 0.

(3.7)

which is solved by I(m,n) = ᾱ+ β̄m− ν̄n+
(
γ̄mn2 + 1

2(λ̄− γ̄)nm2 + 1
2(−λ̄− γ̄)m3

)
+ · · ·

and F (m,n) = ν̄ + λ̄mn+ · · · .
One can see that three independent relations appear by considering the Jacobi identity

[J , [P,M]] +cyclic permutations = 0 in the first order in functions. In particular, we have

the following relation for h2:

(n− l)h2(m, l + n) + (m− l)h2(m+ l, n) + (l −m− n)h2(m,n) = 0. (3.8)

By setting m = n = l we obtain mh2(m,m) = 0. Then we have that h2(m,m) = 0 for

m 6= 0. This means that we can write h2(m,n) = (m − n)h̄2(m,n) where h̄2(m,n) is a

symmetric function. By inserting the latter into (3.8) one gets

(n−l)(m−l−n)h̄2(m, l+n)+(l−m)(n−m−l)h̄2(m+l, n)+(l−m−n)(m−n)h̄2(m,n) = 0,

(3.9)

1One can show that this result is true when different deformations (functions) are turned on simultane-

ously.
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which is solved for h2(m,n) = α(m − n) where α is arbitrary constant. For the functions

f2 and Õ one obtains

(n−l)f2(m, l+n)+(m−l)f2(m+l, n)+(l−m−n)f2(m,n)−(m−n−l)Õ(l, n) = 0. (3.10)

Then, by replacing m = n + l one finds the same relation as (3.8) leading to

f2(m,n) = β(m − n) and Õ(m,n) = 0. Furthermore the Jacobi identity [J , [P,M]] +

cyclic permutations = 0 gives rise to a relation for g2, O and Ĩ as follows

(n− l)g2(m, l + n) + (m− l)g2(m+ l, n) + (l −m− n)g2(m,n)+

+(n+ l −m)Ĩ(l, n) + (n− l −m)O(l,m) = 0. (3.11)

By studying the Jacobi identity [J , [P,P]] + cyclic permutations = 0 it is possible to

see that such identity puts not only the following constraints on the functions

(n+ l −m)K(l, n) + (n− l −m)K(l,m) + (m− n)K̃(l,m+ n) = 0,

(n+ l −m)O(l, n) + (n− l −m)O(l,m) + (m− n)Ĩ(l,m+ n) = 0.
(3.12)

but also leads to a new relation for f1, O and Ĩ as

(n− l)(m−n−l)f1(m, l+n) + (l−m)(n−l−m)f1(n, l+m) + (m−n)(l−m−n)f1(m,n)+

+ (n+ l −m)O(l, n) + (n− l −m)O(l,m) + (m− n)Ĩ(l,m+ n) = 0. (3.13)

One may note that the relation (3.13) is linear in f1, O and Ĩ. Furthermore, the

coefficients appearing along the O and Ĩ terms are first order in m,n, l while the coefficients

of the f1 terms are second order in m,n, l. We expect that these functions are polynomials of

positive powers in their arguments, so one concludes that if O and Ĩ are monomials of degree

p we have that f1 should be a monomial of degree p+ 1. Since the solutions of O and Ĩ are

similar to the ones of (3.6), we have that (3.13) is satisfied considering f1(m,n) = constant,

O(m,n) = α + βm + γm(m − n) and Ĩ = 2α + 2βm + γ̃m(m − n). On the other hand,

one finds that (3.11) is linear in all functions so they should appear as monomial with

the same degree. Then one can insert the solutions O(m,n) = α + βm + γm(m − n)

and Ĩ(m,n) = 2α + 2βm + γ̃m(m − n) into (3.11) and finds that there is no solution

for g2(m,n) for none of them. Thus we have to set g2(m,n) = 0, which implies that

O(m,n) = Ĩ(m,n) = 0.

In the case of h1, one can find a relation for such function from the Jacobi identity

[P, [P,P]] + cyclic permutations = 0 which implies at first order in function the following

relation:

(n−l)(m−n−l)h1(n, l)+(l−m)(n−l−m)h1(l,m)+(m−n)(l−m−n)h1(m,n) = 0, (3.14)

which is solved for h1(m,n) = constant.

Following the same procedure, it is possible to show from the Jacobi identity

[P, [P,M]] + cyclic permutations = 0 that the functions g3, f3 and h3 have to satisfy:

(m− n− l)f2(n, l)− (n−m− l)f2(m, l) + (m− n)(l −m− n)g3(l,m+ n)+

(m− n)(l −m− n)h1(m,n) = 0, (3.15)

(m− n− l)h2(n, l)− (n−m− l)h2(m, l) + (m− n)(l −m− n)f3(l,m+ n) = 0, (3.16)
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and

(m− n)(l −m− n)h3(l,m+ n) = 0, (3.17)

which imply h3(m,n) = 0, g3(m,n) = constant and f3(m,n) = constant.

Finally, one can show that the Jacobi identity [J , [M,M]] + cyclic just leads to the

same results as before for f3, g3 and h3, while the Jacobi identity [M, [M,M]]+cyclic does

not lead to any new constraint in first order of functions.

Formal deformation. Until here we have obtained non trivial solutions for different

functions which led to simultaneous infinitesimal deformations. In fact, we can turn on

infinitesimally the functions f1, f2, f3, g2, g3, h1, h2, K, K̃, I, G and F at the same

time. However all of these infinitesimal deformations can not be extended to a “formal”

deformations. To obtain a formal deformation, the functions should satisfy the Jacobi

identities for all orders in functions. Here without entering the details, we will review the

possible formal deformations.

As summary, one can see from the Jacobi identities that the non-trivial formal de-

formations of the Max3 algebra can be classified in four different algebras. As we shall

see, two of the deformed algebras can be written as the direct sum of known structures.

The others deformed algebras are new infinite dimensional algebras. In particular, a new

family algebra reproduces, for particular values, interesting results already known in the

literature. In what follows we discuss the diverse deformations obtained induced by one of

several functions simultaneously. One can show that there is no additional formal defor-

mations when we consider other possible infinitesimal deformations induced by the present

functions.

3.1.1 The M̄(ᾱ, β̄; ν̄) algebra

One of the new formal deformations obtained is induced by the functions F (m,n) = ν̄ and

I(m,n) = ᾱ+ β̄m− ν̄n coming from (3.19) such that the new algebra satisfies the following

non vanishing commutation relations:

i[Jm,Jn] = (m− n)Jm+n + ν̄(m− n)Pm+n,

i[Jm,Pn] = (m− n)Pm+n + (ᾱ+ β̄m− ν̄n)Mm+n,

i[Jm,Mn] = (m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n.

(3.18)

We call this new family algebra as M̄(ᾱ, β̄; ν̄). One can check that the functions F (m,n)

and I(m,n) are fixed by the Jacobi identity [J , [J ,J ]] + cyclic permutations = 0 which

implies the non linear relation in deformation parameter as

(n− l)F (n, l)I(m,n+ l) + (l−m)F (l,m)I(n, l+m) + (m− n)F (m,n)I(l,m+ n) = 0,

(3.19)

whose solution is given by F (m,n) = ν̄ and I(m,n) = ᾱ+ β̄m− ν̄n.
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To our knowledge, this is a novel structure whose global part has not been explored

yet. It would be interesting to study the implication of such symmetry and analyze diverse

values for ᾱ, β̄ and ν̄.

It is interesting to note that ν̄ = 0 reproduces a deformed algebra induced by I =

ᾱ−β̄m. The particular case M̄(ᾱ, β̄; 0) can be recovered by deforming only the commutator

[Jm,Pn] which implies I = ᾱ+ β̄m+ γ̄m(m−n)+ · · · from the Jacobi identity [J , [J ,P]]+

cyclic permutations = 0 as we have previously discussed. A specific redefinition of the

generators can be considered as

Jm ≡ J̃m, Pm ≡ P̃m + F (m)M̃m, Mm ≡ M̃m. (3.20)

This redefinition does not change the ideal part and yields to the following relation:

(m− n)(F (n)− F (m+ n))M̃m+n = I(m,n)M̃m+n. (3.21)

One can then check that the solutions given by I(m,n) = γ̄m(m−n)+ . . . can be absorbed

by the above redefinition when F (m) = a0 + a1m+ a2m
2 + · · · . In this way, the only non

trivial formal deformation induced by I(m,n) is

[Jm,Pn] = (m− n)Pm+n + (ᾱ+ β̄m)Mm+n. (3.22)

An interesting feature of the M̄(ᾱ, β̄; ν̄) algebra is that such symmetry is obtained by

deforming the commutators [J ,J ] and [J ,P] which are not the ideal part of the infinite

dimensional algebra. As we known from the Hochschild-Serre factorization theorem, in

the case of finite dimensional Lie algebra, the deformation of a Lie algebra can only be

performed at the level of the ideal part without modifying the other commutators. Here,

our result could confirm the conjecture made in [27, 30] in which the Hochschild-Serre

factorization theorem might be extended for infinite dimensional algebras as follows: For

infinite dimensional algebras with countable basis the deformations may appear in ideal and

non-ideal parts, however, the deformations are always by coefficient in the ideal part.

3.1.2 The M(a, b; c, d) algebra

Another formal deformation is obtained by turning on simultaneously the functions K and

K̃. One can show from the Jacobi identities [J , [J ,P]] + cyclic permutations = 0 and

[J , [J ,M]] + cyclic permutations = 0 that (see (3.5) and (3.12))

K(m,n) = α+ βm, K̃(m,n) = 2α+ 2βm, (3.23)

which is only solution in all orders in functions.

The new algebra, which we name it as M(a, b; c, d) algebra, has the following non

vanishing commutation relations

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = −(bm+ n+ a)Pm+n,

i[Jm,Mn] = −(dm+ n+ c)Mm+n,

i[Pm,Pn] = (m− n)Mm+n,

(3.24)
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where c = 2a = −2α and d = b−β = −2β−1. One can show that such formal deformation

can alternatively be obtained by considering the functions K K̃ and I simultaneously.

Indeed, from the Jacobi identity [J , [J ,P]] + cyclic permutations = 0 we have K and K̃

are given by (3.23) and I = ξ(α + βm). Although such functions seems to induce a new

formal deformation, one can use the same redefinition as in (3.20) to obtain

[J̃m, P̃n + F (n)M̃n] = (m− n+ α+ βm)
(
P̃m+n + F (m+ n)M̃m+n

)
+ ξ(α+ βm)M̃m+n,

(3.25)

which reproduces the same algebra as (3.24) when F (m) = constant = ξ.

As it is discussed in [27], in context of 2d conformal field theory the parameters b and

d are related to h and h̃, which are the conformal weight of P andM respectively, through

b = 1 − h and d = 1 − h̃. On the other hand, the parameters a (or c) is related to the

periodicity properties of primary field P(ϕ) (or M(ϕ)) through

P(ϕ+ 2π) = e2πiaP(ϕ), P(ϕ) =
∑
n

Pnei(n+a)ϕ.

It is interesting to point out that diverse infinite dimensional structures appears for specific

values of a, b, c and d. In particular, let us suppose that a = c = 0 in (3.24) and let us

consider different values of b, d. First we set b = 0, d = 1 which leads to the algebra

M(0, 0; 0, 1) with the following commutators

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (−n)Pm+n,

i[Jm,Mn] = (−m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n.

(3.26)

The generators P and M can be seen as a U(1) current and a primary operator with

conformal weight h = 0, respectively. The infinite dimensional algebra (3.26) corresponds

to a Maxwellian version of the so-called u(1) Kac-Moody algebra. A different choice is b =

−1
2 , d = 0 which leads to a new algebra M

(
0,−1

2 ; 0, 0
)

whose non vanishing commutators

are given by

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] =
(m

2
− n

)
Pm+n,

i[Jm,Mn] = (−n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n,

(3.27)

in which the generators P andM can be seen as a primary operator with conformal weight

h = 3
2 and a U(1) current, respectively. This algebra is known as twisted Schrödinger-

Virasoro algebra [61]. In this reference the infinite enhancement of 3d Maxwell algebra,

which is called sv1(0), is obtained as a deformation of the twisted Schrödinger-Virasoro

algebra.
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When the indexes of the generator P are half integer valued the algebra corresponds to

the so-called Schrödinger-Virasoro algebra with spatial dimension d = 1. The Schrödinger-

Virasoro algebra has a global part which is spanned by 6 generators J0,±1, P± 1
2

and M0

where the latter appears as a central term. There are different works, for instance [33, 62],

in which the authors have tried to find the Schrödinger-Virasoro algebra as asymptotic

symmetry of some spacetimes.

An interesting feature of the M(a, b; c, d) is that, as the M̄(ᾱ, β̄; ν̄) algebra, such defor-

mation confirms the conjecture made in [27, 30]. Indeed, one can see that such deformation

is obtained by considering coefficients in the ideal part.

Let us note that the family algebra M(a, b; c, d), for some specific values of its param-

eters, can be deformed into new algebras out of this family. For example the Max3 algebra

given by M(0,−1; 0,−1) can be deformed in its ideal part into bms3 ⊕witt as we shall see

in the next section. Furthermore, the Schrödinger-Virasoro algebra given by M
(
0, 12 ; 0, 0

)
can be deformed in its [J ,J ] commutator. Despite this, it seems that the family algebra

M(a, b; c, d) is stable in the sense that for generic values of its parameters it can just be de-

formed into another family algebra M(ā, b̄; c̄, d̄) with shifted parameters. The latter should

however be proved by direct computations.

As an ending remark, let us note that in [33] they introduced the algebra with the same

structure as M(a, b; c, d). This algebra which is obtained with specific values of parameters

as M
(
z−2
2z ,

−1
z ; z−2

z , z−2
z

)
, is introduced as asymptotic symmetry algebra of Schrödinger

spacetimes.

3.1.3 The bms3 ⊕witt algebra

A new formal deformation appears by studying the deformation of commutator [Pm,Pm]

without modifying the other commutation relations. Indeed, as we have previously dis-

cussed, the Jacobi identity [P, [P,P]] +cyclic permutations = 0 leads to relations (3.13)

which is linear in functions. A non linear relation also appears from such Jacobi identity as

(n− l)(m− n− l)f1(n, l)f1(m, l + n) + (l −m)(n− l −m)f1(l,m)f1(n, l +m)+

(m− n)(l −m− n)f1(m,n)f1(l,m+ n) = 0.
(3.28)

with the same solution as f1(m,n) = constant. The complete analysis to solve the equation

for f1 in the relation

(n−l)(m−n−l)f1(m, l+n)+(l−m)(n−l−m)f1(n, l+m)+(m−n)(l−m−n)f1(m,n)=0,

(3.29)

can be found in [27]. One can show that the new algebra

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Jm,Mn] = (m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n + ε(m− n)Pm+n.

(3.30)
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obtained by f1(m,n) = ε, with ε being an arbitrary constant, is not isomorphic to the

original algebra and hence the deformation is non trivial. By a redefinition of generators2 as

Jm ≡ Lm + Sm, Pm ≡ Tm + Sm, Mm ≡ −Tm, (3.31)

one reaches to the new algebra with non vanishing commutators

i[Lm, Ln] = (m− n)Lm+n,

i[Lm, Tn] = (m− n)Tm+n,

i[Sm, Sn] = (m− n)Sm+n.

(3.32)

The new algebra (3.32) has the direct sum structure as bms3⊕witt. The global part of the

algebra (3.32) corresponds to the iso(2, 1)⊕ so(2, 1) algebra when we restrict ourselves to

m,n = ±1, 0 which is the direct sum of the 3d Poincaré and the 3d Lorentz algebras. Such

finite structure has also been obtained as a deformation of the d = 2 + 1 Maxwell algebra

in [58] but not at the same basis as (3.30). Note also that this algebra is a subalgebra of

W (0,−1; 0, 0), which is obtained as deformation of bms4 algebra [30].

Interestingly the same structure can be obtained by turning on f1 and g2 simultane-

ously. In fact we have from the Jacobi identity [P, [P,M]] + cyclic permutations = 0 the

following relation

g2(n, l)g2(m,n+ l)− g2(m, l)g2(n, l +m)− (m− n)g2(m+ n, l)f1(m,n) = 0, (3.33)

which is solved for g2(m,n) = ε(m − n) and f1(m,n) = ε. Let us note that g2(m,n) =

ε(m − n) comes directly from a relation similar to (3.8) as a consequence of the Jacobi

identity [P, [M,J ]] + cyclic permutations = 0. So the commutators of the new algebra

obtained through this deformation are

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Jm,Mn] = (m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n + ε(m− n)Pm+n,

i[Pm,Mn] = ε(m− n)Mm+n,

i[Mm,Mn] = 0.

(3.34)

One can show that the bms3 ⊕ witt algebra appears by considering an appropriate redefi-

nition of the generators as3

Jm ≡ Lm + Sm, Pm ≡ Lm + Tm, Mm ≡ Tm. (3.35)

2The deformation parameter can be removed by an appropriate redefinition as P ≡ εP and M≡ ε2M.
3For convenience we drop the deformation parameter in our redefinition since it can be absorbed by an

appropriate redefinition of the generators.
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3.1.4 The witt⊕witt⊕witt algebra

Three copies of the Witt algebra can be obtained through deformations induced by two or

more functions simultaneously and after an appropriate redefinition of the generators. Here,

based on (3.10) for f2 and using (3.15) for g3, we shall turn on two functions simultaneously.

Indeed, the Jacobi identity [M, [M,P]] + cyclic permutations = 0 and [M, [M,M]] +

cyclic permutations = 0 gives rise to non linear relations as

f2(l, n)f2(l + n,m)− f2(l,m)f2(l +m,n) + (m− n)g3(m,n)f2(l,m+ n) = 0, (3.36)

and

(n− l)(m− n− l)g3(n, l)g3(m, l + n) + (l −m)(n− l −m)g3(l,m)g3(n, l +m)+

+ (m− n)(l −m− n)g3(m,n)g3(l,m+ n) = 0, (3.37)

where is also satisfied with the solutions f2(m,n) = λ(m− n) and g3(m,n) = λ. Then we

find the following formal deformation of the Max3 algebra

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (m− n)Pm+n,

i[Jm,Mn] = (m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n,

i[Pm,Mn] = λ(m− n)Pm+n,

i[Mm,Mn] = λ(m− n)Mm+n.

(3.38)

Upon the following redefinition of the generators,

Jm ≡ Lm + Tm + Sm, Pm ≡ Lm − Tm, Mm ≡ Lm + Tm. (3.39)

the above algebra reproduces three copies of the Witt algebra

i[Lm, Ln] = (m− n)Lm+n,

i[Tm, Tn] = (m− n)Tm+n,

i[Sm, Sn] = (m− n)Sm+n.

(3.40)

This result is the infinite dimensional generalization of the one obtained in [58] for the

2 + 1 Maxwell algebra which was called k−deformation. In particular, they showed that

the k−deformation leads to one of so(2, 2)⊕so(2, 1) or so(3, 1)⊕so(2, 1) algebras depending

on the sign of the deformation parameter. On the other hand, the three copies of the Witt

algebra have three sl(2,R) algebras as their global part. In this specific basis both so(2, 2)

and so(3, 1) are written as sl(2,R) ⊕ sl(2,R), while so(2, 1) is written as sl(2,R). At the

gravity level, the so-called AdS-Lorentz algebra, which can be written as three so(2, 1),

allows to accommodate a cosmological constant to the three-dimensional Maxwell Chern-

Simons gravity action [9, 32, 63].
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It is interesting to note that three copies of the Witt algebra can alternatively obtained

by turning on other functions. Indeed one can easily verify that f1(m,n) = g3(m,n) = δ

and f2 = δ(m − n) also reproduces such structure. The formal deformations induced by

two functions simultaneously as h1 and g3 or h2 and f3 also reproduce the three copies

of the Witt algebra after an appropriate redefinition of the generators. It is important to

clarify that such deformations with coefficients being not in the ideal part can be obtained

as a redefinition of a deformed Max3 algebra with coefficients in the ideal part such that

the conjecture presented in [27, 30] about a possible extension of the Hochschild-Serre

factorization theorem is still valid.

One could conjecture that, based on the analysis done for the direct sum of two Witt

algebras [27], the direct sum of three Witt algebra is rigid. Furthermore, one could expect

to recover the witt⊕witt⊕witt algebra as a deformation of the bms3 ⊕witt algebra since

we know that the bms3 algebra is not stable and can be deformed to two copies of the Witt

algebra.

3.2 Algebraic cohomology argument

Until now we have classified all possible nontrivial infinitesimal and formal deformations

of the Max3 algebra by studying the Jacobi identities. As discussed in [27], one can

approach and analyze such issue by cohomology consideration. Indeed one can classify

all infinitesimal deformations of the Max3 algebra by computing H2(Max3;Max3). In our

previous works, in which we tackled Lie algebras with abelian ideal, we used the theorem 2.1

of [64] which is crucial for cohomological consideration. Nonetheless, we cannot use this

theorem here since Max3 does not have abelian ideal. We shall only state our result in

cohomological language. As we can see from the our results in previous part, we have just

four formal deformations for the Max3 algebra. It is obvious that both M(a, b; c, d) and

M̄(ᾱ, β̄; ν̄) family algebras are deformed by the K, K̃, I and F terms, with coefficients from

ideal part, P andM. The same argument is true for the new algebra bms3⊕witt which is

obtained through deformation induced by f1 with coefficient in P. The three copies of the

Witt algebra can be obtained via deformation induced by h1, g3 or h2, f3 and also by f2, g3,

which means that the two first cases are just a redefinition of the latter. As summary, we

have shown that, unlike the Hochschild-Serre factorization theorem of finite Lie algebras,

other commutators of Max3 algebra, except the ideal part, can also be deformed but only

by terms with coefficients from the ideal part. As it has been discussed in the works [27, 30]

this result can be viewed as an extension of the Hochschild-Serre factorization theorem for

infinite dimensional algebras.4

In the cohomological language our results for the Max3 algebra can be written as

H2(Max3;Max3)
∼= H2(Max3; h). (3.41)

where h denotes the ideal part of Max3 algebra spanned by generators P and M.

4Here we are tackling infinite dimensional Lie algebras which are extensions of the Witt algebra.
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4 Central extensions of the deformed Max3 algebras

In this section, we present explicit central extensions of the infinite-dimensional algebras

obtained as a deformation of the Max3 algebra introduced previously. In particular, one

of the central extension reproduces a known asymptotic symmetry of a three-dimensional

gravity theory.

4.1 Central extension of the bms3 ⊕witt and the witt⊕witt⊕witt algebra

We have shown that ones of the deformations of the Max3 algebra are given by the bms3⊕
witt and three copies of the Witt algebra. In this section we briefly review the known

central extensions of the bms3 and the Witt algebra.

The most general central extension of the bms3 ⊕witt is given by

i[Lm, Ln] = (m− n)Lm+n +
cLL
12

m3δm+n,0,

i[Lm, Tn] = (m− n)Tm+n +
cLT
12

m3δm+n,0,

i[Sm, Sn] = (m− n)Sm+n +
cSS
12

m3δm+n,0,

(4.1)

where the central charges cLL, cLT and cSS can be related to three independent terms of

the Chern-Simons iso(2, 1)⊕ so(2, 1) gravity action as follows:

cLL = 12kα0, cLT = 12kα1, cSS = 12kβ0, (4.2)

where α0 and α1 are the respective coupling constants appearing in the three-dimensional

Chern-Simons Poincaré gravity. On the other hand, β0 is the coupling constant of the

exotic Lagrangian invariant under the so(2, 1) algebra. It would be interesting to explore

the central terms in the basis {Jm,Pm,Mm} and the possibility that the central extensions

of the infinite-dimensional algebras (3.30) and (3.34) appears as the asymptotic symmetries

of three-dimensional gravity theory invariant under deformations of the Maxwell algebra.

On the other hand, a central extension for the witt ⊕ witt ⊕ witt algebra is naturally

given by

i[Lm, Ln] = (m− n)Lm+n +
cLL
12

m3δm+n,0,

i[Tm, Tn] = (m− n)Tm+n +
cTT
12

m3δm+n,0,

i[Sm, Sn] = (m− n)Sm+n +
cSS
12

m3δm+n,0.

(4.3)

Interestingly, considering the following redefinition of the generators

Lm ≡
1

2
(Mm + Pm), Tm ≡

1

2
(Mm − Pm), Sm ≡ Jm −Mm, (4.4)

and the following redefinition of the central terms

cLL ≡
1

2
(cJM + cJP ), cTT ≡

1

2
(cJM − cJP ), cSS ≡ (cJJ − cJM ). (4.5)

we recover the asymptotic symmetry of the Chern-Simons gravity theory invariant un-

der the so-called AdS-Lorentz algebra [32]. Such symmetry has been previously studied

in [9, 58, 59, 63] and extended to higher dimensions in [65–67] in Lovelock theory.
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4.2 Central extension of M(a, b; c, d)

Here we shall classify the central terms of the M(a, b; c, d) algebra. One can easily find

that the M(a, b; c, d) algebra for generic values of parameter space a, b, c and d admits only

one central term in its Witt subalgebra. However there are some specific points in which

it is possible to have other non-trivial central terms. We follow the results of the work [68]

which classifies the central terms of W (a, b) algebra.

4.2.1 Central terms for specific points in parameters space of M(a, b; c, d)

M(0, 0; 0, 1) case. By setting the parameters as a, b, c = 0, d = 1 we obtain a new algebra

with non vanishing commutators as in (3.26). One can readily check that there is a central

term in the Witt subalgebra given by cJJm
3 so we shall take it in account in what follows.

Let us consider now the central term as [Jm,Pn] = (−n)Pm+n+S(m,n) where S(m,n) is an

arbitrary function. One can see that the Jacobi identity [J , [J ,P]]+cyclic permutations =

0 implies the following constraint

− lS(m,n+ l) + lS(n, l +m) + (n−m)S(m+ n, l) = 0, (4.6)

If the function S(m,n) is a symmetric function by setting l = 0 one obtains S(m+n, 0) = 0.

Then the only solution is S(m,n) = cJPm
2δm+n,0 in which cJP is an arbitrary con-

stant as expected from central extension of the u(1) Kac-Moody algebra [27]. On the

other hand, one can show that there is no solution for S(m,n) being an anti sym-

metric function. The rest of the Jacobi identities do not put additional constraints on

S(m,n) reproducing a non trivial central extension. Another central term can appear as

[Jm,Mn] = (−m−n)Mm+n+T (m,n) where T (m,n) is an arbitrary function. The Jacobi

identity [J , [J ,M]] + cyclic permutations = 0 leads to

(−n− l)T (m,n+ l) + (m+ l)T (n, l +m) + (n−m)T (m+ n, l) = 0. (4.7)

If the function T (m,n) is a symmetric function one obtains T (m,n) = T (m + n, 0) =

T̄ (m + n). Then we have T (m,n) = (cJM1m + cJM2)δm+n,0 where cJM1,2 are arbitrary

constants. On the other hand the Jacobi identity [P, [P,J ]] + cyclic permutations = 0

implies T (m,n) = 0. One can also see that there is no solution for T (m,n) being an anti

symmetric function. Let us consider now the presence of central terms in both [Jm,Mn] =

(−m−n)Mm+n +T (m,n)δm+n+l,0 and [Pm,Pn] = (m−n)Mm+n +U(m,n)δm+n,0 simul-

taneously. The Jacobi identity [P, [P,J ]] + cyclic permutations = 0 leads to

((n)U(m,n+ l)− (m)U(n, l +m) + (m− n)T (l,m+ n)) δm+n+l,0 = 0, (4.8)

which does not have a non zero solution for U(m,n) when T (m,n) = cJM1m. However

when we consider T (m,n) = cJM2, one finds U(m,n) = cJM2 which represents another

non trivial central extension. An additional central term can appear in [Pm,Pn] = (m −
n)Mm+n + U(m,n)δm+n,0 when other central terms are turned off. The Jacobi identities

[P, [P,P]] + cyclic permutations = 0 and [P, [P,M]] + cyclic permutations = 0 do not
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constrain U(m,n). The only remaining Jacobi identity is [P, [P,J ]]+cyclic permutations =

0 which implies

((n)U(m,n+ l)− (m)U(n, l +m)) δm+n+l,0 = 0, (4.9)

with U(m,n) = cPPm. However, it is possible to see that the following redefinition

Mm ≡ M̃m + cδm,0, (4.10)

do not reproduce a non trivial central extension for c = − cPP
2 since the central term cPP

can be absorbed.

To summarize, the most general central extension of M(0, 0; 0, 1) is

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (−n)Pm+n + cJPm
2δm+n,0,

i[Jm,Mn] = (−m− n)Mm+n + cJMδm+n,0,

i[Pm,Pn] = (m− n)Mm+n + cJMδm+n,0.

(4.11)

M(0,−2; 0,−3) case. The next values of the parameters which we will consider is a =

c = 0, b = −2, d = −3 for which we obtain a new algebra with non vanishing commutators as

i[Jm,Jn] = (m− n)Jm+n,

i[Jm,Pn] = (−m− n)Pm+n,

i[Jm,Mn] = (−3m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n.

(4.12)

Let us consider first the central term in [Jm,Pn] = (−m− n)Pm+n + S(m,n). The Jacobi

identity [J , [J ,P]] + cyclic permutations = 0 reproduces the same constraint as (4.7) on

S(m,n). So we obtain S(m,n) = (cJP1m + cJP2)δm+n,0. One can turn on a central

term as [Jm,Mn] = (−3m − n)Mm+n + T (m,n). The Jacobi identity [M, [M,J ]] +

cyclic permutations = 0 implies

− (3n+ l)S(m, l + n) + (3m+ l)S(n, l +m) + (n−m)S(m+ n, l) = 0, (4.13)

which has no non trivial solution leading to T (m,n) = 0. On the other hand one may

consider the central term as [Pm,Pn] = (m− n)Mm+n +U(m,n)δm+n,0 however this does

not lead to a non trivial central term. Therefore, there is no further central extensions for

M(a = c = 0, b = −2, d = −3) and the most general central extension of this algebra is

given by

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (−m− n)Pm+n + (cJP1m+ cJP2)δm+n,0,

i[Jm,Mn] = (−3m− n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n.

(4.14)

As we can see this is in contradiction with the result of theorem 5.7. of [69] in which they

did not mention the term cJP1δm+n,0 in (4.14).
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M
(
0,−1

2
; 0, 0

)
case. Another value of the parameters that one could explore is a =

c = 0, b = −1
2 , d = 0 which leads to the new algebra (3.27). As mentioned before this

algebra is known as the twisted Schrödinger-Virasoro algebra. According to the theorem

2.2 in [68] we know that there is no central term in the [Jm,Pn] commutator.5 One

can indeed show from the Jacobi identity that the only central extension for the twisted

Schrödinger-Virasoro algebra appears in its Witt subalgebra:

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] =
(m

2
− n

)
Pm+n,

i[Jm,Mn] = (−n)Mm+n,

i[Pm,Pn] = (m− n)Mm+n.

(4.15)

4.3 Central extension of M̄(ᾱ, β̄; ν̄)

As we have mentioned the functions I(m,n) and F (m,n) are just constrained by the Jacobi

identities [J , [J ,J ]] + cyclic permutations = 0 and [J , [J ,P]] + cyclic permutations = 0.

Let us then consider the central terms constrained by these Jacobi identities. In particular,

let us first consider the central term as [Jm,Jn] = (m − n)Jm+n + ν̄(m − n)Pm+n +

R(m,n)δm+n,0. From the Jacobi identity [J , [J ,J ]] + cyclic permutations = 0 we find

the solution R(m,n) = cJJm
3. Let S(m,n) be an arbitrary functions which appears in

[Jm,Pn] = (m− n)Pm+n + (ᾱ+ β̄m)Mm+n + S(m,n) and satisfy the following constraint

(n− l)S(m, l + n) + (l −m)S(n, l +m) + (n−m)S(m+ n, l) = 0. (4.16)

The Jacobi identities [J , [J ,J ]] + cyclic permutations = 0 and [J , [J ,P]] +

cyclic permutations = 0, as expected, indicate the existence of a central term S(m,n) =

cJPm
3δm+n,0. One can see that a central term can also appear in the commutator

[Jm,Mn] = (m − n)Mm+n + T (m,n) where T (m,n) is an arbitrary function. From

the Jacobi identity [J , [J ,M]] + cyclic permutations = 0 we find that the function is

fixed as T (m,n) = cJMm
3δm+n,0 if we also turn on the same central term in [Pm,Pn] =

(m − n)Mm+n + U(m,n) with U(m,n) = cJMδm+n,0. However one should also consider

the Jacobi identity [J , [J ,P]] + cyclic permutations = 0 which leads to

cJM
(
(ᾱ+ β̄n− ν̄l)m3 − (ᾱ+ β̄m+ ν̄l)n3 + ν̄(m− n)l3

)
δm+n+l,0 = 0. (4.17)

Let us note that since the three parameters ᾱ, β̄ and ν̄ are independent, there is no solution

for the above expression for ᾱ, β̄, ν̄ 6= 0. Nevertheless for ᾱ = ν̄ = 0, we have the non trivial

central extension T (m,n) = U(m,n) = cJMm
3δm+n,0. Thus, we conclude that the most

5This can be easily checked by adding a central term like S(m,n) to this commutator and considering

the Jacobi identity [J , [J ,P]] + cyclic permutations = 0.
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general central extension for the M̄(0, β̄; 0) algebra is given by

i[Jm,Jn] = (m− n)Jm+n +
cJJ
12

m3δm+n,0,

i[Jm,Pn] = (m− n)Pm+n + β̄mMm+n +
cJP
12

m3δm+n,0,

i[Jm,Mn] = (−n)Mm+n +
cJM
12

m3δm+n,0,

i[Pm,Pn] = (m− n)Mm+n +
cJM
12

m3δm+n,0.

(4.18)

5 Summary and concluding remarks

In this work we have considered the deformation and stability of Max3 algebra which

is the infinite enhancement of the 2 + 1 dimensional Maxwell algebra and describes the

asymptotic symmetry of the Chern-Simons gravity theory invariant under the Maxwell

algebra [10]. We have shown that the Max3 algebra is not stable and can be deformed

to four possible formal deformations. The Max3 algebra can be formally deformed into

bms3 ⊕ witt or three copies of the Witt algebra in its ideal part. Furthermore, the Max3
algebra can be formally deformed into two new families of algebras when we consider

deformations of other commutators. The new infinite dimensional algebras obtained have

been denoted as M(a, b; c, d) and M̄(ᾱ, β̄; ν̄). In particular, the Max3 algebra can be

formally deformed to the (twisted) Schrödinger-Virasoro algebra for the specific values of

parameters a = c = d = 0 and b = −1
2 , which can be seen as the asymptotic symmetry

algebra of the spacetimes invariant under Schrödinger symmetry [33, 62].

We have then considered possible central terms for the obtained algebras through

deformation procedure. We have first briefly review the well-known central extensions of

the bms3 and the witt algebra. We also explored the central extensions of M(a, b; c, d) and

M̄(ᾱ, β̄; ν̄) in some specific points of their parameters space. For a generic point in the

parameter space M(a, b; c, d) algebra admits only one central term in its Witt subalgebra.

For specific values of parameters it can admit more central terms which means that the

deformation procedure can change the number of possible non trivial central terms. On

the other hand the algebra M̄(ᾱ, β̄; ν̄) in general admits two non trivial central terms and

a third central terms can appear for ᾱ = ν̄ = 0 in M̄(ᾱ, β̄; ν̄) as in the Max3 algebra.

It is important to emphasize that two family algebras M(a, b; c, d) and M̄(ᾱ, β̄; ν̄)

have been obtained by deforming commutators being not at the level of the ideal part.

Interestingly, similar results have been obtained by deforming the bms3 and bms4 algebras

in [27, 30]. The examples considered in this paper, hence confirm the conjecture made

in [27, 30], that the Hochschild-Serre factorization (HSF) theorem6 might be extended for

infinite dimensional algebras as follows: the infinite dimensional Lie algebra7 with countable

basis can be deformed in all of its commutators but only by terms with coefficients from

the ideal part. The results obtained for the Max3 algebra reinforce this conjecture.

6The Hochschild-Serre factorization (HSF) theorem states that we can only deform the ideal part of Lie

algebra and other commutators remain untouched.
7Here by infinite dimensional Lie algebras, we mean those algebras who are obtained as extensions of

the Witt algebra.
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It is interesting to point out that the central extension of one of our deformations of the

Max3 algebra is a known asymptotic symmetry. Indeed three copies of the Virasoro algebra

describes the asymptotic structure of a three-dimensional Chern-Simons gravity theory

invariant under the so-called AdS-Lorentz algebra [32]. In the stationary configuration,

analogously to the Maxwell case, the additional gauge field appearing in the AdS-Lorentz

case modifies the total energy and angular momentum. It would be interesting to explore

how the total energy and angular momentum are influenced by the additional gauge field

related to the other deformations and analyze the existence of a limit allowing to recover

the conserved charges of the Maxwell one or those of General Relativity. Moreover, the

study of a limit allowing to recover known gravity theories from a CS action based on

the deformations considered here could be of interest. In particular, if a gravity theory

based on an enlarge symmetry is appropriate for approach more realistic theories then

these theories should at least satisfy the correspondence principle, namely they must be

related to General Relativity.

On the other hand, as was discussed in [14], there is a particular choice of the parame-

ters appearing in the Hietarinta-Maxwell Chern-Simons gravity theory which do not break

the Hietarinta-Maxwell algebra but deforms it to three copies of the sl(2, R) algebra which

coincide with the finite subalgebra of the three copies of the witt algebra. Then it would be

interesting to explore if there is other choice of the parameters of the Hietarinta-Maxwell

theory leading to the finite dimensional deformations presented here. Regarding the central

extension of the deformed Max3 algebra, one could study if there is a particular range of

the parameters appearing in the central charges obtained here allowing to reproduce those

of known theories.

Another aspect that deserves to be explored is the explicit derivation of the infinite-

dimensional algebras introduced here by considering suitable boundary conditions. One

could conjecture that the deformations of the Max3 algebra should correspond to the re-

spective asymptotic symmetries of three-dimensional Chern-Simons gravity theories based

on deformations of the Maxwell algebra. Naturally, one could obtain a large number of pos-

sible asymptotic symmetries for several CS gravity models. The physical implications and

motivations of every deformation should properly studied first. As in the Maxwell case

(or in the Hietarinta case), the new deformations could have interesting features which

would be worth it to study. In particular, one could explore if the theory invariant under

deformation of the Maxwell algebra may change the thermodynamics properties of Black

hole solution like their entropy.

It is worthwhile to study possible generalizations of our results to other (su-

per)symmetries. The study of the solutions and asymptotic structure of the Maxwell

superalgebra and its deformations remains as an interesting open issue. Furthermore,

one could analyze for which values of the parameters the family algebras M(a, b; c, d) and

M̄(ᾱ, β̄; ν̄) admit a well-defined supersymmetric extension. The next problem which would

be interesting to explore is studying the group associated to the Max3 algebra and asking

how deformation procedure affects at the group level and its representations. Recently, the

group associated to Max3 algebra and its coadjoint orbits have been considered [70] so one

might asked about the connection between coadjoint orbits of this group and the groups

associated to the deformation of Max3 obtained here.
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[28] O. Mǐsković, R. Olea and D. Roy, Vacuum energy in asymptotically flat 2 + 1 gravity, Phys.

Lett. B 767 (2017) 258 [arXiv:1610.06101] [INSPIRE].
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[37] J. Lukierski, Generalized Wigner-Inönü contractions and Maxwell (super)algebras, Proc.

Steklov Inst. Math. 272 (2011) 183 [arXiv:1007.3405] [INSPIRE].

[38] R. Durka, J. Kowalski-Glikman and M. Szczachor, Gauged AdS-Maxwell algebra and gravity,

Mod. Phys. Lett. A 26 (2011) 2689 [arXiv:1107.4728] [INSPIRE].

[39] J.A. de Azcarraga, K. Kamimura and J. Lukierski, Maxwell symmetries and some

applications, Int. J. Mod. Phys. Conf. Ser. 23 (2013) 01160 [arXiv:1201.2850] [INSPIRE].
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