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1 Introduction

Recently new interesting generalization of Newton-Cartan (NC) gravity [1] was proposed
in [2]. In standard NC gravity there is one-dimensional foliation direction of space-time cor-
responding to the absolute time direction that is longitudinal to the world-line of particle.
The stringy NC gravity is generelization of this picture in the sense that one dimensional
foliation is replaced by a two-dimensional foliation with one time-like and spatial foliation
directions that are longitudinal to the world-sheet of the string. Further, stringy NC grav-
ity is related to non-relativistic strings [3, 4] in the same way as general relativity is related

1" This paper also analyzed

to relativistic string theory as was recently discussed in [5].
T-duality properties of non-relativistic strings in stringy Newton-Cartan background that
are very interesting when it was shown that T-duality along the longitudinal direction of
the stringy Newton-Cartan geometry describes relativistic string theory on a Lorentzian
geometry with a compact lightlike isometry, which is otherwise only defined by a subtle
infinite boost limit. This fact was further confirmed in [9] when T-duality properties of
non-relativistic string in stringy NC background was analyzed with the help of canonical
formulation of this string sigma model found in [10].

Since the proposal suggested in [5] is very interesting we mean that it is natural to
study further aspects of stringy NC. In particular, we would like to see whether it is possible
to define another extended objects known in string theory, as for example D-branes [11]
in this background. It is natural to begin with D1-brane which is two dimensional object
with gauge field propagating on its world-sheet. This action couples to Ramond-Ramond
(RR) two form and one form together to gravity, NSNS two form and dilation that are
background fields of type IIB supegravity. Such an action can be written in manifestly
SL(2,Z) invariant form [12, 13] that reflects SL(2,Z) duality of type IIB theory. We

'For alternative definition of non-relativistic strings with AdS/CFT aplications, see [6, 7]. The Hamil-
tonian analysis of this model was performed in [8].



consider Hamiltonian for this object and analyze non-relativistic limit of the background
metric as was proposed in [14] and that was used for the definition of non-relativistic
string in stringy NC background in [15]. In case of D1-brane as a probe the situation is
more interesting since there is an electric flux on the world-sheet of D1-brane. We firstly
consider D1-brane with fixed gauge invariance when the momentum conjugate to A, is
equal to some integer number m that counts the number of fundamental strings in the
bound state with D1-brane. We call resulting object as (m,n)-string [12, 13]. If we start
with such a probe we should define background RR and NSNS two form fields in such
a way that the limiting procedure [14] leads to finite Hamiltonian constraint. It turns
out that this procedure is similar to the case of fundamental string [15]. However due
to the non-trivial structure of the background fields that define stringy Newton-Cartan
geometry we have to check that they solve the background equations of motion of type I1B
gravity. More explicitly, we consider type IIB gravity equations of motion and study their
solutions for the metric ansatz proposed in [14] together with another fields that appear in
(m, n)-string action. Inserting the ansatz [14] into definition of the relativistic Christoffel
connection we derive condition when this connection is finite even if the parameter that
defines non-relativistic limit goes to infinity. We restrict ourselves to the case of zero torsion
condition [16] even if certainly more general situations are possible, see for example [17].
Now since the Christoffel connection is finite we also find that Ricci tensor is finite and
hence in order to have well defined non-relativistic limit in the background equations of
motion we have to demand that the stress energy tensor for the background fields is finite
as well. It turns out that this condition has important consequence on the dilaton and RR
zero form which now have to be constant. Then the equation of motion for dilaton RR
and zero form implies that field strengths of RR and NSNS two form fields have to vanish.
We also discuss more interesting case of the fundamental string when now dilaton does
not have to be constant. In this case however we find that requirement that Christoffel
symbols for Einstein frame metric is finite implies that spatial projection of derivative of
dilaton should be zero.

In the second part of the paper we focus on the problem of the definition of the action
for n coincident D1-branes in the stringy NC background when the gauge symmetry on the
world-sheet is unfixed. Then in order to have finite and non-trivial theory we have to scale
RR two form and zero form field in appropriate way as well. As a result we obtain finite
Hamiltonian constraint for D1-brane in stringy NC background. Then following standard
procedure we find corresponding Lagrangian density. Finally we also discuss the equations
of motion for the background fields and we find that they have to obey the same conditions
as in case of the stringy NC gravity.

This paper is organized as follows. In the next section 2 we introduce an action and
Hamiltonian for n coincident D1-branes in general background. Then in section 3 we
consider gauge fixed theory that corresponds to (m,n)-string and find its non-relativistic
action in NC background. In section 4 we analyze equations of motion for background
fields. In section 5 we study D1-brane in stringy Newton-Cartan background when the
gauge symmetry is not fixed and we find corresponding Lagrangian density. Finally in
conclusion 6 we outline our results and suggest possible extension of this work.



2 Hamiltonian formulation of D1-brane in general background

In this section we review basic facts about D1-brane in general background and its Hamil-
tonian formulation. As the starting point we consider an action for n coincident D1-branes
in general background

S =—nTp / drdoe™®v/— det A+

- nTDl /deU((bTO' + 27TO/FTU)X + CTO') ’

Aop = Gu0aah0pa” + 21! Fop + BuyOaatdpa”
]:aﬁ = aozAﬁ - 8614047 (2'1)

where ¥, v = 0,1,...,9 are embedding coordinates of D1-brane in the background that
is specified by the metric G, and NSNS two form B, = —B,, together with Ramond-
Ramond two form Cl(ﬁ,) = — l(,i) We further consider background with non-trivial dilaton
® and RR zero form y. Further, o* = (7,0) are world-sheet coordinates and b.,,c;, are

pull-backs of B,,, and C},, to the world-volume of D1-brane. Explicitly,
bag = BuOaxt' 0z’ ,  cop = C’ﬁ)ﬁax“ﬁﬂx". (2.2)

Finally Tp; = ﬁ is D1-brane tension and A,,a = 7,0 is two dimensional gauge field

that propagates on the world-sheet of D1-brane.
It is useful to rewrite the action (2.1) into the form

S =—-—nTp /deae_q)\/— det g — (27! Fro + brg)?

+nTp1 /deU((bm + 270’ Fro)X + Cro) (2.3)

where gog = G 002" 0sx",det g = grr9oo — (9ro)?. Now we proceed to the Hamiltonian
formulation of the theory defined by the action (2.3). First of all we derive conjugate
momenta to z# and A, from (2.3)

oL e ®
Pu = 50,k n1p1 V—detg — (27’ Fry + broy)?
+ (27 Fro + bro) By Opa”) + nT'p1 (xBuOsz” + C’ﬁ)&,x”) ,
oL ne~® (21 Fry + bry) OL

(GuOax” g det g+

VS S0A, T g @b b O T T4 0 Y
and hence
I, = py — Tp17° By Oyx” — nTqug%;)aox” =
=nTp; c® = Gl0ax” g™ det g . (2.5)

V—detg — 27/ Fry + bro)



Using these relations it is easy to see that the bare Hamiltonian is equal to
Hp = /da(puaTa:“ +790; Ay — L) = /dmraagAT (2.6)
while we have three primary constraints

1 ~0, Hoe=pu0sz" =0,

H, = I1,G"11, + Th, (nze_2<I> + (n7 — nx)2> Joo ~ 0. (2.7)

Including these primary constraints to the definition of the Hamiltonian we obtain an
extended Hamiltonian in the form

H— / do(N"Hy + NOHy — A, Dor® + 0,77, (2.8)

where N7, N7 v, are Lagrange multipliers corresponding to the primary constraints
Hr ~ 0, Hy = 0, 77 ~ 0. Now we have to check the stability of all constraints. The
requirement of the preservation of the primary constraint 77 = 0 implies the secondary
constraint

G =0,m" =0. (2.9)

Now we are ready to proceed to the analysis of (m,n)-string in stringy NC background.

3 (m,n)-string in stringy NC background

(m,n)-string is defined as D1-brane where the gauge symmetry is fixed so that the electric
flux 7% is constant and counts the number of fundamental strings. Explicitly, we fix the
gauge generated by G with the gauge fixing function A, = const. Then the fixing of the
gauge implies that 77 = f(7) but the equation of motion for 7% implies that 9,7 = 0 and
hence w7 = m, where m is integer that counts the number of fundamental strings bound
to n D1-branes.

In order to define stringy NC background we follow [14] and introduce 10— dimensional
vierbein EHA so that the metric components have the form

Gu = EE,Pnap ,nap = diag(-1,...,1). (3.1)

Note that the metric inverse G is defined with the help of the inverse vierbein E"; that
obeys the relation

A A A
E, By =05, E, E¥, =6 (3.2)
As the next step we split target-space indices A into A = (a’,a) where now a’ = 0,1 and

a=2,...,d—1. Then we introduce longitudinal vielbein 7,* so that we write

T = 7,7, 0, a,b=0,1. (3.3)
(Z/

/,L b
m,". The 7, can be interpreted as the gauge fields of the longitudinal translations while

In the same way we introduce vierbein ¢,* ,a = 2,...,d — 1 and also introduce gauge field
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inverses with respect to their longitudinal and transverse translations

as the gauge fields of the transverse translations [2]. Then we can also introduce their

a' pn _ sa a v _ gv a, v nw_b__ ¢b w,oa _ a p
e, ey =0y, e ey=0,—71 1, ThT' =00, The, =0, 7, ,=0. (3.4)

In [14] specific form of the relativistic vielbein was proposed that in the limit w — oo
gives Newton-Cartan gravity. It is important to stress that this form of the vielbein was
determined by contraction of Poincare algebra with abelian extension that gives Bergmann
algebra. In case of the stringy NC gravity such a contraction is not known however we mean
that it is natural to generalize construction introduced in [14] when we introduce longitu-
dinal indices. Explicitly, we propose following parameterization of relativistic vierbein [14]

1 / /
a __ a a a _ _a
B =wr,+ oM Ef =e", (3.5)
where w is free parameter that we take to infinity when we define non-relativistic limit. It is
important to stress that justification of this approach can be also found in the construction
of non-relativistic string in stringy NC background [15] when it was shown in [10] that it
agrees with non-relativistic sigma model [5]. Note that the inverse vierbein to (3.5) has
the form (up to terms of order w=3)
[ 1 i 1 M b_p woo_ K 1 © P
Ea—;Ta—ﬁTme E,, =¢, - 227’me (3.6)

Then with the help of (3.5) and (3.6) we obtain following form of the metric

1
GMV = OJZTMV + huy +

27— m 7]ab+2 77ab+4 mum nabv
GH = ETWJ + At — ﬁ(Tmep hPH + T’Zmp h#")—
1
— oo (Tem T+ Tm ) 4 o rlm T (3.7)

As the next step we have to introduce an appropriate parameterization of RR and NSNS
two forms. Following analysis presented [18] we suggest that they have the form?

1 1
B, =X <wTM“ me“ ) <wTyb - 2Wm,,b) €ab + by =

1 1
=X <w27'#a7'ybeab S(m,' T2+ 7,'m, Meay + 0 —5m,'m beab) + b,

2
C :Y<w7' —im ><w7b—1mb>eb+b =
i K 2w H v 2w V) o
b 1 1 b
Y(w 7,07, €ab — 2(mﬂ 7,0 +7,m, )eab+4 5, m eab>+cm,, (3.8)

2This proposed form of NSNS and RR two forms is again generalization of the parameterization of U(1)
gauge field introduced in [14] to the case of NC gravity with two longitudinal directions where we have
to introduce antisymmetric symbol €,; in order to have antisymmetric B, and R,.. This proposal can
be again justified by an agreement between non-relativistic string found in this way [15] and an action
introduced in [15].



where
€ab = —€ba, €01 =1,
and where A, B are factors that can depend on space-time fields and m,n that we choose

in such a way to make Hamiltonian constraint finite in the limit w — co. In fact it turns
out that this requirement implies

mX +nY = \/n2e_2‘1’ + (m —nx)?. (3.9)

Then using (3.8) and also (3.9) we can now perform the limit w — oo in the Hamiltonian
constraint and we find that it is equal to

Hr =1,h"I1, — 2Ty \/n2e_2‘1’ + (m — nx)QHM%*;n“bebchcﬁaa:p-#—
+ T%l (n2e_2<b + (m - nX)Q)acr:UMB,uuaal’y—

— Tgl(n%*m + (m — nx)2)8UxVTl,Cecd<I>daeale,faam” , (3.10)

where we introduced following fields

~ b ~ i ! o, b

T‘Lﬁz = TlZL - hwjmzx Tba 5 e‘ua = epa + muaeuc’(sc “ Tp Tba 5

ab __ u. da b a_i, db ay v b
O = -7 m™'m, —m,' T m —i—muh“my,
7 b b
hyw = Py + M7, Nab + 7,510, Nap 5 (3.11)

and where
II,, = py — Tpimb,,05x” — Tpinc,,0sx" . (3.12)

Finally using the fact that

a be d v c ab d ab
_aaquu €ap® €cdTy 02" = To Nea®P NModTs — a0 P Mg

T = Tﬂa(?aa;“ , ay8 = 0! 7y, 082" (3.13)

we can rewrite the Hamiltonian constraint into the form

H, =11,h*"1L, — 2Tpy \/n2e—2q’ + (m— nx)QHH%‘flnabebchcaaxp—i-
+Th1(n*e " + (m — nx)*)0ox" hyu, Op "+
+ T3, (n?e72% 4+ (m — ny)?) (Tacncatﬁabnbdrgd - aW@abnba> . (3.14)
This is the Hamiltonian constraint for (m,n)-string in stringy NC background.

Let us now proceed to the Lagrangian form of this theory. Note that the Hamiltonian
is equal to

H= /da(NTHT +N°H,), (3.15)

where H; is given in (3.14). From (3.15) we obtain

@t = {a", H} = 2Nh"II, — 2NTpy \/7126’2(1’ + (m — nx)2#Hn e, O’ + N7 Oyt
(3.16)



To proceed further we use the fact that

el =0, &M = e ot (3.17)
and hence
(@# — N7aM)e, " Sppe,) (37 — N7a") = 4(N7)*IL, W11, . (3.18)

Then the Lagrangian density has the form
L=it'p, —H=(i"— N72")p, — NH, =

= 4;” (zH — Nc’a:’“)élfléa/b/él,b/ (¥ — N72™)—
—TA N7 (n?e™2® 4 (m — nx)?) 0y " hyu Oy’ —
— N3, (027" + (m = nx)?) (7 1ea " = 7@
+ Tp1(matby,a™ + nitepz’) . (3.19)
To proceed further we use the fact that
éu‘lléa/b/é,,b/ = EW + T#Cncﬂ)“bnbdﬂ,d , Buu = hy, + mMaT VbTZab + myamb%b . (3.20)

Further, the special property of non-relativistic string and (m, n)-string is that N7, N7 are
determined by the equations of motion for z#. To see this, we multiply the equation of
motion for z# by 7, and we obtain

T (37 — N72) = —2N"Tp, \/nQe_Q‘I’ + (m — nx)%ul,%”an“bebcfpcaox” ) (3.21)
If we multiply this equation with O,z" we get
a
N7 =2, 3.22
. (3.22)

In the similar way we obtain
(0r2" — N7Opa) Ty (0r 2" — N7Opa”) = —4(NT)2Th (n?e2® + (m —nx)*)ass (3.23)

that can be solved for N7 as
1

" 2a,, \V/n2e=2® 4+ (m — nx)?
Inserting (3.22) and (3.24) into (3.19) we obtain Lagrangian density in the form
1 _
L= —5\/7126_2(} + (m — nx)2V—det aao‘ﬁhag—k
+ Tp1(matbz” + nitea’), (3.25)

NT V—deta. (3.24)

where we used the result found in [15] that two terms proportional to ®® cancel each
other as

aaﬁTaanab(I)bcnchﬂd - (Eabnba =0. (326)
The Lagrangian density (3.25) is the final form of the Lagrangian density for (m,n)-string
in stringy NC background. However in order to be our approach self-consistent we have to
check the equations of motion for the background fields that were used in the construction
of the Lagrangian density (3.25).



4 Background equation of motion

In order to derive form of the non-relativistic (m,n)-string we presumed special form of
the background field. Our goal is to check the consistency of the equations of motion for
the background fields when the limiting procedure is performed.

We start with Christoffel symbols of parent relativistic theory

1
Tl = 3G (0uGov + 0y Gop — 06 Gluv) - (4.1)

Now recall that the metric components that define stringy NC background have the form

1 1 1
Gy = W + hu + §Tuamvb77@b + EmM“Tybnab + 2 2mu‘lm,/bnab ,
1 1
GH = — T 4 R — 22 (T‘;)mpbhp“ + T‘zmpbhp”)—
1 1
~ 5.4 (T*‘Cmcpr” + T”dmdep“) + e 4T‘flmp“hp”7'”bmab. (4.2)

Inserting (4.2) into (4.1) we obtain in the limit w — oo

w2

e, = Ehlm(alﬂ'm, + 0y Tuo — OoTuw)+

1 A A A 1
+ §hlw(8‘uhm, + 8l,hcm — aghm,) + 57—170(8#7'01/ + 81,Tou — 807“1,)_

1
= mu b T m B ) Do + OuTou — 0T (43)
where
]A"L —h,, + 1 a,, b + 1 arb (4 4)
py — Ny QTM My TNab 2mu Ty Nab - :

Let us now focus on the divergent term that can be rewritten into the form

hP? (OuTow + OuTuo — OoTuw) =
= W7 [(OuT," — 80-Tﬂa)nab7'yb + Tua(a,,TUb — &,Tyb)nab] ) (4.5)

We see that this term vanishes when we impose zero torsion condition
1, — 8,,7'u“ =0. (4.6)

In what follows we will presume this condition. Then after some calculation we find
that (4.3) simplifies considerably and has the form?

1 a a 1 g
[hy = 3700 + 0um,®) + Sh (Duhow + dyhay — Oshyu )+

1 loa a a a a
+ th ((Oumy" — Oom; )UabTVb + (0ym, — Opm,, )nabTub) ) (4.7)

#Note that this Christoffel symbols differ from the connection found [2] since the expression on the second
line contain ordinary derivative of m," instead of the covariant one. We mean that this is a consequence
of the condition (4.6) which is rather strong and could be replaced by weaker one asi in [2]. We hope to
return to the analysis of non-relativistic limit with this weaker condition in future.



As a check we can easily find that 7,” and h*” are covariantly constant
Vur,* =0, V,h""=0. (4.8)

Now we are ready to proceed to the analysis of type IIB supergravity equations of motion.
We start with the Type IIB string effective action in the form

1 0,7GY 9,7 1|Gs)?
_ d0r/— _ g Sl 2 4.
s 2r3, V=G <R(GE) 2(ImT)? 2Imt )’ (4.9)
where
r=x+ie ®=rp+ir,Gy3=dCy— yH —ie " *H = dCy — 7H , (4.10)

and where the action is written in the Einstein frame where the metric components are

related to the string components metric as
Gh, = "G, (4.11)

Finally note that we use the convention

1 *
‘G3‘2 = QG/‘VPG%MGEW GpplGMlmpl : (4'12)
The variation of the action with respect to G~ gives following equations of motion for
metric 1
RMV(GE) - §GEVR(GE) = T/U/a (413)

where T}, is stress energy tensor whose exact definition will be given below. Now taking
the trace of the equation (4.13) with G’ we obtain

R(Gg) = 4T, T = G T, . (4.14)
Inserting this result into (4.13) we find an alternative form of the equation of motion
L p
R (Gg) =Ty — gGuvT (4.15)

that is suitable for non-relativistic limit. Before we proceed to this point we should analyze
one subtle point which is the relation between Einstein frame and string frame connection
that generally has the form

1 o}
0, (Ge) =T%,(G) - 1(558,@ + 600, — G 0,9G ) (4.16)
Then for the metric ansatz (4.2) we obtain in the limit w — oo
1
I, (Ge) =1%,(G) - 1(55@@ + 67,0, ®)+
1 po 1 P by po 1 o brpwp
+ = | 7 = Tym W7 — 5T M h 0o P70+

4 2

1 1 1 1
+ h7 0,0 <h,w + §Tuamy’7nab + QmHaTybﬁab> + w21hp"80¢rw. (4.17)



We see that there is a divergent contribution proportional to h*°0,®. Then in order to
have finite Christoffel connection in Einstein frame as well we impose following condition
on the dilaton

W 9,® = 0. (4.18)

We will discuss this restriction in more details below.

Let us now return to the equation of motion (4.15). Since its left side is finite the right
side has to be finite too in the limit w — oo. This fact implies additional conditions on the
background fields. To see this let us focus on the matter part of the action that depends
on G, that has following stress energy tensor defined as

1 65 1 ) 1 wn o
TG = — — 5%5; = —ﬂnywaG"pl GN G G0y + 5 Cow G G Gl

(4.19)

We see that necessary condition to have finite stress energy tensor we have to demand
that G/, has to be finite in the limit w — oco. Let us analyse this requirement in more
details and start for simplicity of notation with the field strength of B,,,. Inserting (3.8)
into definition of H,,, we obtain

Hypw = 0pByuy + 0uBup + 0y By =

= OJ2X[(8pTua - 8M7pa)7yb6ab + 0y, — 8,;7',/“)7'#(’6@1, + (Our,* — 8,,@“)6&1,7'/)1’]—

1
- §X[(a“m;‘ - 8,,mua)7'pbeab + (0ym," — Gpmy“)Tubeab + (0,m))!

b
nwo 8umpa)7'y €abt

+ (Out,* — ayTua)Eabmpbﬁab + (Op7," — aqu“)meeab + (Oy7," = 8pT,,“)mubeab]

+ 8,XB, + 8,XB,, + 9,XB,, + hpp - (4.20)

First of all we see that the first divergent contribution proportional to w? vanishes when
we impose zero torsion condition. On the other hand there is still divergent contribution
coming from the terms on the last line that are proportional to derivative of X. Since B,
does not vanish and it is proportional to w? we see that in order to ensure finetness of H, oy
we have to presume that ® and x are constant and hence 9,X = 0. Note that this is much
stronger condition than (4.18). Then however the equations of motion for 7 implies that
('3 has to be zero that also solves the equation of motion for GG3. Further, the stress energy
tensor for complex scalar 7 vanishes for constant 7. As a result we find that the equations
of motion for stringy NC gravity has simple form

R, (Gg)=0. (4.21)
Thanks to the fact that ® is constant this equation also implies
R,.(G)=0, (4.22)

where R, depends on Christoffel symbols given in (4.7). It is important to stress that (4.22)
corresponds to the standard equation of motion of stringy Newton-Cartan gravity.

~10 -



4.1 Special case n =0,m =1

There is one important special case when n = 0, m = 1 that corresponds to the situation
when the probe that defines stringy Newton-Cartan gravity is fundamental string. This
case is special since we have X = 1. For simplicity we further presume that the background
RR fields are zero. In this case the field strength for B,,, has the form

Hpp = 0pBpuy + 0uByp + Oy By = hywp—
1

- 5[(6#7@“ - 8,,m/f)7pbeab + (Oym " — 8pm,/“)7ubeab + (9pm,;’

= Oum,")T,

(4.23)

’

where we imposed zero torsion condition 9,7,* — 8,7, = 0 and where h = db. Let us again
study the equation of motion for the background fields. Note that the relativistic theory
is governed by the action

1 1 1
S=1 A2/ ~Gg {R—Qé)u(IDG’éVBV(I)—lQe@HNVpG%“lGE”lG%’“HMVIm , (4.24)
10
Gl =G, (4.25)
Let us start with the equation of motion for ®
1 1 _
Naremds V=BG 0,0 + e Huy Gt G G Hipy = 0 (4.26)

and find its non-relativistic limit. First of all we have

det ny = e det G = e 7 (det EMA)2 . (4.27)
Since B, = wt,” + im#‘l ,Eﬂal = eu‘l/ we find
/ ]_ ’
det EMA =wdet(r,"e," ) + W det(m,’,e,"). (4.28)

Then the equation of motion for ® reduces into following form in the limit w — oo

1

det(7,%,e,%)

, 1
Oule*® det(r,*, e,* )1 0, ] + —1263‘1’H“,,phmhwl hPP H o = 0, (4.29)
IRt

where H,,, is given in (4.23). Further, the equation of motion for H,,, takes the form

O |V~ det e GO G G Hi | = 0 (4.30)
that in the non-relativistic limit reduces into
9, [6*2‘1’ det(7,, ,& YR BV PP HWM} —0, (4.31)

where H,,, is again given in (4.23). Let us now discuss consequence of the condition (4.18).
Imposing this condition in (4.29) we obtain following condition on H,,,

WM R RO H o = 0. (4.32)
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Note that in this case the equation of motion (4.31) is satisfied as well. Note that in
h'? we find that the condition above implies

. [
adapted coordinates when e * =¢,% ;2 =2,...,9 and hence h*" has non-zero components

Hijr, =0. (4.33)
Let us finally discuss the equation of motion for GEV
l g
R, (GEg) =T — gG/wT' (4.34)

As we argued above The left side of this equation is finite in the limit w — co. Then on the
right side we should have finite contribution as well. In case of the scalar field we obtain

scal 1 g5l 1 E po 1
T =~ mmeras o = iCmCE 9000 + 50,008 (435)
and hence
Tscal 1
TS — o Qva = 50u®0,2. (4.36)

On the other hand in case of B, we obtain

1 1
Tlﬁ = —ﬂGfVHpowG’prl G G Hyy oy + EHWWG‘;;‘” G4 Hygyun (4.37)

so that )
TP = GY'TYH = —EHQ (4.38)

which implies

1 1 1
Th - ngyTB = —@nym + ZHMPUGZFIG‘,;‘” Hyoyo, -

Note that this expression is finite as well when we impose the condition (4.32). As a result
we obtain final form of the equation of motion of stringy Newton-Cartan gravity

1
Ryu(Gp) = 50,90,® + T, (4.39)
where ® has to obey the condition (4.18) that in adapted coordinates =0, eu“/ = eia/,

i=2,...,9 implies 9;® = 0 and hence ® = ®(t).

5 D1l-brane with unfixed gauge symmetry in NC background

In this section we would consider situation when we have m coincident D1-branes and
take the non-relativistic limit on metric and NSNS two form field that defines stringy NC
gravity. We again start with the Hamiltonian given in (2.6) and (2.7) where the metric is
given in (3.7) and where NSNS two form field has the form As the next step we have to

~12 -



introduce an appropriate parameterization of NSNS two form. Since we want to discuss
D1-brane in stringy NC background we consider following ansatz for NSNS two form

1 1
B, = <w27_#a71/b€ab 2(mu 7,0 +7,%m,, )€ab+4 5T, M, 6ab> +bu - (5.1)

With such a choice of the NSNS field we find that divergent contribution in the Hamiltonian
constraint that are proportional to 7, cancel for any 7. However there are now several
possibilities how to take scaling limit of RR fields. For example, if we demand that C,,
has similar form as B, i.e. C,, = B, + ¢, the requirement of the finitness of the
Hamiltonian constraint implies following condition

om°n = —2%nx, e 4y =1. (5.2)
The first equation implies y = —1 that together with the second one gives e 2% = 0.
However this is the realm of the infinite coupled string theory which is clearly rather subtle

limit. For that reason we consider another scaling limit when

1. 1. ~
n=-n, X=X Cu =wCyy . (5.3)

Now the Hamiltonian constraint is finite and has the form
H, = I, — 2Tp w011, 7K ey, — Thy (17) %7, ey @ ecq, 4
+ T3 (77)2 050" hyy Opa” + Thie” 22052t 1,,0,3" (5.4)
where
O, =p,—Tpi (7r bup + nCup)a P
Py =y +m Tt + 7,'m, Phab - (5.5)

Note that 77 is still dynamical field which is a crucial difference when we compare with
the analysis presented in 3 section.
As the next step we determine corresponding Lagrangian. From the Hamiltonian

H= / do(N"Hy + N°Hy + 0y Ar) (5.6)

we obtain

Orxt = {zt, H} = 2NTh*11, — 2NTTD17T”7°‘;n“bebCTO,C + N9t ,
OrAy = {Ay, HY = 0, Ay — 2N Tp1b,p0pa? WL, — 2N Ty 11,74 0% ey, -+
+ 2NTT[2)1bW8 P 7hn® ebcTUC - 2NTT12)17TUTU“eab<I>bCechUd+
+ 2N T3 77 gt hy O’ . (5.7)

Then the Lagrangian density has the form

L = NI, 4+ Tp1a X Cydsa” — 2NT77 Tpi I, 7 1% ey, 4
+ N™T3, (7)1, %0y ® e g, ? — NTT3,(77)2 052" hy Op” — e 2T N"ay, .
(5.8)
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To proceed further we use the fact that

el th =0 (5.9)
and we again obtain
X1, X Syl XU = 4(NT)TL, AL, . (5.10)

As the next step we express 7411, with the help of the equation of motion for A4, as

v —det v —det -
Fro +Tp1 X"b,, 0,2 + Tpy ﬁ@“eabfbbcecd%d — Tplﬁ&,x“hw@g.ﬁ” =
00 aG'CT
= —2N"Tpi 11,7 ey, (5.11)
where we also used the fact equation of motion for z* implies
v —det
No = 2 oyt = Y C2 (5.12)

Ago an'o'TDl

and hence we expressed 77 with the help of the second equation in (5.12). Collecting all
these terms together and after some calculations we obtain Lagrangian density in the form

deta - 2
— B B b d b
L= INTa. <a°‘ hap +a“ 1, N0 ®"Neats" — P npa — NanETS a(Fm— + Tlem)> —
— e 2 N"T? 7%a,, + Tp1iCry . (5.13)

Finally solving equation of motion for N7 and inserting the result into (5.13) we obtain
final form of the Lagrangian density for D1-brane in stringy NC background

_ 1 -
L =—ne *TpvV/—deta,|a®Bh,s — ——cB(F.5 + Tp1bas) + Tp17Chre 5.14
D1 \/ 8 asia Wap+ Tpibap) + T (5.14)

This is the Lagrangian density for n— D1-branes in stringy NC background.

Analysis of the consistency of the background fields is the same as in section 4 since
we consider stringy NC background. On the other hand RR two form C®) scales as w we
should demand that its field strength vanishes in order to have finite stress energy tensor.
Then clearly the equations of motion for C?) are obeyed as well.

6 Conclusion

Let us outline results derived in this paper and suggest possible extension of this work.
The main goal of this paper was to analyze properties of D1-brane theory in the limit that
defines stringy NC background from relativistic theory [14]. We firstly considered D1-brane
theory with fixed gauge invariance that defines (m,n)-string and we found Lagrangian
density for (m,n)-string in stringy NC background. Then we studied conditions that the
background fields have to obey in order to define consistent theory. We also found that the
(m,n)-string in stringy NC background is manifestly SL(2,Z) invariant as a consequence
of SL(2,Z) invariance of the parent Type IIB theory.

— 14 —



We further analyzed the problem of general D1-brane in stringy NC background. We
showed that in order to have non-trivial D1-brane theory we should scale the number of D1-
branes and RR two form in an appropriate way. We find corresponding Hamiltonian for D1-
brane with dynamical gauge field and corresponding Lgrangian density that is manifestly
gauge invariant. We mean that this is nice result that brings new insight into the definition
of the action for D1-branes in stringy NC gravity.

This work can be extended in several directions. For example, it would be nice to
analyze limit when the string coupling goes to infinity in more details. Further, we would
like to analyze T-duality along world-volume direction of D1-brane in NC theory. With
analogy with standard relativistic string theory we should expect that resulting object is
DO-brane in T-dual theory. It would be nice to analyze similar situation in stringy NC
theory in more details. We hope to return to this problem in future.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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