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1 Introduction

D-branes in the superstring theory have played pivotal roles in understanding nonpertur-

bative behaviors of string theory. They are also widely used in the string phenomenology

and cosmology (for reviews see [1–3] and references therein). In many cases, static con-

figurations of D-branes are considered, especially those with a fraction of supersymmetry

– 1 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
1

preserved. It is partially because these configurations are of particular interest in math-

ematical settings but also because the analysis is simple and exact calculations can be

performed. However, in many phenomenologically or cosmologically interesting situations,

D-branes are moving and no supersymmetries are preserved. For example, if our universe

is described by the brane-world scenario [4–7], those branes may have experienced irregular

motions in the very early universe. In particular, if D-branes are accelerating to each other,

they would emit closed string radiation [8–10], and particle creation of open strings would

occur [11]. Then we may ask [12, 13]: what are the final configurations of such moving

D-branes? Do D-branes collapse or scatter away from each other? In the D-brane scenario

of universe and in the D-brane constructions of the standard model of particle physics,

answering these questions will be relevant to study stability of our universe as well as the

moduli stabilization, which may include the hierarchy problem of the electroweak scale

against various UV scales.

As a first step towards answering these questions, we study a pair of D0-branes of

bosonic string theory which revolve around each other in the flat space-time and calculate

potential between them. In this paper, we will not discuss the underlying mechanism of the

rotation, but instead, we analyze properties of open strings stretched between such a pair of

D0-branes.1 In particular, potential between D0-branes is read from the one-loop partition

function of the open strings. If D0-branes are far from each other, the system is more

appropriately described by the closed strings and the potential is given by the gravitational

potential. In [14], the amplitude for the exchange of a single closed string between two

D0-branes was obtained. The result is for D0-branes moving along arbitrary trajectories

with small accelerations, and includes contributions from all massive closed string modes.

See also [15]. On the other hand, if the distance is shorter than the string scale, massless

open string modes dominate and the effective dynamics of D0-branes are described by the

DBI action, or the Yang-Mills action if we neglect higher derivative terms [11, 16, 17]. In

this paper, in order to take into account massive open string states as well as the massless

states, we calculate one-loop partition function of open strings stretched between revolving

D0-branes. We are interested in the behavior when the relative distance of D0-branes is

shorter than the string length [16].

Let us here recall the well-known result of the one-loop open string partition function

Z = −VT between D0-branes at rest with relative distance y. It is given [18] by

Z =

∫ ∞
0

ds

2s
Tr
[
e−2πsL0

]
= T

∫ ∞
0

ds

2s
(8π2α′s)−

1
2 e−

y2

2πα′ sη(is)−24 (1.1)

where η(is) = e−2πs/24
∏∞
m=1(1− e−2πms) and T is the time duration of the configuration.

If y �
√
α′, we can use the modular transformation η(is) = s−1/2η(i/s) and the expansion

η(i/s)−24 = exp(2π/s) + 24 + · · · to obtain the effective potential V(y) ∝ 24/y23 that

is dominated by the closed string massless modes such as a graviton, if the closed string

tachyon is neglected. In the present paper, we are interested in the opposite limit y �
√
α′

where low energy open string modes dominate the potential. The Dedekind η-function can

1This is certainly different from a freely rotating classical open string which can be readily analyzed.
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be expanded as η(is)−24 =
∑∞

n=−1 cne
−2nπs where c−1 = 1, c0 = 24, c1 = 324, c2 = 3200

and so on. Then the effective potential V can be calculated as a sum

V(y) = − 1√
8π2α′

∫ ∞
0

ds

2s3/2

∞∑
n=0

cne
−
(

2nπ+ y2

2πα′

)
s

= −
∞∑
n=0

cn√
8π2α′

√
2πn+

y2

2πα′

∫ ∞
0

ds

2s
s−

1
2 e−s, (1.2)

where the open string tachyon (c−1) is neglected. The s-integral is UV divergent at s = 0.

Here we simply evaluate it by an analytical continuation, which gives a constant (see (4.4)).

As a function of the distance y, the effective potential V(y) behaves regularly near the origin

y = 0. The massless contribution n = 0 gives a linear potential r while the massive contri-

butions can be expanded in positive powers of y2, and we get the potential V =
∑∞

n=0 Vn;

V0(y) =
12√
α′

√
y2

4π2α′
(1.3)

V1(y) =
162√
α′

(
1 +

1

2

(
y2

4π2α′

)
− 1

8

(
y2

4π2α′

)2

+ · · ·

)
. (1.4)

Here V0(y) is the massless mode contribution and V1(y) is the first excited massive mode

contribution. What we would like to study in the present paper is the behavior of the

effective potential V(y, ω) near y = 0 when D0-branes are revolving around each other

with angular velocity ω and distance y = 2r. Since the potential is an analytic function of

the velocity v = ωr of each D0-brane, it is naturally expected that the mass squared m2
n ≡

(n+y2/(2π)2α′) is replaced by something like (n+fi(r
2/α′, v)) where fi(r

2/α′, v) is a regular

function of r2 and v, and i specifies a different excitation. The function fi is, of course,

reduced to fi(r
2/α′, 0) = (2r)2/(2π)2α′ when D0-branes are at rest.2 For this purpose,

we perturbatively calculate the partition function of open strings stretched between such

revolving D0-branes, which is a generalization of eq. (1.1) and given in eq. (3.21). For

comparison, we also calculate the partition function of open strings stretched between D0-

branes moving at a constant relative velocity 2v, which is given in eq. (5.23). Eq. (3.21) is

the main result of the present paper.

The action of the worldsheet theory is simply given by

S = − 1

4πα′

∫
d2σ ∂αXµ∂

αXµ. (1.5)

The quantization of this theory is, however, not so simple since the boundary conditions

of Xµ are complicated due to the rotation of D0-branes at the ends of the open strings.

Actually, since the D0-branes are moving, the boundary conditions depend on the value

of X0 and the spatial and temporal coordinates are mixed with other. To overcome this

2The partition function is invariant under v → −v and an even function of the velocity v. But it does

not mean that the energy eigenvalue is a function of v2. Rather, a pair of eigenvalues appear that are

exchanged under the symmetry v → −v as seen in the discussion after eq. (5.23).
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difficulty, we study the worldsheet theory by employing the rotating coordinate system

in the target space. In this formulation, the boundary conditions of the worldsheet fields

become simple, but instead, the coordinate transformation generates higher order terms

of the world sheet fields in the action and makes the system nonlinear. We thus analyze

this system perturbatively with respect to the velocity of the D0-branes and calculate the

one-loop partition function of the open strings, from which the short distance behavior of

the potential between the revolving D0-branes is extracted.

This paper is organized as follows. In section 2, we quantize open strings stretched

between revolving D0-branes. We reformulate the worldsheet theory of the open strings so

that the boundary conditions of the worldsheet fields become simple, but in compensation,

the system becomes interacting and the resulting theory must be quantized perturbatively.

In section 3, we calculate the one-loop partition function, based on the formalism developed

in [19]. This is regarded as the effective potential for the D0-branes. The short-distance

behavior is investigated in section 4. In section 5, we make a comparison of our result with

the one obtained from D0-branes moving with constant velocities. Section 6 is devoted to

conclusions and discussions. Details of the calculations are summarized in appendices.

2 Open strings stretched between revolving D-branes

2.1 Open strings in the rotating coordinate system

As a simple system of rotating D-branes in bosonic string, we consider two D0-branes in the

flat space-time revolving around each other like a binary star. We assume that the orbits

of the D0-branes lie on the x-y plane. Their positions (x1, y1) and (x2, y2) are changing

with time and given by

{
x1(t) = r cosωt,

y1(t) = r sinωt,

{
x2(t) = −r cosωt,

y2(t) = −r sinωt.
(2.1)

The revolving motion of the D0-branes is not a classical solution unless there is an at-

tractive potential between D-branes. Here we implicitly assume that it is generated either

by exchanges of closed strings between D0-branes or by introducing suitable background

fields. In the following we restrict ourselves to consider the situation in which the angular

frequency of the D0-branes is small so that the background fields can be treated perturba-

tively around the flat background space-time. Analysis including the backreaction is left

for future investigations.

We then consider an open string stretched between these D0-branes. As explained in

the introduction, we choose the rotating coordinate system for the target space-time in

which the D0-branes are static. In the original coordinate system used in the action (1.5),

the target space metric is simply given by

ds2 = −dt2 + dx2 + dy2 + (dxi)2 (2.2)
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where i = 3, 4, · · · , 25. We then introduce the rotating coordinate system defined by

t̃ := t, (2.3)

x̃ := x cosωt+ y sinωt, (2.4)

ỹ := −x sinωt+ y cosωt, (2.5)

x̃i := xi. (2.6)

In this coordinate system, the orbits of the D0-branes (2.1) become static{
x̃1(t) = r,

ỹ1(t) = 0,

{
x̃2(t) = −r,

ỹ2(t) = 0
(2.7)

but the metric takes the following non-diagonal form:

ds2 = −dt̃2 + dx̃2 + dỹ2 + 2ωdt̃(x̃dỹ − ỹdx̃) + ω2(x̃2 + ỹ2)dt̃2 + (dx̃i)2. (2.8)

Accordingly, the worldsheet action becomes

S = − 1

4πα′

∫
d2σ

[
−∂αT̃ ∂αT̃ + ∂αX̃∂

αX̃ + ∂αỸ ∂
αỸ + ∂αX̃

i∂αX̃i

+2ω∂αT̃ (X̃∂αỸ − Ỹ ∂αX̃) + ω2(X̃2 + Ỹ 2)∂αT̃ ∂
αT̃
]
. (2.9)

We have chosen the conformal gauge. This is allowed if the D0-branes satisfy the equation of

motion and the conformal symmetry is preserved. In the present case, it is slightly violated

at the boundaries, but the violation is expected to be small as far as the angular frequency

is small compared to the string scale. The modification of the target space metric due to

the external field is treated as vertex operator insertions. In the following calculations, we

ignore such corrections to the effective potential under an assumption ω/mstr < 1. We

want to come back to this issue in future publications.

By rescaling the fields as X̃µ → rX̃µ, the action is given by

S = − r2

4πα′

∫
d2σ

[
−∂αT̃ ∂αT̃ + ∂αX̃∂

αX̃ + ∂αỸ ∂
αỸ + ∂αX̃

i∂αX̃i

+2v∂αT̃ (X̃∂αỸ − Ỹ ∂αX̃) + v2(X̃2 + Ỹ 2)∂αT̃ ∂
αT̃
]
, (2.10)

where v := rω is the velocity of the D0-branes.3 The boundary conditions for the rescaled

fields, X̃ and Ỹ , are simple in the new coordinate system,

X̃(τ, σ) =

{
+1, (σ = 0)

−1, (σ = π)
Ỹ (τ, σ) =

{
0, (σ = 0)

0. (σ = π)
(2.11)

However, the boundary condition for T̃ is still nontrivial. Indeed, the variation of the

action with respect to T̃ gives the following boundary term:

δS
∣∣∣
bdy

= − r2

2πα′
δT̃
[
−∂σT̃ + v(X̃∂σỸ − Ỹ ∂σX̃) + v2(X̃2 + Ỹ 2)∂σT̃

] ∣∣∣
bdy

(2.12)

3Note that the relative velocity is 2v and the distance is y = 2r.
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By using (2.11), T̃ must satisfy

(1− v2)∂σT̃ − v∂σỸ = 0, (σ = 0)

(1− v2)∂σT̃ + v∂σỸ = 0. (σ = π)
(2.13)

These conditions are linear in the world sheet fields since we have substituted the boundary

values of (2.11) for the nonlinear terms that would have appeared in (2.13). To simplify

these conditions, we define a new field T as

T := T̃ − v

1− v2
x(σ)Ỹ (2.14)

where

x(σ) := 1− 2σ

π
. (2.15)

Using the boundary condition (2.11) for Ỹ , it can be shown that the field T satisfies the

ordinary Neumann boundary condition ∂σT |σ=0,π = 0. We also introduce a new field X

X̃ = x(σ) +X. (2.16)

Then X|σ=0,π = Y |σ=0,π = 0 are satisfied. For notational simplicity, we use tilde-less

notations for Y = Ỹ and Xi = X̃i in the following discussions.

To summarize, the new world sheet fields X,Y, T and Xi (for i = 3, · · · 25) satisfy the

boundary conditions

X|σ=0,π = 0, Y |σ=0,π = 0, ∂σT |σ=0,π = 0, Xi|σ=0,π = 0 (2.17)

and the world sheet action is given by

S = − r2

4πα′

∫
d2σ

[
− Ẋ2 − Ẏ 2 − (Ẋi)2 +

(
X ′ − 2

π

)2

+ (Y ′)2 + (Xi′)2

+
[
1− v2

((
X + x(σ)

)2
+ Y 2

)]
×

[(
Ṫ +

vx (σ)

1− v2
Ẏ

)2

−
(
T ′ +

v

1− v2

(
x(σ)Y ′ − 2

π
Y

))2
]

− 2v

(
Ṫ +

vx(σ)

1− v2
Ẏ

)((
X + x(σ)

)
Ẏ − Y Ẋ

)
+ 2v

(
T ′ +

v

1− v2

(
x (σ)Y ′ − 2

π
Y

))(
(X + x (σ))Y ′ − Y

(
X ′ − 2

π

))]
. (2.18)

In the rotating coordinate system, the action (2.18) becomes nonlinear in compensation

for the simple boundary conditions. We analyze this theory perturbatively in the nonrela-

tivistic limit v � 1.

2.2 Perturbative Hamiltonian with respect to v

The worldsheet Hamiltonian H can be obtained in the standard manner. It is decomposed

into two parts:

H = Hrot(X,Y, T ) +Hfree(X
i), (2.19)

where Hrot governs the subsystem consisting of X,Y and T while Hfree is a free Hamiltonian

for Xi. We now focus on the non-trivial part Hrot. Let ΠX ,ΠY and ΠT denote the canonical

– 6 –
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momenta of X,Y and T , respectively. Hrot is given in perturbative series with respect to

the velocity v as

Hrot = H0 + vV1 + v2V2 +O(v4), (2.20)

where

H0 =

∫ π

0
dσ

[
πα′

r2
(−Π2

T +Π2
X+Π2

Y )+
r2

4πα′
{
−(∂σT )2+(∂σX)2+(∂σY )2

}]
+

r2

π2α′
, (2.21)

V1 =

∫ π

0
dσ

[
2πα′

r2
ΠT (XΠY −ΠXY )+

r2

2πα′
∂σT (X∂σY −∂σXY )+

2r2

π2α′
∂σTY

]
, (2.22)

V2 =

∫ π

0
dσ

[
πα′

r2

{
−(XΠY −YΠX)2−x(σ)2

(
Π2
T +Π2

Y

)
− 2x(σ)

(
Π2
TX+(XΠY −YΠX)ΠY

)}
+

r2

4πα′

{
(∂σT )2(X2+Y 2)+x(σ)2

(
(∂σT )2+(∂σY )2

)
+

4

π
x(σ)Y ∂σY −

12

π2
Y 2

+2x(σ)
(
(∂σT )2X+X(∂σY )2−∂σXY ∂σY

)
+

4

π

(
∂σXY

2−XY ∂σY
)}]

. (2.23)

In the next section, we quantize the Hamiltonian up to the second orders of v and

calculate the one-loop partition function of the open string to obtain the potential between

revolving D0-branes.

3 One-loop partition function

We are interested in the one-loop partition function of the rotating open string. It is

given by

Z =

∫ ∞
0

ds

2s
Tr
[
e−2πs(Hrot− 1

8
)
](
η(is)

)−21

=

∫ ∞
0

ds

2s
Tr
[
e−2πs(Hrot−1)

] ∞∏
m=1

(1− e−2πms)−21 (3.1)

where η(is) = e−2πs/24
∏∞
m=1(1 − e−2πms). The contributions from the Xi fields in Hfree

(i = 3, · · · , 25) and the (b, c)-ghosts have been included in this expression. The one-loop

determinant of a scalar field is written as

det(∆ +m2)−1/2 = exp

[∫
ds

2s
Tre−(∆+m2)s

]
≡ e−VT , (3.2)

where T is the time duration. Thus the open string one-loop partition function (3.1) gives

the minus of an effective potential V(r, ω), integrated over time,4 for the two D0-branes:

4 The stationary system of revolution is invariant under the time translation and the effective potential

is given by removing the zero mode integral of T . When we compare the calculation with the constant

velocity system in section 5 the integration needs a care.
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Z = −VT . By the open-closed string duality, it is written as an exchange of a single closed

string and approximately described by low energy closed string modes when the distance

2r is much larger than the string length. In section 4, we will instead investigate the

short distance behavior of the effective potential V(r, ω) at which open string low energy

modes dominate.

In this section, we will calculate the partition function (3.1) perturbatively with respect

to v. In the following, we perform the calculation in the Euclidean space by the Wick

rotation of the world sheet variable from T → −iT . Thus the velocity v is also analytically

continued to iv.

3.1 Improved perturbation

In order to calculate the partition function, we need to know the energy spectrum of the

Hamiltonian. We will perform perturbative calculations with respect to v, but even per-

turbatively it is not so straightforward since H0, V1, V2 are not commutable with each other

and we may need to diagonalize the Hamiltonian. Instead of explicitly diagonalizing it,

we use a method of the improved perturbation [19]. This method is briefly reviewed in

appendix A. The basic idea is that we can systematically construct a new Hamiltonian

H0(v) =
∑∞

n=0 v
nHn such that it has the same eigenvalues as those of the original Hamil-

tonian H = Hrot, but each term Hn commutes with H0. Once Hn is explicitly given, it is

straightforward to take a trace to obtain the partition function.

In the following, we calculate up to the second order of the v-expansion:

H0(v) := H0 + vH1 + v2H2 +O(v4). (3.3)

The first term H0 is given by the original free Hamiltonian in (2.21). As mentioned above,

H0(v) shares the same eigenvalues with Hrot to all orders in v, so we can replace Hrot with

H0(v) within the perturbation theory. Also note that H1 and H2 can be constructed such

that they commute with H0. In our case, their explicit forms are given by

H1 := V1,0, H2 := V2,0 −
∑
m 6=0

1

m
V1,−mV1,m. (3.4)

Here the operator Vi (i = 1, 2) is decomposed into Vi,m as

Vi =
∑
m

Vi,m, [H0, Vi,m] = mVi,m (3.5)

where m’s are eigenvalues of the free Hamiltonian H0. In particular, Vi,0 is the operator

contained in Vi that are commutable with H0.

3.2 Perturbative calculations of the trace

Now we calculate the trace in the partition function (3.1) with the Hamiltonian Hrot

in (2.20). By using the method of improved perturbation, the difficulty of calculation

Tre−2πsHrot due to the non-commutativity of H0 and Vi is resolved by rewriting the trace

– 8 –
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in terms of a much easier improved Hamiltonian, H0(v). Due to the commutativity of Hn

in H0(v), it can be expanded as

Tr
[
e−2πsHrot

]
= Tr

[
e−2πsH0(v)

]
= Tr

[
e−2πsH0

]
− 2πvsTr

[
e−2πsH0H1

]
− 2πv2

(
sTr

[
e−2πsH0H2

]
− πs2Tr

[
e−2πsH0H2

1

])
(3.6)

up toO(v2). The traces are taken over the eigenstates |~n; k〉 ofH0 where k is the momentum

and ~n represent the eigenmodes of harmonic oscillators. Since H0 is a free Hamiltonian,

and X,Y and T obey simple boundary conditions (2.17), the eigenvalues and eigenstates

of H0 are explicitly given. In the following, we recall them for fixing the notations.

The free Hamiltonian H0 is given in terms of the mode operators as

H0 = α′p2 +
r2

π2α′
+ H̃0 (3.7)

where

H̃0 =
∑

µ=T,X,Y

∞∑
n=1

Nµ,n, Nµ,n :=: αµ−nα
µ
n : . (3.8)

For our conventions of the mode expansions, see appendix B. Note that Nµ,−n = Nµ,n hold.

We denote the eigenstates of H0 as |~n; k〉 which is given by

|~n; k〉 =
∞∏

mX ,mY ,mT=1

(αX−mX )n
X
mX (αY−mY )n

Y
mY (αT−mT )n

T
mT |0; k〉 (3.9)

and satisfies Nµ,mµ |~n; k〉 = nµmµmµ|~n; k〉 and p|~n; k〉 = k|~n; k〉.
With these notations, we can evaluate traces of the form:

Tr
[
e−2πuH0O

]
= T e−

2r2

πα′ u
∫
dk

2π
e−2πα′uk2tr

[
e−2πuH̃0O

]
(3.10)

where

tr
[
e−2πuH̃0O

]
=
∑
~n

e−2πuN(~n)〈~n; k|O|~n; k〉 (3.11)

and N(~n) :=
∑

µ=T,X,Y

∑∞
m=1mnµm. In order to simplify the calculation, we denote [O]D

as the diagonal element of O satisfying

〈~n; k|O|~n; k〉 = 〈~n; k|[O]D|~n; k〉, (3.12)

which are sufficient in the calculations (3.11). The remaining task to calculate the partition

function is to calculate the diagonal elements of H1, H2
1 and H2, and then to integrate over

the Schwinger parameter s. In section 3.3, we obtain [H1]D, [H2
1 ]D and [H2]D, which enable

us to calculate Tr[e−2πsH0H1,2] and Tr[e−2πsH0H2
1 ]. Then in section 3.4, we determine the

one-loop partition function up to O(v2).
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3.3 Diagonal elements: [H1]D, [H2
1 ]D and [H2]D

As defined in (3.4), the operator H1 is the part of the operator V1 (2.22) that commutes

with H0; namely H1|state〉 6= |state〉, but has the same energy eigenvalues of H0. Using

the mode expansions given in appendix B, it is straightforward to obtain

H1 = −2iα′

r
p
∑
k 6=0

1

k
αXk α

Y
−k +

2i

π

∑
k 6=0

1

k
αT−kα

Y
k . (3.13)

For any ~n, the diagonal matrix element 〈~n; k|H1|~n; k〉 vanishes and

[H1]D = 0. (3.14)

Thus, we find that the trace Tr
[
e−2πτH0H1

]
in (3.6) vanishes. Actually, this should be the

case since the energy spectrum of the rotating open string is independent of the direction

of the rotation, and the linear terms in v must vanish.

To determine [H2
1 ]D, we take the square of (3.13) and collect terms which commute

with H0. We find

[H2
1 ]D =

4(α′)2

r2
p2 (2NXY (2) +NX(1) +NY (1))

+
4

π2
(2NTY (2) +NT (1) +NY (1)) , (3.15)

where we defined

Nµ(x) :=

∞∑
n=1

1

nx
Nµ,n, Nµν(x) :=

∞∑
n=1

1

nx
Nµ,nNν,n (3.16)

for µ, ν = T,X, Y . Note that the unperturbed states |~n; k〉 are the eigenstates of these

operators. By using the general formulae in appendix D, we can sum over all the excited

states of the open string and obtain the trace Tr
[
e−2πsH0H2

1

]
.

We now show the result of [H2]D. It is much more complicated since V2 defined

by (2.23) contains quartic terms in the world sheet variables, and we need to appropriately

regularize the infinite sum appearing in the intermediate states. We leave the calculations

in appendix C, and show the final result here. [H2]D is a sum of [V2]D in (C.10) and

−
∑

m[V1,−mV1,m]D/m in (C.11). Each of them contains many terms including various

divergences. However, many terms in (C.10) and (C.11) are miraculously cancelled with

each other, and the final result turns out to be quite simple;

[H2]D = [V2]D −
∑
m 6=0

1

m
[V1,−mV1,m]D

=
α′

r2
[2NXY (2) +NX(1) +NY (1)]− 2

π2
(NT (2)−NY (2))

− 2

π2
(NT (2) +NY (2))− 1

3
α′p2 − 2

π2
ζ(1)

+
α′

r2

(
NX(0) +NY (0) +NT (0)+

1

4
ζ(0)

)
. (3.17)

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
1

Since every term is written in terms of the operators Nµ(x) and Nµν(x), we can use the

general formulae in appendix D to calculate the trace Tr
[
e−2πsH0H2

]
.

Several comments are in order. First, the last line is proportional to the non-zero

modes of H0 including the zero-point energy ζ(0)/4 = −3/24. Thus it can be interpreted as

the wave-function renormalization of T,X and Y fields with the following renormalization

factor, Z−1 = 1 + α′ω2. In interacting theories, a one-particle state a†|0〉 is no longer an

eigenstate of the Hamiltonian and we need to construct a state to include a Z-factor so

that a state Z1/2
(
a†|0〉+ |multi〉

)
is a properly normalized eigenstate of the interacting

Hamiltonian. Here |multi〉 is a sum of multi-particle states and Z is interpreted as the

probability of the eigenstate to be in the single-particle state a†|0〉. In the perturbation

theory, Z-factor can be read from the renormalization of the free Hamiltonian, and in the

present situation, it is given by

Z−1 = 1 + α′ω2 > 1. (3.18)

The same wave-function renormalization factor appears in a simpler calculation of the one-

loop partition function of D0-branes at a constant relative motion discussed in section 5.

Since the wave function renormalization gives O(v2) correction to the coupling parameter

v, the last line of [H2]D does not contribute to the calculation of the effective potential up

to O(v2). Thus we should replace eq. (3.17) with

[H2]D =
α′

r2
[2NXY (2) +NX(1) +NY (1)]− 4

π2
NT (2)− 1

3
α′p2 − 2

π2
ζ(1) (3.19)

in the following calculations.

Second, the final result turned out to be very simple after the miraculous cancellations

between (C.10) and (C.11). Especially, the operator-valued terms with divergent coeffi-

cients, for example (C.8), cancel completely. This cancellation might be intimately related

to the renormalization property of the non-linear sigma model (2.10). At the one-loop

level, the beta function of the target space metric is proportional to the Ricci tensor of the

metric. Since the background metric of (2.10) is flat and Ricci tensor vanishes, the back-

ground metric of the action should not be renormalized even though divergences appear in

the intermediate steps of the renormalization procedure.

Finally, the only remaining divergence appears in the zero-point energy which is in-

dependent of α′/r2 in H2. This zero-point energy must be also renormalized to obtain

a sensible mass spectrum of the rotating open string, and we need to find the correct

renormalization scheme to fix the finite part, say ε0, of H2;

− 2

π2
ζ(1) −→ ε0. (3.20)

One possible way to fix ε0 will be to check the BRST algebra of the worldsheet theory (2.10),

as it determines the intercept for strings in the Minkowski space-time. Another possible

way will be to examine the behavior of the one-loop partition function in the closed string

channel, or in other words, at large distances. There must be the contribution from the

massless graviton exchanged between the D0-branes which must give us the Newton po-

tential. Since the large distance behavior of the partition function would depend on ε0, the
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requirement for reproducing the Newton potential may choose the correct value for ε0. In

the following, we leave ε0 to be an unknown parameter.

3.4 One-loop open string partition function

By using eq. (3.6), eqs. (3.14), (3.15), and (3.19), and various formulae derived in ap-

pendix D, we can calculate the one-loop open string partition function (3.1). Many terms

are miraculously cancelled and we have a very simple form

Z = T
∫ ∞

0

ds

2s
(8π2α′s)−

1
2 e−

2r2

πα′ sη(is)−24

(
1− 1

3
v2

)− 1
2

×

[
1− 2πv2

(
− 4

π2
s

∞∑
n=1

n−1qn

1− qn
+ ε0s−

4

π
s2
∞∑
n=1

2qn

(1− qn)2

)]
+O(v4), (3.21)

where q := e−2πs and η(is) = q1/24
∏∞
m=1(1 − qm). The derivation of this expression is

summarized in appendix D. In the v → 0 limit, eq. (3.21) is reduced to the partition function

in eq. (1.1) for D0-branes at rest. Then let us compare eq. (3.21) with the partition function

for D-branes moving with a constant relative velocity 2v, which is given in eq. (5.23). Some

of the v2-corrections in eq. (3.21) that come from the non-zero modes, namely the third

term of the v2-corrections in the square bracket in eq. (3.21), are exactly the same as

the v2-corrections in the constant-velocity case in eq. (5.23). This term came from the

O(v)-mixing of T and Y in (3.13), which exists in both systems. Eq. (3.21), however,

contains more v2-corrections. That is, the first and the second terms in the curly bracket

in eq. (3.21) are peculiar only for the revolving case, and do not exist in eq. (5.23). Thus we

can say that the partition function for the revolving case contains not only the corrections

due to the velocity v but also corrections due to the acceleration ω.

4 Effective potential at short distance

The one-loop partition function (3.21) of the open string gives the effective potential

V(r, ω) = −Z/T between the two D0-branes induced by the exchange of a single closed

string. In the present calculation, we are interested in the short distance behavior of the

potential, namely r �
√
α′. We expand the potential as a sum

V(r, ω) =

∞∑
n=−1

Vn(r, ω), (4.1)

where each term Vn(r, ω) corresponds to the contribution of the open string states with

the mass level n + 1 to the partition function. n corresponds to the power of q in the

q-expansion of the integrand of (3.21). Therefore, e.g., V−1(r, ω) is the contribution from

the tachyon, and V0(r, ω) comes from the states which are massless when v = r = 0,

and Vn≥1(r, ω) are those from massive open string states. In the following, we ignore the

tachyon contribution V−1(r, ω).
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4.1 Massive contributions: Vn≥1(r, ω)

First let us consider contributions of the massive open string states. It is rather straightfor-

ward to evaluate the massive contributions Vn(r, ω) with n ≥ 1. For example, by expanding

the partition function (3.21) with respect to q and take the linear terms in q, we obtain

V1(r, ω) as

V1(r, ω) = −
∫ ∞

0

ds

2s
f(s, r)e−2πs

[
324 +

(
204

π
− 648ε0

)
v2s+ 432v2s2

]
+O(v4), (4.2)

where

f(s, r) :=

(
1− 1

3
v2

)− 1
2 (

8π2α′s
)− 1

2 e−
2r2

πα′ s. (4.3)

The term e−
2r2

πα′ s is nothing but the effect of stretched open strings with distance 2r, and the

additional factor
(
1− 1

3v
2
)− 1

2 comes from the v2 correction to the momentum integration.

To determine V1(r, ω), we use the following formulae

−
∫ ∞

0

ds

2s
f(s, r)e−2πssk

= −
(

1− 1

3
v2

)− 1
2 (

16πα′
)− 1

2 (2π)−kΓ

(
k − 1

2

)(
1 +

r2

π2α′

)−k+ 1
2

. (4.4)

The integral with k ≤ 1
2 is defined by the analytic continuation for k. Using this formulae,

we obtain

V1(r, ω) =
162√
α′

[
1 +

1

2

(
1 +
−13 + 9π2 + 27πε0

27
α′ω2

)(
r2

π2α′

)
−1

8

(
1 +
−44− 18π2 + 57πε0

27
α′ω2

)(
r2

π2α′

)2
]

+O(ω4, r6). (4.5)

The potential V1(r, ω) is a generalization of the potential at rest in eq. (1.4). Since the

energy eigenvalue of the first excited massive states are split by the interactions, V1(r, ω)

is a sum of various contributions from the hypersplitted states. Note also that since our

calculation is performed in the Wick rotated metric, the potential in the Lorentzian metric is

obtained by replacing ω2 with −ω2. The potential correctly reproduces the static limit (1.4)

at ω = 0. The relevant part of the potential is written as a positive power series of (r/lstr)
2

and (ω/mstr)
2;

V2 ∼ mstr

(
c1 + c2

(
w

mstr

)2

+ · · ·

)(
r

lstr

)2

+mstr

(
c3 + c4

(
w

mstr

)2

+ · · ·

)(
r

lstr

)4

+ · · · (4.6)

where we defined (2πα′)1/2 = lstr = 1/mstr and c1 > 0. As expected, the leading order

potential is proportional to m3
strr

2 and strongly attractive [20]. The second and higher

– 13 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
1

terms in each bracket give angular-frequency corrections. The leading ω2 correction to the

effective potential is given by mstrω
2r2. In the superstring case, the potential must vanish

in the ω → 0 limit where D-branes are at rest. Thus this ω-dependent term gives the

leading order massive state contribution to the potential.

Other contributions Vn(r, ω) with n ≥ 2 can be obtained similarly.

4.2 Massless contributions; V0(r, ω)

Next, let us consider contributions from massless open string states V0(r, ω) given by the

q0 terms in the expansion of the partition function (3.21);

V0(r, ω) = −
∫ ∞

0

ds

2s
f(s, r)

[
24 +

(
8

π
− 48πε0

)
v2s+ 16v2s2

]
+O(v4). (4.7)

It is a sum of contributions from massless vector bosons αµ−1|k〉. This type of contributions

to the effective potential, in particular in the case of D3-branes, would correspond to the

Coleman-Weinberg type effective potential since its mass is given by the distance (i.e.

moduli) between the branes. In the current setup, since the mass also depends on the

angular frequency, the corresponding Coleman-Weinberg potential must be evaluated in

presence of time-dependent scalar expectation value. Note that the result of the integral

in (4.7) is singular at r = 0 and the determination of V0(r, ω) needs some care.

The effective potential V0(r, ω) can be obtained if one knows the first four eigenvalues

of H0(v), which we denote them by Ei(k, r, ω) (i = 0, · · · , 3);

V0(r, ω) = −
∫ ∞

0

ds

2s

∫
dk

2π

[
3∑
i=1

e−2πs(Ei(k,r,ω)−1) + 21e−2πsE0(k,r,ω)

]
. (4.8)

Since H0(v) commutes with H0, these eigenvalues can be obtained by diagonalizing the

upper-left four-by-four submatrix for H0(v). They are given in appendix E and summa-

rized as

H0(v) =

(
1− 1

3
v2

)
α′k2 +

r2

π2α′
+ 1 + v2ε0

+



−1 0 0 0

0 − 4

π2
v2 −2α′

πr
kv2 2i

π
v

0 −2α′

πr
kv2 α′

r2
v2 2iα′

r
kv

0 −2i

π
v −2iα′

r
kv

α′

r2
v2


+O(v3), (4.9)

corresponding to the states |~n; k〉 with N(~n) ≤ 1.

The eigenvalues Ei(k, r, ω) (i = 0, · · · , 3) are given by

Ei(k, r, ω) =

(
1− 1

3
v2

)
α′k2 +

r2

π2α′
+ 1 + v2ε0 + Ei(k, r, ω), (4.10)
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where

E0(k, r, ω) = −1 +O(v4), (4.11)

E1(k, r, ω) =
1

π2
v2h(k, r)−1 +O(v4), (4.12)

E2(k, r, ω) = 2v

√
α′

r
h(k, r)

1
2 +

1

π2
v2

[
π2α′

r2
− 2− 1

2
h(k, r)−1

]
+O(v4), (4.13)

E3(k, r, ω) = −2v

√
α′

r
h(k, r)

1
2 +

1

π2
v2

[
π2α′

r2
− 2− 1

2
h(k, r)−1

]
+O(v4), (4.14)

and

h(k, r) := α′k2 +
r2

π2α′
. (4.15)

The integral (4.8) is nothing but the Schwinger parameter representation of the partition

function of (1 + 0)-dimensional particles whose energy is given by 2πEi.

Now we perform the integrations (4.8). For the eigenvalue E0(k, r, ω), the integral can

be performed easily. We obtain

V00 = −
∫ ∞

0

ds

2s

∫
dk

2π
e−2πuE0(k,r,ω) =

√√√√√ 1 + ε0π
2α′ω2

4α′
(

1− 1

3
ω2r2

) r2

π2α′
+O(v4). (4.16)

The remaining integrals have more complicated forms. For the purpose of a rough estimate,

we make the following approximation

h(k, r)
1
2 →

√
α′|k|, v2h(k, r)−1 → 0. (4.17)

In this approximation, we obtain

V01 = −
∫ ∞

0

ds

2s

∫
dk

2π
e−2πs(E1(k,r,ω)−1) →

√√√√√ 1 + ε0π
2α′ω2

4α′
(

1− 1

3
ω2r2

) r2

π2α′
, (4.18)

V02 + V03 = −
∫ ∞

0

ds

2s

∫
dk

2π
e−2πs(E2(k,r,ω)−1) −

∫ ∞
0

ds

2s

∫
dk

2π
e−2πs(E3(k,r,ω)−1)

→

√√√√√1 +
(
ε0π

2 − 2
)
α′ω2

α′
(

1− 1

3
ω2r2

) r2

π2α′
. (4.19)

The details of the integrations are given in appendix F.

The effective potential induced by the massless modes becomes a sum of (4.16), (4.18)

and (4.19),

V0 =

3∑
i=0

V0i (4.20)
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and in the Lorentzian metric, ω2 is replaced with −ω2. In the limit, r � lstr and ω � mstr,

each term is written in the form of

mstr

√(
r

lstr

)2

+ C

(
r

lstr

)2( ω2

mstr

)2

(4.21)

At ω = 0, the potential becomes r/l2s , which is proportional to the length of the

stretched string.

The typical form of the effective potential induced by the massless state (4.21) is

nothing but the Coleman-Weinberg potential for quantum particles in (1 + 0)-dimensions,

which can be seen as follows. For comparison and future generalizations to Dp-branes,

we will consider general cases in (1 + p)-dimensions. In (1 + p)-dimensional field theory,

one-loop integral of a scalar field with mass m is given by

−Tr log(∆ +m2)−1/2 =

∫ ∞
ε

ds

2s

∫
dp+1k

(2π)p+1
e−(k2+m2)s

∼
∫ ∞
ε

ds

2s
s−

p+1
2 e−m

2s ∼

{
(m2)

p+1
2 p = even

(m2)
p+1
2 logm2 p = odd.

(4.22)

If mass is given by vacuum expectation value of some scalar field φ, it gives the well-known

Coleman-Weinberg potential. In our case, mass is generated by the distance r between D0-

particles and the angular velocity ω. Thus the effective potential induced by open string

massless states is given by the typical form (4.21), namely p = 0 case in (4.22).

5 D0-branes at constant velocities

In this section, we study a system of D0-branes at a constant relative velocity for comparison

with the revolving case. One might think that the effective potential we obtained in the

last section could be derived in a simpler manner by considering a D-brane system with

a constant relative velocity. Namely, one may consider a system of two D0-branes whose

trajectories are given by {
x1(t) = r,

y1(t) = vt,

{
x2(t) = −r,

y2(t) = −vt.
(5.1)

In the following, we refer this D0-brane system as the linear system, and the revolving

D0-branes discussed so far as the revolving system. At the moment t = 0, the kinematic

configuration of the linear system is the same as that of the revolving system, as far as

the distance and the velocity are concerned. Therefore, one might expect that the effective

potential for the revolving system would be obtained from the linear system at t = 0, at

least at the order of perturbation we performed in the previous sections, and the corrections

to the effective potential might coincide between these two systems. This is not the case

since the effect of one D0-brane propagates with a finite speed and the effective potential

depends on details of the trajectories of the other D0-brane at t < 0. Thus the interaction

will depend not only on the velocity but on the acceleration at the moment of t = 0. This
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was shown in the closed string channel in [14]. In this section, we will show similarities

and differences between these two systems in the open string channel.

Although the theory can be solved exactly in terms of a twisted boson [21], it is

instructive to solve the worldsheet theory for the linear system in a non-trivial coordinate

system similar to the rotational coordinate. We will observe that the resulting action has

a similar form to the action (2.10) for the revolving system, which helps us to compare the

two systems.

Consider the worldsheet theory of an open string with a boundary condition given

by (5.1). We introduce the following coordinate system (in the Euclidean signature):

x′ = x, (5.2)

y′ = y cosωx− t sinωx, (5.3)

t′ = y sinωx+ t cosωx. (5.4)

In this new coordinate system, the trajectories (5.1) of the D0-branes become simply{
x′1(t) = r,

y′1(t) = 0,

{
x′2(t) = −r,

y′2(t) = 0,
(5.5)

provided that ω satisfies

v = tan rω. (5.6)

Note that this relation between v and ω is the same as the one (2.1) for the revolving

system up to O(v2).

The worldsheet action in this coordinate system is

S = − r2

4πα′

∫
d2σ

[
∂αT̃ ∂

αT̃ + ∂αX̃∂
αX̃ + ∂αỸ ∂

αỸ + ∂αX̃
i∂αX̃i

+2v∂αX̃(T̃ ∂αỸ − Ỹ ∂αT̃ ) + v2(T̃ 2 + Ỹ 2)∂αX̃∂
αX̃ +O(v3)

]
. (5.7)

Note that we have rescaled the fields by r. This is quite similar to the worldsheet ac-

tion (2.10) for the revolving system.

The boundary conditions for X̃ and Ỹ are determined by (5.5). Define X by

X̃ = x(σ) +X. (5.8)

Then, X and Ỹ obey

X
∣∣∣
σ=0,π

= Ỹ
∣∣∣
σ=0,π

= 0. (5.9)

One can show that T̃ obeys the Neumann boundary condition;

∂σT̃
∣∣∣
σ=0,π

= 0. (5.10)

Note that, unlike the revolving system, we do not need any field redefinition like (2.14) to

simplify the boundary condition for T̃ . We define T by

T̃ =
t

r
+ T, (5.11)
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where t is the coordinate zero mode of T̃ . In the following, we use Y instead of Ỹ for

notational simplicity.

The Hamiltonian is given as

Hlinear = H
(l)
0 + vV

(l)
1 + v2V

(l)
2 +O(v4), (5.12)

where

H
(l)
0 =

∫ π

0
dσ

[
πα′

r2
(Π2

T +Π2
X+Π2

Y )+
r2

4πα′
{

(∂σT )2+(∂σX)2+(∂σY )2
}]

+
r2

π2α′
+

v2

π2α′
t2, (5.13)

V
(l)

1 =

∫ π

0
dσ

[
−2πα′

r2
ΠX(T̃ΠY −ΠTY )+

r2

2πα′
∂σX(T̃ ∂σY −∂σTY )+

2r2

π2α′
∂σTY

]
, (5.14)

V
(l)

2 =

∫ π

0
dσ

[
πα′

r2
(T̃ΠY −YΠT )2+

r2

4πα′

{
(∂σX)2(T̃ 2+Y 2)+

4

π2
(T 2+Y 2)

+
8

π2r
tT− 4

π
∂σX(T̃ 2+Y 2)

}]
. (5.15)

Note that we have moved a term proportional to v2t2 from the interaction part V
(l)

2 to

the free part H
(l)
0 since the sum r2 + v2t2 is the distance squared between the D0-branes.5

This is necessary to improve the behavior of the perturbative result for small v. From this

Hamiltonian, using the improved perturbation theory in appendix A, we can construct

H
(l)
0 (v) := H

(l)
0 + vH

(l)
1 + v2H

(l)
2 +O(v4) (5.16)

which is a counterpart of H0(v) (3.3) in the linear system. Note that the terms in the second

line in (5.15) do not contribute to H
(l)
2 , and we can drop them in the following discussions.

Recall that V1 and V2 in the Euclideanized theory for the revolving system are

V1 =

∫ π

0
dσ

[
−2πα′

r2
ΠT (XΠY −ΠXY ) +

r2

2πα′
∂σT (X∂σY − ∂σXY ) +

2r2

π2α′
∂σTY

]
,

(5.17)

V2 =

∫ π

0
dσ

[
πα′

r2

{
(XΠY − YΠX)2 + x(σ)2

(
Π2
Y −Π2

T

)}
+

r2

4πα′

{
(∂σT )2(X2 + Y 2) +

8

π2
Y 2 + x(σ)2

(
(∂σT )2 − (∂σY )2

)}]
, (5.18)

where only terms which contributes to H1 and H2 are shown above. The interaction terms

V
(l)

1 and V
(l)

2 have a quite similar structure to their counterparts in the revolving system.

However, there are some differences.

5Since the system of D0-branes at a constant relative motion does not have invariance under time

translation, the zero-mode of T is no longer decoupled. It is a big difference from the revolving system

noted in footnote 4, and we need to compare two systems at t = 0.
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Apart from the potential term v2t2/π2α′ in the linear system in (5.13), there are two

differences between the revolving and the linear systems. First, T and X are exchanged in

many terms in the interactions V1 and V2. Since T and X obey different, Neumann and

Dirichlet, boundary conditions, these terms give different contributions to [H2]D; namely

the first line of (3.17) in the revolving system. Second, V2 in the revolving case has the

following terms∫ π

0
dσ

[
πα′

r2
x(σ)2(Π2

Y −Π2
T ) +

r2

4πα′
x(σ)2

(
(∂σT )2 − (∂σY )2

)]
, (5.19)

which do not exist in the linear case V
(l)

2 . The diagonal part of (5.19) which contributes

to H2 is given by the second line of (3.17) in [H2]D in the revolving system. Therefore,

the results for the linear system are actually different from those for the revolving system.

There are other terms in V2 which are absent in V
(l)

2 , but they do not contribute to the

results up to O(v2).

After straightforward calculations in appendix G, we obtain

H
(l)
0 = α′p2 +

v2

π2α′
t2 +

r2

π2α′
+
∞∑
n=1

(NT,n +NX,n +NY,n)− 1

8
, (5.20)

H
(l)
1 =

2i

π

∑
n 6=0

1

n
αTnα

Y
−n. (5.21)

For [H
(l)
2 ]D (see appendix G), most of the terms are cancelled and the following terms for

the wave function renormalization

[H
(l)
2 ] =

α′

r2

(∑
n

NT,n +NX,n +NY,n −
3

24

)
(5.22)

remains. It is the same as (3.18). Once the wave function is renormalized, it does not affect

the final results of the partition function up to O(v2). We have seen that the perturbative

expansion of the linear system is similar to the revolving systems, but the above differences

lead to the apparently different results.

Let us calculate the partition function of the linear system using H
(l)
0 (v). As we

mentioned above, H
(l)
0 includes the term proportional to t2. Therefore, the eigenvalues of

the zero modes, t and p, no longer take continuous values. Instead, they form a harmonic

oscillator with the angular frequency 2v/π. The effect of H
(l)
1 in eq. (5.21) to the partition

function can be easily determined by diagonalizing it. We find that this gives shifts ±2v/π

to the eigenvalues of H
(l)
0 . Since H

(l)
2 does not contribute to the partition function up

to O(v2), we see that H
(l)
0 (v) reproduces the correct partition function of the twisted

boson [21]

Z =

∫ ∞
0

ds

2s
q−1 q

v
π

1− q
2v
π

e−
2r2

πα′ s
∞∏
n=1

(
1− qn+ 2v

π

)−1(
1− qn−

2v
π

)−1(
1− qn

)−22

=

∫ ∞
0

ds

2s

−2

sinh(2vs)
e−

2r2

πα′ sη(is)−24

[
1− 2πv2

(
− 4

π
s2
∞∑
n=1

2qn

(1− qn)2

)]
+O(v4) (5.23)
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up to O(v2). This can be regarded as a consistency check of the calculation and the validity

of the formalism we employed in this paper. The v2 corrections in the linear system give

the third term in the v2 corrections in the revolving system in eq. (3.21). Note that the

partition function itself is a function of v2, but the energy eigenvalues are shifted by ±2v/π.

This comes from the O(v)-mixing between the world sheet variables, T and Y . Also note

that after Wick rotation to the Lorentzian metric v → iv, the integrand has poles at integer

values of 2vs/π, which generates an imaginary part in the partition function. It reflects

open string pair creation [11]. Such imaginary part does not exist for the revolving system

since the distance between D-branes are constant and non-adiabatic particle creation does

not occur.

6 Conclusions and discussions

We have calculated one-loop partition function of an open string stretched between two D0-

branes which revolve around each other. To quantize the corresponding worldsheet theory,

we introduced new fields which satisfy simple boundary conditions. In compensation, it

makes the worldsheet action nonlinear. We analyze the resulting system perturbatively,

using the formalism developed in [19]. One of the advantages of using the method of the

improved perturbation is the fact that H0(v), containing all perturbative information on

the energy spectrum, commutes with H0 by construction. This enables us to separate the

massless contributions from the massive ones, and also to expand the trace as in (3.6).

After lengthy calculations, we obtained the partition function in eq. (3.21). The result

shows that it is indeed different from the linear system in which D0-branes are moving at

a constant relative velocity, but the final formulae is surprisingly simple. It is one of the

main results in the paper.

We then calculated the effective potential between such a pair of D0-branes in the

bosonic case when their separation is shorter than the string length. Here we summarize

the basic structure of the effective potential. It has various contributions from massless

and massive open string states and is given by the following form

V ∼ mstr

 3∑
i=0

√√√√(1 + Ci

(
ω

mstr

)2
)(

r

lstr

)2

+

(
c1 + c2

(
ω

mstr

)2
)(

r

lstr

)2
+O(ω4, r4)

(6.1)

where c1 = 162
√

2/π > 0. The result shows that there is an attractive force between the

rotating bosonic D0-branes. A contribution from the open string tachyon is neglected in

this expression.

One of our motivation for this calculation is to investigate towards a possibility of

a revolving Dp-brane system to make a resonant bound state at short distance [22–24].

Suppose that a Dp-brane with finite volume V and mass M = g−1
s mp+1

str V rotates with an

angular momentum L = Mr2ω. Then the centrifugal repulsive force is given by Mrω2

and under the angular momentum conservation, the centrifugal potential becomes VL =

L2/2Mr2. As we saw in the case of D0-branes in the bosonic string, strong attractive
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potential is generated by the one-loop open string amplitude: c1m
3
strr

2 for r � lstr. In the

Dp-brane case, an integration over the position of the end point of open strings gives the

volume factor V ∝ gsM and the most dominant part of the effective potential will be given

by cgsM(r/lstr)
2 for r � lstr. Under the angular momentum conservation, ω2 is replace

by (J2/Mr2)2 and the centrifugal potential is given by L2/2Mr2. When the attractive

potential balances with the repulsive centrifugal potential, we have a classical solution

with the angular velocity ω ∼ g
1/2
s mstr. However, such a classical bound state with the

large angular velocity ω is quantum mechanically unstable against emitting closed string

emission. Furthermore, if we lived on such a D3-brane, the Lorentz symmetry is strongly

violated [25]; thus a construction of the standard model based on this kind of D-brane

configurations in the bosonic string would not be phenomenologically viable. In addition,

if ω ∼ g1/2
s mstr, we need to take into account the effect of background fields which makes the

revolving motion on-shell, as mentionted at the beginning of section 2. These corrections

are expected to modify the dimensionsless constants c, c1.

In the case of D-branes in the superstring theory, the situation will become different.

Suppose we start from a BPS configuration such as a pair of Dp-branes at rest. When ω = 0,

such configurations of D-branes are BPS, and therefore, there is no force between them.

If they are revolving around each other, it would generate attractive potential as in (6.1).

But in superstrings, many terms are cancelled due to the supersymmetry; especially ω-

independent terms are completely cancelled. Thus in the typical form of the effective

potential generated by massive states (4.6), some of the coefficients must vanish: e.g.

c1 = c3 = 0. It is further known that when two branes are moving with a constant relative

velocity, the v2 terms also cancel [16, 17]. For revolving Dp-branes (for odd p), massless

open string states induce the following Coleman-Weinberg (CW) type effective potential;

V
∑
i

(−1)Fini

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
) p+1

2

log

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
)

(6.2)

where ni is the number of degrees of freedom of the field i. Supersymmetry may impose∑
i(−1)Fini = 0. If the attractive potential is dominated by the CW potential, the

balancing condition with the centrifugal potential becomes different from the bosonic case,

and a possibility of a bound state with much lower angular frequency would arise. It is

because the attractive potential in the superstirng case is much weaker than the bosonic

one, and we might expect
ω

mstr
,
r

lstr
� 1. (6.3)

If such a bound state can be shown to exist, it would escape the problems of strong Lorentz

violation as well as the rapid closed string emissions in phenomenological applications. We

hope to come back to this issue in future.
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A Improved perturbation theory

In this appendix, we briefly review the improved perturbation theory developed in [19].

Consider a Hamiltonian of the form

H = H0 + λV1 + λ2V2. (A.1)

In the interaction picture, we regard H0 as the free part and the remaining part as the

perturbation. Instead, we decompose H as

H = H0(λ) + λV (λ), (A.2)

where

H0(λ) := H0 + λH1 + λ2H2 + λ3H3 + · · · (A.3)

V (λ) := V1 −H1 + λ(V2 −H2)− λ2H3 − · · · (A.4)

The operators H1, H2, H3 etc. are to be determined later. One can construct a perturbation

theory based on this decomposition up to any desired orders of perturbation with respect

to λ. The time evolution of operators are given by a unitary operator U(λ, t) which satisfies

d

dt
U(λ, t) = −iλV (λ, t)U(λ, t), V (λ, t) := eiH0(λ)tV (λ)e−iH0(λ)t. (A.5)

The solution satisfying U(λ, 0) = I is

U(λ, t) = I + (−iλ)

∫ t

0
dt1 V (λ, t1)

+(−iλ)2

∫ t

0
dt1

∫ t1

0
dt2 V (λ, t1)V (λ, t2)

+(−iλ)3

∫ t

0
dt1

∫ t1

0
dt2

∫ t

0
dt3 V (λ, t1)V (λ, t2)V (λ, t3)

+O(λ4). (A.6)

As proved in [19], this operator does not have any secular terms provided that Hn are

appropriately chosen. To show the explicit expressions for them, let us introduce operators

Vi,a (i = 1, 2) which satisfy

Vi =
∑
a

Vi,a, [H0, Vi,a] = ωaVi,a. (A.7)

Explicitly, they are given as

Vi,a =
∑

Em−En=ωa

|m〉〈m|Vi|n〉〈n|, (A.8)

where |n〉 are the eigenstates of H0. In terms of these operators, H1 and H2 are given as

H1 = V1,0, (A.9)

H2 = V2,0 −
∑
a,b 6=0

1

ωa
δωa+ωbV1,bV1,a. (A.10)

Note that these operators commute with H0. For systematic derivations of higher Hn

(n ≥ 3), see [19].
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As a result, it turns out that the time-dependence of all operators in this system is

given in terms of eiH0(λ)t to all orders of perturbation theory. Therefore, the eigenvalues

of H0(λ) should be the same as those of the full Hamiltonian H to all orders in λ.

B Mode expansions

The worldsheet theory (2.10) becomes a free theory when v = 0. In this case, the quan-

tization of the worldsheet fields is straightforward. In the Euclidean theory, their mode

expansions at τ = 0 are as follows:

T =
t

r
+ i

√
2α′

r

∑
n 6=0

αTn
n

cosnσ, (B.1)

X =

√
2α′

r

∑
n 6=0

αXn
n

sinnσ, (B.2)

Y =

√
2α′

r

∑
n 6=0

αYn
n

sinnσ, (B.3)

ΠT =
r

π
p+

r

π
√

2α′

∑
n 6=0

αTn cosnσ, (B.4)

ΠX = − ir

π
√

2α′

∑
n 6=0

αXn sinnσ, (B.5)

ΠY = − ir

π
√

2α′

∑
n 6=0

αYn sinnσ. (B.6)

Note that the radius r appears above because of the rescaling X̃µ → rX̃µ mentioned

below (2.9). The commutation relations of the mode operators are[
αTn , α

T
m

]
=
[
αXn , α

X
m

]
=
[
αYn , α

Y
m

]
= nδn+m. (B.7)

C Calculation of [H2]D

In the appendix, we calculate the diagonal part of H2, which is given as the following sum;

[H2]D = [V2]D −
∑
m 6=0

1

m
[V1,−mV1,m]D. (C.1)

The calculations are complicated since V2 defined by (2.23) and (V1)2 contain quartic

terms in the world sheet variables, and we need to appropriately regularize the infinite sum

appearing in the intermediate states. Let us first look at the following term in V2:∫ σ

0
dσ

πα′

r2
X2Π2

Y . (C.2)
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The diagonal part of this operator is obtained by substituting X2 and Π2
Y with their

diagonal parts given by [
X(σ)2

]
D

=
2α′

r2

∑
n 6=0

1

n
DX,n sin2 nσ, (C.3)

[
ΠY (σ)2

]
D

=
r2

2π2α′

∑
n 6=0

nDY,n sin2 nσ, (C.4)

where Dµ,n are defined by

Dµ,n :=
1

n
Nµ,n + θ(n), (µ = T,X, Y ) (C.5)

and θ(n) is the step function;

θ(n) :=

{
1, (n > 0)

0. (n ≤ 0)
(C.6)

A suitable regularization of the summations is necessary. As a result of the substitution,

we obtain (see (C.25))[∫ π

0
dσ

πα′

r2
X2Π2

Y

]
D

=

∫ π

0
dσ

πα′

r2
[X2]D[Π2

Y ]D (C.7)

=
α′

4r2

∑
n,m 6=0

m

n
DX,nDY,m +

α′

4r2

∑
n 6=0

DX,nDY,n−
α′

8r2

∑
n 6=0

DX,n.

By using the formulae (C.32), we see that the expression contains the following term

α′

4r2
(2NX(2) + ζ(1)) (2NY (0) + ζ(−1)) , (C.8)

where

ζ(s) :=

∞∑
n=1

1

ns
(C.9)

is the Riemann zeta function. Most of the infinite sums can be regularized by using

ζ(−1) = −1/12 or ζ(0) = −1/2, but ζ(1) can not be regularized by the zeta function

regularization. It will be, however, observed that this kind of divergences cancels among

various terms within H2.

Other terms in [V2]D can be obtained in a similar manner. Using the diagonal parts

of the products given in appendix C.1, we find

[V2]D =
α′

2r2
ζ(1) (2NT (0) +NX(0) +NY (0)) +

α′

r2
ζ(1)ζ(−1)

+
α′

r2

[
NXY (2) +

1

2
(NTX(2) +NTY (2))

+NX(2)(NY (0) +NT (0)) +NY (2)(NX(0) +NT (0))

+ζ(−1)(NX(2) +NY (2)) +
1

2
NT (1) +

3

4
(NX(1) +NY (1)) +

1

2
ζ(0)

]
− 2

π2
(NT (2)−NY (2))− 1

3
α′p2. (C.10)

For details of the calculation, see appendix C.2.
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Next we evaluate the second term in H2 (3.4). Since the calculation is similarly per-

formed, it is given in the appendix C.3. The final result is

−
∑
m 6=0

1

m
[V1,−mV1,m]D =− α′

2r2
ζ(1)(2NT (0)+NX(0)+NY (0))−α

′

r2
ζ(1)ζ(−1)− 2

π2
ζ(1)

+
α′

r2

[
NXY (2)− 1

2
(NTX(2)+NTY (2))

−NX(2)(NY (0)+NT (0))−NY (2)(NX(0)+NT (0))

−ζ(−1)(NX(2)+NY (2))− 1

2
NT (1)+

1

4
(NX(1)+NY (1))

+NX(0)+NY (0)+NT (0)+
1

2
ζ(0)2

]
− 2

π2
(NT (2)+NY (2)).

(C.11)

C.1 Diagonal parts

To derive the explicit form of [H2]D, we need the diagonal parts of products of fields. They

are given as follows. For products including T and ΠT ,[
ΠT (σ)ΠT (σ′)

]
D

=
r2

π2
p2 +

r2

2π2α′

∑
n 6=0

nDT,n cosnσ cosnσ′, (C.12)

[
∂σT (σ)∂σT (σ′)

]
D

=
2α′

r2

∑
n 6=0

nDT,n sinnσ sinnσ′, (C.13)

[
ΠT (σ)∂σT (σ′)

]
D

=
i

π

∑
n 6=0

nDT,n cosnσ sinnσ′, (C.14)

[
∂σT (σ)ΠT (σ′)

]
D

= − i
π

∑
n 6=0

nDT,n sinnσ cosnσ′. (C.15)

For products including X and ΠX ,

[X(σ)X(σ′)]D =
2α′

r2

∑
n 6=0

1

n
DX,n sinnσ sinnσ′, (C.16)

[
ΠX(σ)ΠX(σ′)

]
D

=
r2

2π2α′

∑
n 6=0

nDX,n sinnσ sinnσ′, (C.17)

[
∂σX(σ)∂σX(σ′)

]
D

=
2α′

r2

∑
n 6=0

nDX,n cosnσ cosnσ′, (C.18)

[
X(σ)ΠX(σ′)

]
D

=
i

π

∑
n 6=0

DX,n sinnσ sinnσ′, (C.19)

[
ΠX(σ)X(σ′)

]
D

= − i
π

∑
n 6=0

DX,n sinnσ sinnσ′, (C.20)

[
X(σ)∂σX(σ′)

]
D

=
2α′

r2

∑
n 6=0

DX,n sinnσ cosnσ′, (C.21)
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[
∂σX(σ)X(σ′)

]
D

=
2α′

r2

∑
n 6=0

DX,n cosnσ sinnσ′, (C.22)

[
ΠX(σ)∂σX(σ′)

]
D

= − i
π

∑
n 6=0

nDX,n sinnσ cosnσ′, (C.23)

[
∂σX(σ)ΠX(σ′)

]
D

=
i

π

∑
n 6=0

nDX,n cosnσ sinnσ′. (C.24)

Those including Y and ΠY have the same form as above.

C.2 [V2]D

The diagonal part of (C.2) can be calculated as follows:∫ π

0
dσ

πα′

r2
[X2]D[Π2

Y ]D =
α′

r2

∑
n 6=0

1

n
DX,n

∑
m 6=0

mDY,m ·
1

π

∫ π

0
dσ sin2 nσ sin2mσ

=
α′

4r2

∑
n,m 6=0

m

n
DX,nDY,m +

α′

8r2

∑
n 6=0

1

n
DX,n (nDY,n + (−n)DY,−n)

=
α′

4r2

∑
n,m 6=0

m

n
DX,nDY,m +

α′

4r2

∑
n 6=0

DX,nDY,n −
α′

8r2

∑
n 6=0

DX,n.

(C.25)

We have used the following identities

DX,−n = −DX,n + 1. (n 6= 0) (C.26)

We introduce the following notations:

D1
µν :=

∑
n,m 6=0

m

n
Dµ,nDν,m, (C.27)

D2
µν :=

∑
n 6=0

Dµ,nDν,n, (C.28)

Dµ(x) :=
∑
n 6=0

1

nx
Dµ,n. (C.29)

In terms of these operators, (C.25) can be written as∫ π

0
dσ

πα′

r2
[X2]D[Π2

Y ]D =
α′

4r2

(
D1
XY +D2

XY −
1

2
DX(0)

)
. (C.30)

The other terms contributing to [V2]D are as follows:∫ π

0
dσ

πα′

r2
[Y 2]D[Π2

X ]D =
α′

4r2

(
D1
Y X +D2

Y X −
1

2
DY (0)

)
,

−
∫ π

0
dσ

2πα′

r2
[XΠX ]D[ΠY Y ]D = 0,

−
∫ π

0
dσ

2πα′

r2
[ΠXX]D[YΠY ]D = 0, ,
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−
∫ π

0
dσ

πα′

r2
x(σ)2[Π2

T ]D = −α
′

3
p2 − 1

12
DT (−1)− 1

2π2
DT (1),∫ π

0
dσ

πα′

r2
x(σ)2[Π2

Y ]D =
1

12
DY (−1)− 1

2π2
DY (1),∫ π

0
dσ

r2

4πα′
[(∂σT )2]D[X2]D =

α′

4r2

(
D1
XT +D2

XT −
1

2
DT (0)

)
,∫ π

0
dσ

r2

4πα′
[(∂σT )2]D[Y 2]D =

α′

4r2

(
D1
Y T +D2

Y T −
1

2
DT (0)

)
,∫ π

0
dσ

r2

4πα′
x(σ)2[(∂σT )2]D =

1

12
DT (−1)− 1

2π2
DT (1),

−
∫ π

0
dσ

r2

4πα′
x(σ)2[(∂σY )2]D = − 1

12
DY (−1)− 1

2π2
DY (1),

−
∫ π

0
dσ

r2

4πα′
4

π
x(σ)[Y ∂σY ]D = − 1

π2
DY (1),∫ π

0
dσ

r2

4πα′
12

π2
[Y 2]D =

3

π2
DY (1).

Summing all of them, [V2]D is given as

[V2]D =
α′

4r2

(
D1
XY +D1

Y X +D1
XT +D1

Y T + 2D2
XY +D2

XT +D2
Y T

)
− 1

π2
(DT (1)−DY (1))− 1

3
α′p2 +

α′

4r2
. (C.31)

To extract the divergent terms, we use the formulae:

D1
XY = ζ(1) (2NY (0) + ζ(−1)) + 4NX(2)NY (0)− 1

6
NX(2), (C.32)

D2
XY = 2NXY (2) +NX(1) +NY (1) + ζ(0) (C.33)

DT (1)−DY (1) = 2NT (2)− 2NY (2), (C.34)

and so on. Here we use the zeta function regularized values: ζ(−1) = −1/12 and ζ(0) =

−1/2. By using these results, we obtain (C.10).

C.3 [V1V1]D

The diagonal part of the second term can be calculated as follows. For example, let us

consider the following term:

−
∑
m 6=0

1

m

∫ π

0
dσ
−2πα′

r2
[ΠTXΠY (σ)]−m

∫ π

0
dσ′
−2πα′

r2

[
ΠTXΠY (σ′)

]
m

(C.35)

which contributes to H2. The diagonal part of this operator can be written as follows:

−2α′

r2

∑
m,n,k,l 6=0

nl

mk
DT,nDX,kDY,lδn+k+l,m

[
1

π

∫ π

0
dσ cosnσ sin kσ sin lσ

]2

−4(α′)2

r2
p2

∑
m,k,l 6=0

l

mk
DX,kDY,lδk+l,m

[
1

π

∫ π

0
dσ sin kσ sin lσ

]2

. (C.36)
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This expression can be obtained from (C.35) by substituting ΠT (σ)ΠT (σ′), X(σ)X(σ′) and

ΠY (σ)ΠY (σ′) with their diagonal parts given in appendix C.1, and then inserting δn+k+l,m

and δk+l,m at appropriate places in the sums. Performing the integrals, we obtain

α′

8r2

∑
m,n,k,l 6=0

nl

mk
DT,nDX,kDY,l(−δ2l,mδl,k+n − δ2k,mδk,l+n − δ2n,mδn,k+l)

−(α′)2

2r2
p2
∑
k 6=0

1

k
DX,kDY,k. (C.37)

Again, this contains terms with divergent coefficients. For example,

− α′

8r2

∑
m,n,k,l 6=0

nl

mk
DT,nDX,kDY,lδ2l,mδl,k+n

= − α′

16r2
ζ(1) (2NY (0) + ζ(−1)) + (finite). (C.38)

The other terms can be calculated similarly. In the following, we use an abbreviated

notation, for example,

(ΠTXΠY ,ΠTXΠY )

:=−
∑
m 6=0

1

m

∫ π

0
dσ
−2πα′

r2
[ΠTXΠY (σ)]−m

∫ π

0
dσ′
−2πα′

r2

[
ΠTXΠY (σ′)

]
m
.

We also use the notations

D(±,±,±)
µνρ :=

∑
m,n,k,l 6=0

nl

mk
Dµ,nDν,kDρ,l∆(±,±,±),

D̃(±,±,±)
µνρ :=

∑
m,n,k,l 6=0

n

m
Dµ,nDν,kDρ,l∆(±,±,±),

D3
µν :=

∑
k 6=0

1

k
Dµ,kDν,k,

where

∆(±,±,±) ≡ (±δ2l,mδl,k+n ± δ2k,mδk,l+n ± δ2n,mδn,k+l) .

Then the results are given as follows:

(ΠTXΠY ,ΠTXΠY ) = −(α′)2

2r2
p2D3

XY +
α′

8r2
D

(−,−,−)
TXY ,

(ΠTYΠX ,ΠTYΠX) = −(α′)2

2r2
p2D3

Y X +
α′

8r2
D

(−,−,−)
TY X ,

(ΠTXΠY ,−ΠTYΠX) =
(α′)2

2r2
p2D3

XY +
α′

8r2
D̃

(+,+,+)
TXY ,

(−ΠTYΠX ,ΠTXΠY ) =
(α′)2

2r2
p2D3

Y X +
α′

8r2
D̃

(+,+,+)
TY X ,

(∂σTX∂σY, ∂σTX∂σY ) =
α′

8r2
D

(−,−,−)
TXY ,
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(∂σTY ∂σX, ∂σTY ∂σX) =
α′

8r2
D

(−,−,−)
TY X ,

(∂σTX∂σY,−∂σTY ∂σX) =
α′

8r2
D̃

(−,−,+)
TXY ,

(−∂σTY ∂σX, ∂σTX∂σY ) =
α′

8r2
D̃

(−,−,+)
TY X ,

(ΠTXΠY , ∂σTX∂σY ) =
α′

8r2
D

(−,+,−)
TXY ,

(ΠTYΠX , ∂σTY ∂σX) =
α′

8r2
D

(−,+,−)
TY X ,

(ΠTXΠY ,−∂σTY ∂σX) =
α′

8r2
D̃

(−,+,+)
TXY ,

(−ΠTYΠX , ∂σTX∂σY ) =
α′

8r2
D̃

(−,+,+)
TY X ,

(∂σTX∂σY,ΠTXΠY ) =
α′

8r2
D

(−,+,−)
TXY ,

(∂σTY ∂σX,ΠTYΠX) =
α′

8r2
D

(−,+,−)
TY X ,

(−∂σTY ∂σX,ΠTXΠY ) =
α′

8r2
D̃

(−,+,+)
TXY ,

(−∂σTX∂σY,ΠTYΠX) =
α′

8r2
D̃

(−,+,+)
TY X ,

(∂σTY, ∂σTY ) = − 2

π2
D3
TY .

It turned out that most of the terms cancel miraculously. As a result, we find

−
∑
m 6=0

1

m
[V1,−mV1,m]D = − α′

4r2

∑
n,k 6=0
n+k 6=0

n

k

[
DT,nDX,kDY,n+k +DT,n+kDX,kDY,n

+DT,nDY,kDX,n+k +DT,n+kDY,kDX,n

]
+

α′

2r2

∑
k,l 6=0
k+l 6=0

DT,k+lDX,kDY,l −
2

π2

∑
n 6=0

1

n
DT,nDY,n. (C.39)

To extract divergent terms, we use the following formulae:∑
n 6=0

1

n
DT,nDY,n = NT (2) +NY (2) + ζ(1), (C.40)

∑
n,k 6=0
n+k 6=0

n

k
DT,nDX,kDY,n+k = ζ(1) (2NT (0) + ζ(−1))

+ 2NX(2)NY (0) + 2NX(2)NT (0)−NTX(2)

− 1

6
NX(2)− 1

2
NX(1)− 1

2
NX(0)−NY (0)

+
∞∑
n=1

n∑
k=1

1

k
(NY,n −NT,n)

+
∞∑
k=1

∑
n 6=0,−k

1

k(n+ k)
NT,nNY,n+k, (C.41)
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∑
k,l 6=0
k+l 6=0

DT,k+lDX,kDY,l = NXY (2)−NTX(2)−NTY (2) +NX(0) +NY (0)

−NT (1) +NT (0) +
1

2
ζ(0)2 (C.42)

and so on. Using these results and the following identity,

∞∑
k=1

∑
n 6=0,−k

1

k(n+ k)
NT,nNY,n+k +

∞∑
k=1

∑
n 6=0,−k

1

k(n+ k)
NY,nNT,n+k = NTY (2),

we obtain the result of (C.11).

D Useful formulae for traces and derivation of the partition function

(3.21)

In this appendix, we give general formulae for the traces such as

tr[e−2πsH̃0Nµ(x)], tr[e−2πsH̃0Nµν(x)] (D.1)

where H̃0, Nµ(x), Nµν(x) are defined in eq. (3.8) and eq. (3.16). Using them, we derive

the expression (3.21) for the partition function.

The calculation of these traces is reduced to considering a single harmonic oscillator

[αn, α−n] = n, (D.2)

for which we determine

trn
[
e−2πsNnNn

]
, Nn := α−nαn. (D.3)

The trace trn is taken over the Fock space of αn. It is easy to obtain

trn
[
e−2πsNnNn

]
=

nqn

1− qn
· 1

1− qn
, (D.4)

where q =−2πs. Using this formulae, we obtain

tr
[
e−2πsH̃0Nµ(x)

]
=

∞∑
n=1

n1−xqn

1− qn
·
∞∏
m=1

(1− qm)−3, (D.5)

tr
[
e−2πsH̃0Nµν(x)

]
=
∞∑
n=1

n2−xq2n

(1− qn)2
·
∞∏
m=1

(1− qm)−3, (D.6)

where we assumed µ 6= ν.

These formulae are sufficient to determine the partition function (3.1). For this pur-

pose, it is helpful to notice the following formulae

tr
[
e−2πsH̃0 (2Nµν(2) +Nµ(1) +Nν(1))

]
=
∞∑
n=1

2qn

(1− qn)2
·
∞∏
m=1

(1− qm)−3. (D.7)
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Then we obtain

str
[
e−2πs(H̃0− 1

8)H2

]
= s

[
α′

r2

∞∑
n=1

2qn

(1−qn)2
− 4

π2

∞∑
n=1

n−1qn

1−qn
− 1

3
α′k2+ε0

]
η(is)−3, (D.8)

−πs2tr
[
e−2πsH̃0H2

1

]
=−πs2

(
4(α′)2

r2
k2+

4

π2

) ∞∑
n=1

2qn

(1−qn)2
η(is)−3. (D.9)

Interestingly, after performing the k-integration, one more cancellation occurs between

these two traces; i.e., the momentum integration of (D.9) becomes∫
dk

2π
e−2πα′sk2tr

[
e−2πsH̃0H2

1

]
= (8π2α′s)−

1
2

(
−α
′

r2
s− 4

π
s2

) ∞∑
n=1

2qn

(1− qn)2
η(is)−3 (D.10)

whose first term in the parenthesis is cancelled by the momentum integration of the first

term in the square bracket of (D.8),∫
dk

2π
e−2πα′sk2tr

[
e−2πsH̃0H2

]
= (8π2α′s)−

1
2 · α

′

r2
s

∞∑
n=1

2qn

(1− qn)2
η(is)−3 + · · · . (D.11)

Finally, the partition function becomes

∫ ∞
0

ds

2s
(8π2α′s)−

1
2 e−

2r2

πα′ sη(is)−24

(
1− 1

3
v2

)− 1
2

×

[
1− 2πv2

(
− 4

π2
s

∞∑
n=1

n−1qn

1− qn
+ ε0s−

4

π
s2
∞∑
n=1

2qn

(1− qn)2

)]
+O(v4). (D.12)

E Matrix elements for low lying states

We determine the matrix elements 〈~n; k|O|~n′; k〉 for O = H2
1 , H2, in order to calculate the

eigenvalues Ei(k, r, ω) of H0(v) we need in subsection 4.2. The states |~n〉 we consider in

the following satisfy N(~n) ≤ 1.

First for the ground state with N(~n) = 0, all of nαn are zero. Therefore, we obtain

〈~n; k|H2
1 |~n; k〉 = 0, (E.1)

〈~n; k|H2|~n; k〉 = −1

3
α′k2 + ε0. (E.2)

After returning to the Lorentzian metric, −v2H2/α
′ gives the v2 corrections to the energy

of the tachyonic state.

Then we consider the first excited states with N(~n) = 1, which correspond to the

massless open string states excited by world sheet variables T,X, Y ; so there are three

states specified by the integers (nT1 , n
X
1 , n

Y
1 ). We denote these states by

~n1 = (1, 0, 0), ~n2 = (0, 1, 0), ~n3 = (0, 0, 1). (E.3)
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The diagonal matrix elements can be obtained easily. The results are

〈~n1; k|H2|~n1; k〉 = −1

3
α′k2 − 4

π2
+ ε0, (E.4)

〈~n2; k|H2|~n2; k〉 =
α′

r2
− 1

3
α′k2 + ε0, (E.5)

〈~n3; k|H2|~n3; k〉 =
α′

r2
− 1

3
α′k2 + ε0. (E.6)

We also need the off-diagonal matrix elements. To obtain them, we must use H1 and

H2, not just their diagonal parts [H2
1 ]D and [H2]D. Using the expression (3.13), we find

that the only non-zero off-diagonal elements of H1 are

〈~n1; k|H1|~n3; k〉 =
2i

π
, 〈~n2; k|H1|~n3; k〉 =

2iα′

r
k, (E.7)

and their complex conjugates.

It turns out that most of terms in H2 do not contribute to the off-diagonal elements for

the states with N(~n) = 1. This can be seen by considering the following matrix element

〈0|αmαn|1〉, |1〉 := |n1 = 1〉. (E.8)

The matrix elements for (m,n) = (1, 0), (0, 1) are non-vanishing only if 〈0|α0|0〉 is non-zero,

and the other matrix elements vanish. This implies that terms with a zero mode in H2

give non-zero off-diagonal matrix elements.

Among the worldsheet fields, ΠT is the only field which has a zero mode. It turns

out that

−
∫ π

0
dσ

2πα′

r2
x(σ)Π2

TX, (E.9)

is the only term in V2 which gives the off-diagonal matrix element

〈~n1; k|
[
−
∫ π

0
dσ

2πα′

r2
x(σ)Π2

TX

]
|~n2; k〉 = −2α′

πr
k, (E.10)

and its complex conjugate.

The terms in −
∑

m 6=0 V1,−mV1,m/m which could possibly give off-diagonal matrix el-

ements are

−
∑
m 6=0

1

m

∫ π

0
dσ
−2πα′

r2
[ΠT (XΠY − YΠX)]−m

∫ π

0
dσ′

2r2

π2α′
[∂σTY ]m (E.11)

and its Hermitian conjugate. In fact, we find that the off-diagonal matrix elements of these

terms vanish.

In summary, the matrix elements of H0(v) for the states with N(~n) ≤ 1 are

(
1− 1

3
v2

)
α′k2 +

r2

π2α′
+ v2ε0 +



0 0 0 0

0 1− 4

π2
v2 −2α′

πr
kv2 2i

π
v

0 −2α′

πr
kv2 1 +

α′

r2
v2 2iα′

r
kv

0 −2i

π
v −2iα′

r
kv 1 +

α′

r2
v2


. (E.12)
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Back to the Lorentzian metric and multiplying −v2/α′, these expressions give v2-

dependent corrections to the mass matrix of the open string massless states, whose 0-th

order energy is given by k2 + r2/π2α
′2. Since H1 and H2 mix these 3 states, we need to

diagonalize the matrix to obtain the energy eigenvalues. It is given in subsection 4.2.

F Integration for V02 and V03

Recall that E2(k, r, ω)− 1 is given as

E2(k, r, ω)− 1 =

(
1− 1

3
ω2r2

)
α′k2 + (1 + ε0π

2α′ω2)
r2

π2α′

+ 2
√
α′ωh(k, r)

1
2 + α′ω2 − 2α′ω2 r2

π2α′
− ω2r2

2π2
h(k, r)−1. (F.1)

The integral

V02 = −
∫ ∞

0

ds

2s

∫ +∞

−∞

dk

2π
e−2πs(E2(k,r,ω)−1) (F.2)

is very complicated. To see the behavior of V02, we replace

E2(k, r, ω)− 1→
(

1− 1

3
ω2r2

)
α′k2 + (1 + ε0π

2α′ω2)
r2

π2α′

+ 2α′ω|k|+ α′ω2 − 2α′ω2 r2

π2α′
. (F.3)

Then, the integral becomes

V02 → −2

∫ ∞
0

ds

2s
e
−2πs

[
α′ω2+(1+(ε0π2−2)α′ω2) r2

π2α′

]

×
∫ ∞

0

dk

2π
e−2πsα′[(1− 1

3
ω2r2)k2+2ωk]. (F.4)

The expression for V03 is obtained by flipping the sign of ω. It can be written as

V03 → −2

∫ ∞
0

ds

2s
e
−2πs

[
α′ω2+(1+(ε0π2−2)α′ω2) r2

π2α′

]

×
∫ 0

−∞

dk

2π
e−2πsα′[(1− 1

3
ω2r2)k2+2ωk]. (F.5)

The sum of them can be easily integrated and results in (4.19).

G [H
(l)
2 ]D for the linear system

[H
(l)
2 ]D for the linear system can be calculated in a similar way as the revolving system.

The difference is that H
(l)
0 involves the term proportional to t2 and the zero modes form

a harmonic oscillator. In terms of the creation/annihilation operators of the harmonic

oscillator, t and p are written as

t =

√
πα′

2v
(α0 + α†0), p = −i

√
v

2πα′
(α0 − α†0). (G.1)
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Then the free Hamiltonian for the zero modes in H
(l)
0 is given by 2v

π (N0 + 1
2), where

[α0, α
†
0] = 1 and N0 := α†0α0.

For products including T̃ and ΠT , the diagonal parts are given as[
ΠT (σ)ΠT (σ′)

]
D

=
vr2

π3α′

(
N0 +

1

2

)
+

r2

2π2α′

∑
n 6=0

nDT,n cosnσ cosnσ′,

[
T̃ (σ)T̃ (σ′)

]
D

=
πα′

vr2

(
N0 +

1

2

)
+

2α′

r2

∑
n 6=0

1

n
DT,n cosnσ cosnσ′,

[
∂σT (σ)∂σT (σ′)

]
D

=
2α′

r2

∑
n 6=0

nDT,n sinnσ sinnσ′,

[
ΠT (σ)T̃ (σ′)

]
D

= − i

2π
− i

π

∑
n 6=0

DT,n cosnσ cosnσ′,

[
T̃ (σ)ΠT (σ′)

]
D

=
i

2π
+
i

π

∑
n 6=0

DT,n cosnσ cosnσ′.

For X, ΠX and Y , ΠY , mode expansions are given in the same form as those in the

revolving system.

Let us first look at differences between the revolving and the linear systems. Since

T and X obey different, Neumann and Dirichlet, boundary conditions, these terms give

different contributions to the partition function. For example, for the revolving system,

[H2] has a contribution∫ π

0
dσ

πα′

r2
[X2][Π2

Y ] =
α′

4r2

[
ζ(1)

(
2NY (0)− 1

12

)
+ 4NX(2)NY (0)− 1

6
NX(2)

]

+
α′

4r2

[
2NXY (2) +NX(1) +NY (1)− 1

2
− 1

2
ζ(0)

]
,

while for the linear system, the corresponding contribution to [H
(l)
2 ] is∫ π

0
dσ

πα′

r2
[T 2][Π2

Y ] =
α′

4r2

[
ζ(1)

(
2NY (0)− 1

12

)
+ 4NX(2)NY (0)− 1

6
NX(2)

]

− α′

4r2

[
2NXY (2) +NX(1) +NY (1)− 1

2
− 1

2
ζ(0)

]
,

in which the second line has the opposite sign. Note that the divergent terms are common

in two cases. This turns out to be the case for all divergent terms.

In a way similar to the revolving system, each terms contributing to [V
(l)

2 ]D are calcu-

lated as follows:∫ π

0
dσ

πα′

r2
[T̃ 2]D[Π2

Y ]D =
α′

4r2

(
D1
TY −D2

TY +
1

2
DT (0)

)
+
πα′

4vr2

(
N0+

1

2

)
DY (−1),∫ π

0
dσ

πα′

r2
[Y 2]D[Π2

T ]D =
α′

4r2

(
D1
Y T−D2

Y T +
1

2
DY (0)

)
+
vα′

πr2

(
N0+

1

2

)
DY (1),

−
∫ π

0
dσ

πα′

r2
[T̃ΠT ]D[ΠY Y ]D = 0,
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−
∫ π

0
dσ

πα′

r2
[ΠY Y ]D[T̃ΠT ]D = 0,∫ π

0
dσ

r2

4πα′
[(∂σX)2]D[T̃ 2]D =

α′

4r2

(
D1
XT +D2

XT−
1

2
DT (0)

)
+
πα′

4vr2

(
N0+

1

2

)
DX(−1),∫ π

0
dσ

r2

4πα′
[(∂σX)2]D[Y 2]D =

α′

4r2

(
D1
XY −D2

XY +
1

2
DY (0)

)
,∫ π

0
dσ

r2

4πα′
4

π2
[T 2]D =

1

π2
DT (1),∫ π

0
dσ

r2

4πα′
4

π2
[Y 2]D =

1

π2
DY (1).

Summing all of them, and using the same formulae as the revolving system, we get

[V2]D = ζ(1)

[
2

π2
+

α′

2r2

(
NT (0) + 2NX(0) +NY (0)− 1

6

)]
+
α′

r2

[
−NTY (2) +

1

2
NTX(2)− 1

2
NXY (2)

+NT (0)NY (2) +NT (2)NY (0) +NT (2)NX(0) +NX(0)NY (2)

− 1

12
NT (2)− 1

12
NY (2)− 1

4
NT (1)− 3

4
NY (1) +

1

8

]

+
πα′

2vr2

(
N0 +

1

2

)(
NX(0) +NY (0)− 1

12

)
+

2

π2

(
NT (2) +NY (2)

)
+O(v). (G.2)

We need to take some care when calculating the contribution to [V
(l)

1 V
(l)

1 ]D that in-

cludes zero modes. For example, there is a following term in (ΠX T̃ΠY ,ΠX T̃ΠY ):

− πα′

2vr2

∞∑
m=−∞

∑
n,k 6=0

(
α0α

†
0

2v/π +m
+

α†0α0

−2v/π +m

)

× nkDX,nDY,kδm,n+k

[
1

π

∫
dσ sinnσ sin kσ

]2

= − π2α′

16v2r2

∑
n 6=0

n2
(
DX,nDY,n −DX,n

)
− πα′

8vr2

∑
n 6=0

k2

2v/π + 2n

[
DX,DY,n +N0

(
DX,n +DY,n − 1

)]
.

The terms includes no zero modes can be calculated in the same way as the revolving

system. Thus each contributions are obtained as follows:(
ΠX T̃ΠY ,ΠX T̃ΠY

)
= − α′

8r2
D

(+,+,+)
XTY − π2α′

16v2r2

∑
n 6=0

n2
(
DX,nDY,n −DX,n

)
− πα′

8vr2

∑
n 6=0

n2DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,
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(−ΠXΠTY,−ΠXΠTY ) = − α′

8r2
D

(+,+,+)
XY T − α′

4r2

∑
n 6=0

(
DX,nDY,n −DX,n

)
− vα′

2πr2

∑
n 6=0

DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,

(
∂σXT̃∂σY, ∂σXT̃∂σY

)
= − α′

8r2
D

(+,+,+)
XTY − π2α′

16v2r2

∑
n 6=0

n2
(
DX,nDY,n −DX,n

)
− πα′

8vr2

∑
n 6=0

n2DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,

(−∂σX∂σTY,−∂σX∂σTY ) = − α′

8r2
D

(+,+,+)
XY T ,

(∂σTY, ∂σTY ) = − 2

π2
D3
TY ,(

ΠX T̃ΠY ,−ΠXΠTY
)

=
(
−ΠXΠTY,ΠX T̃ΠY

)
=

α′

8r2
D̃

(+,+,+)
XTY − πα′

8vr2
(2N0 + 1)

∑
n 6=0

n
(
DX,nDY,n −DX,n

)
+

α′

4r2

∑
n 6=0

n
DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,

(
ΠX T̃ΠY , ∂σXT̃∂σY

)
=
(
∂σXT̃∂σY,ΠX T̃ΠY

)
= − α′

8r2
D

(+,−,+)
XTY +

π2α′

16v2r2

∑
n 6=0

n2
(
DX,nDY,n −DX,n

)
− πα′

8vr2

∑
n 6=0

n2DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,

(
ΠX T̃ΠY ,−∂σX∂σTY

)
=
(
−∂σX∂σTY,ΠX T̃ΠY

)
= − α′

8r2
D̃

(+,−,−)
XTY ,(

−ΠXΠTY, ∂σXT̃∂σY
)

=
(
∂σXT̃∂σY,−ΠXΠTY

)
=

α′

8r2
D̃

(+,−,+)
XTY +

πα′

8vr2
(2N0 + 1)

∑
n 6=0

n
(
DX,nDY,n −DX,n

)
+

α′

4r2

∑
n 6=0

n
DX,nDY,n +N0

(
DX,n +DY,n − 1

)
2v/π + 2n

,

(−ΠXΠTY,−∂σX∂σTY ) = (−∂σX∂σTY,−ΠXΠTY )

=
α′

8r2
D

(−,+,−)
XY T ,(

∂σXT̃∂σY,−∂σX∂σTY
)

=
(
−∂σX∂σTY, ∂σXT̃∂σY

)
= − α′

8r2
D̃

(+,+,−)
XTY .
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Again, most of the terms cancel. The remaining contributions are

−
∑
m 6=0

1

m

[
V

(l)
1,−mV

(l)
1,m

]
D

=−ζ (1)

[
2

π2
+
α′

2r2

{
NT (0)+2NX(0)+NY (0)− 1

6

}]

−α
′

r2

[
−NTY (2)+

1

2
NTX(2)− 1

2
NXY (2)

+NT (0)NY (2)+NT (2)NY (0)+NT (2)NX(0)+NX(0)NY (2)

− 1

12
NT (2)− 1

12
NY (2)− 1

4
NT (1)− 3

4
NY (1)

−NT (0)−NX(0)−NY (0)+
1

4

]

− πα′

2vr2

(
N0+

1

2

)(
NX(0)+NY (0)− 1

12

)
+

2

π2

(
NT (2)+NY (2)

)
+O(v). (G.3)

As a result, summing up (G.2) and (G.3), we find

[H
(l)
2 ]D =

α′

r2

[
NT (0) +NX(0) +NY (0)− 1

8

]
, (G.4)

up to higher orders of v.
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