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1 Introduction

The super Virasoro minimal models are gems in the vast landscape of two-dimensional su-

perconformal field theories (SCFTs). They are exactly solvable, and, while comparatively

simple, their tensor products and orbifolds can be used to build rich families of super-

conformal theories with exactly marginal deformations and a corresponding moduli space

of theories. In the case of left-right symmetric theories without supersymmetry or with

(1,1) superconformal invariance, the minimal models arise as IR fixed points of RG flows

from Landau-Ginzburg (LG) Lagrangian theories of fermions and scalars with interactions

determined by a superpotential [1, 2].

In the (2,2) case, there is a beautiful correspondence between ADE quasi-homogeneous

singularities [3] and the (2,2) minimal models [4] described in [5, 6]. The weakly coupled

UV description is perfectly suited to computing a number of RG-invariant quantities, which

reflect properties of the superconformal theory. In addition, the Lagrangian presentation is

well-suited to describing tensor products of minimal models. For instance, certain marginal

deformations of the superconformal theory are encoded by the holomorphic parameters of

the Lagrangian, which allows for an exact determination of the dependence of protected

correlation functions of the SCFT [7].

Taking a somewhat different perspective, one can ask: “which superconformal field

theories arise as IR fixed points of LG theories?” This is a fruitful question because the

simplicity of the LG description is not restricted to the minimal models: a superconformal

theory with a LG description can be studied by straightforward generalizations of the
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technology applicable to the minimal models. The answer depends on what one means by

a LG theory. We will use the classical meaning of the term: a Lagrangian theory with

a free kinetic term for fermions and bosons and a scalar potential with isolated critical

points (we will call such a potential “compact”). In the (2,2) superconformal case we

will also insist that the superpotential is a polynomial and quasi-homogeneous function of

the chiral superfields, so that the Lagrangian theory has a manifest chiral R-symmetry,

and we will assume that the current for this R-symmetry flows to the current for the

R-symmetry of the IR SCFT. With these assumptions, it is well-known that for (2,2)

theories there is a finite number of LG theories that realize any fixed rational central charge

c = c [8], and it is practical to enumerate the theories when c is not too large. For instance,

the classification of (2,2) LG theories that flow to IR theories with c = c = 9 (which

played an important role in the early days of mirror symmetry and the Calabi-Yau/LG

correspondence of stringy geometry) yields 10,839 theories distinguished by the spectrum

of chiral primary operators [9, 10]. Using the methods developed in those classifications,

it is also possible to enumerate the theories with central charge smaller than some fixed

bound. For instance, for c < 6 such an enumeration and its relation to the theory of

quasi-homogeneous singularities is given in [11].

The (2,2) LG theories belong to a wider class of models that only preserve (0,2)

worldsheet supersymmetry. Indeed, the (2,2) Lagrangian theories typically have contin-

uous deformations that preserve (0,2) supersymmetry and the chiral R-symmetry, and

thus can describe (0,2)–preserving deformations of (2,2) SCFTs. More generally, it has

long been known that (0,2) LG theories act as useful signposts in the landscape of (0,2)

SCFTs [12–15]. Despite this promise and many applications in particular examples, the

(0,2) LG theories are less understood than their (2,2) relatives. For instance, it is not

known how to enumerate (0,2) LG theories that realize some fixed central charges c, c, nor

has it been shown that the number of such theories is finite. The classification is compli-

cated by accidental symmetries that can invalidate the naive correspondence between the

UV R-symmetry and the R-symmetry of the IR SCFT [16].

In this work we present the classification of (0,2) LG theories with c = c < 3. We find

two infinite families and three sporadic (0,2) LG theories with c = c < 3; the results are

listed in (6.1). This is a very natural class of theories to examine. First, the strong unitarity

constraints of the c < 3 N=2 superconformal algebra offer a hope that the classification

problem will be tractable. Second, the IR fixed points obtained in this fashion help to

fill out the space of “(0,2) minimal models” — a notion we will discuss further below.

Indeed, some of our families have been identified with exactly solvable (0,2) SCFTs [17].

Finally, just as for (2,2) theories and their deformations, by taking tensor products of the

theories we can build many (0,2) SCFTs that are amenable to study through the LG UV

description. For instance, these can act as new ingredients in constructing (0,2) SCFTs

suitable for heterotic compactification.

The rest of this note is organized as follows. In section 2 we review some (0,2) LG and

minimal model notions relevant to our study. In section 3, we show that unitarity constrains

the analysis to theories with just one or two fermi multiplets, and in the following section

we enumerate the families that are consistent with our charge bounds and compactness.
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Next, in section 5, we study field redefinitions to prove a number of isomorphisms that

allow us to enumerate the inequivalent theories. We conclude with a short discussion of

the results.
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2 (0,2) Landau-Ginzburg overview

2.1 (2,2) LG and minimal models

To set the stage for our work, we begin with a quick overview of (2,2) LG theories with

c = c < 3 [8]. The Lagrangian has n chiral multiplets Xi with free kinetic terms and a

quasi-homogeneous (2,2) superpotential W (X1, . . . , Xn) satisfying

W (tq1X1, t
q2X2, . . . , t

q3Xn) = tW (X1, . . . , Xn) . (2.1)

The qi are rational R-charges satisfying 0 < qi < 1/2. The lower bound follows from

unitarity and compactness requirements on the SCFT: each Xi should flow to an operator

with R-charge qi, and we focus on SCFTs with a normalizable sl(2,C) vacuum. The upper

bound follows because fields with qi = 1/2 correspond to massive multiplets: these can be

integrated out without affecting the IR fixed point.

Once the qi are fixed, and we make the assumption that the UV R-current flows to

the IR R-current, the central charge can be determined in a variety of ways. For instance,

one might study the Weyl rescaling of the world-sheet metric [6], the elliptic genus or the

chiral algebra [18, 19], or use c-extremization [20]. The result is the famous expression

c = c = 3

n∑
i=1

(1− 2qi) . (2.2)

The critical locus of the superpotential is the set of solutions to

∂W

∂X1
= 0 ,

∂W

∂X2
= 0 , . . . ,

∂W

∂Xn
= 0 . (2.3)

Since W is quasi-homogeneous, compactness implies that the critical locus consists of the

origin X1 = X2 = . . . = Xn = 0, and with some work it can be shown that this requires

c ≥ n [8].

At this point, the correspondence with the (2,2) minimal models [4] is quite natural,

because it is easy to describe the compact quasi-homogenous superpotentials with n ≤ 2

— a classic result in singularity theory. Since we will be doing similar manipulations below,

we will take a moment to review the argument.
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First we consider the case of n = 1. In this case the only quasi-homogenous potential

is W = Xk
1 , which yields c = 3(k − 2)/k. Next, we let n = 2. It is an amusing exercise to

show that a compact superpotential necessarily takes one of the following three forms:

W1 ⊃ Xk1
1 +Xk2

2 =⇒ q1 =
1

k1
, q2 =

1

k2
, c1 = 6

(
1− 1

k1
− 1

k2

)
,

W2 ⊃ Xk1
1 +X1X

k2
2 =⇒ q1 =

1

k1
, q2 =

k1 − 1

k1k2
, c2 = 6

(
1− 1

k1

)(
1− 1

k2

)
,

W3 ⊃ X1X
l2
2 +X l1

1 X2 =⇒ q1 =
l2 − 1

l1l2 − 1
, q2 =

l1 − 1

l1l2 − 1
, c3 = 6

(
1− l1 + l2 − 2

l1l2 − 1

)
.

(2.4)

More precisely, unless the shown monomials appear with generic coefficients, the critical

locus will be non-compact; on the other hand, once the indicated monomials are present,

they uniquely determine the charges q1, q2, and therefore c.

We have yet to impose the requirement c < 3 obeyed by the N=2 unitary minimal

models. For the first class of superpotentials we need

1

k1
+

1

k2
>

1

2
, (2.5)

and the solutions are, together with the ADE labels,

A1 ⊕A1 W = X3
1 +X3

2

c

3
=

4

4 + 2
,

A1 ⊕A2 = E6 W = X3
1 +X4

2

c

3
=

10

10 + 2
,

A1 ⊕A3 = E8 W = X3
1 +X5

2

c

3
=

28

28 + 2
. (2.6)

We wrote the central charges in the slightly strange form to emphasize that they take the

form c = 3k
k+2 for integer k, as is appropriate for the unitary minimal models. Note that we

did not impose this by hand on the LG charges: merely requiring c < 3 forces the possible

solutions to satisfy the basic unitarity constraint.

Proceeding to the remaining classes of superpotentials, we find that for W2 the con-

straint c < 3 leads to

Dk+1 W = Xk1
1 +X1X

2
2

c

3
=

2k1 − 2

2k1 − 2 + 2
,

E7 W = X3
1 +X1X

3
2

c

3
=

16

16 + 2
. (2.7)

For W3 we can, without loss of generality, take l1 ≥ l2, and then c < 3 is satisfied by

W = X1X
2
2 +X l1

1 X2 . (2.8)

If the picture of the RG flow just presented is to be sensible, this class should also correspond

to some minimal model. That is indeed the case, and it can be seen explicitly through a
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holomorphic field redefinition compatible with the R-charges:

X1 = Y1 ,

X2 = Y2 + αY l1−1
1 , (2.9)

which leads to

W = −1

4
Y 2l1−1

1 + Y1Y
2

2 , (2.10)

the superpotential for a D2l1 minimal model. The Lagrangians for the LG theories with

W3 and c < 3 differ from those with W2 and c < 3 by D-terms; we assume these to

be irrelevant, so that if our interest is in the distinct IR fixed points obtained from LG

theories, then the superpotentials in (2.6), (2.7) describe all of the possibilities. Finally, it

also not hard to show that these superpotentials are rigid: any continuous parameter in W

compatible with the R-charges can be absorbed into a holomorphic field redefinition.

The same logic will allow us to classify the c = c < 3 (0,2) LG theories up to field redef-

initions. However, before we launch into those details, we will review our (0,2) conventions,

following [16].

2.2 (0,2) LG conventions

A (0,2) LG theory is a Lagrangian theory with two types of (0,2) supermultiplets: the

chiral bosonic multiplets Φi, i = 1, . . . , n, each containing a complex boson φi and a right-

moving fermion ψi, and the chiral fermi multiplets ΓA, A = 1, . . . , N , each containing a

left-moving fermion γA and a complex auxiliary field. For each chiral multiplet the theory

also includes the antichiral conjugate multiplet.

The Lagrangian is conveniently presented in terms of (0,2) superspace with superspace

coordinates (z, z; θ, θ) and superspace derivatives D = ∂θ + θ∂̄, D = ∂θ + θ∂. It is a sum of

two terms

L = Lkin + LW , (2.11)

with

Lkin = DD
[

1
2Φi∂Φi − 1

2ΓAΓA
]∣∣
θ,θ=0

, LW =
[
DW +DW

]∣∣
θ=θ=0

,

W =
∑
A

ΓAJA(Φ) . (2.12)

Our main interest is in the holomorphic (0,2) superpotential W, which is determined by N

holomorphic polynomials JA(Φ). The (0,2) scalar potential is proportional to
∑

A ‖JA‖2

and will be compact if and only if the common vanishing locus of the JA consists of isolated

points. In that case we say the corresponding ideal J = 〈J1, . . . , JN 〉 ⊂ C[φ1, . . . , φn] is zero-

dimensional. We will be interested in theories that preserve a U(1)L × U(1)R symmetry,1

of which the former is a global symmetry of the superpotential W:

U(1)L : ΓA → eiQ
AλΓA Φi → eiqiλΦi , (2.13)

1In principle we need only require a U(1)R symmetry; however, in this class of theories a U(1)L ×U(1)R
UV symmetry is necessary to construct a candidate IR R-symmetry consistent with c > 0.
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which requires JA to be quasi-homogeneous of degree −QA:

JA(eiqiλΦi) = e−iQAλJA(Φ) . (2.14)

We will assume that the superpotential couplings are generic enough so that there is a single

linearly-independent quasi-homogeneous relation: the U(1)L charges are determined up to

an overall scaling. The U(1)R symmetry assigns charge +1 to the superspace coordinate θ

and thus serves as a proxy for the R-symmetry of the IR theory. The R-charges of the fields

are then determined by c-extremization [20–23]: they U(1)L charges are normalized so that

−
∑
A

QA −
∑
i

qi =
∑
A

Q2
A −

∑
i

q2
i , (2.15)

and the R-charges of the multiplets are then

U(1)R : ΓA → ei(1+QA)λΓA Φi → eiqiλΦi . (2.16)

We will assume that the UV R-symmetry current flows to the IR R-symmetry current, so

that anomaly matching determines the central charge of the IR theory. The result is

c

3
= −

∑
A

(1 +QA) +
∑
i

(1− qi) . (2.17)

The gravitational anomaly fixes

c− c = N − n . (2.18)

Constraints from the chiral algebra. In addition to these basic characteristics, as in

(2,2) case, in the absence of accidents we can also track the chiral algebra of the SCFT in

terms of the UV data [19, 22, 24, 25]. The UV theory has a non-trivial cohomology for the

supercharge Q, which acts as follows on the fundamental fields:

Q · φi = 0 , Q · φi = ψi , Q · ψi = −∂̄φi , Q · ψi = 0 ,

Q · γA = 0 , Q · γA = −JA(φ) . (2.19)

The Q-cohomology has a well-understood subset: the topological heterotic ring [26], which

is described by a well-known algebraic construction: the Koszul complex associated to the

ideal 〈J1, . . . , JN 〉 ⊂ C[φ1, . . . , φn] [22, 24]. The full Q-cohomology is more general and

includes composite operators that involve the γA fields. For our purposes we will just glean

three observations from that rich field:

1. the bosonic field φi is an element of the chiral algebra of R-charge qi unless some JA
contains φi as a monomial;

2. the fermionic field γA is an element of the chiral algebra of R-charge 1 + QA unless

it gains a mass due to a linear monomial just mentioned;

3. when all of the γA are massless, since the operators γA γB have a non-singular OPE,

we expect that the operator γ1γ2 · · · γN is a well-defined element of the chiral algebra

of R-charge
∑

A(1 +QA).

– 6 –
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Since we are interested in the IR limit of these LG theories, we will explicitly exclude mass

terms from the superpotential. Thus, if the flow from the LG theory to the IR is accident

free, we expect that the SCFT will have chiral primary operators with the following charges

and conformal weights:

operator U(1)L U(1)R h h

φi qi qi qi/2 qi/2

γA QA 1 +QA (2 +QA)/2 (1 +QA)/2

γ1 · · · γN
∑

AQA
∑

A(1 +QA)
∑

A(2 +QA)/2
∑

A(1 +QA)/2

(2.20)

If these operators exist in the unitary IR SCFT, then the charges must satisfy the familiar

unitarity bounds of the N=2 superconformal algebra:

0 < qi ≤ c/3 , 0 < (1 +QA) ≤ c/3 , 0 <
∑

A(1 +QA) ≤ c/3 . (2.21)

The last constraint is particularly powerful.2 For instance, if we apply it to (2,2) theories,

where Qi = qi − 1, we find the relation∑
i

qi ≤
∑
i

(1− 2qi) =⇒ n ≤ c . (2.22)

This bound is known to hold for all compact (2,2) LG theories [8], but its direct derivation

as a consequence of compactness is not straightforward. Here we see that it follows if we

assume that the SCFT realizes the chiral algebra.3 As we will see in the next section, this

bound will lead to powerful constraints on (0,2) LG theories as well.

Field redefinitions and equivalence relations. Just as in the (2,2) theories, holomor-

phic field redefinitions compatible with the U(1)L charges lead to equivalence relations: we

assume that any two compact (0,2) LG theories related by such a field redefinition flow to

the same fixed point. In (0,2) theories there is a further complication that the redefinitions

act separately on the Φi and on the ΓA. The former lead to changes of coordinates on the

ideal, while the latter change the basis of generators of the ideal. Furthermore, as in [16],

any orbit of field redefinitions that contains a point with enhanced global symmetry can

potentially lead to an accidental symmetry. We will see examples of such accidental orbits,

and we will take care to exclude them from our analysis.

Classification goal. Having reviewed the setup, we can now precisely state our goal: we

wish to classify compact (0,2) LG theories with c = c < 3. This means finding all quasi-

homogeneous zero-dimensional ideals J = 〈J1, . . . , Jn〉 ⊂ C[φ1, . . . , φn] up to equivalence by

holomorphic changes of variables and the basis of generators. We will exclude accidental

orbits and demand that the U(1)L charges satisfy (2.15) and (2.17) .

2These remarks have been made previously in [16].
3As a further check of the consistency of these conditions, we studied the elliptic genus for compact (2,2)

LG theories with c = c = 9 and confirmed that each such theory has a unique operator with the quantum

numbers of γ1 · · · γn.
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3 Ruling out theories with more than two fermi multiplets

While the vanishing of the gravitational anomaly implies n = N , we do not yet have bounds

on n. In this section we will demonstrate that n ≤ 2 if c < 3 and the LG theory yields

an accident-free flow to a unitary theory. This is a key point because the classification of

zero-dimensional ideals J with n generators is a difficult problem. In the (2,2) case it is

much simplified because the generators arise from the (2,2) superpotential W , so that the

same combinatoric object — the Newton polytope for W — controls the generators.

With our assumptions, the LG fields φi and γA correspond to chiral primary operators

in the SCFT. When c < 3 unitarity of the N=2 superconformal algebra implies that the

charges of these fields satisfy

c/3 =
K

K + 2
, qi =

ri
K + 2

, 1 +QA =
PA

K + 2
, (3.1)

where K, ri, and PA are positive integers with 0 < ri ≤ K and 0 < PA ≤ K.

Since −QA is the quasi-homogeneity charge of the polynomial JA, it must be possible

to find a matrix of non-negative integers M i
A such that

QA = −
∑
i

M i
Aqi , (3.2)

and for any i ∑
A

M i
A ≥ 2 . (3.3)

If it is not possible to satisfy (3.3), then the J fails to satisfy our requirements: if
∑

AM
i
A=0,

then φi does not appear in the generators, and J cannot be zero-dimensional; if
∑

AM
i
A = 1,

then φi appears linearly in precisely one generator, and that is a mass term. Of course the

matrix M i
A is far from unique, but it must satisfy (3.3).

Given such an M , we see from (2.17) that∑
A,i

(
M i
A − δiA

)
ri = K , (3.4)

and the last equation in (2.21) implies

∑
A

(
K + 2−

∑
i

M i
Ari

)
≤ K . (3.5)

Combining these two relations, we obtain

(n− 1)
∑
A,i

(M i
A − δiA)ri −

∑
A

(∑
i

M i
Ari − 2

)
≤ 0 . (3.6)

Rearranging the terms, we obtain

2n+ (n− 2)
∑
i

(∑
A

(M i
A − δiA)

)
ri −

∑
i

ri ≤ 0 . (3.7)
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Finally, if n ≥ 3, then we obtain a necessary condition for this inequality to be true by

using (3.3) to replace
∑

A(M i
A − δiA) by its minimum value of 1. This leads to

2n+ (n− 3)
∑
i

ri ≤ 0 , (3.8)

and we see that LG theories satisfying our assumptions with n ≥ 3 cannot have an accident-

free RG flow to an SCFT with c < 3.

The n = 1 case is quite familiar: in this case J1 = φk−1
1 is equivalent by a field redef-

inition to the Ak−2 (2,2) LG theory. What remains is a manageable classification problem

of zero-dimensional quasi-homogeneous ideals 〈J1, J2〉 ⊂ C[φ1, φ2] that also satisfy c < 3.

4 Constraints from compactness and charge bounds

As we remarked above, the potential of a (0,2) LG theory will be compact if and only if J is

a zero-dimensional ideal. An elementary result in commutative algebra [27] is a necessary

condition for zero-dimensionality: monomials of the form φk11 and φk22 must appear in the

generators. Thus, a zero-dimensional ideal must belong to one of two classes:

J1 ⊃ φk11 + φl11 φ
l2
2 , J2 ⊃ φk22︸ ︷︷ ︸

Class 1

, J1 ⊃ φk11 + φk22 , J2 ⊃ φl11 φ
l2
2︸ ︷︷ ︸

Class 2

. (4.1)

We will sometimes just specify the exponents for these two classes as [k1, k2; l1, l2]1 and

[k1, k2; l1, l2]1. More precisely, the indicated monomials must appear with generic non-zero

coefficients in order to obtain a zero-dimensional ideal; of course other monomials may

appear as well. The mixed monomial also deserves a word of explanation: if the φk11 and

φk22 are the only “pure” monomials present in the ideal, then for Class 2 J2 must contain

the indicated mixed monomial — otherwise it will not be zero-dimensional. For Class 1

the situation is slightly different: if no mixed monomial can show up in either J1 or J2,

then the theory is trivially equivalent to a sum of two (2,2) minimal models. We will now

apply the constraint c < 3 to the two classes.

4.1 Results of a numerical exploration

To get our bearings, we simply scanned through a range of exponents k1, k2 and l1, l2
found several families as well as exceptional cases with c < 3. We summarize these in the

following table.

Class 1 Class 2

a : 〈φk11 + φ1φ2, φ
k2
2 〉 a : 〈φk11 + φk22 , φ1φ2〉

a∗ : 〈φk11 + φk1−1
1 φk2−1

2 , φk22 〉 a′ : 〈φ2
1 + φ2

2, φ
l1
1 φ

l2
2 〉

b : 〈φk11 + φ2
1φ2, φ

2
2〉 b : 〈φk11 + φ2

2, φ
2
1φ2〉

b∗ : 〈φ2
1 + φ1φ

k2−2
2 , φk22 〉

c : 〈φ3
1 + φ2

2, φ
3
2〉 c : 〈φ3

1 + φ2
2, φ

3
1φ2〉

d : 〈φ2
1 + φ3

2, φ
4
2〉 d : 〈φ3

1 + φ2
2, φ

2
1φ

2
2〉

e : 〈φ2
1 + φ3

2, φ
5
2〉 e : 〈φ3

1 + φ2
2, φ1φ

2
2〉

(4.2)
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Among these classes we recognize some familiar theories: the E7 minimal model is equiv-

alent up to field redefinitions to Class 2e, while the Dk−1 minimal models are a subset of

Class 2a with k2 = 2. In the next section we will show that every Class 1 or 2 theory

belongs to this list. We will then explore equivalences among these different cases and

produce a substantially shorter list.

4.2 Class 1 and c < 3

The first step in analyzing this case is to establish some a priori upper bounds on the

exponents. First, k1 > l1: otherwise φ2 will have a negative R-charge. Second, without

loss of generality l2 < k2: otherwise applying a field redefinition

Γ2 → Γ2 − φl11 φ
l2−k2
2 Γ1 (4.3)

decreases the power of φ2 of the mixed monomial in J1.4 Of course we also have l2 > 0.

With those bounds in place, we turn to the central charge itself. A short computation

leads to

c

3
=

(l2(k1 − 1) + (k1 − l1)(k2 − 1))2

l22(k2
1 − 1) + (k1 − l1)2(k2

2 − 1)
. (4.4)

It is convenient to redefine the integers:

k2 = s2 + 1 , k1 = l1 +m1 . (4.5)

The condition c < 3 is then equivalent to the positivity of the following function of integers

F = l22(l1 +m1 − 1) +
(
m2

1 − l2m1(l1 +m1 − 1)
)
s2 > 0 (4.6)

on the domain defined by the inequalities

0 ≤ l1 , s2 ≥ l2 >

{
1 if l1 = 0

0 if l1 > 0
, m1 >

{
1 if l1 = 0

0 if l1 > 0
. (4.7)

The special cases for l1 = 0 avoid mass terms.

We find it convenient to examine l1 = 0 separately from the remaining possibilities.

Here

F = l22(m1 − 1)−m1Zs2 , (4.8)

where

Z = l2(m1 − 1)−m1 . (4.9)

4Either J2 has no additional monomials, or it has a mixed monomial with a smaller power of φ2. The

first possibility reduces the ideal to the familiar product of (2,2) models, while the second possibility allows

us to decrease the l2 exponent in the mixed monomial in J1. We can apply the field redefinition until the

desired l2 < k2 bound is reached.
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On the domain defined by the inequalities (4.7) Z is non-negative, and Z = 0 only if l2 = 2

and m1 = 2. When Z = 0 F > 0 for all values of k2, and we encounter our first infinite

family of c < 3 (0,2) LG theories:

[2, k2; 0, 2]1 ←→ J = 〈φ2
1 + φ2

2, φ
k2
2 〉 . (4.10)

This belongs to Class 2a′.

Next, we assume Z > 0, so that F > 0 is equivalent to

s2

l2
<

l2(m1 − 1)

m1(l2(m1 − 1)−m1)
=

1

m1
+

1

l2(m1 − 1)−m1
. (4.11)

Since s2 ≥ l2, the right-hand-side must be greater than 1, and the only solutions are

(m1, l2) ∈ {(2, 3), (3, 2)} . (4.12)

Plugging these choices back into F , we find that s2 is bounded, and there are just three

integer solutions: 1c, 1d, and 1e.

Next, we consider l1 > 0, where

F = l22(l1 +m1 − 1) + Y s2 , Y = m1 (m1 − l2(l1 +m1 − 1)) . (4.13)

If Y ≥ 0 then F is positive. Since m1 > 0 and l1 + m1 > 1, this requires l2 ≤ 1. Thus,

Y ≥ 0 precisely when l1 = l2 = 1. This is the family 1a in the list above.

When l2 > 1, then Y < 0, and thus F > 0 again puts a bound on the ratio s2/l2,

which leads to the constraint

1 <
1

m1
+

1

l2(l1 +m1 − 1)−m1
. (4.14)

This can only be achieved if m1 = 1 or if l2(l1 +m1 − 1)−m1 = 1. The former possibility

leads to classes 1a∗ and 1b∗, and the latter possibility leads to class 1b.

4.3 Class 2 and c < 3

We turn to Class 2 theories and verify that every set of exponents consistent with c < 3

belongs to one of the theories in (4.2). There is a symmetry of the Class 2 theories that

exchanges φ1 and φ2, as well as the corresponding exponents; we can therefore focus on

theories with k1 ≥ k2.

For Class 2 the central charge is given by

c

3
=

(k1k2 + k2(l1 − 1) + k1(l1 − 1))2

k2
1k

2
2 − k2

1 − k2
2 + (k1l2 + k2l1)2

. (4.15)

Imposing c < 3 is then equivalent to the positivity of

F = k1k2 − (k1k2 − k1 − k2) [k1(l2 − 1) + k2(l1 − 1)] . (4.16)

If l1 = l2 = 1 or k1 = k2 = 2 then F > 0. We recognize these c < 3 solutions as Class 2a

and 2a′, respectively.
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To study the remaining possibilities, we can assume that k1 ≥ 3 and k2 ≥ 2, and that

either l1 or l2 is greater than one. With those assumptions it is evident that (k1k2−k1−k2)

is positive, and

k1(l2 − 1) + k2(l1 − 1) ≥ 5 . (4.17)

Thus,

F ≤ k1k2 − 5(k1k2 − k1 − k2) = 5(k1 + k2)− 4k1k2 =⇒ k1

k2
≤ 5

4k2 − 5
. (4.18)

But, since we also assume k1 ≥ k2, this immediately implies k2 = 2. Setting k2 = 2, we find

F = 2k1 − (k1 − 2) [k1(l2 − 1) + 2(l1 − 1)] , (4.19)

and using k1 ≥ 3 in the second term, F > 0 implies

k1(3− l2)− 2(l1 − 1) > 0 . (4.20)

Thus l2 < 3. Setting l2 = 1, we now find

F = 2 [k1 − (k1 − 1)(l1 − 1)] . (4.21)

Thus, we obtain c < 3 theories for: [k1, 2; 1, 1]2 — these are a special case of class 2a

theories; [k1, 2; 2, 1]2 — these are the class 2b theories; [3, 2; 3, 1]2 — the class 2c theory.

The last case to consider is l2 = 2 and k2 = 2, for which

F = 2k1 − (k1 − 2)(k1 − 2 + 2l1) . (4.22)

Since k1 ≥ 3 and l1 ≥ 1, we see that

F < k1 − 2(l1 − 1) and F < 6− k1 . (4.23)

This is a finite list of possibilities to check, and the c < 3 exponents are [3, 2; 1, 2]2 and

[3, 2; 2, 2]2 — the 2e and 2d classes, respectively.

This completes the proof that the exponents in (4.2) include every c < 3 theory. In

the next section we will show that this list is redundant: many of the classes are related to

each other by field redefinitions.

5 Redefinitions and classification results

The general form of the (0,2) superpotential is determined once the charges QA and qi are

fixed. For each A the monomials
∏
i φ

mi
i in JA belong to a Newton polytope ∆A that lies

in the positive orthant of Rn. The intersection of ∆A with the underlying lattice Zn ⊂ Rn

determines the exponents of the monomials in JA. Quasi-homogeneity implies that the ∆A

lie in parallel hyperplanes in Rn. With this combinatorial set-up, we can write the generic

superpotential as

JA =
∑

m∈∆A∩Zn

αm

n∏
i=1

Φmi
i . (5.1)
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The coefficients αm determine a point in M0 = C
∑

A |∆A|, where |∆A| denotes the number

of points in ∆A ∩ Zn.

Compactness implies that for a generic point p ∈ M0, the ideal is zero-dimensional,

but there will be a locus Z ⊂M0 where the theory is non-compact. This singular locus is

preserved by field redefinitions, so that we can form

Muv =
M0 \ Z

field redefinitions
. (5.2)

On a first look we can think of Muv as a model for the moduli space of the IR SCFT, but

there are a number of issues with this simplistic view.

1. Muv is complicated because the quotient is in general not reductive. Even for a

reductive quotient, one has to provide stability conditions to obtain a well-behaved

(though perhaps singular) space. Similar issues arise already in a simpler toric set-

ting [16, 28].

2. The space Muv in general includes points with enhanced continuous global symme-

tries, and these can invalidate the identification of the R-symmetry [16] and therefore

the correspondence between the chiral UV and IR data.

3. Some of the deformations may be identified in the IR, even though they correspond

to distinct motions in Muv.

4. It may be that the IR theory has additional marginal deformations that cannot be

realized by deformations of the (0,2) superpotential. This and the previous compli-

cation are already familiar in the context of (2,2) linear sigma models that flow to

compact (2,2) SCFTs — see, for example, [29, 30].

This general discussion simplifies a great deal when applied to the (0,2) LG theories studied

here. On general grounds a compact unitary c < 3 SCFT cannot have marginal supersym-

metric deformations: the corresponding operator must be chiral primary with charge q = 1,

but such operators are forbidden by the unitarity bound q ≤ c/3. The other simplification

is that the enhanced continuous symmetry locus in M0 \ Z is easy to describe: it consists

of all points that are equivalent to the ideal

Jac = 〈φk11 , φ
k2
2 〉 . (5.3)

All theories on this locus will be equivalent to a product of two (2,2) Ak minimal models.

In view of the preceding discussion, to complete our classification, we will make three

steps. First, we will identify families of theories in (4.2) with unique charges for the chiral

fields. Second, for each family we will show that unless p ∈ Muv belongs to an enhanced

symmetry orbit, we can use field redefinitions to map the entire family to a single point:

in other words the deformation space is trivial, as it should be for a c < 3 theory. Finally,

we will verify that each such theory satisfies the unitarity bounds (3.1).
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Isomorphic families. To start, we note the isomorphic families 1a = 1a∗, 1b = 1b∗,

1c = 2c, 1d = 2d, and 1e = 2e. This follows by simply comparing the charges. For

instance, to demonstrate 1a = 1a∗ we compare

1a : q1 =
k2

k2
2(k1 − 1) + 2

, q2 = (k1 − 1)q1 , Q1 = −k1q1 , Q2 = −k2(k1 − 1)q1 (5.4)

with

1a∗ : q2 =
k1

k2
1(k2−1)+2

, q1 = (k2−1)q2 , Q2 =−k2q2 , Q1 =−k1(k2−1)q2 . (5.5)

Evidently, the two sets of charges are the same up to exchanging φ1 with φ2 and J1 with

J2. Similar comparisons of the charges lead to the other isomorphisms.

In fact, there are just 5 distinct families to consider, and we can pick representatives

exclusively from Class 2. This is because 2a’ ⊂ 2a, 1a ⊂ 2a, and 1b ⊂ 2b. More precisely,

we find isomorphic charges for

[l1 + l2, l1 + l2; 1, 1]2 ' [2, 2; l1, l2]2 , [k2(k1 − 1), k2; 1, 1]2 ' [k1, k2; 1, 1]1 ,

[2k1 − 4, 2; 2, 1]2 ' [k1, 2; 2, 1]1 . (5.6)

It is also not too hard to see that [3, 3; 1, 1]2 ' [2, 2; 2, 1]2, which means we can take the

integer in class 2b to satisfy k1 ≥ 3.

Trivial parameter spaces. We have now shown that every (0,2) LG theory with

c = c < 3 and without an accidental symmetry belongs to one of 5 classes: 2a, 2b, 2c,

2d, or 2e. The first of these depends on two integer parameters, which we may as well take

to satisfy k1 ≥ k2 > 2;5 the second depends on one integer parameter k1 ≥ 3.

Each of these classes has a trivial parameter space in the sense described above: every

deformation of the superpotential can be undone by a field redefinition. We will now show

this in some detail for class 2a and give a sketch for class 2b; the remaining classes 2c, 2d,

and 2e are simpler since they do not involve integer parameters, and we leave the details

to the interested reader.

Class 2a. In class 2a the ideal has the form

J1 ⊃ φk11 + φk22 , J2 ⊃ φ1φ2 . (5.7)

Suppose J2 admits a monomial φm1
1 φm2

2 . Since the R-charges of φ1 and φ2 must be positive,

this monomial cannot be divisible by φ1φ2. Thus, J2 must be of the form

J2 = α1φ1φ2 + α2φ
m1
1 + α3φ

m2
2 . (5.8)

By examining the charges of the monomials, we see that all three monomials cannot be

present in J2 simultaneously if k2>2. Thus, we must have either α3 =0 and q2 = q1(m1−1),

or α2 = 0 and q1 = q2(m2 − 1). Since q1k1 = q2k2, it must be that k1 = k2(m1 − 1) in the

5Recall that k2 = 2 just corresponds to the (2,2) D-series.
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first case, and k2 = k1(m2−1) in the second case. We need not consider the last possibility

because of our a priori assumption k1 ≥ k2.

It may be that k2 does not divide k1. In this case J2 = α1φ1φ2, and α1 6= 0 for

compact theories. This means that all mixed monomials allowed by the charges in J1 can

be removed by a field redefinition of the form

Γ2 → Γ2 − P (φ1, φ2)Γ1 , (5.9)

where we choose P such that φ1φ2P is the sum of the mixed monomials in J1. So, in this

situation the most general zero-dimensional ideal is equivalent to

J1 = β1φ
k1
1 + β2φ

k2
2 , J2 = α1φ1φ2 , (5.10)

with non-zero coefficients α1, β1, and β2. These can be absorbed by rescaling φ1, φ2, and Γ2.

Next, we set k1 = pk2 for some positive integer p. Now the most general ideal is of

the form

J1 = β1φ
k1
1 + β2φ

k1−1
1 φp2 + · · · ,

J2 = (α1φ1 + α2φ
p
2)φ2 . (5.11)

Clearly β1 6= 0 if the ideal is zero-dimensional. If also α1 6= 0, then we can redefine

φ1 → φ1 + ξφp2, to obtain an equivalent ideal of the form

J1 = β1φ
k1
1 + β2φ

k1−1
1 φp2 + · · · ,

J2 = α1φ1φ2 . (5.12)

By the same argument as in the previous paragraph, this case is then equivalent to (5.10).

On the other hand, if α1 = 0, we have an ideal

J1 = β1φ
k1
1 + β2φ

k1−1
1 φp2 + · · · ,

J2 = α2φ
p+1
2 , (5.13)

with β1 6= 0 and α2 6= 0. By using a combination of φ1 and Γ2 redefinitions, we then find this

ideal is equivalent to J1 =φk11 and J2 =φp+1
2 . This is clearly an enhanced symmetry orbit,

and we expect that these theories will simply flow to a product of two (2, 2) minimal models.

Class 2b. Now we perform an analogous analysis for class 2b, for which the ideal is of

the form

J1 ⊃ φk11 + φ2
2 , J2 ⊃ φ2

1φ2 , (5.14)

and k1 ≥ 3. If k1 = 3, there are no additional monomials in either generator, and corre-

spondingly, there are no parameters except trivial coefficients that can be absorbed into

rescaling the fields. The next possibility, k1 = 4, allows for two additional monomials in J2;

indeed, in this case J1 and J2 can be taken to be generic polynomials of degree 2 in φ2 and

φ2
1. Once again, any zero-dimensional ideal is either on an enhanced symmetry orbit or is

equivalent to 〈φ4
1 +φ2

2, φ
2
1φ2〉. This is perhaps not entirely obvious, so let us elaborate on it.
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The generic ideal takes the form

J1 = β1φ
2
2 + β2φ

4
1 + β3φ

2
1φ2 ,

J2 = α1φ
2
2 + α2φ

4
1 + α3φ

2
1φ2 . (5.15)

A non-singular ideal is equivalent to the ideal with α1 = 0 and β1 = 1. If, in addition,

α3 = 0, then the ideal belongs to an enhanced symmetry orbit. On the other hand, if

α3 6= 0, then, by using a redefinition φ2 → φ2 + γφ2
1, followed by a rescaling of Γ2, we see

that the ideal is equivalent to

J1 = φ2
2 + β2φ

2
1φ2 + β3φ

4
1 ,

J2 = φ2
1φ2 . (5.16)

Finally, the redefinition Γ2 → Γ2 − β2Γ1 eliminates the mixed monomial in J1, and the

result is indeed equivalent to 〈φ4
1 + φ2

2, φ
2
1φ2〉.

For k1 > 4 the only possible additional monomial in J2 is φm1
1 , and it is allowed only

if k1 = 2(m1 − 2). It is also the case that the generator J1 has an additional monomial

only when k1 is even. So, setting k1 = 2p with p ≥ 3, we have the general form of the

generators as

J1 = β1φ
2p
1 + β2φ

p
1φ2 + β3φ

2
2 , J2 = φ2

1(α1φ2 + α2φ
p
1) . (5.17)

By an analogous argument to that given after (5.11) for class 2a, it now follows that

every zero-dimensional ideal that is not on an enhanced symmetry orbit is equivalent to

〈φk11 + φ2
2, φ

2
1φ2〉.

6 Discussion

We classified compact (0,2) LG theories that flow to IR fixed points with c = c < 3. Such

a theory must either be one of the familiar (2,2) ADE theories, or it must belong to one

of our classes. In the latter case the holomorphic data is specified by a zero-dimensional

quasi-homogeneous ideal J ⊂ C[φ1, φ2], and up to field redefinitions, these ideals belong to

one of the following classes

ideal q1 q2 c/3

〈φk11 + φk22 , φ1φ2〉 , k1 ≥ k2 > 2 k2
k1k2+2

k1
k1k2+2

k1k2
k1k2+2

〈φk1 + φ2
2, φ

2
1φ2〉 , k ≥ 3 k+1

(k+1)2+2
k(k+1)

2((k+1)2+2)
(k+1)2

(k+1)2+2

〈φ3
1 + φ2

2, φ
3
1φ2〉 10

52
15
52

50
52

〈φ3
1 + φ2

2, φ
2
1φ

2
2〉 22

123
33
123

121
123

(6.1)

The first of these classes was studied in some length in [17], where persuasive arguments

were given for identifying the IR theory with a specific chiral SU(2)/U(1) WZW coset

SCFT. It should be possible to extend those results to the remaining theories described in
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this note and explicitly identify the putative IR SCFTs. This would offer additional checks

to ensure that these theories describe accident-free RG flows and further enlarge the class

of “(0,2) minimal models” [17, 31] that are, on one hand solvable, and on the other hand

have simple UV realizations.

Even without making such detailed comparisons with putative IR realizations, we

can see that these theories satisfy some non-trivial consistency checks. For instance, we

observed that, as required for c < 3 theories, the (0,2) LG superpotentials for these theories

are parameter free. Another consistency check is that the charges of chiral operators satisfy

the unitarity bounds (3.1) in a non-trivial way: table (4.2) was obtained by just requiring

ideals that are zero dimensional and satisfy c < 3, q1,2 > 0; however, all of the charges

obtained satisfy the more stringent bounds of (3.1).

Our results have an interesting application to the construction of more general (0,2)

theories at higher central charge, and it would be relatively straightforward to perform

a taxonomic exercise of the sort familiar from [32] to describe the models that lead to

c = c = 9 or c = c = 6; a projection onto integral R-charges can then produce potentially

new (0,2) heterotic compactifications that are amenable to analysis following standard LG

techniques [13].

One of the main technical simplifications in our analysis is the restriction to n ≤ 2,

which we showed is a consequence of unitarity. It would be interesting to explore the

implications of this further. In particular, is it possible to choose a zero-dimensional with

n ≥ 3 for which the naive application of extremization leads to c < 3? What is the

low energy limit of such a theory? Is every such ideal on an enhanced symmetry orbit

and therefore suffers from an accident, or is there an accident that cannot be detected by

considering orbits of field redefinitions?

It would also be useful to make more precise the argument given for the existence of the

operator γ1 · · · γn in Q-cohomology. Following [19, 25], we expect that the JA dependence of

the singularities in the OPE of Q-closed operators is Q-exact: we can compute the OPE of

operators in Q-cohomology in the free theory, or, equivalently, in the bc-βγ realization [33].

It would be useful to explore this point further: for instance, what are the operators of the

form γ1 · · · γnf(φ) that belong to the Q-cohomology? These questions can be investigated

by following the methodology laid out in [25].

Another direction in which this work could be extended is to consider c > c and c < 3

theories. It would be interesting to classify such LG theories. Is there, for instance, a

bound on c− c above which there are no accident-free (0,2) LG flows? We know from [17]

that there are families of theories with c > c and c < 3, but we have no sense of how large

the class of such theories might be. This would be a fruitful direction for investigation

since it would a richer holomorphic sector while still having the constraints of unitarity

from c < 3. Such efforts may well yield new insights into (0,2) LG and (0,2) SCFT.
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[33] P. Fré, L. Girardello, A. Lerda and P. Soriani, Topological first order systems with

Landau-Ginzburg interactions, Nucl. Phys. B 387 (1992) 333 [hep-th/9204041] [INSPIRE].

– 19 –

https://doi.org/10.1103/PhysRevLett.110.061601
https://arxiv.org/abs/1211.4030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4030
https://arxiv.org/abs/hep-th/9502012
https://inspirehep.net/search?p=find+EPRINT+hep-th/9502012
https://doi.org/10.1088/1126-6708/2009/09/118
https://arxiv.org/abs/0902.3908
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3908
https://doi.org/10.1007/JHEP09(2016)169
https://arxiv.org/abs/1603.08935
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.08935
https://doi.org/10.1016/0550-3213(94)90178-3
https://doi.org/10.1016/0550-3213(94)90178-3
https://arxiv.org/abs/hep-th/9402148
https://inspirehep.net/search?p=find+EPRINT+hep-th/9402148
https://doi.org/10.1007/JHEP03(2018)079
https://arxiv.org/abs/1511.04372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04372
https://doi.org/10.4310/ATMP.2006.v10.n5.a2
https://doi.org/10.4310/ATMP.2006.v10.n5.a2
https://arxiv.org/abs/hep-th/0506263
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506263
https://doi.org/10.1007/s00220-015-2394-9
https://arxiv.org/abs/1409.4353
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.4353
https://inspirehep.net/search?p=find+IRN+4710576
https://doi.org/10.1007/JHEP07(2011)044
https://arxiv.org/abs/1001.2104
https://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2104
https://doi.org/10.1016/0550-3213(95)00641-9
https://arxiv.org/abs/hep-th/9509170
https://inspirehep.net/search?p=find+EPRINT+hep-th/9509170
https://doi.org/10.1016/0370-2693(88)91016-7
https://doi.org/10.1016/0370-2693(88)91016-7
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B213,152%22
https://doi.org/10.1016/0550-3213(92)90164-7
https://arxiv.org/abs/hep-th/9204041
https://inspirehep.net/search?p=find+EPRINT+hep-th/9204041

	Introduction
	(0,2) Landau-Ginzburg overview
	(2,2) LG and minimal models
	(0,2) LG conventions

	Ruling out theories with more than two fermi multiplets
	Constraints from compactness and charge bounds
	Results of a numerical exploration
	Class 1 and bar c < 3
	Class 2 and bar c < 3

	Redefinitions and classification results
	Discussion

