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Universidad Católica de la Sant́ısima Concepción,

Alonso de Ribera 2850, Concepción, Chile
bINFN, Sezione di Milano,

Via Celoria 16, I-20133 Milano, Italy
cDepartamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,
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1 Introduction

Three-dimensional non-relativistic (NR) and ultra-relativistic (UR) versions of supergravity

theory have only been explored recently in [1–7]. Although several generalizations and

applications of supergravity have been developed by diverse authors these last four decades,

its NR construction remains challenging and has only been approached in three spacetime

dimensions. In particular, the formulation of a well-defined NR supergravity action has

required the introduction of additional fermionic generators. As in NR bosonic cases, the

addition of new generators allows to construct a non-degenerate invariant bilinear form

which assures the proper construction of a Chern-Simons (CS) action.

The NR theories have received a renewed interest since they play an important role

to approach condensed matter systems [8–15] and NR effective field theories [16–19]. It

seems then natural to extend NR gravity theories [20–36] to the presence of supersymme-

try. In particular, NR supergravity models can be seen as a starting point to approach

supersymmetric field theories on curved backgrounds by means of localization [37, 38].

On the other hand, the Maxwell algebra has received a growing interest these last

decades. Such symmetry has been first introduced to describe Minkowski space in the

presence of a constant electromagnetic field background [39–41]. In the gravity context,

the Maxwell algebra and its generalizations have been useful to recover standard General

Relativity from CS and Born-Infeld gravity theories [42–46]. More recently, a Maxwell CS

formulation in three spacetime dimensions has been explored in [47]. Its solution [48, 49],

generalization to higher spin [50], and asymptotic symmetry [49, 51] have been subse-

quently studied by diverse authors. Further application of the Maxwell algebra can be
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found in [52–58]. At the supersymmetric level, the minimal Maxwell superalgebra ap-

pears to describe a constant Abelian supersymmetric gauge field background in a four-

dimensional superspace [59]. Generalizations of the Maxwell superalgebras have then been

explored with diverse applications [60–69]. More recently, a three-dimensional CS super-

gravity theory invariant under the Maxwell superalgebra and its N -extended versions have

been explored in [70–73].

The NR version of the Maxwell CS gravity theory has only been presented recently [74]

(see also [75], where the related algebra has been recovered through Lie algebra expansion).

Interestingly, the relativistic theory required the presence of three U(1) gauge fields in

order to establish a well-defined NR limit and to avoid degeneracy. In the presence of

supersymmetry, the NR version of the Maxwell CS supergravity was unknown till now. In

this work, we explore the NR limit of the Maxwell superalgebra for N = 1 and N = 2.

In particular, we show that a well-defined NR Maxwellian CS supergravity action requires

to introduce by hand additional fermionic and bosonic generators. Our model is not only

a novel NR supergravity theory without cosmological constant but contains the extended

Bargmann supergravity as a sub-case.

The paper is organized as follows: in section 2, we briefly review the Maxwellian ex-

tended Bargmann gravity introduced in [74]. Sections 3 and 4 contain our main results. In

section 3, we introduce the NR limits of the minimal and the N = 2 Maxwell superalgebras.

In section 4, we present the Maxwellian extendad Bargmann superalgebra and the NR CS

supergravity action. Section 5 is devoted to discussion and possible future developments.

Some large formulas are collected in the appendix.

2 Maxwellian extended Bargmann gravity

In this section, we briefly review the Maxwellian extended Bargmann algebra introduced

in [74] and the associated CS gravity theory developed in the same paper in three (2+1)

dimensions. In [74] the authors proved that an alternative way to circumvent the degen-

eracy of the bilinear form in the [Maxwell] ⊕ u(1) ⊕ u(1) system analyzed in the same

paper, is to add one more u(1) gauge field.

The non-vanishing commutation relations of the Maxwell algebra are given by

[JA, JB] = εABCJ
C ,

[JA, PB] = εABCP
C ,

[JA, ZB] = εABCZ
C , (2.1)

[PA, PB] = εABCZ
C ,

where JA are the spacetime rotations, PA the spacetime translations, and ZA are new

generators characterized and introduced in [39, 40] (A = 0, 1, 2 and ηAB = diag(−,+,+)).

A gauge-invariant CS gravity action in three (meaning 2+1, here as well as in the sequel)

dimensions based on the above written Maxwell algebra has been constructed in [47–49, 74].

The CS action is constructed using the connection one-form A = AATA taking values in
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the Maxwell algebra generated by {JA, PA, ZA}, that is

A = EBPB +WBJB +KBZB , (2.2)

where EB, WB, and KB are one-form fields.

The CS form constructed with the invariant bilinear form defines an action for the

relativistic gauge theory for the symmetry under consideration as

ICS =

∫ 〈
A ∧ dA+

2

3
A ∧A ∧A

〉
=

∫ 〈
A ∧ dA+

1

3
A ∧ [A,A]

〉
. (2.3)

In the specific case we are now reviewing, when the Maxwell algebra is supplemented

with the three additional U(1) generators (Y1, Y2, and Y3), the connection one-form involved

in the construction reads

A = EBPB +WBJB +KBZB +MY1 + SY2 + TY3 , (2.4)

where M , S, and T are the additional bosonic gauge fields. Also the bilinear form acquires

further non-zero entries due to the presence of the new generators (see [74] for details). In

particular, a non-degenerate bilinear form can be obtained from the aforesaid relativistic

bilinear form, allowing for a well-defined and finite NR CS action.

Specifically, in [74], the contraction leading to the NR generators is defined through

the identifications

P0 =
H̃

2ξ
+ ξM̃ , Pa = P̃a , Y1 =

H̃

2ξ
− ξM̃ ,

J0 =
J̃

2
+ ξ2S̃ , Ja = ξG̃a , Y2 =

J̃

2
− ξ2S̃ , (2.5)

Z0 =
Z̃

2ξ2
+ T̃ , Za =

Z̃a
ξ
, Y3 =

Z̃

2ξ2
− T̃ ,

and by subsequently taking ξ →∞. Let us note that the index A = 0, 1, 2 has previously

been decomposed as A→ {0, a}, with a = 1, 2. Furthermore, Y1, Y2, and Y3 are the three

U(1) generators introduced at the relativistic level.

In terms of the NR generators and fields, the gauge connection one-form of [74], Ã =

AAT̃A, is given by

Ã = τH̃ + eaP̃a + ωJ̃ + ωaG̃a + kZ̃ + kaZ̃a +mM̃ + sS̃ + tT̃ . (2.6)

The NR version of the Maxwell algebra presented in [74] was called by the authors

Maxwellian Exotic Bargmann (MEB) algebra, and its non-trivial commutations rela-

tions read [
G̃a, P̃b

]
= −εabM̃ ,

[
G̃a, Z̃b

]
= −εabT̃ ,[

H̃, G̃a

]
= εabP̃b ,

[
J̃ , Z̃a

]
= εabZ̃b ,[

J̃ , P̃a

]
= εabP̃b ,

[
H̃, P̃a

]
= εabZ̃b , (2.7)[

J̃ , G̃a

]
= εabG̃b ,

[
P̃a, P̃b

]
= −εabT̃ ,[

G̃a, G̃b

]
= −εabS̃ ,

[
Z̃, G̃a

]
= εabZ̃b .
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Such NR algebra admits the following non-vanishing components of the invariant tensor〈
G̃aG̃b

〉
= α̃0δab ,〈

G̃aP̃b

〉
= α̃1δab ,〈

G̃aZ̃b

〉
= α̃2δab =

〈
P̃aP̃b

〉
, (2.8)〈

J̃ S̃
〉

= −α̃0 ,〈
J̃M̃

〉
= −α̃1 =

〈
H̃S̃

〉
,〈

J̃ T̃
〉

= −α̃2 =
〈
H̃M̃

〉
.

This bilinear form is non-degenerate if α̃2 6= 0. The MEB curvature two-forms are given by

R (ω) = dω ,

Ra
(
ωb
)

= dωa + εacωωc ,

R (τ) = dτ ,

Ra
(
eb
)

= dea + εacωec + εacτωc ,

R (k) = dk , (2.9)

Ra
(
kb
)

= dka + εacωkc + εacτec + εackωc ,

R (m) = dm+ εaceaωc ,

R (s) = ds+
1

2
εacωaωc ,

R (t) = dt+ εacωakc +
1

2
εaceaec .

The NR three-dimensional CS action obtained in [74] reads, up to boundary terms, as

follows:

IMEB =

∫ {
α̃0

[
ωaR

a(ωb)− 2sR (ω)
]

+ α̃1

[
2eaR

a(ωb)− 2mR(ω)− 2τR(s)
]

+α̃2

[
eaR

a
(
eb
)

+ kaR
a
(
ωb
)

+ ωaR
a
(
kb
)
− 2sR (k)− 2mR (τ)

−2tR (ω)
]}

. (2.10)

As was noticed in [74], the NR CS action has three independent sectors proportional to

three arbitrary constants, α̃0, α̃1, and α̃2. The first term corresponds to the so-called exotic

NR gravity. The second term is the CS action for the extended Bargmann algebra [76–

81], while the last term reproduces the CS action for a new NR Maxwell algebra. Let us

note that, since the bilinear form does not result to acquire degeneracy in the contraction

process, the equations of motion from the NR action (2.10) are given by the vanishing of

all the curvatures (2.9).
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3 On the supersymmetric extension of the Maxwellian extended

Bargmann algebra

In this section, we explore the supersymmetric extension of the NR Maxwell algebra by

applying a NR limit to the N = 1 and N = 2 Maxwell superalgebra. Interestingly, we show

that, in order to have a well-defined NR superalgebra, we have to consider the NR limit of

a centrally extended N = 2 Maxwell superalgebra endowed with a so(2) generator. Indeed,

a true supersymmetric extension of the MEB algebra in which the anti-commutator of two

fermionic charges gives a time and a space translation requires, as in the Bargmann case, at

least N = 2 supersymmetry. However, as we shall see in the next section, it is necessary to

introduce by hand additional fermionic and bosonic generators in order to obtain a MEB

superalgebra which allows the proper construction of a NR CS supergravity.

In three spacetime dimensions, the minimal Maxwell superalgebra is spanned by the

set of generators {JA, PA, ZA, Qα,Σα} [72], where, in particular, Qα are the supersymmetry

generators. Besides, such supersymmetric extension of the Maxwell algebra is character-

ized by the presence of an additional Majorana fermionic generator Σα whose presence

assures the Jacobi identity (Pa, Qα, Qβ). The introduction of a second spinorial charge is

not new and have previously been considered in superstring theory [82] and D = 11 super-

gravity [83–85]. The (anti-)commutation relations of the minimal Maxwell superalgebra

are given by

[JA, JB] = εABCJ
C ,

[JA, PB] = εABCP
C ,

[JA, ZB] = εABCZ
C ,

[PA, PB] = εABCZ
C ,

[JA, Qα] = −1

2
(γA) βα Qβ , (3.1)

[JA,Σα] = −1

2
(γA) βα Σβ ,

[PA, Qα] = −1

2
(γA) βα Σβ ,

{Qα, Qβ} = −
(
γAC

)
αβ
PA ,

{Qα,Σβ} = −
(
γAC

)
αβ
ZA ,

where α, β = 1, 2 are spinorial indices, C is the charge conjugation matrix, and γA are the

Dirac matrices in three spacetime dimensions.

As was discussed in [74], it is necessary to include three additional U (1) generators

given by Y1, Y2, and Y3 in order to get the bosonic MEB algebra as a NR limit. At the

supersymmetric level, a NR contraction can be applied by considering the rescaling of the

bosonic generators as in (2.5) and the following rescaling, with a dimensionless parameter

ξ, of the Majorana fermionic generators Qα and Σα:

Qα =
√
ξQ̃−

α , Σα =
1√
ξ

Σ̃−
α . (3.2)
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A particular supersymmetric extension of the MEB algebra is obtained from the NR con-

traction ξ →∞ of (3.1):

[
G̃a, P̃b

]
= −εabM̃ ,

[
G̃a, Z̃b

]
= −εabT̃ ,[

H̃, G̃a

]
= εabP̃b ,

[
J̃ , Z̃a

]
= εabZ̃b ,[

J̃ , P̃a

]
= εabP̃b ,

[
H̃, P̃a

]
= εabZ̃b ,[

J̃ , G̃a

]
= εabG̃b ,

[
P̃a, P̃b

]
= −εabT̃ ,[

G̃a, G̃b

]
= −εabS̃ ,

[
Z̃, G̃a

]
= εabZ̃b , (3.3)[

J̃ , Q̃−
α

]
= −1

2
(γ0)

β
α Q̃−

β ,
[
J̃ , Σ̃−

α

]
= −1

2
(γ0)

β
α Σ̃−

β ,[
H̃, Q̃−

α

]
= −1

2
(γ0)

β
α Σ̃−

β ,{
Q̃−
α , Q̃

−
β

}
= −

(
γ0C

)
αβ
M̃ ,

{
Q̃−
α , Σ̃

−
β

}
= −

(
γ0C

)
αβ
T̃ .

Although the (anti-)commutation relations (3.3) are well-defined and satisfy the Jacobi

identities, we cannot say that the N = 1 MEB superalgebra obtained here is a true su-

persymmetry algebra. Indeed, the anti-commutator of two supercharges leads to a central

charge transformation instead of a time and space translation. This is analogous to the

N = 1 Bargmann superalgebra case [1].

One way to circumvent such difficulty is to apply the NR contraction to a N = 2

relativistic Maxwell superalgebra. The N = 2 supersymmetric extension of the Maxwell

algebra has been explored by diverse authors [62, 64, 71]. Here, we shall focus on the N = 2

centrally extended Maxwell superalgebra endowed with a so (2) internal symmetry genera-

tor introduced in [73]. SuchN = 2 Maxwell superalgebra is spanned by the set of generators{
JA, PA, ZA,B,Z, Qiα,Σi

α

}
, which satisfy the following non-vanishing (anti-)commutation

relations:

[JA, JB] = εABCJ
C , [JA, PB] = εABCP

C ,

[JA, ZB] = εABCZ
C , [PA, PB] = εABCZ

C ,[
JA, Q

i
α

]
= −1

2
(γA) βα Qiβ ,

[
JA,Σ

i
α

]
= −1

2
(γA) βα Σi

β , (3.4)[
PA, Q

i
α

]
= −1

2
(γA) βα Σi

β ,
[
Qiα,B

]
=

1

2
εijΣj

α ,{
Qiα, Q

j
β

}
= −δij

(
γAC

)
αβ
PA − CαβεijB ,{

Qiα,Σ
j
β

}
= −δij

(
γAC

)
αβ
ZA − CαβεijZ ,

where i = 1, 2 is the number of supercharges. Let us note that the presence of a so (2)

internal symmetry generator is crucial in order to admit a non-degenerate invariant inner

product [73]. Then, following [86], let us consider the following definitions of the fermionic
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generators

Q±
α =

1√
2

(
Q1
α ± εαβQ2

β

)
,

Σ±
α =

1√
2

(
Σ1
α ± εαβΣ2

β

)
. (3.5)

A dimensionless parameter ξ can be introduced by considering the rescaling of the gener-

ators and central extension,

J0 = J̃ , Ja = ξG̃a ,

P0 =
H̃

2ξ
+ ξM̃ , Pa = P̃a , B =

H̃

2ξ
− ξM̃ ,

Z0 =
Z̃

2ξ2
+ T̃ , Za =

Z̃a
ξ
, Z =

Z̃

2ξ2
− T̃ , (3.6)

Q−
α =

√
ξQ̃−

α , Q+
α =

1√
ξ
Q̃+
α ,

Σ−
α =

1√
ξ

Σ̃−
α , Σ+

α =
1

ξ3/2
Σ̃+
α .

Then, after taking the limit ξ →∞, a particularN = 2 Maxwellian Bargmann superalgebra

is obtained; its (anti-)commutation relations are given by the purely bosonic commutators[
G̃a, P̃b

]
= −εabM̃ ,

[
G̃a, Z̃b

]
= −εabT̃ ,[

H̃, G̃a

]
= εabP̃b ,

[
J̃ , Z̃a

]
= εabZ̃b ,[

J̃ , P̃a

]
= εabP̃b ,

[
H̃, P̃a

]
= εabZ̃b , (3.7)[

J̃ , G̃a

]
= εabG̃b ,

[
P̃a, P̃b

]
= −εabT̃ ,[

Z̃, G̃a

]
= εabZ̃b ,

along with [
J̃ , Q̃±

α

]
= −1

2
(γ0)

β
α Q̃±

β ,
[
J̃ , Σ̃±

α

]
= −1

2
(γ0)

β
α Σ̃±

β ,[
H̃, Q̃−

α

]
= − (γ0)

β
α Σ̃−

β ,
[
P̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Σ̃−

β ,[
G̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Q̃−

β ,
[
G̃a, Σ̃

+
α

]
= −1

2
(γa)

β
α Σ̃−

β ,{
Q̃−
α , Q̃

−
β

}
= −2

(
γ0C

)
αβ
M̃ ,

{
Q̃+
α , Q̃

−
β

}
= − (γaC)αβ P̃a , (3.8){

Q̃+
α , Q̃

+
β

}
= −

(
γ0C

)
αβ
H̃ ,

{
Q̃−
α , Σ̃

−
β

}
= −2

(
γ0C

)
αβ
T̃ ,{

Q̃±
α , Σ̃

∓
β

}
= − (γaC)αβ Z̃a ,

{
Q̃+
α , Σ̃

+
β

}
= −

(
γ0C

)
αβ
Z̃ .

Notice that, unlike the N = 1 superalgebra, the N = 2 Maxwellian Bargmann super-

algebra obtained here can be seen as a true supersymmetry algebra. In particular, let us
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note the presence of the non-vanishing commutator between the G̃a generator and super-

symmetry generator. Nevertheless, this superalgebra does not contain the MEB algebra as

a subalgebra. Indeed, the bosonic subalgebra (3.7) can be seen as a non-relativistic version

of a [Maxwell]⊕u (1)⊕ u (1) algebra.

Moreover, although the N = 2 NR Maxwell superalgebra (3.7)–(3.8) has the desired

features of a true superalgebra, it is not a good candidate to construct a three-dimensional

CS supergravity action. Indeed, in order to have a NR supergravity action based on a su-

persymmetric extension of the MEB algebra, we need a well-defined invariant tensor, which

requires to introduce by hand additional fermionic generators. The explicit Maxwellian ex-

tended Bargmann superalgebra allowing to construct a NR supergravity action is presented

in the next section.

4 Maxwellian extended Bargmann supergravity

Here, we present the explicit form of the Maxwellian extended Bargmann superalgebra

allowing to construct a NR supergravity action. Consequently, we develop the aforemen-

tioned NR supergravity action by exploiting the CS construction in three dimensions.

4.1 Maxwellian extended Bargmann superalgebra

As we have discussed in the previous section, the N = 2 NR Maxwell superalgebra given

by (3.7)–(3.8) does not allow for the proper construction of a NR CS supergravity action

although its relativistic analogue is well-defined. In order to have a proper NR CS su-

pergravity action based on a supersymmetric extension of the MEB algebra, one requires

to find a NR superalgebra which not only contains the MEB algebra as a subalgebra but

also admits a non-degenerate invariant supertrace. Indeed, when studying the NR limit

of a theory, one has that the symplectic form of the NR model might become degenerate,

making some fields not determined by the field equations, thus reducing the number of

dynamical fields. In the case of a CS formulation in three dimensions, the non-degeneracy

of the bilinear invariant trace of gauge generators implies the non-degeneracy of the sym-

plectic form, which would ensure dynamically indeterminate fields in the NR theory. In

particular, the non-degeneracy of the bilinear form is related to the physical requirement

that the CS action involves a kinematical term for each field and the equation of motions

imply that all curvatures vanish.

Here we construct by hand a supersymmetric extension of the MEB algebra by in-

troducing six Majorana fermionic generators Q̃+
α , Q̃−

α , Σ̃+
α , Σ̃−

α , R̃α, and W̃α. Let us note

that the presence of the R̃α and W̃α generators is similar to what happens in the extended

Bargmann superalgebra presented in [3] and in the extended Newtonian superalgebra of [4],

in which a R̃α generator is considered. Furthermore, we introduce six extra bosonic gen-

erators Y1, Y2, U1, U2, B1, and B2. Both B1 and B2 are central, while the others act

non-trivially on the spinor generators, similarly to the extra bosonic generators introduced

in the extended Newton-Hooke supergravity [5]. The proposed supersymmetric extension

of the MEB algebra is generated by the set of bosonic and fermionic generators

{J̃ , G̃a, S̃, H̃, P̃a, M̃ , Z̃, Z̃a, T̃ , Ỹ1, Ỹ2, Ũ1, Ũ2, B̃1, B̃2, Q̃
+
α , Q̃

−
α , R̃α, Σ̃

+
α , Σ̃

−
α , W̃α}. (4.1)
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Such generators satisfy the MEB algebra (2.7) along with the following non-vanishing

(anti-)commutation relations:

[
J̃ , Q̃±

α

]
= −1

2
(γ0)

β
α Q̃±

β ,
[
J̃ , Σ̃±

α

]
= −1

2
(γ0)

β
α Σ̃±

β ,
[
M̃, Q̃+

α

]
= −1

2
(γ0)

β
α W̃β ,[

H̃, Q̃±
α

]
= −1

2
(γ0)

β
α Σ̃±

α ,
[
P̃a, Q̃

+
α

]
= −1

2
(γa)

β
α Σ̃−

β ,
[
Ỹ1, Q̃

±
α

]
= ±1

2
(γ0)αβ Q̃

±
β ,[

G̃a, Q̃
+
α

]
= −1

2
(γa)

β
α Q̃−

β ,
[
G̃a, Q̃

−
α

]
= −1

2
(γa)

β
α R̃β ,

[
Ỹ1, Σ̃

±
α

]
= ±1

2
(γ0)αβ Σ̃±

β ,[
G̃a, Σ̃

+
α

]
= −1

2
(γa)

β
α Σ̃−

β ,
[
G̃a, Σ̃

−
α

]
= −1

2
(γa)

β
α W̃β ,

[
Ũ1, Q̃

±
α

]
= ±1

2
(γ0)αβ Σ̃±

β ,[
Pa, Q̃

−
α

]
= −1

2
(γa)

β
α W̃β ,

[
J̃ , R̃α

]
= −1

2
(γ0)

β
α R̃β ,

[
Ỹ2, Q̃

+
α

]
=
[
Ỹ1, R̃α

]
=

1

2
(γ0)αβ R̃β ,[

J̃ , W̃α

]
= −1

2
(γ0)

β
α W̃β ,

[
H̃, R̃α

]
= −1

2
(γ0)

β
α W̃β ,

[
Ỹ2, Σ̃

+
α

]
=
[
Ỹ1, W̃α

]
=

1

2
(γ0)αβ W̃β ,[

S̃, Q̃+
α

]
= −1

2
(γ0)

β
α R̃β ,

[
S̃, Σ̃+

α

]
= −1

2
(γ0)

β
α W̃β ,

[
Ũ2, Q̃

+
α

]
=
[
Ũ1, R̃α

]
=

1

2
(γ0)αβ W̃β ,

{
Q̃−
α , Q̃

−
β

}
= −

(
γ0C

)
αβ
M̃+

(
γ0C

)
αβ
Ũ2 ,

{
Q̃+
α , Σ̃

+
β

}
= −

(
γ0C

)
αβ
Z̃ −

(
γ0C

)
αβ
B̃1 ,{

Q̃+
α , Q̃

+
β

}
= −

(
γ0C

)
αβ
H̃ −

(
γ0C

)
αβ
Ũ1 ,

{
Q̃−
α , Σ̃

−
β

}
= −

(
γ0C

)
αβ
T̃+

(
γ0C

)
αβ
B̃2 ,{

Q̃+
α , R̃β

}
= −

(
γ0C

)
αβ
M̃ −

(
γ0C

)
αβ
Ũ2 ,

{
Q̃+
α , W̃β

}
= −

(
γ0C

)
αβ
T̃ −

(
γ0C

)
αβ
B̃2 ,{

Σ̃+
α , R̃β

}
= −

(
γ0C

)
αβ
T̃ −

(
γ0C

)
αβ
B̃2 ,

{
Q̃±
α , Σ̃

∓
β

}
= − (γaC)αβ Z̃a ,{

Q̃+
α , Q̃

−
β

}
= − (γaC)αβ P̃a . (4.2)

The superalgebra given by (2.7) and (4.2) will be denoted as the Maxwellian extended

Bargmann superalgebra. One can note that the S̃ generator is no longer a central charge

in this supersymmetric extension of the MEB algebra but acts non-trivially on the spinor

generators Q̃+
α and Σ̃+

α . It is important to emphasize that the MEB superalgebra obtained

here has not been obtained through a NR limit of a relativistic superalgebra. Furthermore,

the supersymmetric extension of the MEB algebra allowing a well-defined CS supergravity

action could not be unique. Then, it would be interesting to study further supersymmetric

extensions of the MEB algebra and the possibility of obtaining them by applying a NR

limit to a relativistic theory.

4.2 Non-relativistic Chern-Simons supergravity action

Let us construct a NR CS supergravity action based on the MEB superalgebra previously

introduced.
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The non-vanishing components of the invariant tensor for the MEB superalgebra are

given by (2.8) along with

〈
Z̃S̃
〉

= −α̃2 ,〈
Ỹ1Ỹ2

〉
= α̃0 ,〈

Ỹ1Ũ2

〉
= α̃1 =

〈
Ũ1Ỹ2

〉
,〈

Ỹ1B̃2

〉
= α̃2 =

〈
Ũ1Ũ2

〉
=
〈
B̃1Ỹ2

〉
, (4.3)〈

Q̃−
α Q̃

−
β

〉
= 2α̃1Cαβ =

〈
Q̃+
α R̃β

〉
,〈

Q̃−
α Σ̃−

β

〉
= 2α̃2Cαβ =

〈
Σ̃+
α R̃β

〉
=
〈
Q̃+
α W̃β

〉
,

where α̃0, α̃1, and α̃2 are arbitrary constants. The bilinear form associated with the MEB

superalgebra is non-degenerate for α̃2 6= 0, analogously to the purely bosonic case [74]. On

the other hand, the gauge connection one-form Ã for the MEB superalgebra reads1

Ã = ωJ̃ + ωaG̃a + τH̃ + eP̃a + kZ̃ + kaZ̃a +mM̃ + sS̃ + tT̃ + y1Ỹ1 + y2Ỹ2 + b1B̃1

+b2B̃2 + u1Ũ1 + u2Ũ2 + ψ+Q̃+ + ψ−Q̃− + ξ+Σ̃+ + ξ−Σ̃− + ρR̃+ χW̃ . (4.4)

The corresponding curvature two-form F̃ = dÃ + Ã ∧ Ã = dÃ + 1
2

[
Ã, Ã

]
in terms of the

generators is given by

F̃ = R (ω) J̃ +Ra
(
ωb
)
G̃a + F (τ) H̃ + F a

(
eb
)
P̃a + F (k) Z̃ + F a

(
kb
)
Z̃a + F (m) M̃

+R (s) S̃ + F (t) T̃ + F (y1) Ỹ1 + F (y2) Ỹ2 + F (b1) B̃1 + F (b2) B̃2 + F (u1) Ũ1

+F (u2) Ũ2 +∇ψ+Q̃+ +∇ψ−Q̃− +∇ξ+Σ̃+ +∇ξ−Σ̃− +∇ρR̃+∇χW̃ . (4.5)

In particular, the bosonic curvature two-forms are given by

F (y1) = dy1 ,

F (y2) = dy2 ,

F (b1) = db1 + ψ̄+γ0ξ+ ,

F (b2) = db2 − ψ̄−γ0ξ− + ψ̄+γ0χ+ ξ̄+γ0ρ , (4.6)

F (u1) = du1 +
1

2
ψ̄+γ0ψ+ ,

F (u2) = du2 −
1

2
ψ̄−γ0ψ− + ψ̄+γ0ρ .

1Here and in the sequel, we omit the spinor index α, in order to lighten the notation.
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together with

F (ω) = R (ω) ,

F a
(
ωb
)

= Ra
(
ωb
)
,

F (τ) = R (τ) +
1

2
ψ̄+γ0ψ+ ,

F a
(
eb
)

= Ra
(
eb
)

+ ψ̄+γaψ− ,

F (k) = R (k) + ψ̄+γ0ξ+ , (4.7)

F a
(
kb
)

= Ra
(
kb
)

+ ψ̄+γaξ− + ψ̄−γaξ+ ,

F (m) = R (m) +
1

2
ψ̄−γ0ψ− + ψ̄+γ0ρ ,

F (s) = R (s) ,

F (t) = R (t) + ψ̄−γ0ξ− + ψ̄+γ0χ+ ξ̄+γ0ρ ,

where R (ω), Ra
(
ωb
)
, R (τ), Ra

(
eb
)
, R (k), Ra

(
kb
)
, R (m), R (s), and R (t) correspond to

the MEB curvatures already defined in (2.9). On the other hand, the covariant derivatives

of the spinor 1-form fields read

∇ψ+ = dψ+ +
1

2
ωγ0ψ

+ − 1

2
y1γ0ψ

+ ,

∇ψ− = dψ− +
1

2
ωγ0ψ

− +
1

2
ωaγaψ

+ +
1

2
y1γ0ψ

− ,

∇ξ+ = dξ+ +
1

2
ωγ0ξ

+ +
1

2
τγ0ψ

+ − 1

2
y1γ0ξ

+ − 1

2
u1γ0ψ

+ ,

∇ξ− = dξ− +
1

2
ωγ0ξ

− +
1

2
τγ0ψ

− +
1

2
eaγaψ

+ +
1

2
ωaγaξ

+ (4.8)

+
1

2
y1γ0ξ

− +
1

2
u1γ0ψ

− ,

∇ρ = dρ+
1

2
ωγ0ρ+

1

2
ωaγaψ

− +
1

2
sγ0ψ

+ − 1

2
y2γ0ψ

+ − 1

2
y1γ0ρ ,

∇χ = dχ+
1

2
ωγ0χ+

1

2
ωaγaξ

− +
1

2
eaγaψ

− +
1

2
τγ0ρ+

1

2
sγ0ξ

+ +
1

2
mγ0ψ

+

−1

2
y2γ0ξ

+ − 1

2
y1γ0χ−

1

2
u2γ0ψ

+ − 1

2
u1γ0ρ .

Let us note that the gauge fields related to the additional bosonic generators {Y1, Y2, U1, U2}
appear explicitly on the spinorial curvature. One can see that b1 and b2 do not give any

contribution to the fermionic curvatures since they are related to central charges.

A CS supergravity action based on the Maxwellian extended Bargmann superalgebra

can be constructed by combining the non-zero invariant tensors (2.8) and (4.3) with the
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gauge connection one-form Ã (4.4), and it reads, up to boundary terms, as follows:

I =

∫ {
α̃0

[
ωaR

a(ωb)− 2sR (ω) + 2y1dy2

]
+ α̃1

[
2eaR

a(ωb)− 2mR(ω)− 2τR(s) + 2y1du2

+2u1dy2 + 2ψ̄+∇ρ+ 2ρ̄∇ψ+ + 2ψ̄−∇ψ−
]

+ α̃2

[
eaR

a
(
eb
)

+ kaR
a
(
ωb
)

+ ωaR
a
(
kb
)

−2sR (k)− 2mR (τ)− 2tR (ω) + 2y1db2 + 2u1du2 + 2y2db1 + 2ψ̄−∇ξ− + 2ξ̄−∇ψ−

+2ψ̄+∇χ+ 2χ̄∇ψ+ + 2ξ̄+∇ρ+ 2ρ̄∇ξ+
]}

. (4.9)

The CS action (4.9) obtained here describes the so-called Maxwellian extended Bargmann

supergravity theory. Let us note that the NR CS supergravity action (4.9) contains three

independent sectors proportional to α̃0, α̃1, and α̃2. In particular, the term proportional

to α̃0 corresponds to a NR exotic Lagrangian, while the extended Bargmann supergravity

introduced in [3] appears in the α̃1 sector, endowed with some additional terms related to

the presence of the bosonic 1-form fields y1, y2, u1, and u2. The term proportional to α̃2

can be seen as the CS Lagrangian for a new NR Maxwell superalgebra. In addition, one

can see that the bosonic part of the CS action (4.9) corresponds to the MEB gravity action

presented in [74], supplemented with the bosonic 1-form fields y1, y2, b1, b2, u1, and u2.

Note that, for α2 6= 0, the field equations from the NR CS supergravity action (4.9)

reduce to the vanishing of the curvature two-forms (4.7), (4.6), and (4.8) associated with

the MEB superalgebra. These curvatures transform covariantly with respect to the super-

symmetry transformation laws given in (A.1).

The three-dimensional Maxwellian extended Bargmann supergravity theory obtained

here corresponds to an alternative NR supergravity theory which contains the extended

Bargmann supergravity [3] (supplemented with some additional bosonic 1-form fields) as

a sub-case and which is distinct from the Newton-Cartan supergravity introduced in [1, 2].

It is important to emphasize that, although our result generalizes the extended Bargmann

supergravity [3], the new NR supergravity obtained here do not contain a cosmological

constant. It would be then interesting to study the introduction of a cosmological constant

in our model.

5 Discussion

In this work, we have studied the NR limit of the relativistic Maxwell superalgebra. A

well-defined NR superalgebra with the desired features has been obtained by contracting

the N = 2 Maxwell superalgebra introduced in [73]. Nevertheless, the construction of a

proper NR supergravity action based on a NR version of the Maxwell superalgebra has

required to introduce by hand new fermionic and bosonic generators. The new structure

has been called as the Maxwellian extended Bargmann superalgebra and corresponds to a

supersymmetric extension of the MEB algebra presented in [74]. In particular the MEB

superalgebra admits a non-degenerate invariant bilinear form allowing to construct a proper

NR CS supergravity action. Interestingly, the MEB CS supergravity theory presented here

contains the extended Bargmann supergravity as a sub-case.
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The NR supergravity action constructed in this work, see (4.9), could serve as a starting

point for diverse studies. In particular, our result is the first step to construct a new family

of NR supergravity beyond the extended Bargmann supergravity. Furthermore, the MEB

supergravity could be useful in the construction of a three-dimensional Horava-Lifshitz

supergravity. Indeed, as was noticed in [3, 33], the extended Bargmann gravity can be

seen as a particular kinetic term of the Horava-Lifshitz gravity. In particular, it would

be intriguing to explore the effects arising from the presence of the additional gauge field

appearing in the Maxwell version of the extended Bargmann (super)algebra.

Moreover, the NR supergravity action (4.9) could have applications in the context of

holography, as it already happens for NR gravity at the purely bosonic level [11, 13], as well

as in effective field theory, where gravitational fields are used as geometrical background

response functions [16, 98]. Also at this level, it would be interesting to examine the

role played by the additional field involved in Maxwell version of the extended Bargmann

(super)algebra. As a further remark, let us highlight that additional gauge fields appearing

in (super)Maxwell algebras have already been proven to be of particular relevance in the

study of the supersymmetry invariance of flat (relativistic) supergravity on a manifold

with non-trivial boundary [68], where it has also been conjectured that the presence of the

new gauge fields in the boundary would allow to regularize the supergravity action in the

holographic renormalization language.

On the other hand, concerning, in particular, the purely bosonic restriction of our

model, one could explore the phenomenological implications possibly related to Dark Mat-

ter at the non-relativistic level. Another aspect of the MEB gravity which deserves some

investigation is the study of the asymptotic symmetries. As it was shown in [49], the

asymptotic symmetry of the three-dimensional CS theory invariant under the Maxwell al-

gebra is given by an extension and deformation of the BMS3 algebra denoted as Max3 [99].

One could then expect that, since the MEB gravity is the NR version of the Maxwell CS

gravity, the corresponding asymptotic symmetry of the MEB gravity would be given by a

NR version of the Max3 algebra. Interestingly, the presence of the additional gauge field

ZA modifies not only the asymptotic sector but also the vacuum of the theory. It would be

then interesting to study the physical implications of the additional bosonic gauge field ap-

pearing in our model. One could go even further and extend this study to supersymmetric

level. However, this would require first to establish the relativistic version of our NR model

and then study its asymptotic structure by considering suitable boundary conditions.

It would also be interesting to develop higher-dimensional extensions of our NR su-

pergravity theory, since we argue that, due to the fact that the introduction of (at least)

one second spinorial charge not only is required to construct the minimal supersymmet-

ric extension of the Maxwell algebra but has also been considered in superstring [82] and

in D = 11 supergravity [83–85], they could be relevant in the study and analysis of the

NR limit of higher-dimensional supergravity models, and, more specifically, of D = 11

supergravity.

A future development could also consist in exploring the possibility to obtain the MEB

superalgebra introduced here through a NR limit or contraction process from a relativistic

superalgebra. An alternative limit which could be used to recover the MEB superalgebra
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is the vanishing cosmological constant limit. In particular, it would be worth exploring the

possibility to accommodate a cosmological constant to the MEB supergravity presented

here. One could conjecture that a supersymmetric extension of the recent enlarged ex-

tended Bargmann gravity, introduced in [87], reproduces the present MEB supergravity in

a flat limit [work in progress].

On the other hand, it would be interesting to apply the Lie algebra expansion

method [88–91] to obtain the MEB superalgebra. One could follow the procedure used

in [92–94] and consider the expansion of a relativistic Maxwell superalgebra. Alternatively,

one might also extend the results obtained in [87, 95] in which NR algebras appear as

semigroup expansions of the so-called Nappi-Witten algebra.

Another aspect that deserves further investigation regards the development of a

Maxwellian version of the extended Newtonian gravity [96] and its supersymmetric ex-

tension [4]. In particular, the result obtained here could correspond to a subcase of a

Maxwellian generalization of the extended Newtonian supergravity. A cosmological con-

stant has recently been accommodated in the extended Newtonian gravity action by in-

cluding new generators to the Newton-Hooke algebra [97]. One could expect to obtain a

Maxwellian Newtonian algebra by generalizing the MEB one in a similar way to [4, 97]. It

would be then compelling to explore possible matter couplings.
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A Supersymmetry transformation laws

The curvatures (4.7), (4.6), and (4.8) associated with the MEB superalgebra transform

covariantly with respect to the following supersymmetry transformation laws:

δω = 0 ,

δωa = 0 ,

δτ = −ε̄+γ0ψ+ ,

δea = −ε̄+γaψ− − ε̄−γaψ+ ,

δk = −ε̄+γ0ξ+ − ϕ̄+γ0ψ+ ,

δka = −ε̄±γaξ∓ − ϕ̄±γaψ∓ ,

δm = −ε̄−γ0ψ− − ε̄+γ0ρ− η̄γ0ψ+ ,

δs = 0 ,

δt = −ε̄−γ0ξ− − ϕ̄−γ0ψ− − ε̄+γ0χ− ζ̄γ0ψ+ − ϕ̄+γ0ρ− η̄γ0ξ+ ,
δy1 = 0 ,

δy2 = 0 ,
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δb1 = −ε̄+γ0ξ+ − ϕ̄+γ0ψ+ ,

δb2 = ε̄−γ0ξ− + ϕ̄−γ0ψ− − ε̄+γ0χ− ζ̄γ0ψ+ − ϕ̄+γ0ρ− η̄γ0ξ+ ,
δu1 = −ε̄+γ0ψ+ ,

δu2 = ε̄−γ0ψ− − ε̄+γ0ρ− η̄γ0ψ+ ,

δε+ = dε+ +
1

2
ωγ0ε

+ − 1

2
y1γ0ε

+ ,

δε− = dε− +
1

2
ωγ0ε

− +
1

2
ωaγaε

+ +
1

2
y1γ0ε

− ,

δϕ+ = dϕ+ +
1

2
ωγ0ϕ

+ +
1

2
τγ0ε

+ − 1

2
y1γ0ϕ

+ − 1

2
u1γ0ε

+ ,

δϕ− = dϕ− +
1

2
ωγ0ϕ

− +
1

2
τγ0ε

− +
1

2
eaγaε

+ +
1

2
ωaγaϕ

+ +
1

2
y1γ0ϕ

− +
1

2
u1γ0ε

− ,

δη = dη +
1

2
ωγ0η +

1

2
ωaγaε

− +
1

2
sγ0ε

+ − 1

2
y2γ0ε

+ − 1

2
y1γ0η ,

δζ = dζ +
1

2
ωγ0ζ +

1

2
ωaγaϕ

− +
1

2
eaγaε

− +
1

2
τγ0η +

1

2
sγ0ϕ

+ +
1

2
mγ0ε

+

−1

2
y2γ0ϕ

+ − 1

2
y1γ0ζ −

1

2
u2γ0ε

+ − 1

2
u1γ0η , (A.1)

where ε±, ϕ±, η, and ζ are the fermionic gauge parameters related to the Majorana

fermionic generators Q̃±, Σ̃±, R̃, and W̃ , respectively (in order to lighten the notation,

we have omitted the spinor index α).
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[66] D.M. Peñafiel and L. Ravera, On the Hidden Maxwell Superalgebra underlying D = 4

Supergravity, Fortsch. Phys. 65 (2017) 1700005 [arXiv:1701.04234] [INSPIRE].

[67] L. Ravera, Hidden role of Maxwell superalgebras in the free differential algebras of D = 4 and

D = 11 supergravity, Eur. Phys. J. C 78 (2018) 211 [arXiv:1801.08860] [INSPIRE].
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[97] P. Concha, L. Ravera and E. Rodŕıguez, Three-dimensional exotic Newtonian gravity with

cosmological constant, Phys. Lett. B 804 (2020) 135392 [arXiv:1912.02836] [INSPIRE].

[98] M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall

Effect, Phys. Rev. D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].

[99] P. Concha and H.R. Safari, On Stabilization of Maxwell-BMS Algebra, arXiv:1909.12827

[INSPIRE].

– 20 –

https://doi.org/10.1016/0550-3213(82)90376-5
https://doi.org/10.1016/0550-3213(82)90376-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B201,101%22
https://doi.org/10.1007/JHEP08(2016)095
https://arxiv.org/abs/1606.07328
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07328
https://doi.org/10.1016/j.physletb.2017.07.016
https://arxiv.org/abs/1705.06251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.06251
https://doi.org/10.1016/j.physletb.2006.06.007
https://doi.org/10.1016/j.physletb.2006.06.007
https://arxiv.org/abs/hep-th/0602198
https://inspirehep.net/search?p=find+EPRINT+hep-th/0602198
https://doi.org/10.1007/JHEP07(2019)085
https://arxiv.org/abs/1906.00086
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.00086
https://doi.org/10.1143/PTP.109.853
https://arxiv.org/abs/hep-th/0106114
https://inspirehep.net/search?p=find+EPRINT+hep-th/0106114
https://doi.org/10.1016/S0550-3213(03)00342-0
https://arxiv.org/abs/hep-th/0212347
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212347
https://doi.org/10.1007/s10773-007-9385-3
https://arxiv.org/abs/hep-th/0703017
https://inspirehep.net/search?p=find+EPRINT+hep-th/0703017
https://doi.org/10.1063/1.2390659
https://arxiv.org/abs/hep-th/0606215
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606215
https://doi.org/10.1007/JHEP08(2019)048
https://arxiv.org/abs/1904.08304
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.08304
https://arxiv.org/abs/1904.12786
https://inspirehep.net/search?p=find+EPRINT+arXiv:1904.12786
https://arxiv.org/abs/1906.08220
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.08220
https://doi.org/10.1016/j.physletb.2019.135005
https://arxiv.org/abs/1906.02161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.02161
https://doi.org/10.1103/PhysRevLett.122.061106
https://doi.org/10.1103/PhysRevLett.122.061106
https://arxiv.org/abs/1807.04765
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.04765
https://doi.org/10.1016/j.physletb.2020.135392
https://arxiv.org/abs/1912.02836
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.02836
https://doi.org/10.1103/PhysRevD.91.045030
https://arxiv.org/abs/1407.1252
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1252
https://arxiv.org/abs/1909.12827
https://inspirehep.net/search?p=find+EPRINT+arXiv:1909.12827

	Introduction
	Maxwellian extended Bargmann gravity
	On the supersymmetric extension of the Maxwellian extended Bargmann algebra
	Maxwellian extended Bargmann supergravity
	Maxwellian extended Bargmann superalgebra
	Non-relativistic Chern-Simons supergravity action

	Discussion
	Supersymmetry transformation laws

