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1 Introduction

Since the observation of worldsheet integrability in the AdS5×S5 superstring [1], integrable

two-dimensional non-linear sigma-models have played a prominent role in the gauge-gravity

correspondence. In the planar limit in particular, the simplicity offered by integrability

allows one to go beyond perturbation theory and interpolate at finite ’t Hooft coupling

between known results at both sides of the correspondence (for a review see [2, 3]).

For the purpose of the present paper, we are interested in the application of bosonic

integrable sigma models as building blocks of worldsheet theories1 describing strings propa-

gating in curved backgrounds. Well known examples in this context are the Wess-Zumino-

Witten (WZW) model [4], which has an exact worldsheet CFT formulation, and the Prin-

cipal Chiral Model (PCM) [5], which has worldsheet integrability, on a non-Abelian group

manifold. Closely related are the gauged WZW model and the Symmetric Space Sigma

Model (SSSM) which can be obtained by gauging an appropriate subgroup of the global

symmetry group. These gauged theories retain some desirable properties; the gauged

WZW model gives a Lagrangian description of coset CFT’s [6, 7] and the SSSM retains

integrability [8]. Both provide highly symmetrical target spaces which have been key in

the construction of amenable string duals.

1When supplemented with a fermionic field content, as in a Green-Schwarz formulation for instance,

they should describe consistent string configurations.
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An interesting question in recent years has been to deform known holographic theories

while maintaining worldsheet integrability.2 Prominent examples include the η- [10–12],

β- [9, 13, 14]3 and λ-deformations [16–18]. Our focus will be on the λ-deformation which

is an integrable two-dimensional QFT for all values λ ∈ [0, 1]. For λ→ 0 the model traces

back to the WZW model (or gauged WZW model) while for λ → 1 one finds the non-

Abelian T-dual of the PCM (or SSSM). There has been significant evidence from both

a worldsheet [18, 19] and target space [20–22] perspective that, when applied to super-

coset geometries, the λ-model is a marginal deformation introducing no Weyl anomaly.

In [23, 24] it was also shown one can promote bosonic coset λ-models to type IIB super-

gravity backgrounds when a suitable ansatz is made for the RR fields.

We will focus our attention here on bosonic coset λ-deformations of G/H gauged

WZW models. A limitation to the standard construction so far is that it is deforming

WZW models where only the vector subgroup is gauged [16, 17]. When the subgroup H

is Abelian, however, gauging an axial action in the WZW leads to a topologically distinct

target space [25, 26]. For H non-Abelian, particular asymmetrical gaugings can be of

interest in the case of higher rank groups [25, 27]. The present note will fill this gap by

deforming spacetimes obtained from asymmetrically gauged WZW models on a general

footing.4

A physical motivation of this line of study is the two-dimensional Euclidean black hole

in string theory [31–33] corresponding to the SL(2, R)/U(1)k WZW model [31, 34]. When

the gauged U(1) is compact and vector one obtains the so-called trumpet geometry, while

for an axial gauging one finds the so-called cigar.5 Analytical continuation of the Euclidean

time gives the Minkowskian black hole where the trumpet corresponds to the region within

the singularity and the cigar to the region outside the horizon [31, 37]. In particular the

cigar approaches asymptotically a flat space cylinder while the tip describes the horizon

itself. These regions are known to be T-dual [37–40] to the Zk orbifold of one another and

are indeed described by an equivalent coset CFT [37].

The stringy origin of a black hole horizon has been an attractive asset for the study of

the axial SL(2, R)/U(1)k WZW. In two target space dimensions the only low energy closed

string modes are tachyons winding around the periodic direction of the cigar. However,

when these states enter the region of the horizon at the tip, winding number conservation

breaks, leading to the existence of a tachyonic condensate in that region. This has been

understood in [41] using the (bosonic) FZZ duality [41–43] between the cigar geometry

and Sine-Liouville theory where the latter is an interacting theory in a flat space cylinder

geometry. Here it is an exponentially growing potential that breaks winding conservation

explicitly and only allows high momentum tachyon modes to penetrate through the dual

2One ambition here is to have gravity duals that reduce the amount of (super)symmetries on the gauge

theory side as in e.g. [9].
3See also the recent [15] and references therein.
4Similar ideas of an asymmetric deformation have been developed in [28, 29] where a tensor product of

coset manifolds is considered with either different levels or an asymmetrical gauging between the tensor

product terms (see also the recently appeared [30]). The novelty of our approach includes deforming an

asymmetric gauging of one factor in the tensor product.
5These backgrounds are only valid for large k, receiving (quantum) corrections for finite k [35, 36].

– 2 –



J
H
E
P
0
4
(
2
0
1
9
)
0
9
4

of the region behind the horizon [44]. The machinery developed in this note allows one

to study the effects of the λ-deformation to the cigar geometry and the Sine-Liouville po-

tential explicitly. At this point the interested reader might be enticed by the success of

integrability in going beyond perturbation theory to study quantum gravity effects asso-

ciated to the horizon. Moreover, using the large N matrix model description of the cigar

through Sine-Liouville theory [41], this particular application opens the route to a tractable

interpretation of the integrable λ-deformations in holography.

In section 2 we develop the λ-deformation of the asymmetrically gauged WZW model.

We show that the model is classically integrable and that, when the asymmetrical gaug-

ing respects the symmetric space decomposition,6 the one-loop beta function of the λ-

parameter match those obtained in the case of symmetric gaugings. We conclude this

section by describing integrable boundary conditions of the worldsheet theory where we

develop the method of [45] to accommodate for coset spaces and asymmetric gaugings.

We then briefly introduce the SL(2, R)/U(1)k WZW and apply the λ-deformation to

the cigar geometry7 in section 3. To first order we will see the deformation to explicitly

break the axial-vector duality of the undeformed case. The analysis of our method for the

integrable boundary conditions, however, shows the D-brane configurations of [46–50] to

persist the deformation albeit with isometries being lost. We find D1-branes extending to

asymptotic infinity, but allowed only at particular angles in the deformed cigar, D0-branes

at the tip and D2-branes covering the whole or part of the space. In the undeformed case

these branes are distinguished, in the nomenclature of [51], as the former being of A-type,

while the latter two being of B-type. Finally, after a small review on FZZ duality, we give

the starting point to the study of a deformed Sine-Liouville theory by extracting the first

order perturbation.

We conclude in section 4 with a short summary and outlook of our results.

2 Left-right asymmetrical λ-deformations

In this section we generalise the construction of λ-deformations of symmetric coset man-

ifolds G/H developed in [16–18] to incorporate the possibility of deforming the left-right

asymmetrical gauged WZW model [25, 27].

This asymmetric coset λ-deformation is constructed in a number of steps based on

the Sfetsos gauging procedure [16]. First one combines8 the Wess-Zumino-Witten (WZW)

model [4] on a group manifold G,

SWZW,k(g) = − k

2π

∫
Σ
dσdτ〈g−1∂+g, g

−1∂−g〉 −
k

24π

∫
M3

〈ḡ−1dḡ,
[
ḡ−1dḡ, ḡ−1dḡ

]
〉, (2.1)

6It seems only a technical issue to relax this requirement.
7Although the region of the deformed cigar geometry was captured globally in [23] and can be obtained

from analytical continuations of the SU(2)/U(1) case of [16], the methodology developed here is more

fundamental and, moreover, applicable to a wide range of models.
8For a summary of our conventions and more details on the WZW and SSSM we refer the reader to the

appendix A.
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with the Symmetric Space Sigma Model (SSSM) on G/H,

SSSSM,κ2(ĝ, B±) = −κ
2

π

∫
dσdτ〈(ĝ−1∂+ĝ −B+), (ĝ−1∂−ĝ −B−)〉, (2.2)

where the latter is invariant under an HR ⊂ G action ĝ → ĝh with h ∈ H when the gauge

fields B± ∈ h transform as B± → h−1 (B± + ∂±)h. Note that these models are realised

through distinct group elements g ∈ G and ĝ ∈ G respectively which we assume to be

connected to the identity. Next, we reduce back to dimG − dimH degrees of freedom by

gauging simultaneously the left-right asymmetric G-action in the WZW model (generalising

the usual λ-model construction [16–18] where the vector action is gauged) and the GL-

action in the SSSM given by,
g → g−1

0 gg̃0,

ĝ → g−1
0 ĝ.

(2.3)

Here g0 = exp(GATA) ∈ G and g̃0 = exp(GAT̃A) ∈ G have the same parameters GA but

are generated by different embeddings TA and T̃A of a representation of the Lie algebra g

of G. Their relation can be packaged into an object W as T̃A = W (TA) = WB
ATB. To

find a gauge-invariant action we introduce the gauge fields A± = AA±TA transforming as,

A± → g−1
0 (A± − ∂±) g0, W (A±)→ g̃−1

0 (W (A±)− ∂±)g̃0, (2.4)

and we perform the usual minimal substitution (i.e. replacing derivatives by ∂± · −A±·) in

the SSSM term and replace the WZW term by the left-right asymmetrical gauged WZW

model9 [25, 27] on the coset G/GAS given by,

SWZW,k(g,A
A
±,W ) = SWZW,k(g) +

k

π

∫
Σ
dσdτ〈A−, ∂+gg

−1〉 − 〈W (A+), g−1∂−g〉

+ 〈A−, gW (A+)g−1〉 − 1

2
〈A−, A+〉 −

1

2
〈W (A−),W (A+)〉.

(2.5)

The latter is gauge-invariant10 provided that W : g → g is a metric-preserving automor-

phism of the Lie algebra g [25, 27] i.e.,

W ([TA, TB]) = [W (TA),W (TB)] and 〈W (TA),W (TB)〉 = 〈TA, TB〉. (2.6)

Finally, one can fix the gauge symmetry by setting ĝ = 1, which allows one to integrate out

the gauge fields B± easily. The result is a generalised version11 of the λ-deformed gauged

9In the following, we will abbreviate the left-right asymmetrical gauged WZW model with G/HAS WZW

when the subgroup H ⊂ G is gauged.
10The invariance under the gauge transformations (2.3) can be easily checked when rewriting the ac-

tion (2.5) using the Polyakov-Wiegmann identity [52], which in our conventions takes the form,

SWZW,k(g1g2) = SWZW,k(g1) + SWZW,k(g2)− k

π

∫
dσdτ〈g−1

1 ∂−g1, ∂+g2g
−1
2 〉,

for g1, g2 ∈ G. One obtains SWZW,k(g,AA±,W ) = SWZW,k(g−1
L gg̃R)− SWZW,k(g−1

L gR), where gL,R ∈ G and

one identifies A+ = ∂+gR g
−1
R and A− = ∂−gL g

−1
L . The gauge transformations are given by g → g−1

0 gg̃0

and gL,R → g−1
0 gL,R.

11When the automorphism W = 1 one finds the usual λ-model on the G/H coset [16, 17] which is

deforming the vectorially gauged G/HV WZW model.

– 4 –



J
H
E
P
0
4
(
2
0
1
9
)
0
9
4

WZW given by,

Sλ(g,AA±,W ) = SWZW,k(g) +
k

π

∫
dσdτ〈A−, ∂+gg

−1〉 − 〈W (A+), g−1∂−g〉

+ 〈A−, gW (A+)g−1〉 − 〈A+,Ω(A−)〉,
(2.7)

where we introduced the operator Ω(g) = g(0) ⊕ 1
λg

(1) with g(0) ≡ h. The deformation

parameter λ is defined as λ = k
κ2+k

.

The action (2.7) still has a residual dimH left-right asymmetrical gauge symmetry

inherited from the G/GAS WZW model (2.5) which acts as,

g → h−1gh̃,

A
(0)
± → h−1

(
A

(0)
± − ∂±

)
h, A

(1)
± → h−1A

(1)
± h,

(2.8)

with h = exp(X), h̃ = exp(W (X)) connected to the identity and where X ∈ g(0). Con-

sequently under the gauge transformation we have W (A
(0)
± ) → h̃−1(W (A

(0)
± ) − ∂±)h̃ and

W (A
(1)
± ) → h̃−1W (A

(1)
± )h̃. This shows that the fields A

(0)
± are still genuine (but non-

propagating) gauge fields while the fields A
(1)
± are auxiliary. Both can be integrated out,

yielding the constraints,
A+ = − (DgW − Ω)−1 ∂+gg

−1,

A− =
(
Dg−1 −WΩ

)−1
g−1∂−g.

(2.9)

Once the gauge fields are eliminated in favour of these equations, the resulting action is

given by,

Sλ(g,W ) = SWZW,k(g) +
k

π

∫
dσdτ〈∂+gg

−1, (1−DgWΩ)−1 ∂−gg
−1〉, (2.10)

accompanied with a non-constant dilaton profile, coming from the Gaussian integral over

gauge fields, given by,

e−2Φ = e−2Φ0 det (DgW − Ω) , (2.11)

with Φ0 constant.

In the λ → 0 limit one reproduces the G/HAS WZW (i.e. the action (2.5) but with

A
(1)
± = 0) which can be seen directly from the constraint equations. For small λ one finds,

by integrating out the auxiliary fields A
(1)
± in (2.7), the first order correction to the G/HAS

WZW to be,

Sλ(g,A
(0)
± ,W ) = SWZW,k(g,A

(0)
± ,W ) +

λ

πk

∫
dσdτ 〈J (1)

+ ,W−1J−〉+O(λ2), (2.12)

where we introduced the Kac-Moody currents J± of the G/HAS WZW12 defined as

J+ = −k(∂+gg
−1 + gW (A

(0)
+ )g−1 −A(0)

− ), J− = k(g−1∂−g − g−1A
(0)
− g +W (A

(0)
+ )),

(2.13)

12Although we are not aware of an occurrence in the literature of these currents in the case of the G/HAS

WZW, they can be derived analoguously to [53] showing that their Poisson brackets satisfy two commuting

classical versions of a Kac-Moody algebra.
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Hence, the perturbation term away from the CFT point is a particular coupling between

these currents. Under the residual gauge transformation (2.8) the currents transform as,13

J+ → h−1J+h+ kh−1∂σh, J− → h̃−1J−h̃− kW (h−1∂σh), (2.14)

so that the perturbation term is gauge invariant as is indeed required for consistency.

Another interesting limit to consider is the λ → 1 scaling limit (sending k → ∞) for

which in the usual vectorial gauged case of [16] one reproduces the non-Abelian T-dual of

the SSSM. This fact can be traced back to the property that the G/GV WZW under the

scaling limit reduces to a Langrange multiplier term. For the G/GAS WZW (2.5) this is

not true for general W which strongly suggests there is no interpretation of this limit as a

non-Abelian T-dual.

The novelty of the constructed coset λ-model (2.7) is that it deforms the left-right

asymmetrically gauged G/HAS WZW model (2.5) instead of solely the vectorial gauged

G/HV WZW. As advertised, this will allow us to deform also target spaces obtained by

an axial gauging when the subgroup H is abelian. However, even in the undeformed case,

as noted in [27], not all W that satisfy the conditions (2.6) will produce interesting and

novel spacetimes. Indeed, if W is an inner automorphism of the Lie algebra, where one

can always find a constant w ∈ G so that W (TA) = wTAw
−1, the action (2.7) can be

rewritten as,

Sλ(g,AA±,W ) = Sλ(gw,AA±,1), (2.15)

where we used the GL×GR invariance of the WZW term. Hence, in this case only a trivial

redefinition of the fields g ∈ G to gw ∈ G has been performed. Nevertheless, if w ∈ GC

or a different outer automorphism of the Lie algebra the generalisation is non-trivial as we

will see later in section 3.

To conclude this section, we note that the construction as described above is also

applicable to the group manifold and super-coset case. For the former one can perform the

gauging procedure starting with a combination of a WZW and an ordinary PCM model on

a Lie group G. The formulae in this section then continue to persist upon the redefinition

Ω = λ−1. We believe this asymmetrical λ-model can have an interest for higher rank

group manifolds allowing Dynkin outer automorphisms such as for instance when G =

SU(N), N > 2. Moreover, one can view this λ-model as one with a single but anisotropic

coupling matrix λAB = λWAB as discussed for instance in [29, 54]. In the super-coset case,

where G is a Lie supergroup, the Sfetsos gauging procedure is not applicable anymore,

but one can follow straightforwardly the construction of [18] and replace the G/GV WZW

with the G/GAS WZW. The conditions on the automorphism W are analogous to (2.6)

but here the inner product on the Lie supergroup will be taken to be the supertrace

STr instead of an ordinary trace. When, moreover, the Lie superalgebra has a semi-

symmetric space decomposition defined by a Z4 grading g = ⊕3
i=0g

(i) where g(0) ≡ h and[
g(i), g(j)

]
⊂ g(i+j mod 4), the formulae in this section are again similar upon the redefinition

Ω(g) = g(0) ⊕ λ−1g(1) ⊕ λ−2g(2) ⊕ λg(3) and upon the usage of the supertrace. Note

13Note that the Kac-Moody currents J± are not Lorentz invariant by definition.
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that, with respect to the supertrace, Ω is not symmetric anymore, so that the constraint

equations (2.9) are however altered as,

A+ = −
(
DgW − ΩT

)−1
∂+gg

−1,

A− =
(
Dg−1 −WΩ

)−1
g−1∂−g,

(2.16)

with ΩT (g) = g(0) ⊕ λg(1) ⊕ λ−2g(2) ⊕ λ−1g(3).

2.1 Classical integrability

To check the integrability of the asymmetrical λ-model we follow the method of [17]14

starting from the action (2.7). As in the SSSM it is necessary here to assume the Lie

algebra to have a symmetric space decomposition defined by g = g(0) ⊕ g(1), with g(0) ≡ h,

and a Z2 grading [g(i), g(j)] ⊂ g(i+j mod 2).

The equations of motion of the group fields g can be written as,[
∂+ −W (A+), ∂− + g−1∂−g − g−1A−g

]
= 0, (2.17)

or equivalently, [
∂+ − ∂+gg

−1 − gW (A+)g−1, ∂− −A−
]

= 0. (2.18)

Using the constraints (2.9) and W being a constant Lie algebra automorphism these can

be rewritten as,
[∂+ −A+, ∂− − Ω(A−)] = 0,

[∂+ − Ω(A+), ∂− −A−] = 0.
(2.19)

The above equations of motion can be represented through a gC-valued Lax connection

depending on a spectral parameter z ∈ C that satisfies a zero-curvature condition,

[∂+ + L+(z), ∂− + L−(z)] = 0, ∀z ∈ C, (2.20)

when it is given by,

L±(z) = −A(0)
± − z±1λ−1/2A

(1)
± . (2.21)

This fact shows the left-right asymmetrical λ-theories on G/H manifolds to be classically

integrable models [55] for general automorphisms W . These λ-models therefore supplement

the list of [29] of integrable λ-models with a general single coupling matrix for λαβ = λWαβ

with W satisfying (2.6). Additionally, along similar lines, one can show integrability for the

asymmetrical λ-model on group and super-coset manifolds for which the Lax connection

will take the form,

L±(z) = − 2

1 + λ

1

1∓ z
A±, (2.22)

and,

L±(z) = −A(0)
± − z−1λ±1/2A

(1)
± − z±2λ−1A

(2)
± − zλ∓1/2A

(3)
± , (2.23)

respectively.

14Note that to translate to [17] one should identify the group fields as g = F−1. The method of [17]

consists of relating the equations of motions of the fields in the λ-model to the equations of motions of the

SSSM for which the Lax pair is known.
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2.2 One-loop beta functions

To compute the one-loop beta functions of the λ-parameter of the above asymmetrically

deformed theories, we follow the method of [19], but see also [56, 57] for possibly different

approaches. The authors of [19] consider fluctuations around a background field for the

currents rather than the fundamental field g and applied the background field approach to

the PCM and the SSSM. They efficiently generalise their results to the usual λ-deformed

theories on group or (super)-coset manifolds by identifying the appropriate fields such that

the classical equations of motion take an identical form to those of the PCM or SSSM

models respectively. With minor adjustments we can follow the same path here.

To begin we choose for the group valued field g the same background as [19], namely,

g = exp
(
σ+Λ+ + σ−Λ−

)
, (2.24)

with Λ± constant commuting elements of g(1). Hence, on the background we have ∂±gg
−1 =

g−1∂±g = Λ±. Through the constraints (2.9) the background of the gauge fields A± then

becomes,

Abg+ = (Ω−W )−1Λ+, Abg− = (1−WΩ)−1Λ−, (2.25)

and, after passing to Euclidean signature, the tree-level contribution of the asymmetrical

λ-model Lagrangian (2.7) on the background (2.24), (2.25) evaluates simply to,

L0(λ) =
k

2π
〈Λ+, (WΩ + 1)(WΩ− 1)−1Λ−〉. (2.26)

To compute the one-loop contribution one introduces a fluctuation around the background

and integrates it out in the path integral by a saddle point approximation. Doing so, one

needs to calculate the functional determinant of the operator that describes the equations of

motion of the fluctuation. Rather than carrying this out directly on the λ-model it is useful

to observe that their equations of motion can be identified with those of the SSSM (2.2)

where the computation is easier and described in detail in [19].

To see this, let us consider the SSSM (2.2) and define for now L̂± = ĝ−1∂±ĝ − B±.

The equations of motion of the gauge field B± take the form of a constraint equation,

L̂
(0)
± = 0. (2.27)

Subjected to this constraint, the equations of motion and the Maurer-Cartan identity of

the group-valued field ĝ ∈ G become, projected onto g(0) and g(1),

∂±L̂
(1)
∓ + [B±, L̂

(1)
∓ ] = 0,

∂+B− − ∂−B+ + [B+, B−] + [L̂
(1)
+ , L̂

(1)
− ] = 0.

(2.28)

One can, moreover, fix the gauge by a covariant gauge choice,

∂+B− + ∂−B− = 0. (2.29)

The equations of motion (2.28) can be recast in terms of a flat Lax connection L(z),

L±(z) = B± + z±1L̂
(1)
± , (2.30)

– 8 –
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satisfying [∂+ + L+(z), ∂− + L−(z)] = 0 for all z ∈ C and ensuring the classical integra-

bility of the SSSM. The SSSM Lax connection then indeed takes an identical form to the

Lax (2.21) of the λ-deformed theory if we identify,

B± = −A(0)
± , L̂

(1)
± = −λ−1/2A

(1)
± , (2.31)

where the fields A± satisfy the constraints (2.9).

For the one-loop contribution we can now proceed with the SSSM as in section 2.2

of [19] and subject the result to the identification (2.31). Let us denote the background

fields for the gauge field B± and the current L̂
(1)
± by Bbg

± and Θ± respectively, so that,

Bbg
± = 0,

Θ+ = −λ−1/2(Ω−W )−1Λ+, Θ− = −λ−1/2(1−WΩ)−1Λ−,
(2.32)

where we assumed that W respects the Z2-grading of g = g(0)⊕g(1) (as will be the case for

the vector or axial deformed cases of section 3).15 Varying the equations of motion (2.28)

and the covariant gauge fixing (2.29) the operator that governs the fluctuations can be

found, after Fourier transforming to momentum space, to be,

D =


p− 0 0 −Θadj

+

0 p+ −Θadj
− 0

−Θadj
− Θadj

+ −p− p+

0 0 p− p+

 , (2.33)

acting on the fluctuations in the order (δL̂
(1)
+ , δL̂

(1)
− , δB+, δB−). Here we have (Θadj

± )B
C =

ΘA
±(T adj

A )B
C = iΘA

±FAB
C . The one-loop contribution to the Lagrangian,

L1(λ) =
1

2

∫ µ d2p

(2π)2
Tr logD, (2.34)

will have a logarithmic divergence given by [19],

L1(λ) = −c2(G)

2π
〈Θ+,Θ−〉 log µ+ · · · (2.35)

where c2(G) ≡ xadj is the index of the adjoint representation. Substituting (2.32) and

using the property (2.6) that W preserves the Lie algebra metric we find,

L1(λ) =
c2(G)

2π

1

λ
〈Λ+, (WΩ− 1)−1W (WΩ− 1)−1Λ−〉 log µ+ · · · . (2.36)

The one-loop beta function of the λ-parameter then follows from demanding that the one-

loop effective Lagrangian L(λ) = L0(λ) + L1(λ) is independent of the scale µ,

µ∂µ

[
k〈Λ+,

(
WΩ + 1

WΩ− 1

)
Λ−〉+

c2(G)

λ
〈Λ+, (WΩ− 1)−1W (WΩ− 1)−1Λ−〉 log µ

]
= 0,

(2.37)

15When W does not respect the Z2-grading one will generate non-zero background fields for the gauge

fields B± and the calculation of [19] is not directly applicable anymore. In this case it seems that one needs

to choose a different but appropriate background field for the group elements g ∈ G than the one chosen

in (2.24). We will not consider this technical issue here further.
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This yields (recall that Ω(g(1)) = λ−1) to first order in 1/k,

µ∂µλ = −c2(G)

2k
λ+O

(
1

k2

)
. (2.38)

We find agreement with [19] and with [56] for the case G = SU(2), H = U(1). We conclude

that including an automorphism W of the Lie algebra g = g(0)⊕g(1) which respects the Z2-

grading does not affect the one-loop beta function of the asymmetrical λ-model. As with

the conventional symmetric λ-model, the deformation for compact groups is marginally

relevant driving the model away from the CFT point and marginally irrelevant for non-

compact groups (as then one should send k → −k, see appendix A).

2.3 Integrable boundary conditions

In this section we derive the (open string) boundary conditions that preserve integrability

for the asymmetrical coset λ-model from the boundary monodromy method of [45, 58–60]

to interpret them later as integrable D-brane configurations in the deformed background.

We define the generalised transport matrix,

TW(b, a; z) =
←−−−
P exp

(
−
∫ b

a
dσ W [Lσ(τ, σ; z)]

)
, (2.39)

with an explicit dependence on the worldsheet coordinates (τ, σ) included and where W is

a constant metric-preserving Lie algebra automorphism (W is not to be confused with the

automorphism W used in the asymmetric gauging). Generally speaking, under periodic

boundary conditions (when ∂Σ = 0) and with a flat Lax connection, one finds classi-

cal integrability by generating a tower of conserved charges from the monodromy matrix

TW(2π, 0; z) as ∂τ TrTW(2π, 0; z)n = 0 with n ∈ Z, see e.g. [61]. This is not the case under

open boundary conditions. Instead, we build the boundary monodromy matrix Tb(z) by

gluing the usual (W = 1) transport matrix T (π, 0; z) (from the σ = 0 to the σ = π end)

to the generalised transport matrix TWR (2π, π; z) in the reflected region:

Tb(z) = TWR (2π, π; z)T (π, 0; z), (2.40)

where TWR (2π, π; z) is constructed from the Lax (2.21) under the reflection σ → 2π − σ
so that,

TWR (2π, π; z) = TW(0, π; z−1). (2.41)

One finds an infinite set of conserved charges given by Tr Tb(z)n = 0 with n ∈ Z when

∂τTb(z) = [Tb(z), N(z)] for some N(z). This is satisfied sufficiently when N(z) = Lτ (0; z)

and when we impose the boundary conditions [45, 60]:

Lτ (z)|∂Σ = W
[
Lτ (z−1)

]∣∣
∂Σ
, (2.42)

on both the open string ends. Explicitly, for the Lax connection (2.21) of the λ-coset

model, we find by expanding order by order in the arbitrary parameter z the conditions,

O(z) : A
(1)
+

∣∣∣
∂Σ

= W[A
(1)
− ]
∣∣∣
∂Σ
, (2.43a)

O(z0) : A(0)
τ

∣∣∣
∂Σ

= W[A(0)
τ ]
∣∣∣
∂Σ
, (2.43b)

O(z−1) : A
(1)
−

∣∣∣
∂Σ

= W[A
(1)
+ ]
∣∣∣
∂Σ
. (2.43c)
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Note from the above that the automorphism W should respect the Z2 grading. Moreover,

from (2.43b) one deduces that W(g(0)) = 1 unless A
(0)
τ |∂Σ = 0 and using (2.43c) in (2.43a)

that W2(g(1)) = 1. Taking these restrictions on W into account we continue with (2.43a)

as describing the integrable boundary conditions. In components, and using the constraint

equations (2.9), it translates to conditions on the local coordinates Xµ as,

[
(DgW − Ω)−1

]α
BR

B
µ∂+X

µ
∣∣
∂Σ

= −Wα
β

[
(Dg−1 −WΩ)−1

]β
CL

C
µ∂−X

µ
∣∣∣
∂Σ
. (2.44)

Given a G/H model one can now continue by studying the eigensystem and derive the cor-

responding D-brane configurations in the target space background. This will be illustrated

in section 3.3 for G = SL(2, R) and H = U(1).

In [45] we described also the possibility to glue T (π, 0; z) to a gauge transformed

reflected transport matrix TWg
R (2π, π; z). Here we have the residual gauge symmetry (2.8)

under which the Lax (2.21) transforms as L(z) → h−1Lh + h−1dh with h ∈ H. The

integrable boundary conditions then read,

Lτ (z)|∂Σ = W
[
h−1Lτ (z−1)h+ h−1∂τh

]∣∣
∂Σ
, (2.45)

which allows a gluing of the gauge fields that is field-dependent. We will see in the explicit

example of section 3 that this possibility will prove to be of significant importance to exhibit

distinct D-brane configurations.

3 Deforming the Euclidean black hole and Sine-Liouville

We now illustrate the general story above with a simple example. The simplest example

one could consider is the SU(2)/U(1) case, however, there are no non-trivial outer automor-

phisms here and all that is achieved is simply a coordinate redefinition as seen from (2.15).

One could go on to look at compact theories based on e.g. SU(3) which does have such a

symmetry however we choose here instead to pursue directly the SL(2, R)/U(1) theories

given their interest towards black hole physics.

For G = SL(2, R) we take our generators TA, A = {1, 2, 3} to be,

T1 =
1√
2

(
1 0

0 −1

)
, T2 =

1√
2

(
0 1

1 0

)
, T3 =

1√
2

(
0 1

−1 0

)
, (3.1)

such that Tr(TATB) = diag(+1,+1,−1) and adopt the following parameterisation of a

group element g ∈ SL(2, R) connected to the identity,

g = e
τ−θ√

2
T3 e
√

2 ρ T1 e
τ+θ√

2
T3 = cosh ρ

(
cos τ sin τ

− sin τ cos τ

)
+ sinh ρ

(
cos θ sin θ

sin θ − cos θ

)
, (3.2)

with ρ ∈ [0,+∞), θ, τ ∈ [0, 2π]. We take the subgroup H = U(1) to be generated by T3.
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3.1 The parafermionic SL(2,R)/U(1) WZW theory

Let us first consider gauging the U(1)k subgroup in the WZW model on (a single cover

of) SL(2, R)k. As a coset CFT this model can be understood as being generated by a

set of non-compact parafermionic currents introduced in [62] which are semi-local chiral

fields with fractional spin (see also [63] and for the compact analogues [64]). In terms of

these [63] showed the symmetry algebra to be the non-linear infinite W-algebra Ŵ∞(k).

Although obscured as a non-rational CFT it is expected that, as in the compact SU(2)/U(1)

theory [51, 64], the level k parafermion theory and its Zk orbifold are equivalent for k

integral [37, 65].

For large k we can view these theories as sigma models for strings propagating in a

two-dimensional target space equipped with a non-constant dilaton originating from the

action (2.5). If we perform an axial gauging g → hgh with h ∈ H the τ -coordinate is gauge

and we obtain, up to finite 1/k corrections, the cigar geometry,

ds2
A = k

(
dρ2 + tanh2 ρ dθ2

)
, e−2ΦA = e−2Φ0 cosh2 ρ, (3.3)

and zero B-field. The geometry is semi-infinite and terminates at ρ = 0 where the dilaton

field is of maximum but finite value. The Ricci scalar computed from this metric is R =
4

k cosh2 ρ
so that ρ = 0 is only a coordinate singularity.

If instead we perform the vector gauging g → h−1gh the coordinate θ is gauge and we

find at large k the trumpet geometry,

ds2
V = k

(
dρ2 + coth2 ρ dτ2

)
, e−2ΦA = e−2Φ0 sinh2 ρ, (3.4)

and zero B-field. The Ricci scalar is now R = − 4
k sinh2 ρ

and, therefore, ρ = 0 is a true

curvature singularity where the dilaton field reaches +∞. Notice that both solutions (3.3)

and (3.4) are related by the transformation,

ρ→ ρ+
iπ

2
, θ → τ. (3.5)

which, because it involves a complexification, is obviously not a standard field redefinition.

Below we will understand it as originating from an outer automorphism. When performing

an analytical continuation to Lorentzian signature the above solutions can be interpreted as

a two-dimensional black hole for which the global Kruskal coordinates were written down

in [31]. The cigar and trumpet solutions correspond to the region outside the horizon and

inside the singularity respectively and are described by an equivalent coset CFT [37] with

a central charge,

c =
3k

k − 2
− 1 . (3.6)

As we will see shortly, the cigar is known to be T-dual to the Zk orbifold of the trumpet

solution, and vice versa, where in the Euclidean picture the orbifolding can be understood

as changing the temperature of the black hole [37–40].

The axial gauged SL(2, R)/U(1) WZW (3.3) has a U(1)θ isometry shrinking to zero

size at ρ = 0 breaking the conservation of winding number. Nevertheless one can associate
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a classically conserved current Jθ± to U(1)θ given by,

Jθ± = k tanh2 ρ∂±θ, ∂+J
θ
− + ∂−J

θ
+ = 0. (3.7)

Using the conservation equation together with the equations of motion for ρ, θ, one can give

semi-classical analogues of the non-compact parafermions which furnish chiral algebra’s,

∂−ΨA
(±) = ∂+Ψ̄A

(±) = 0, (3.8)

in terms of phase space variables [66, 67],

ΨA
(±) = (∂+ρ∓ i tanh ρ∂+θ) e

∓i
(
θ+ θ̃

k

)
, Ψ̄A

(±) = (∂−ρ± i tanh ρ∂−θ) e
±i

(
θ− θ̃

k

)
, (3.9)

where θ̃ is a non-local expression in terms of ρ and θ defined by,

∂±θ̃ = ±Jθ±. (3.10)

This relation corresponds precisely to the canonical T-duality rule found when performing

a standard Buscher procedure [68–70] on the U(1)θ isometry. In the dual picture θ̃ becomes

a local coordinate with a periodicity of 2π [40]. The T-dual background is,

ds2
O = k

(
dρ2 +

1

k2
coth2 ρdθ̃

)
, e−2ΦO = e−2Φ0 sinh2 ρ, (3.11)

and thus corresponds to the Zk orbifold of the vectorial gauged theory (3.4). Acting with

the T-duality action (3.10) the non-compact parafermions of the dual background become,

ΨA
(±) → ΨO

(±) =

(
∂+ρ∓ i coth ρ

∂+θ̃

k

)
e
∓i

(
θ̃
k

+θ
)
,

Ψ̄A
(±) → Ψ̄O

(±) =

(
∂−ρ∓ i coth ρ

∂−θ̃

k

)
e
∓i

(
θ̃
k
−θ

)
,

(3.12)

in which now θ is a non-local expression in the fields ρ and θ̃ satisfying,

∂±θ = ±J θ̃±, J θ̃± = coth2 ρ
∂±θ̃

k
, (3.13)

with J θ̃± the U(1)θ̃ classically conserved current of the background (3.11). Together with

the classical equations of motions, this ensures again the dual parafermions to be holomor-

phically conserved, ∂−ΨO
(±) = ∂+Ψ̄O

(±) = 0.

3.2 Asymmetrical λ-deformed SL(2,R)/U(1)

Let us now consider the asymmetrically deformed λ-theories. The metric preserving au-

tomorphisms W satisfying (2.6) are elements of SO(2, 1) (including elements disconnected

from the identity). They can for instance act as,

W : {T1, T2, T3} 7→ {T1, coshαT2 + sinhαT3, sinhαT2 + coshαT3}, (3.14)
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induced from the action on g ∈ SL(2, R) by g 7→ wgw−1 with,

w = exp

(
α√
2
T1

)
. (3.15)

When the parameter α ∈ R the asymmetric gauging involves an inner automorphism

which from (2.15) can clearly be absorbed by a trivial field redefinition. When instead

we take for instance α = iπ we have w ∈ SL(2,C) and hence the automorphism W is

outer. It is an element of SO(2, 1) corresponding to a reflection of the T2 and T3 di-

rections (i.e. W = diag(+1,−1,−1)) and is thus disconnected from the identity. The

corresponding asymmetrical λ-theory then defines a background that deforms the axial

gauged SL(2, R)/U(1) WZW (since W (T3) = −T3) or cigar geometry of (3.3). Under the

residual gauge symmetry (2.8) the τ -coordinate is then indeed gauge so that we can adopt

the gauge fixing choice τ = 0. Introducing the complex coordinates ζ = sinh ρeiθ and

ζ̄ = sinh ρe−iθ the group element can then be written as,

g =

(
cosh ρ+ cos θ sinh ρ sin θ sinh ρ

sin θ sinh ρ cosh ρ− cos θ sinh ρ

)
,

=
1

2

(
ζ + ζ̄ − 2

√
ζζ̄ + 1 −i(ζ − ζ̄)

−i(ζ − ζ̄) −ζ − ζ̄ − 2
√
ζζ̄ + 1

)
.

(3.16)

The gauge field equations of motion (2.9) are,

(1− λ)A1
+ + i(1 + λ)A2

+ = −
√

2λ√
1 + ζζ̄

∂+ζ,

(1− λ)A1
− + i(1 + λ)A2

− =

√
2λ√

1 + ζζ̄
∂−ζ̄,

(3.17)

with A3
± determined in terms of A1

± and A2
±. The deformed background can be computed

from (2.10) and (2.11) to be,

ds2
A,λ = k

(
1− λ
1 + λ

(
dρ2 + tanh2 ρdθ2

)
+

4λ

1− λ2
(cos θdρ− sin θ tanh ρdθ)2

)
,

=
k

1− λ2

(
λ
(
dζ2 + dζ̄2

)
+ (1 + λ2)dζdζ̄

)
1 + |ζ|2

,

e−2Φ = e−2Φ0 cosh2 ρ = e−2Φ0
(
1 + |ζ|2

)
,

(3.18)

and zero B-field. Notice that the deformation has broken the U(1)θ isometry to a Z2. As

before, ρ = 0 is only a coordinate singularity where the dilaton is constant.

Note that for λ = 0 we have that the metric is of the form ds2
A = k∂∂̄V (ζζ̄)dζdζ̄

with V (x) = −Li2(−x) =
∫ x

0 dss
−1 log(1 + s) and the geometry is indeed Kähler [34]

allowing N = (2, 2) worldsheet supersymmetry. Let us see if we can find a similar form

in the deformation, i.e. as ds2
A,λ = k∂∂̄V λ(ζ, ζ̄)dζdζ̄, with an eye on future applications to

extended worldsheet supersymmetry. First, let us bring the metric into canonical form by

defining ζ = Z − λZ̄ such that,

ds2
A,λ = k

(1− λ2)dZdZ̄

1− λ(Z2 + Z̄2) + (1 + λ2)ZZ̄
, (3.19)
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Although performing directly a double integral of the function (1+λ2)(1−λ(Z2+Z̄2)+(1+

λ2)ZZ̄)−1 appears to be inaccessible one can however do an expansion in λ and integrate

each term in this evolution. To first order we find,

V λ(Z, Z̄) = −Li2(−ZZ̄) + λ

(
1

Z2
+

1

Z̄2

)
log(1 + ZZ̄)− λ

(
Z

Z̄
+
Z̄

Z

)
+O(λ2). (3.20)

Whilst a series expansion can doubtless be found, the resummation of such a result is not

evident. However, this first-order perturbed potential can be the starting point for the

development of the notion of integrability in an N = (2, 2) superspace setting, a totally

uncharted topic. We hope to come back to this in a future publication.

For the remains of the paper we will see it to be more useful to reformulate the

deformation in terms of the axial parafermions (3.9). The Lagrangian LA of the sigma

model corresponding to the deformed geometry (3.18) is a perturbation of the CFT point

LA,WZW by a bilinear in the axial parafermions (as in [16]) given to all orders by,

LA = k

(
1 + λ2

1− λ2
LA,WZW +

λ

1− λ2
(ΨA

(+)Ψ̄
A
(−) + ΨA

(−)Ψ̄
A
(+))

)
. (3.21)

Notice that the non-local phases θ̃ of the parafermions drop out of this bilinear combination.

Furthermore, this perturbation is clearly a non-compact analogue of the one considered

in [71].

When instead we take α = 0 in (3.15) and thus W the identity (that is trivially inner)

one obtains the background known from [23], or from an analytical continuation of the

SU(2)/U(1) case of [16],

ds2
V,λ = k

(
1− λ
1 + λ

(
dρ2 + coth2 ρdτ2

)
+

4λ

1− λ2
(cos τdρ− sin τ coth ρdτ)2

)
,

e−2Φ = e−2Φ0 sinh2 ρ,

(3.22)

and zero B-field, deforming the vectorial gauged trumpet geometry of (3.4). Here ρ = 0

is again representing the curvature singularity.16 After taking the Zk orbifold, where the

coordinate τ is replaced by the 2π/k periodic coordinate θ̃/k, the first order correction to

the corresponding Lagrangian LO becomes a bilinear in terms of the orbifold parafermions

ΨO
± of (3.12) as [16],

LO = k

(
1 + λ2

1− λ2
LO,WZW +

λ

1− λ2
(ΨO

(+)Ψ̄
O
(+) + ΨO

(−)Ψ̄
O
(−))

)
, (3.23)

in which again the non-local phases drop out. One might at first sight think this indicates

the axial-vector duality of the CFT point (λ = 0) [37–40] to persist in the deformation.

However, one needs to be more careful here: when performing the T-duality transforma-

tion (3.12) on (3.21) the ΨO
(±) enter in a combination where the non-local θ does not drop

out and so the deformation term (3.23) is not recovered. Indeed this can be expected as

the deformation destroys the isometries of the background.

16After analytical continuation, reference [23] derived the global Kruskal coordinates of the vectorially

deformed theory to interpret the background as a deformed two-dimensional black hole capturing therefore

also the region outside the horizon. However, a systematic analysis to obtain this region from an axial

gauged deformation was lacking there.
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3.3 Integrable branes in the λ-cigar

Let us now consider integrable boundary conditions defined in the λ-cigar geometry. Even

in the undeformed case, this is a challenging question because of the well known difficul-

ties with non-rational CFT. However, the expectation is (and based on a semi-classical

analysis of the DBI axtion) that the cigar geometry allows D0-, D1- and D2-brane config-

urations [46–50]. Except for the D0, these branes can be understood as descending from

the ungauged SL(2, R) WZW model [72]. Geometrically, the D0 is located at the tip of

the cigar, the D1 covers a so-called hairpin and the D2 is either space-filling or extends

from the circle at some value ρ? > 0 to infinity. The D1-branes are understood to be

non-compact analogues of the A-branes of [51] in the SU(2)/U(1) WZW while the D0 and

D2 are analogues of the B-branes. The latter are an interesting type as they provide a way

to derive symmetry breaking branes in the parent theory which are non-obvious to obtain

from first principles, see for instance [73] and references therein. Here we will find the

above D-brane configurations by employing the classical integrability technique outlined in

section 2.3.

We start with analysing the simplest case given in equations (2.42), (2.44) for the

cigar, i.e. taking W = diag(1,−1,−1), and for W = 13 (which is trivially satisfying the

restrictions given below (2.43)). After a straightforward computation this leads to the

integrable boundary conditions,

cos θ∂τρ− sin θ tanh ρ∂τθ = 0,

sin θ∂σρ+ cos θ tanh ρ∂σθ = 0,
(3.24)

which describe static D1-branes. These boundary conditions notably do not depend on

the deformation parameter and indeed match precisely those of the CFT point [46–48]. In

terms of the complex coordinates ζ = sinh ρeiθ, ζ̄ = sinh ρe−iθ they simplify to,

∂τ
(
ζ + ζ̄

)
= 0, ∂σ

(
ζ − ζ̄

)
= 0. (3.25)

The Dirichlet condition gives the embedding equation in the two-dimensional (ρ, θ) space

such that the D1-branes cover so-called hairpins on the cigar as visualised in figure 1 in

the undeformed case. In the limit ρ → ∞ the branes reach the asymptotic circle at two

opposite positions, θ = π/2, 3π/2. Another possibility in the λ-cigar is taking the gluing

automorphismW = diag(−1,−1, 1). In this case the integrable boundary conditions (2.44)

are an exchange of the Dirichlet and Neumann direction,

∂τ
(
ζ − ζ̄

)
= 0, ∂σ

(
ζ + ζ̄

)
= 0, (3.26)

corresponding to a rotation along the circle of the static D1-branes over an angle π/2. In

contrast to the undeformed case, the extra restrictions on the automorphismW prevents the

branes to be rotated smoothly into each other while preserving the integrability properties,

essentially since the deformation destroys such isometry of the background.
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Figure 1. The D1-brane configurations in the undeformed cigar manifold embedded in R3. Heuris-

tically, one can think of the deformation as to convert the U(1)θ circle into an ellipse. However,

visualising this exactly is surprisingly challenging.17

Let us consider the D1-branes found above also from the semi-classical perspective. If

we let y be the spatial coordinate of the D1-brane18 and introduce u = |ζ| = sinh(ρ) then

the DBI action reads,

SDBI = T1

∫
dy e−Φ

√
detĜ, (3.27)

where,

e−2ΦdetĜ ∝ u′(y)2
(
1 + λ2 + 2λ cos(2θ(y))

)
− 4λu(y)u′(y)θ′(y) sin(2θ(y))

+ u(y)2θ′(y)2
(
1 + λ2 − 2λ cos(2θ(y))

)
.

(3.28)

Although the action evidently depends on the deformation parameter, this drops out in

the classical Euler-Lagrange equations, which have a solution,

u(y) = υ csc(θ0 + θ(y)), (3.29)

with υ, θ0 integration constants. Hence, the D1-branes are semi-infinite with u ∈ (υ,∞).

Plugging this solution back into the DBI action yields,

SDBI ∝ lim
u→∞

√
u2 − υ2

√
1 + λ2 + 2λ cos(2θ0) . (3.30)

Whilst this is clearly diverging, for any UV cut-off the action is minimised by θ0 = π
2 ,

3π
2 .

Asymptotically as ρ → ∞ these special configurations match precisely to the integrable

D-branes described in (3.25).

As is the case in the undeformed cigar we anticipate19 here also D0-branes localised

at the tip. The corresponding worldsheet boundary conditions read,

∂τθ = ∂τρ = 0 , ρ = 0 . (3.31)

To ascertain if these constitute integrable boundary conditions we shall reverse the logic

compared to the D1 case described above; we shall start with these boundary conditions

on the field and from this infer a boundary condition on the Lax connection. A first step is

17Whilst it is easy to find an explicit isometric embedding in R3 for the undeformed cigar geometry,

finding the same for the deformed cigar proved to be an engrossing, deceptively challenging, and ultimately

frustrating activity, at least for the present authors. Solutions to this problem would be welcomed.
18As is commonplace in the topic we assume that there is an auxiliary time direction and assume some

static gauge.
19Inspired by [45] where a generic geometrical approach was taken for group manifolds, we anticipate the

brane configurations of the CFT to persist in the deformed theory.
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to use the gauge field equations eq. (3.17) of motion evaluated with the gauge fixing choice

eq. (3.16). Then the D0 boundary condition reads simply,

A1
+ = A1

− , A2
+ = −A2

−, A3
+ = A3

− = 0 , (3.32)

where the latter equality follows on ρ = 0. In terms of the Lax connection (2.21),

Lτ (z) =
1√
2λz

(
−(1 + z2)A1

+ (1− z2)A2
+

(1− z2)A2
+ (1 + z2)A1

+

)
(3.33)

we find that this satisfies the condition Lτ (z)| = W[Lτ (z−1)]
∣∣ of (2.42) when W =

diag(1,−1,−1). In this case W satisfies all necessary requirements when ρ = 0 (since then

A3
τ = 0): it is a constant metric-preserving automorphism of sl(2, R) and W2(g(1)) = 1.

In [46, 47] it was shown that there is also a D2-brane configuration supported by

a worldvolume gauge field A with field strength Fρθ ≡ f = ∂ρAθ (in which the gauge

Aρ = 0 is adopted). In the deformed scenario we might again anticipate finding such a

configuration. Indeed from the DBI action,

SDBI ∝
∫
dρdσe−Φ

√
det(G+ F ), (3.34)

we find that the λ-dependence drops from the equation of motion for the gauge field which

is solved with,

f2 =
β2 tanh2 ρ

−β2 + cosh2 ρ
. (3.35)

Here we see that when the constant β > 1, the field strength f is critical outside the region

cosh ρ ≥ β so that the D2-brane extends from the asymptotic circle to a minimum value

in ρ given by cosh ρ? = β. When β < 1, however, the D2 is space-filling.

The question now comes if this corresponds to an integrable boundary condition. Recall

that a volume-filling brane should consist of generalised Neumann type boundary conditions

that incorporate the gauge field F :

Gab∂σX
a = Fab∂τX

b . (3.36)

In terms of the coordinates X = (ρ, θ) these are quite inelegant and have explicit depen-

dance on λ. However, we may recast this result in terms of the gauge fields A
(1)
± using the

on-shell equations of motion (3.17). We find that upon doing so the λ-dependence is again

removed and yields,

(1 + f2 coth2 ρ){A1
−, A

2
−} = (1− f2 coth2 ρ){−A1

+, A
2
+} − 2f coth ρ{A2

+, A
1
+}. (3.37)

This tells us the gluing between the gauge fields should be field-dependent and therefore

hints towards a boundary condition of the form (2.45) where one includes a gauge transfor-

mation in the boundary monodromy matrix. Indeed, after a tedious but straightforward

computation we find that gauge transforming the Lax (2.21),

L(z)→ h−1L(z)h+ h−1dh, (3.38)
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by,

h = exp (v(ρ, β)T3) ∈ H, v(ρ, β) =
√

2 arcsin
(
coth2 ρf2 + 1

)−1/2
, (3.39)

the integrable boundary condition (2.45) agrees with the D2 boundary conditions (3.37)

when W = diag(1,−1,−1).

Concluding, we see here integrable D-branes corresponding to D0-, D1- and D2-

configurations which are all obtained differently from a boundary condition on the Lax

connection. We see also that not all of the D1-branes of the undeformed theory preserve

integrability: instead of having the continuous U(1)θ isometry, only two configurations at

specific angles survive the integrable deformation.

3.4 Connection to Sine-Liouville theory

We are now in a position to discuss the deformation to the dual Sine-Liouville (SL) back-

ground, which in the undeformed case has the action (see for instance [41, 74]),

SSL,k(x, φ) =
1

π

∫
Σ
dτdσ ∂+φ∂−φ+ ∂+x∂−x+QR(2)φ+ µebφ cos(Rx̃), (3.40)

with R(2) the worldsheet Ricci scalar. The target space has the topology of cylinder with

φ ∈ (−∞,+∞) the radial coordinate and x a 2π periodic coordinate with radius R and a

dual x̃. The parameters Q, b and R are related as Q = −1/b and R2 − b2 = 2 ensuring

Sine-Liouville is an exact CFT with central charge,

c = 2 + 6Q2, (3.41)

and a potential V (φ, x̃) = µebφ cos(Rx̃) with scaling dimension 1. The central charge of the

Euclidean cigar (3.6) matches with that of SL when Q2 = 1
k−2 , hence (taking the positive

root of Q) we have b = −
√
k − 2 and R =

√
k.

A dictionary between the (undeformed) Euclidean cigar black hole and Sine-Liouville

theory can be made in the asymptotic flat space limit ρ→∞ where the cigar approaches

the toplogy of a cylinder and its dilaton falls off linearly, ΦA − Φ0 → −ρ. On the SL

side, this limit corresponds to the region φ→∞ in which the potential V (φ, x̃) as well as

the string coupling constant go to zero given the dilaton ΦSL = Qφ. The identification is

therefore at large k given by,

ρ ∼ −Qφ, θ ∼ x√
k
, χ̃ ∼

√
kx̃ . (3.42)

At finite ρ and φ, the duality between both theories can be demonstrated as an exact

match between the symmetry algebra’s, vertex operators and n-point functions [41–43]

(see also [74]) where they look both topologically and dynamically very different. Indeed,

it can be understood that the dynamics is governed by the geometry in the cigar picture

and by the potential V (φ, x̃) in the SL picture. Additionally, the tip of the cigar is the

end of space corresponding to the horizon of the Euclidean black hole and hence cutting

off the strong string coupling region, while on the SL side this region is protected by the

potential V (φ, x̃). On the worldsheet the duality can be viewed as a strong-weak coupling
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duality. However, the sigma model point of view taken here forces us in the small coupling

(large k) regime on the cigar side.

For us the power of the duality lies in the observation that the semi-classical cigar

parafermions (3.9) in the flat space limit under the identification (3.42),

ΨSL
(±) =

(
− ∂+φ√

k − 2
∓ i∂+x√

k

)
e
∓ 2ixL√

k , Ψ̄SL
(±) =

(
− ∂−φ√

k − 2
± i∂−x√

k

)
e
± 2ixR√

k , (3.43)

commute20 with the SL potential V (φ, x̃) [74]. Here x(σ+, σ−) = xL(σ+) + xR(σ−) and

x̃(σ+, σ−) = xL(σ+) − xR(σ−). Therefore, one can rely on the expression (3.43) for all

values of φ. Since the parafermion fields induce the deformation (3.21) we can now easily

extract the perturbation on the SL theory side. To first order in λ the deforming term in

the large k regime becomes,

δLSL = λ

(
2 cos

(
2x

R

)
∂+φ∂−φ− 2 cos

(
2x

R

)
∂+x∂−x

+2 sin

(
2x

R

)
(∂+x∂−φ+ ∂−x∂+φ)

)
+O(λ2) .

(3.44)

A similar structure is expected for finite λ, as (3.21) is exact in λ, so that one deforms the

flat space SL theory to a curved background. We anticipate this is the starting point of an

integrable deformation of the SL theory. Moreover, it appears to be in a different class to

the integrable deformations studied in [74]. We will leave this as an open problem to be

fully understood.

4 Conclusion

The Sfetsos procedure [16] to construct the λ-deformation of a G/H coset realised as

a gauged WZW model actually requires the G/G model as a starting point. To date,

even when H is abelian, attention has been restricted to the case in which in the G/G

model the G symmetry, and consequently that of H, acts vectorially. Here we explore the

asymmetric gauging of G in which the left and right actions differ by the application of

an algebra automorphism. When this is an outer automorphism what results can not be

trivially removed via field redefinitions. In this way, we are able to produce new λ-type

deformations leading to topologically distinct target spaces in a robust and fundamental

manner. Using the similarities between this asymmetric λ-model and its vectorial cousin we

demonstrate classical integrability and show the one-loop beta functions to stay marginally

relevant for compact groups and irrelevant for non-compact groups. To end our general

discussion of this model, we present a simple technique to construct integrable boundary

conditions in which we, moreover, exploit the residual asymmetric gauge symmetry.

As an example we consider the SL(2, R)/U(1) model where unlike the compact SU(2)

there is such a non-trivial outer automorphism. We show that employing our procedure

20After analytical continuation to Euclidean worldsheet signature one should check that∮
w

dzΨSL
(±)(z)V (φ(w), x̃(w)) =

∮
w̄

dz̄Ψ̄SL
(±)(z̄)V (φ(w̄), x̃(w̄)). Note that a translation to [74] should be done

in the large k limit and by the substitution φ→ ϕ/2, x→ φ/2, b→ 2b, R→ 2a. Doing so one indeed finds

ΨSL
(±) ∝ ΨFateev

(∓) up to an irrelevant overall factor.
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we are able to find an integrable deformation of the theory in which the gauged symmetry

acts axially. Geometrically, and at large k, we have an integrable deformation of the cigar

geometry corresponding to the Euclideanised Witten black hole. The cigar geometry itself

receives 1
k corrections and it would be doubtless valuable to find a description of the λ-

deformation that takes these corrections into account. Continuing at large k, we analyse

also the boundary conditions preserving integrability in the deformed cigar. We see this

can be done straightforwardly and observe the D-branes proposed at the (non-rational)

CFT point to be integrable in the deformation.

As well as demonstrating the concept for this broader class of deformations we believe

this example could hold some further interest in its own right. Let us entertain some

speculation about how the deformation translates to both the Sine-Liouville (SL) dual and

in turn to the matrix model description of this picture. An initial step is made here by

identifying for small deformation parameters in the cigar a bilinear of the non-compact

parafermions as the operators that drive the deformation. Demanding agreement between

the SL at large values of the radial coordinate suggests strongly the same parafermionic

bilinear deformation should be considered in the SL model. However the λ-model goes

much further since it provides a resummation to all orders in λ of this deformation; what

this looks like in the SL theory is far from clear. One possible root to shed light on this

could be to combine the Sfetsos procedure with the path integral derivation of FZZ. When

successful, one can continue and probe, using the deformed SL theory and integrability,

the region behind the horizon.

It is also interesting to ask what the deformation does at the level of the S-matrix.

For the case of similar deformations of compact parafermionic theories it has long been

known that the S-matrix has a kink structure and in the k → ∞ limit matches that of

the O(3) sigma-model [71]. A similar expectation holds for general λ-deformations, the

underlying S-matrix has a q root-of-unity quantum group symmetry associated to a face

model [75, 76]. Here it is less clear due to the non-compactness of the theory but one might

well anticipate a similar q-deformation to hold. Further one might ask what this structure

might relate to in the postulated dual matrix model description of the cigar [41].

A final enticing direction is to employ similar techniques in the context of geometries

relevant to black hole microstates. For instance a static configuration of NS5-branes on a

circle admits a description as a gauged WZW model [77, 78], and more general solutions

(supertubes and spectral flows of supertubes) can also be realised as gauged WZW mod-

els [79, 80]. It seems quite possible that the techniques developed here may be applicable

to such situations. We leave that for future work.
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A Conventions and sigma models (WZW, PCM and SSSM)

In this appendix, we briefly introduce some basic ingredients and conventions for the gaug-

ing procedure of section 2.

For the general formulae of this paper we adopt conventions for compact and semi-

simple groups G, although they should be changed conveniently when working out the non-

compact SL(2, R)/U(1) example in section 3. We denote the generators of the Lie algebra

g of G by TA and pick a basis in which they are Hermitean, i.e. [TA, TB] = iFAB
CTC

with real structure constants FAB
C and A = {1, · · · , dimG}. They are normalised in

such a way that the ad-invariant Cartan-Killing metric 〈·, ·〉 : g × g → R, taken to be

〈TA, TB〉 = 1
xR

Tr (TATB) with xR the index of the representation R, has unit entries. The

left-(right-)invariant Maurer-Cartan one-forms are expanded in the Lie algebra as g−1dg =

−iLATA (dgg−1 = −iRATA) and in explicit local coordinates Xµ, µ ∈ {1, · · · , dimG} as

g−1dg = −iLAµ(X)TAdXµ (dgg−1 = −iRAµ(X)TAdXµ). The adjoint action is denoted

by DgTA = gTAg
−1 = (Dg)

B
ATB, hence (Dg)AB = 〈TA, gTBg−1〉 and RA = (Dg)

A
BL

B.

Finally, considering the G/H coset, we denote the generators of the subgroup H ⊂
G with Lie algebra h by Ta, a = {1, · · · , dimH} and the remaining generators by Tα,

α = {dimH + 1, · · · , dimG}. We assume the Lie algebra g to have a symmetric space

decomposition g = g(0)⊕g(1), with g(0) ≡ h, defined by a Z2 grading [g(i), g(j)] ⊂ g(i+j mod 2).

We consider the WZW model on a Lie group manifold G at level k [4] with the action,

SWZW,k(g) = − k

2π

∫
Σ
dσdτ〈g−1∂+g, g

−1∂−g〉 −
k

24π

∫
M3

〈ḡ−1dḡ,
[
ḡ−1dḡ, ḡ−1dḡ

]
〉, (A.1)

with g : Σ → G a Lie group element and ḡ an extension of g into M3 ⊂ G such that

∂M3 = g(Σ). To cancel ambiguities from the choice of M3 in the path integral the level

k should be integer quantised for compact groups while for non-compact cases it can be

free [4, 81]. The two-dimensional manifold Σ can be thought of as a worldsheet on which

we have fixed the metric as diag(+1,−1), the Levi-Civita as ετσ = 1 and we have units

in which α′ = 1 . We analytically continue to Euclidean coordinates by taking σ+ =

τ + σ → −iz and σ− = τ − σ → −iz̄ and will use the term holomorphic abusively to

mean either f(σ+) or f(z). The WZW model on group manifolds is known to have an

exact CFT formulation originating from the GL(σ+)×GR(σ−) symmetry generated by the

holomorphically conserved currents J+(σ+) = −k∂+gg
−1 and J−(σ−) = kg−1∂−g whose

components satisfy two commuting Kac-Moody algebra’s.

We consider moreover the PCM model on a Lie group manifold G with a coupling

constant κ2,

SPCM,κ2(ĝ) = −κ
2

π

∫
dσdτ〈ĝ−1∂+ĝ, ĝ

−1∂−ĝ〉, ĝ ∈ G, (A.2)
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which has a global GL × GR symmetry. From the PCM model the SSSM model on the

G/H coset manifold can be obtained by gauging an HR ⊂ G subgroup acting as,

ĝ → ĝh. (A.3)

The gauge-invariant action is then,

SSSSM,κ2(ĝ, B±) = −κ
2

π

∫
dσdτ〈(ĝ−1∂+ĝ −B+), (ĝ−1∂−ĝ −B−)〉, (A.4)

with B± the gauge fields taking values in the Lie algebra g(0) ≡ h of H and transforming

under the gauge transformation as B± → h−1 (B± + ∂±)h. This model is easily shown to

be classically integrable when g = g(0) ⊕ g(1) has a symmetric space decomposition [8, 17].

Note that when working with non-compact groups, where one usually picks a generator

basis [TA, TB] = FAB
CTC with FAB

C real, one should analytically continue in the above

models k → −k and κ2 → −κ2.
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[40] M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630

[hep-th/9110053] [INSPIRE].

[41] V. Kazakov, I.K. Kostov and D. Kutasov, A Matrix model for the two-dimensional black

hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].

[42] V.A. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, unpublished.

[43] Y. Hikida and V. Schomerus, The FZZ-Duality Conjecture: A Proof, JHEP 03 (2009) 095

[arXiv:0805.3931] [INSPIRE].

[44] A. Giveon, N. Itzhaki and D. Kutasov, Stringy Horizons, JHEP 06 (2015) 064

[arXiv:1502.03633] [INSPIRE].

[45] S. Driezen, A. Sevrin and D.C. Thompson, D-branes in λ-deformations, JHEP 09 (2018) 015

[arXiv:1806.10712] [INSPIRE].

[46] A. Fotopoulos, Semiclassical description of D-branes in SL(2)/U(1) gauged WZW model,

Class. Quant. Grav. 20 (2003) S465 [hep-th/0304015] [INSPIRE].

[47] S. Ribault and V. Schomerus, Branes in the 2−D black hole, JHEP 02 (2004) 019

[hep-th/0310024] [INSPIRE].

[48] A. Fotopoulos, V. Niarchos and N. Prezas, D-branes and extended characters in

SL(2,R)/U(1), Nucl. Phys. B 710 (2005) 309 [hep-th/0406017] [INSPIRE].

[49] D. Israel, A. Pakman and J. Troost, D-branes in N = 2 Liouville theory and its mirror, Nucl.

Phys. B 710 (2005) 529 [hep-th/0405259] [INSPIRE].

[50] S. Ribault, Discrete D-branes in AdS3 and in the 2−D black hole, JHEP 08 (2006) 015

[hep-th/0512238] [INSPIRE].

[51] J.M. Maldacena, G.W. Moore and N. Seiberg, Geometrical interpretation of D-branes in

gauged WZW models, JHEP 07 (2001) 046 [hep-th/0105038] [INSPIRE].

[52] A.M. Polyakov and P.B. Wiegmann, Goldstone Fields in Two-Dimensions with Multivalued

Actions, Phys. Lett. B 141 (1984) 223 [INSPIRE].

– 25 –

https://doi.org/10.1016/0550-3213(91)90073-7
https://doi.org/10.1016/0550-3213(91)90073-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B359,581%22
https://doi.org/10.1142/S0217732391001822
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A6,1685%22
https://doi.org/10.1016/0370-2693(91)90057-W
https://doi.org/10.1016/0370-2693(91)90057-W
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B265,303%22
https://doi.org/10.1016/0550-3213(93)90511-M
https://doi.org/10.1016/0550-3213(93)90511-M
https://arxiv.org/abs/hep-th/9301015
https://inspirehep.net/search?p=find+EPRINT+hep-th/9301015
https://doi.org/10.1103/PhysRevD.48.844
https://arxiv.org/abs/hep-th/9301047
https://inspirehep.net/search?p=find+EPRINT+hep-th/9301047
https://doi.org/10.1016/0550-3213(92)90237-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B371,269%22
https://doi.org/10.1142/S0217732391003316
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A6,2843%22
https://doi.org/10.1142/S0217732391003341
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A6,2871%22
https://doi.org/10.1016/0550-3213(92)90269-H
https://arxiv.org/abs/hep-th/9110053
https://inspirehep.net/search?p=find+EPRINT+hep-th/9110053
https://doi.org/10.1016/S0550-3213(01)00606-X
https://arxiv.org/abs/hep-th/0101011
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101011
https://doi.org/10.1088/1126-6708/2009/03/095
https://arxiv.org/abs/0805.3931
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3931
https://doi.org/10.1007/JHEP06(2015)064
https://arxiv.org/abs/1502.03633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03633
https://doi.org/10.1007/JHEP09(2018)015
https://arxiv.org/abs/1806.10712
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.10712
https://doi.org/10.1088/0264-9381/20/12/312
https://arxiv.org/abs/hep-th/0304015
https://inspirehep.net/search?p=find+EPRINT+hep-th/0304015
https://doi.org/10.1088/1126-6708/2004/02/019
https://arxiv.org/abs/hep-th/0310024
https://inspirehep.net/search?p=find+EPRINT+hep-th/0310024
https://doi.org/10.1016/j.nuclphysb.2004.12.030
https://arxiv.org/abs/hep-th/0406017
https://inspirehep.net/search?p=find+EPRINT+hep-th/0406017
https://doi.org/10.1016/j.nuclphysb.2005.01.014
https://doi.org/10.1016/j.nuclphysb.2005.01.014
https://arxiv.org/abs/hep-th/0405259
https://inspirehep.net/search?p=find+EPRINT+hep-th/0405259
https://doi.org/10.1088/1126-6708/2006/08/015
https://arxiv.org/abs/hep-th/0512238
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512238
https://doi.org/10.1088/1126-6708/2001/07/046
https://arxiv.org/abs/hep-th/0105038
https://inspirehep.net/search?p=find+EPRINT+hep-th/0105038
https://doi.org/10.1016/0370-2693(84)90206-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B141,223%22


J
H
E
P
0
4
(
2
0
1
9
)
0
9
4

[53] P. Bowcock, Canonical Quantization of the Gauged Wess-Zumino Model, Nucl. Phys. B 316

(1989) 80 [INSPIRE].

[54] K. Sfetsos, K. Siampos and D.C. Thompson, Generalised integrable λ- and η-deformations

and their relation, Nucl. Phys. B 899 (2015) 489 [arXiv:1506.05784] [INSPIRE].

[55] V.E. Zakharov and A.V. Mikhailov, Relativistically Invariant Two-Dimensional Models in

Field Theory Integrable by the Inverse Problem Technique (In Russian), Sov. Phys. JETP 47

(1978) 1017 [INSPIRE].

[56] G. Itsios, K. Sfetsos and K. Siampos, The all-loop non-Abelian Thirring model and its RG

flow, Phys. Lett. B 733 (2014) 265 [arXiv:1404.3748] [INSPIRE].

[57] K. Sfetsos and K. Siampos, Gauged WZW-type theories and the all-loop anisotropic

non-Abelian Thirring model, Nucl. Phys. B 885 (2014) 583 [arXiv:1405.7803] [INSPIRE].

[58] I.V. Cherednik, Factorizing Particles on a Half Line and Root Systems, Theor. Math. Phys.

61 (1984) 977 [INSPIRE].

[59] E.K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A 21 (1988)

2375 [INSPIRE].

[60] A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with Boundaries, JHEP 08

(2011) 004 [arXiv:1106.3446] [INSPIRE].

[61] O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems,

Cambridge Monographs on Mathematical Physics , Cambridge University Press, Cambridge

U.K. (2003).

[62] J.D. Lykken, Finitely Reducible Realizations of the N = 2 Superconformal Algebra, Nucl.

Phys. B 313 (1989) 473 [INSPIRE].

[63] I. Bakas and E. Kiritsis, Beyond the large N limit: Nonlinear W(infinity) as symmetry of the

SL(2,R)/U(1) coset model, Int. J. Mod. Phys. A 7S1A (1992) 55 [hep-th/9109029]

[INSPIRE].

[64] V.A. Fateev and A.B. Zamolodchikov, Parafermionic Currents in the Two-Dimensional

Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical

Systems, Sov. Phys. JETP 62 (1985) 215 [INSPIRE].

[65] D. Israel, C. Kounnas and M.P. Petropoulos, Superstrings on NS5 backgrounds, deformed

AdS3 and holography, JHEP 10 (2003) 028 [hep-th/0306053] [INSPIRE].

[66] K. Bardakci, M.J. Crescimanno and E. Rabinovici, Parafermions From Coset Models, Nucl.

Phys. B 344 (1990) 344 [INSPIRE].

[67] P. Marios Petropoulos and K. Sfetsos, NS5-branes on an ellipsis and novel marginal

deformations with parafermions, JHEP 01 (2006) 167 [hep-th/0512251] [INSPIRE].

[68] T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194

(1987) 59 [INSPIRE].

[69] T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear σ-models, Phys.

Lett. B 201 (1988) 466 [INSPIRE].
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