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1 Introduction and main results

Since the first version of the gauge/gravity correspondence [1] that related a conformal

field theory with Anti-de Sitter space, a lot of effort has been invested to generalize this

conjecture to bring the field theory closer to quantum chromodynamics (QCD). A relevant

step in this direction was the inclusion of flavor [2] in the field theory, implemented by

embedding probe branes in the dual gravitational background.

The correspondence found fertile grounds studying properties of the quark-gluon

plasma (QGP) created in very high energy collisions. Part of the pursue was to find

physical quantities that were robust enough to be expected to behave similarly in QCD

and in the field theory accessible through the duality, where in this sense, the celebrated

ratio of the entropy over the shear viscosity [3, 4] is a prominent early example. It has

been recently argued that along with the QGP, a very strong magnetic field is created for

non-central collision, and furthermore, that this field can be responsible for the disagree-

ment between certain measurements and the results expected when the magnetic field is

not considered.

In [5], a five-dimensional background was constructed so that its dual consisted of

a gauge theory submerged in a constant magnetic field. This setting has been used to
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study a number of phenomena in a strongly interacting field theory with a background

magnetic field, but if the hope is to have access to physics that include flavor, the ten-

dimensional uplift of this background is necessary so that probe branes can be embedded

in it. Following [6] it is simple to find the ten-dimensional solution to type IIB supergravity

associated to the aforementioned background, but as we will see below, the particulars of

the resulting geometry make it so that the usual embedding of a D7-brane is not certain

to be tractable in the given parametrization.

With this in mind, we decided to use a particular way to consistently truncate ten-

dimensional type IIB supergravity, knowing that in the resulting five-dimensional theory,

different from the one used in [5], it would be possible to find a family of solutions such that

their uplift to 10D would be ideally suited to accommodate the embedding of a D7-brane.1

We were indeed able to find such a family of 5D solutions, that we present below,

along with their 10D uplift and the embedding of probe D7-branes in it, as reported in [8].

Before studying the physics involving this flavor degrees of freedom, or even to properly

understand the results in [8], we needed to study the thermodynamics of the backgrounds

themselves, and the present work is the outcome of that analysis, that, for simplicity, we

carried from the five-dimensional perspective. We would like to remark that no knowledge

about the 10D uplift is necessary to reach the conclusions of the present work.

The solutions we find have a four-dimensional flat horizon, invariant under translations,

and which isotropy is broken by the presence of a magnetic field that is constant in both,

direction and intensity not only at the horizon, but across the whole background. The

metric and the scalar field of the five-dimensional solution that extend away from the

horizon depend solely on the distance from it, and in terms of this distance we will define

our radial coordinate. At large radius the geometry approaches AdS5 while the scalar

field vanishes. All things said, these solutions represent the geometry of a black-brane, in

the presence of a constant magnetic field and a radially dependent scalar field that is not

minimally coupled.

The temperature associated to the horizon and the intensity of the magnetic field are

two physical quantities that, from the previous description, seem appropriated to charac-

terize each member of the family of background that we just introduced. It is also apparent

that there has to be another parameter related to the scalar field, but its introduction can

be done in a clearer manner in the context of the dual field theory. As we will see, the

scalar field is dual to an operator Oϕ of dimension ∆ = 2, and the source of this operator

will be the third parameter to fully characterize a given background.

It turns out that for any fixed temperature and value of the source of Oϕ, there is

a maximum intensity bc of the magnetic field that the background can bare. Above bc a

naked singularity is developed, while for any intensity below it, there are two solutions

corresponding to two different vacuum expectation values of Oϕ. Our analysis permits us

to determine which one of the two solutions is the thermodynamically favored, in the sense

of it having a larger entropy, lower free energy, and positive specific heat. Where necessary,

1A different approach [9] can be used to introduce a magnetic field in the dual theory that includes the

embedding of flavor branes from the beginning, but in this construction the U(1) field lives on the brane,

and its intensity is limited by the probe approximation.
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we will indicate this in the plots by a solid line for the preferred branch and a dash line for

the unstable one.

There are two remarks we would like to make before presenting our calculations. One of

them is that even if we have physical reasons to work with a vanishing source of the operator

Oϕ, and we shall do so from section 4 and onwards, all the results that we present here are

true for any fixed finite value of it. The other thing we would like to mention is that in

the process of computing the stress-energy tensor and the thermodynamic quantities that

follow, there appears an arbitrary but finite contribution related to the renormalization

scheme, on which some physical observables depend due to the presence of a conformal

anomaly in the theory. As it happens for other backgrounds studied in the context of the

gauge/gravity correspondence, in our case there is no assertive reason to fix this scheme, so

we will present quantitative results for different choices, some of which have been considered

in previous studies, and show that our conclusions are scheme independent.

2 Action and solution

As stated above, the focus of this work is the construction and analysis of the solutions

of interest for [8]. This can be entirely done from the five-dimensional perspective, so in

this section we will focus on the action and solutions in this dimensionality, and leave

the introduction of flavor in the 10D uplift for [8] itself. It suffice to say for the moment

that the truncation and solution ansatz that we use in this section make the 10D uplift

particularly amiable for the embedding of D7-branes.

2.1 5D gauged supergravity truncation

The five dimensional truncation [6] that we will begin with has a matter content constituted

by two independent scalar fields ϕ1 and ϕ2, and three independent Maxwell fields F i = dAi

with i = 1, 2, 3, governed by the action

S =
1

16πG5

∫
d5x
√
−g
[
R− 1

2
(∂ϕ1)2 − 1

2
(∂ϕ2)2 +

4

L2

3∑
i=1

X−1
i

]

− 1

16πG5

∫ (
1

2

3∑
i=1

X−2
i F i ∧ ?F i + F 1 ∧ F 2 ∧A3

)
,

(2.1)

where G5 is the five-dimensional Newton constant while

Xi = e−
1
2
~ai·~ϕ, ~ai = (a

(1)
i , a

(2)
i ), and ~ϕ = (ϕ1, ϕ2). (2.2)

Note that the choice for A3 to appear as such in the Chern-Simons term is arbitrary, since

any of the three gauge field can take its place upon performing an integration by parts.

The equations of motion resulting from this action are

1√
−g

∂µ(
√
−ggµν∂νϕ1) +

2

L2

3∑
i=1

a
(1)
i X−1

i −
1

4

3∑
i=1

a
(1)
i X−2

i (F i)2 = 0,

1√
−g

∂µ(
√
−ggµν∂νϕ2) +

2

L2

3∑
i=1

a
(2)
i X−1

i −
1

4

3∑
i=1

a
(2)
i X−2

i (F i)2 = 0,
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d(X−2
1 ? F 1) + F 2 ∧ F 3 = 0,

d(X−2
2 ? F 2) + F 3 ∧ F 1 = 0,

d(X−2
3 ? F 3) + F 1 ∧ F 2 = 0,

Rµν −
1

2

(
∂µϕ1∂νϕ1 + ∂µϕ2∂νϕ2 +

3∑
i=1

X−2
i F iµσF

i
ν
σ

)

+gµν

(
4

3L2

3∑
i=1

X−1
i +

1

12

3∑
i=1

X−2
i (F i)2

)
= 0, (2.3)

where we used the freedom discussed previously about the Chern-Simons term to write the

equations of motion for the gauge fields in a more symmetric way.

As mentioned in [6], one consistent possibility to further truncate the theory is to

turn off both scalar fields and take the three Maxwell fields identical. This leads to the

Einstein-Maxwell system studied in [5], where the single F was chosen to be a constant

magnetic field along one of the gauge theory directions. Various physical observables

have been computed using this gravitational background (see for example [10–14]), but the

aforementioned truncation does not permit a simple introduction of D7 flavor branes in the

10D geometry. The complication arises since in the procedure to introduce flavor [2, 15, 16],

the D7-brane most wrap a 3-dimensional subcycle, of the 5-dimensional compact subspace

S5 of the background, that provides a fibration over the asymptotically AdS space and

includes as a particular case a maximum subcycle of S5. It can be directly seen that setting

the three Maxwell fields identical to each other in the corresponding 10D metric on [6],

turns the identification of a 3-cycle with the desire properties into an integral problem

that is not even warrantied to be solvable in this parametrization. This problem will be

addressed elsewhere [7].

Here we will consider a different way to further truncate (2.1) and (2.2) given by setting

2√
3
ϕ2 = 2ϕ1 = ϕ, A1 = 0, A2 = A3 =

√
2A, (2.4)

and keeping the vectors ~ai

~a1 =

(
2√
6
,
√

2

)
, ~a2 =

(
2√
6
,−
√

2

)
, ~a3 =

(
− 4√

6
, 0

)
. (2.5)

With this choice we have

X = X2 = X3 = e
1√
6
ϕ
, X1 = X−2, (2.6)

and the equations of motion reduce to

Rµν−
1

2
∂µϕ∂νϕ−2X−2FµσFν

σ+gµν

[
4

3L2

(
X2+2X−1

)
+

1

3
X−2FρσF

ρσ

]
= 0, (2.7)

1√
−g

∂µ(
√
−ggµν∂νϕ) +

4

L2

√
2

3
(X2 −X−1) +

√
2

3
X−2FµνF

µν = 0, (2.8)
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and

d(X−2 ? F ) = 0, (2.9)

along with the constrain F ∧F = 0, that all together can be consistently solved for gµν , ϕ,

and F .

Except for vanishing F and ϕ, in which case the black D3-brane geometry is a solution

to eq. (2.7) through (2.9), we have not been able to find analytic solutions to these equations

of motion, so in the next subsection we will resort to a numerical approach.

We end this subsection mentioning that the consistently reduced equations of mo-

tion (2.7), (2.8), and (2.9), can be thought of as those coming from the effective action

Seff =
1

16πG5

∫
d5x
√
−g
[
R− 1

2
(∂ϕ)2 +

4

L2

(
X2 + 2X−1

)
−X−2(F )2

]
, (2.10)

that are then completed by the constrain F ∧ F = 0, which in any case is identically

satisfied by the type of solutions we study.

2.2 Numerical solution

For simplicity we will take L = 1 in the following, implying that G5 = π/2N2
c . We will

insert in the equations of motion a similar ansatz to the one in [5], written in a closer way

to that in [10] as

ds2 =
dr2

U(r)
− U(r)dt2 + V (r)(dx2 + dy2) +W (r)dz2,

F = Bdx ∧ dy,

ϕ = ϕ(r). (2.11)

With this choice, F ∧ F = 0 and (2.9) is also automatically satisfied, while (2.7) and (2.8)

can be manipulated to give the system of differential equations

2W (r)2[4B2X−2 + V (r)(U ′(r)V ′(r) + U(r)V ′′(r))]− V (r)W (r)[2V (r)

×(U ′(r)W ′(r) + U(r)W ′′(r)) + U(r)V ′(r)W ′(r)] + U(r)V (r)2W ′(r)2 = 0,

W (r)2
[
V ′(r)2 − V (r)

(
2V ′′(r) + V (r)ϕ′(r)2

)]
− V (r)2

(
W (r)W ′′(r)− 1

2
W ′(r)2

)
= 0,

W (r)[−8B2X−2 + 6V (r)2

(
U ′′(r)− 8

3

(
X2 + 2X−1

))
+6V (r)U ′(r)V ′(r)] + 3V (r)2U ′(r)W ′(r) = 0, (2.12)

W (r)(
√

2B2X−2 + V (r)2

(√
3

2
U ′(r)ϕ′(r) +

√
3

2
U(r)ϕ′′(r) + 2

√
2
(
X2 −X−1

))
+

√
3

2
U(r)V (r)ϕ′(r)V ′(r)) +

√
3

4
U(r)V (r)2ϕ′(r)W ′(r) = 0,

W (r)
[
4B2X−2 + 2V (r)U ′(r)V ′(r) + U(r)V ′(r)2 − V (r)2

(
U(r)ϕ′(r)2

+8
(
X2 + 2X−1

) )]
+ V (r)W ′(r)

(
V (r)U ′(r) + 2U(r)V ′(r)

)
= 0,
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of which four are of second order, while the remaining one is of first order and plays the

role of a constriction that, once satisfied at a certain radius, will hold true for any r.

It is important to notice that the system in [5, 10] cannot be recovered from our

current setting, since turning on any magnetic field demands a not constant, in particular

not vanishing, scalar field, as can be seen for instance using our ansatz in (2.8). Nonetheless,

the system studied in [17] can be recovered by setting B = 0 and keeping ϕ on, and as we

will mention below, some of the conclusion for that system also apply to ours.

Since the black D3-brane geometry with ϕ = 0 and B = 0 is an analytic solution to

our system, we will, as in [10], choose to write the metric functions in terms of a radial

coordinate that makes them take the form

UBB(r) =

(
r +

rh
2

)2
(

1−
(

3
2rh
)4(

r + rh
2

)4
)
,

VBB(r) =
4V0

9r2
h

(
r +

rh
2

)2

,

WBB(r) =
4

3

(
r +

rh
2

)2

, (2.13)

with a near horizon expansion given by

UBB(r) = 6rh(r − rh)− 2(r − rh)2 +O(r − rh)3,

VBB(r) = V0 +
4V0

3rh
(r − rh) +

4V0

9r2
h

(r − rh)2,

WBB(r) = 3r2
h + 4rh(r − rh) +

4

3
(r − rh)2. (2.14)

As explained in [11], writing the black D3-brane solution in this manner made it possible

in [10, 11, 18] to work with a one parameter family of solutions that smoothly interpolates

between the black brane and BTZ×R2 geometries. This interpolating family was con-

structed by using, as part of the numerical method that we will see below, a near horizon

expansion that accommodates the behavior of both, the BTZ×R2 and black brane solu-

tions. Even if BTZ×R2, with its vanishing ϕ for a non zero B, is not a solution of our

current theory, it will still result convenient to introduce the expansions used in [10, 11, 18]

and include a similar expression for the scalar, so that all together we have

U(r) = 6rh(r − rh) +

∞∑
i=2

Ui(r − rh)i,

V (r) = V0 +

∞∑
i=1

Vi(r − rh)i,

W (r) = 3r2
h +

∞∑
i=1

Wi(r − rh)i,

ϕ(r) = ϕh +

∞∑
i=1

ϕi(r − rh)i, (2.15)
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and hence any member of the family of solutions has a horizon at rh with temperature

given by

T =
U ′(rh)

4π
=

3rh
2π

. (2.16)

For any solution that accepts (2.15), the equations of motion (2.12) are degenerated at

rh, so as a first step we use (2.15) itself to solve these differential equations by a power series

method near rh. Following this procedure we can write all the undetermined coefficients

in (2.15), up to any desired order, in terms of the four parameters rh, B, V0, and ϕh.

From here on, it will be understood that these steps have been followed and hence all the

coefficients in (2.15) are determined by the values given to rh, B, V0, and ϕh.

It would seem then, that the specific solution depends on the values of the four pa-

rameters listed in the previous paragraph, however, equations (2.12) are invariant under

either simultaneous scalings of V (r) and B or separate scalings of W (r). In consequence,

non equivalent solution are obtained only for different values of the three parameters rh,

B/V0, and ϕh, which relationship with the parameters of the dual gauge theory discussed

in the introduction will be clarified below. Before proceeding any further it is worth men-

tioning that as a practical consistency check of our numerical codes and calculations, we

constructed solutions independently varying all four values of rh, B, V0, and ϕh, and found

indeed that any independent modification of B and V0 would only result in a different

solution if the ratio B/V0 changed. Without loss of generality then, V0 can be set to a

constant and use B to control the B/V0 parameter, reducing the number of free quantities

in (2.15) to three.

To generate a numerical solution all we need to do now is to fix some values for the

three near horizon parameters in (2.15), use these expressions to provide initial data for

the metric functions and scalar field at r = rh + ε, with ε � rh, and then numerically

integrate (2.12) towards the boundary at r →∞.

Generically, the r →∞ behavior of the obtained metric functions is of the form

U(r)→ r2, V (r)→ C1r
2, W (r)→ C2r

2, (2.17)

with some constants C1 and C2, so the geometry approaches an scaled version of AdS5

in what we call the near boundary region. To obtain geometries that go exactly to AdS5

for r → ∞, it is then necessary to scale the functions V (r) and W (r) respectively by C1

and C2. Given the invariance of (2.12) that we have already mentioned, for the scaled

numerical functions to still satisfy the equations of motion, B has to be divided by the

same factor as V (r). What we end up with are numerical solutions that asymptotically

approach precisely AdS5 and have a magnetic field given by

F = bdx ∧ dy, b =
B

C1
, (2.18)

which is in consequence the background magnetic field in the dual gauge theory.

2.3 Physical parameters and maximum magnetic field

When following the procedure described in the last subsection it turns out that for certain

combinations of rh, B/V0, and ϕh, the numerical solution develops a scalar field that

– 7 –
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becomes infinite and a metric function that vanishes at a finite radius greater than rh. The

restriction that this imposes on the set of values that rh, B/V0, and ϕh can take is better

understood in terms of parameters related to the behavior in the near boundary region

of the solutions once they have been scaled to approach AdS5 exactly, making then also

contact with the dual gauge theory.

Of the three near horizon parameters, rh translates directly to the temperature of the

horizon, and hence, through (2.16), of the the gauge theory. The intensity b of the magnetic

field given in (2.18) bears information about the asymptotic behavior of the solution, since

in practice C1 = limr→∞ V (r)/r2. Finally, the behavior of the scalar field as r → ∞ is

given by

ϕ→ 1

r2
(ϕ0 + ψ0 log r) , (2.19)

where ϕ0 and ψ0 are coefficients determined by the asymtptotics of the corresponding

solution. As is explained in appendix A.1, (2.19) implies that ϕ is dual to an operator Oϕ
of dimension ∆ = 2, and thus it saturates the BF bound [19]. In consequence, ψ0 is dual to

the source of the operator and ϕ0 to its vacuum expectation value 〈Oϕ〉, where the precise

relationship is given in (A.12). The scaling dimension of the dual operator Oϕ implies that

it is part of a multiplet which transforms in the 20′ representation of SO(6), meaning that

it is constructed of the six adjoint scalar fields of SYM N = 4 [20, 21].

We see that we have identified T, b, ϕ0 and ψ0 as four near boundary parameters, of

which, according to the discussion in the previous subsection, only three can independently

characterize a particular solution. From the gauge theory perspective, it makes sense to fix

the temperature of the system, the intensity of the magnetic field to which it is exposed,

and how much the operator Oϕ is sourced, to then determine the expectation value 〈Oϕ〉.
We shall proceed in this way.

We numerically find that for any finite value of the source at a certain temperature,

there is a maximum bc for the intensity b that the background can hold. For intensities

beyond bc, the gravitational solution develops a naked singularity, indicating that the state

is unstable in the same way that it was found in [22] for a critical electric field, and in [23]

for a critical infinitesimal rotation. Both results are reflected in ours, since from the five

dimensional perspective we see a critical magnetic field, while from the ten dimensional

perspective this is perceived as a critical infinitesimal rotation. Just like in the two cases

cited in this paragraph, we have not yet constructed a physically acceptable gravitational

solution for an order parameter, b in our case, higher than the critical value. The reason

why this endeavor is left for future research is that, as explained in [22], the appearance of a

naked singularity in the stationary solution indicates that the gravitational background can

not be stationary for parameters higher than the critical value. Studying time dependent

configurations require a separate analysis, like the one done in [24] to complement [22], and

shows that the solution evolves in time to cover the singularity that started off as naked.

A review of the previous results can be consulted in [25]. Given that the time dependent

construction for our case is matter of future research, we limit our current calculations to

states in the phase that can be investigated through the correspondence using the present

gravitational configuration.

– 8 –
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ψ0/T
2

bc/T
2

Figure 1. Critical magnetic field bc/T
2 as a function of the source ψ0/T

2 at temperature T = 3/4π.

For any intensity below bc, there are two solutions that differ on the value of 〈Oϕ〉 and,

consequently, in other physical quantities associated to the state in the gauge theory that

will be computed in the following sections.

Just like the critical intensity for the magnetic field, all the quantities that we inves-

tigate in this work are well defined whether the operator Oϕ is sourced or not, but our

interest is to study the theory without the deformation that a non-vanishing value of ψ0

ads to it.2 Starting in section 3 we will set ψ0 = 0, but before we dedicate the rest of the

analysis exclusively to that case, we present in figure 1 the dependence of bc on the value

of the source, where we see that, at least for the range that we explored numerically, it is

a monotonically increasing function, with an almost linear behavior that seems to indicate

that there is no bound for the critical intensity as the source is increased. Computational

power did not allow us to find the value of the source for which bc = 0, but even if it would

be interesting to know, it is not really a quantity of physical interest.

As explained in appendix A.3, when ψ0 = 0, the parameter ϕ0 scales homogeneously

under dilatations and in consequence, 〈Oϕ〉/T 2 only depends on the dimensionless ratio

b/T 2, in terms of which all the following results will be reported. We then can, for states

where Oϕ is not sourced, fix the temperature to an arbitrary value and sweep the space of

solutions using only b to vary b/T 2.

Figure 2 shows the two branches of the vacuum expectation value 〈Oϕ〉/T 2 as a function

of b/T 2 up to bc/T
2, with every quantity computed at vanishing source and T = 3/4π.

Before moving on to compute other physical quantities we would like to take a moment

to explain how it is that we manage to fix the source of Oϕ to any given value, zero as a

particular case, and produce plots like figure 2. We proceed by solving the equations of

motion at given rh and B, for a wide range over ϕh to determine the value of this last

2Another motivation to set ψ0 = 0 is that the study [17] of other gravitational configurations with a

scalar field dual to the same operator as ours, have analytic continuations that violated cosmic censorship.
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Figure 2. Condensate 〈Oϕ〉/T 2 as a function of b/T 2 for vanishing source at temperature T = 3/4π.

parameter that gives the desired ψ0. To explore the full range of b/T 2 we keep rh fixed and

repeat the procedure for as many values of B as necessary to trace both branches in all our

plots. It is fair to say that the two solutions for a single value of b/T 2 have different values

of B and ϕh, but it is important to remember that these are only auxiliary parameters

in the construction of the solutions, that bare no real significance before the backgrounds

have been scaled to asymptote AdS5 exactly. For completeness of this constructional

perspective, we should mention that, given the adjustments that are necessary to keep the

source fixed as we move B up from zero, the extracted constant C1 in (2.18) increases

too, initially growing slower than B, but it reaches a point at which it does so faster than

this parameter, and as a consequence, b begins to decrease, hence also defining bc. To

help visualizing the process we present figure 3, that shows the dependence of b/T 2 on the

parameter B when the source is forced to stay turned off at a fixed temperature T = 3/4π.

It should be clear that the procedure just described cannot lead to solutions with b

above bc, so, if we wish to explore the instability of states violating this bound, we have

to integrate the solutions from the near boundary region towards the horizon, so that the

parameters that we have direct control over are b, ϕ0 and ψ0. The reason why we did not

proceed in this way from the get go, is that finding the appropriated domain for the values

of b, ϕ0 and ψ0 that permit gaining control over rh and impose the right conditions in the

interior of the solution is harder than the way we did it, where, for instance, the position

of the horizon is established at will.

What we concretely did was to extract the near boundary behavior of all the solutions

close to the tip of plots like figure 2 to verify that if we used the asymptotic information so

obtained and reverse the direction of the numerical integration, we recovered the solutions

we started with. Once we had verified this, we changed the near boundary parameters

slightly to get b > bc, and integrate towards the horizon, confirming that in every case the

solution developed a singularity before reaching it.
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B

b/T 2

Figure 3. Ratio b/T 2 as a function of the parameter B while enforcing ψ0 = 0 at T = 3/4π. The

top of the plot defines bc/T
2 at vanishing source.

This completes the construction of the family of solutions, along with the appearance of

a critical intensity for the magnetic field, and the double branch of solutions for intensities

below it. We now proceed to compute other physical quantities related to this backgrounds

and their duals in the gauge theory side.

3 Stress-energy tensor

The energy density and the pressures of the state in the gauge theory can be read from its

expectation value of the stress-energy tensor, which is obtained in the dual gravitational

theory as the variation of the on-shell Euclidean action with respect to the boundary metric.

After performing a Wick rotation t→ −itE in (2.10) we are left with

SE = − 1

16πG5

∫
d5x
√
g

[
R− 1

2
(∂ϕ)2+4

(
X2+2X−1

)
−X−2(F )2

]
− 1

8πG5

∫
d4x
√
γK,

(3.1)

where we have added the Gibbons-Hawking term, in which γ is the determinant of the

induced metric3 on the boundary, located at r → ∞, and K the trace of its extrinsic

curvature. Also, it is important to remember that all the indices in (3.1) are contracted

with the Euclidean metric

ds2 =
dr2

U(r)
+ U(r)dt2E + V (r)(dx2 + dy2) +W (r)dz2. (3.2)

We could be concerned about the fact that the constrain F ∧ F = 0 is not derived from

the action of which (3.1) is the Euclidean continuation, making the appropriateness of this

3It should properly be called a conformal structure rather than a metric, but this a common abuse of

language that we will follow.
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expression questionable. In the particular case of our solutions, the last term in (2.1),

which is responsible for the constrain F ∧ F = 0, vanishes, so the free energy can indeed

be computed using (3.1).

As is commonly the case, the on-shell action suffers from near boundary divergences,

that first need to be regularized by cutting the radial integral at a maximum r, and then

subtracted by supplementing the integral with covariant boundary terms, at the hyper-

surface where the cut was made, to keep the result finite when the radial cut is send to

infinity. This kind of procedure, to keep the on-shell action finite, is more comfortably

done if the radial position is measured by the Fefferman-Graham coordinate u described in

appendix A.1, where we also use holographic renormalization techniques [27, 28] to show

that, when written in this coordinate, the counterterms

Sct =
1

16πG5

∫
d4x
√
γ

(
6 + ϕ2

(
1 +

1

2 log ε

)
+ F ijFij log ε

)
, (3.3)

are the ones we need for the full renormalized action

S = SE + Sct, (3.4)

to be finite. The integrand in (3.3) is meant to be evaluated at the radial cut-off u = ε

and, for SE to be consistently imputed in (3.4), the integration over the radial direction

in (3.1) has to be done from this same value u = ε up to the horizon at uh. We remember

in passing that the boundary in this coordinate is located at u = 0.

From our results in appendix A.1 it is worth mentioning that the counterterm that

goes like 1/ log ε appears because ϕ saturates the BF bound and is only necessary when

ψ0 6= 0, while the counterterm that goes like log ε is due to the presence of the magnetic

field. The necessity for the latter is consistent with what was found in [13, 14], where the

stress-energy tensor for [5, 10] was evaluated using similar techniques, while the presence

of the former is a feature of our consistent truncation and modifies the dependence of the

stress-energy tensor on the magnetic field in a non-trivial way.

We find that it is also possible to add to the action a finite term given by

Sf =
Csch

16πG5

∫
d4x
√
γ

(
−F ijFij +

ϕ2

2 log2 ε

)
, (3.5)

where the part that goes like 1/ log2 ε is non-zero only for ψ0 6= 0. Choosing a particular

value for the free coefficient Csch amounts to specifying a renormalization scheme. In some

circumstances it is possible to fix the scheme by demanding that the on-shell action pre-

serves a certain symmetry. For instance, in the case of D-branes embeddings one can fix

the scheme by imposing that the on-shell action vanishes for the supersymmetric embed-

ding [29]. However, there are many instances where there are no such symmetries to fix the

scheme, and thus it is necessary to leave Csch as a free parameter and study how it affects

some physical observables. Such is the case in [30, 31], where a thermodynamic analysis

similar to the one presented here was discussed. In that work the scheme was not fixed, but

was made consistent with the one used in the dual gauge theory by analyzing the chemical
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potential and the D7-branes sourcing the geometry. In our system there is no symmetry

to fix the scheme nor source that could make the choice inconsistent with the dual gauge

theory. Another possible approach is the one taken in [13], where the equivalent of Csch

was set to −1/4 to simplify some expressions, and latter in [32] the same value was adopted

to eliminate, from the energy density, the explicit contribution of the electromagnetic field

to the boundary stress-energy tensor. As can be seen in the appendix, Csch = −1/4 in our

case serves the same purpose as in [32]. The hope behind this idea is to only retain the

energy density associated to the plasma itself. It should be notice thought that this is not

a compulsory requirement for the stress-energy tensor, and even more subtly, given how

intricate the interplay between the plasma and the electromagnetic field is, removing the

aforementioned explicit contribution does not guarantee that only the energy density of

the plasma remains.4 Given the lack of an argument to fix the scheme, in the following we

will carry our calculations for a number of values for Csch, including Csch = −1/4, making

it clear in the process that the main results and conclusions obtained from our work are

indeed scheme independent.

In appendix A.2 we show that the expectation value of the stress-energy tensor obtained

by varying the total action

ST = SE + Sct + Sf (3.6)

with respect to the boundary metric is given by

16πG5〈Tij〉 =4gij(4) + hij(1 + 4Csch) + 6CschHij

− gij(0)

(
gkl(0)(4gkl(4) + hkl) + ϕ(0)

(
ϕ(0) + ψ(0)

(
1− 2

3
Csch

)))
.

(3.7)

The right hand side of equation (3.7) is an expression in terms of the coefficients gij(0),

gij(4), hij , Hij , ϕ(0), and ψ(0), of the near boundary expansion (A.2) of the solution, done

in the FG coordinate and encoding the near boundary behavior.

Since we have better control of the numerical method when integrating out from the

horizon using the coordinate r, we would like to find the coefficients in (3.7) from the

solutions constructed in this way. To do so we start by expanding the equations of mo-

tion (2.12) around r =∞ and solving them order by order in 1/r, obtaining, after imposing

exact AdS5 asymptotics and vanishing source ψ0, the expressions

U(r) = r2 + U1r +
U2

1

4
+

1

r2

(
U4 −

2

3
b2 log r

)
+O

(
1

r4

)
,

V (r) = r2 + U1r +
U2

1

4
+

1

r2

(
−1

2
W4 −

1

6
ϕ2

0 +
1

3
b2 log r

)
+O

(
1

r4

)
,

W (r) = r2 + U1r +
U2

1

4
+

1

r2

(
W4 −

2

3
b2 log r

)
+O

(
1

r4

)
,

ϕ(r) =
ϕ0

r2
− U1ϕ0

r3
+

1

12r4

(
−2
√

6b2 + ϕ0(9U2
1 −
√

6ϕ0)
)

+O
(

1

r5

)
, (3.8)

where U1, U4, W4 and ϕ0 are the coefficients, not determined by the equations of motion,

that have to be read from the numerical solution associated to each particular value of b

4Some details can be seen in the appendix.
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and T , making them functions of this physical parameters. Once these coefficients have

been extracted, we can use the relationships

u(r) =
1

r
− U1

2r2
+
U2

1

4r3
− U3

1

8r4
+

1

r5

(
1

48
(b2 + 3U4

1 − 6U4) +
1

12
b2 log r

)
+O

(
1

r6

)
,

r(u) =
1

u
− U1

2
+ u3

(
1

48
(b2 − 6U4)− 1

12
b2 log u

)
+O(u5), (3.9)

that r and u hold close to the boundary, to eliminate r in (3.8) in favor of u, obtaining the

expansions in terms of u of the metric functions and scalar field given by

U(u) =
1

u2
+ u2

(
1

24
b2 +

3

4
U4 +

1

2
b2 log u

)
+O(u4),

V (u) =
1

u2
+ u2

(
1

24
b2 − 1

4
U4 −

1

2
W4 −

1

6
ϕ2

0 −
1

2
b2 log u

)
+O(u4),

W (u) =
1

u2
+ u2

(
1

24
b2 − 1

4
U4 +W4 +

1

2
b2 log u

)
+O(u4),

ϕ(u) = u2ϕ0 + u4

(
− b2√

6
− ϕ2

0

2
√

6

)
+O(u6). (3.10)

The expansion (3.10) in terms of the coefficients U1, U4, W4 and ϕ0, has to be the

same as the one given by (A.2) in terms of the coefficients gij(0), gij(4), hij , Hij , ϕ(0), and

ψ(0), so we can solve for the latter in terms of the former and evaluate (3.7) to extract the

energy and pressures

〈Tij〉 = diag(E,P⊥, P⊥, P ‖), (3.11)

as functions of b and T , resulting in

E =
N2
c

8π2

(
−3U4 −

1

3
ϕ2

0 − 2Cschb
2

)
,

P⊥ =
N2
c

8π2

(
−U4 − 2W4 −

1

3
ϕ2

0 − b2(1 + 2Csch)

)
,

P ‖ =
N2
c

8π2

(
−U4 + 4W4 +

1

3
ϕ2

0 + 2Cschb
2

)
, (3.12)

where P⊥ and P ‖ are respectively the pressures along directions perpendicular and parallel

to the magnetic field. The schematic form of these expressions reduces to the ones reported

in [13, 14] when taking ϕ0 = 0, however, we stress that this cannot be done in consistency

with the equations of motion unless we also demand b = 0, confirming again that the

solutions studied in [5, 10] cannot be recovered from our setting.

Something important that emerges from the previous results is that there is a conformal

anomaly in our theory, revealed by a non vanishing trace of the expectation value of the

stress-energy tensor. Using (3.11) and (3.12), this trace can be computed to be

〈T ii〉 = −
(
Nc b

2π

)2

, (3.13)
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b/T 2

E/E0

Figure 4. Energy density E as a function of b/T 2, normalized with respect to its value E0 at

b = 0 and ϕ = 0. Each curve corresponds to a different renormalization scheme given by Csch = −5

(blue), Csch = −1/4 (purple), Csch = 0 (red), and Csch = 5 (green).

where we see that, from our physical parameters, the anomaly only depends quadratically

on b, and disappears for vanishing magnetic field, resembling the massless QED result for

the trace anomaly which is given by

Θi
i =

β(e)

2e3
F 2, (3.14)

where e is the electric charge. This result coincide with [13, 14], where the trace anomaly

of the theory was also found to be quadratic on the intensity of the magnetic field. We note

here that our result would be modified if the source for the scalar operator was non-zero,

as can be seen from (A.16).

Below we show the numerical results for the components of the expectation value

of the stress-energy tensor for four different renormalization schemes, given by Csch =

{−5,−1/4, 0, 5}, normalized with respect to its values for b = 0 and ϕ = 0

E0 =
3π2N2

c

8
T 4, P0 =

π2N2
c

8
T 4. (3.15)

4 Thermodynamics

In this section we will compute and present the entropy density, specific heat, and free

energy of the members of our family of solutions. We will address their implications in the

last section.

4.1 Entropy density

The entropy density per unit of volume in the (x, y, z) directions is given by the area of

the horizon

s =
Ah

4Gvol(x)
=
N2
c

8π2

(
4πV (rh)

√
W (rh)

)
, (4.1)
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b/T 2

P⊥/P0

Figure 5. Pressure P⊥ as a function of b/T 2, normalized with respect to its value P0 at b = 0 and

ϕ = 0. Each curve corresponds to a different renormalization scheme given by Csch = −5 (blue),

Csch = −1/4 (purple), Csch = 0 (red), and Csch = 5 (green).

b/T 2

P ‖/P0

Figure 6. Pressure P ‖ as a function of b/T 2, normalized with respect to its value P0 at b = 0 and

ϕ = 0. Each curve corresponds to a different renormalization scheme given by Csch = −5 (blue),

Csch = −1/4 (purple), Csch = 0 (red), and Csch = 5 (green).

– 16 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
6

b/T 2

s/s0

Figure 7. Entropy density as a function of b/T 2 normalized with respect to its value at b = 0 and

ϕ = 0.

where V (rh) and W (rh) are the numerical metric functions evaluated at the horizon after

they have been scale following subsection 2.2, thus, the entropy density depends on the

dimensionless ratio b/T 2, but, as it should be, is scheme independent. As a consistency

check, we have verified that our numerical results do not depend independently on b and T

if b/T 2 is kept fixed. Below we present the numerical results for the entropy density, where

in figure 7 we normalized it with respect to its value at b = 0 and ϕ = 0

s0 =
N2
c

2π

(
9r2
h

4

) 3
2

=
π2

2
N2
c T

3, (4.2)

and plotted it as a function of b/T 2, whereas in figure 8 we show the dimensionless ratio

s/b3/2 as a function of b/T 2. The first of these figures is included to visualize the general

behavior, while the second is directly related to the calculation of the specific heat in the

next section.

4.2 Specific heat

The specific heat Cb at fixed magnetic field is given by

Cb = T

(
∂s

∂T

)
b

. (4.3)

To compute the derivative of the entropy density with respect to the temperature at fixed

magnetic field, it is convenient to notice that the dimensionless ratio s/b3/2 depends on T

and b only through the dimensionless combination b/T 2, so that their relationship can be

written as
s

b3/2
= H

(
b

T 2

)
, (4.4)
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b/T 2

s/b3/2

Figure 8. Dimensionless ratio s/b3/2 as a function of b/T 2.

b/T2

Cb

Figure 9. Specific heat Cb as a function of b/T 2.

for some function H, depicted in figure 8, that we can determine numerically, and which

derivative with respect to its argument is related to the specific heat by

Cb = −2b5/2

T 2
H ′
(
b

T 2

)
. (4.5)

We show the numerical result for Cb as a function of b/T 2 in figure 9, where the scheme

independence is inherited from the entropy density.
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4.3 Free energy

The free energy of the system is related to the fully renormalized on-shell action (3.6) by

F = TST . (4.6)

To evaluate the action in the family of solutions we found, it is convenient to separate it

in a bulk integral

Sbulk = − 1

16πG5

∫
d5x
√
g

[
R− 1

2
(∂ϕ)2 + 4

(
X2 + 2X−1

)
−X−2(F )2

]
, (4.7)

and a boundary integral

Sbdry =
1

16πG5

∫
d4x
√
γ

(
−2K + 6 + ϕ2

(
1 +

1

2 log ε

)
+ F ijFij log ε− CschF

ijFij

)
+

Csch

16πG5

∫
d4x
√
γ

(
−F ijFij +

ϕ2

2 log2 ε

)
. (4.8)

The infinite volume Vol(x) resulting from the integration over the gauge theory di-

rections can be factored out in both cases, and (4.7) can be further simplified using the

equations of motion (2.12) to obtain

Sbulk =
Vol(x)

16πG5T

∫ rmax

rmin

dr
4

3
V
√
W

(
X−2 b

2

V 2
+ 2(2X−1 +X2)

)
, (4.9)

where rmin is a radius close to the horizon and rmax a cut-off radius near the boundary.

Concerning (4.8), given that rmax is eventually supposed to be send to the boundary,

we can use the expansions (3.8) and only keep the leading terms

Sbdry =
Vol(x)

16πG5T
(−2r4

max − 4U1r
3
max − 3U2

1 r
2
max − U3

1 rmax −
4

3
b2 log(rmax)

+ 2b2
(

1

3
− Csch

)
− U4

1

8
− U4 +O(r−1

max)).

(4.10)

In practice, subtracting (4.9) and (4.10) after evaluation involves dealing with the difference

of two quantities that diverge as rmax →∞, increasing the numerical error considerably. To

obtain an expression that is easily evaluated, it is convenient to replace the terms in (4.10)

that are evaluated at rmax by a radial integral from rmin to rmax, plus this same terms

evaluated at rmin, ending up with

Sbdry =− Vol(x)

16πG5T

∫ rmax

rmin

dr

(
8r3 + 12U1r

2 + 6U2
1 r + U3

1 +
4b2

3r

)
+

Vol(x)

16πG5T
(−2r4

min − 4U1r
3
min − 3U2

1 r
2
min − U3

1 rmin −
4

3
b2 log(rmin)

+ 2b2
(

1

3
− Csch

)
− U4

1

8
− U4),

(4.11)

where the contributions in (4.10) that do not depend on rmax were left untouched.
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b/T 2

F/F0

Figure 10. Free energy density F as a function of b/T 2, normalized with respect to the value F0

that it takes at vanishing magnetic field and scalar source. Each curve corresponds to a different

renormalization scheme given by Csch = −5 (blue), Csch = −1/4 (purple), Csch = 0 (red), and

Csch = 5 (green).

Combining (4.9) and (4.11) with (4.6) we obtain the final expression for the free energy

density

F =
N2
c

8π2

∫ rmax

rmin

dr

[
4

3
V
√
W

(
X−2 b

2

V 2
+ 2(2X−1 +X2)

)
−
(

8r3 + 12U1r
2 + 6U2

1 r + U3
1 +

4b2

3r

)]
+
N2
c

8π2

(
− 2r4

min − 4U1r
3
min − 3U2

1 r
2
min − U3

1 rmin

− 4

3
b2 log(rmin) + 2b2

(
1

3
− Csch

)
− U4

1

8
− U4

)
.

(4.12)

In figure 10 we present the results for the free energy normalized with respect to the value

it takes at b = 0, ϕ = 0

F0 = −N
2
c π

2T 4

8
. (4.13)

5 Discussion

As stated in the introduction, we were able to construct a family of backgrounds which

members are dual to states in the gauge theory characterized by their temperature, the

intensity of a background magnetic field, and the intensity with which an operator Oϕ of

scaling dimension ∆ = 2 is sourced.

The first thing we found is that for any given temperature and value of the source of

Oϕ, there exists a maximum intensity bc for the magnetic field, above which the state is
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unstable. The analysis we performed to determine the existence of this bc is in essence the

same as the one done in [22] about cosmic censorship in 4D, where the solutions to Einstein-

Maxwell with AdS boundary conditions develop a naked singularity for intensities of an

electric field higher than a certain value. Interestingly, in [23] the same authors develop a

vacuum analog of [22], where they consider a differential rotation on the boundary metric.

Keeping the profile of the differential rotation fixed, but increasing the overall amplitude,

it is shown that smooth solutions only exist up to a finite maximum amplitude. The reason

why we find this of particular relevance is that in the 10D uplift [8] of our family of solutions

the magnetic field is encoded as an infinitesimal rotation in the compact part of the 10D

spacetime, so, even if in [23] the rotation is in the non compact directions, the findings

seem equivalent.

There are other calculations that indicate that the existence of a maximum for the

intensity of the magnetic field is not uncommon. For instance, even if not thought of as

a consistent truncation, in [33] the authors build a 5D model that includes a constant

magnetic field and a scalar field, which they refer to as a dilaton. In order to obtain

agreement with lattice QCD data, a potential is chosen for the scalar such that its scaling

dimension is ∆ = 3. In this context it is also found that for a given value of the dilaton

at the horizon, there exists a maximum intensity for the magnetic field that allows the

solution to asymptoticaly approach AdS.

Working at fixed temperature, we find that for any intensity b below our bc there are

two possible states that differ in the value of the vacuum expectation value of O, and

through our thermodynamic analysis we were able to prove that one of them is favored

over the other. We base this claim on the fact that, independently of the renormalization

scheme, we consistently found that one of the branches has lower entropy, higher free

energy, and negative specific heat, indicative of a thermal instability. Furthermore, by

using expression (4.5), that is scheme independent, and noticing that the curve in figure 8

becomes vertical at b/T 2 = bc/T
2, we see that the specific heat becomes infinite at bc,

indicating the presence of a phase transition. We show this, up to the numerical precision

we achieved, in figure 9. This resembles the results in [20, 21], where a scalar field dual to

an operator of scaling dimension ∆ = 2 is added to the anisotropic background [30, 31].

Following the same motivation as us, they turn off the source of the operator and hence

reduce the dimensionless parameters to only a/T , similar to our b/T 2, and are able to

write 〈Oϕ〉 as a function of a/T . They describe how it is possible to turn off the scalar

field continuously while keeping a non-vanishing anisotropy, and demonstrate that there is

a critical a/T above which it is thermodynamically preferable to keep the scalar on. They

also claim that even if they have not shown that their solution is a consistent truncation

from a ten dimensional theory, it is straightforward to do so. It is relevant to point out that

the phase to which our system transitions for fields stronger than bc is not the unstable

branch that we find, but a different state, dual to the time dependent background discussed

in section 2.3 that is still to be determined in future work, where our current findings on

the free energy will play an important role.

From the stress-energy tensor that we computed we saw that there is a conformal

anomaly, which is of particular interest in views of the proposal in [34], where it is claimed
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that an anomaly in the presence of a strong magnetic field can explain the excess of photons

reported in the ALICE experiment [35]. To explore this speculation we are currently

computing the spectrum of direct photon production in such a scenario to determine if

there is an enhancement and how does it compare with the one presented in [10]. Within

the context of our own work, it is the existence of this anomaly that makes it not surprising

to find that some of the physical quantities that we computed turned out to be dependent

on the renormalization scheme, that was encoded in the magnitude of the finite term that

we could add to the finite Euclidean action.
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helping with our physical understanding of the system and the suggestion to modify the

title of this work, and Francisco Nettel for a careful revision of this manuscript. We also

acknowledge partial financial support from PAPIIT IN113618, UNAM.

A Near boundary analysis

A.1 Holographic renormalization

As it is very commonly the case on the AdS/CFT correspondence, the direct on-shell

evaluation of the Euclidean action (3.1) diverges, so to have a well defined variational prin-

ciple, we need to renormalize it through a method that has been extensively studied [27].

The first step is to analyze the behavior of the solution near the boundary, which is more

conveniently done in the Fefferman-Graham coordinate where the metric takes the form

ds2
5 =

du2

u2
+ γij(u)dxidxj =

1

u2

(
du2 + gij(u)dxidxj

)
, (A.1)

encoding the geometric information in gij .

We solve the equations of motion (2.7), (2.8), and (2.9), by a power series method

around u = 0, obtaining the expansions for g, ϕ, and F given by

gij(u) = gij(0) + (gij(4) + hij log u+Hij log2 u)u4 +O(u6),

ϕ(u) = u2(ϕ(0) + ψ(0) log u+ (ϕ(2) + ψ(2) log u+ Ψ(2) log2 u)u2) +O(u6)

Fuν = 0, Fij = Fij(t, x, y, z), (A.2)

where

Ψ(2) = −
ψ2

(0)

2
√

6
,

ψ(2) =
ψ(0)√

6
(ψ(0) − ϕ(0)),
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ϕ(2) = − 1√
6

(
1

2
FikFjlg

ij
(0)g

kl
(0) +

1

2
ϕ2

(0) +
3

4
ψ2

(0) − ϕ(0)ψ(0)

)
,

gij(0)gij(4) =
1

12
FikFjlg

ij
(0)g

kl
(0) −

1

3
ϕ2

(0) −
1

24
ψ2

(0),

hij =
1

4
gij(0)FnkFmlg

nm
(0)g

kl
(0) − FikFjlgkl(0) −

1

6
gij(0)ϕ(0)ψ(0),

Hij = − 1

12
gij(0)ψ

2
(0), (A.3)

and any non listed coefficient up to the specified order is equal to zero. We notice in

passing that, similarly to [32], the first two terms in the expression for hij constitute the

stress-energy tensor of the electromagnetic field in the boundary theory.

Given the specificities of our case, we have taken F to only depend on the gauge

theory directions, even if it is worth noticing that F ∧ F = 0 imposes constrains on this

field that will not play a role in the following calculations, but that anyway are satisfied

by the constant magnetic field solutions studied here. Also note that the leading order in

the expansion for ϕ is u2, which means that the field saturates the BF bound [19] with

m2 = −4, and thus it is dual to a boundary operator O of scaling dimension ∆ = 2. For

this kind of field, ψ(0) in (A.2) is dual to the source of O, while ϕ(0) is dual to its vacuum

expectation value [28].

Since we are interested in isolating the divergences of the on-shell Euclidean action as

u → 0, we substitute (A.2) into (3.1) and integrate from a radial cut-off ε to an arbitrary

umax, which even if bigger than ε, is still close to the boundary and remains fixed. As ε→ 0,

the approximated integral just described diverges exactly as the full on-shell Euclidean

action does, behavior that is then captured by the diverging terms in the boundary integral

at u = ε given by

Sε = − 1

16πG5

∫
d4x
√
g(0)

(
1

ε4
a(0) + a(1) log ε+ a(2) log2 ε+O(ε0)

)
, (A.4)

where

a(0) = 6,

a(1) = 3gij(0)hij + FikFjlg
ij

(0)g
kl

(0) +
1

2
ψ(0)(4ϕ(0) + ψ(0)),

a(2) = 3gij(0)Hij + ψ2
(0), (A.5)

which further simplify to

a(0) = 6,

a(1) = FikFjlg
ij

(0)g
kl

(0) +
1

2
ψ2

(0),

a(2) = 0, (A.6)

when the solution (A.3) is used.

The next step is to invert the series (A.2) to express the coefficients involved in (A.6)

in terms of the fields gij(u), ϕ(u), and F , and its derivatives. To the relevant order for this
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calculation, and taking one step further to use γij(u) instead of gij(u), we get

gij(0) = ε2γij , gij(0) =
γij

ε2
, ψ(0) =

ϕ

ε2 log ε
,

√
g(0) = ε4

√
γ

(
1 +

1

6
ϕ2

)
, (A.7)

reducing the expressions in (A.6) to the final form

a(0) = 6, a(1) =
1

ε4

(
F ijFij +

1

2 log2 ε
ϕ2

)
, a(2) = 0, (A.8)

where the indexes are raised and lowered using the boundary metric γij . By substitut-

ing (A.8) in (A.4) and discarding finite terms we obtain

Sε = − 1

16πG5

∫
d4x
√
γ

(
6 + ϕ2

(
1 +

1

2 log ε

)
+ F ijFij log ε

)
, (A.9)

which is the negative of the counterterm (3.3) used in section 3.

A.2 Stress-energy tensor and scalar condensate

With the renormalized action on hand, it is possible to obtain a number of observables in

the gauge theory. In this subsection of the appendix we specifically compute the vacuum

expectation value 〈Oϕ〉 of the operator dual to the scalar field, and the expectation value

〈Tij〉 of the stress-energy tensor in the states dual to the members of the family of solutions

that we found.

The holographic dictionary states that 〈Oϕ〉 is given by [27, 28]

〈Oϕ〉 = lim
ε→0

(
log ε

ε2
1
√
γ

δS

δϕ

)
, (A.10)

where the presence of the logarithmic term is due to the scalar saturating the BF bound.

Taking the variation of the total action (3.6) with respect to the scalar field we obtain

16πG5〈Oϕ〉 = lim
ε→0

log ε

ε2

(
−u∂uϕ+ ϕ

(
2 +

1

log ε
+

Csch

log2 ε

))
, (A.11)

which, with the help of the asymptotic expansions (A.2), rewrites as

16πG5〈Oϕ〉 = ϕ(0) + Cschψ(0), (A.12)

showing that the VEV of Oϕ is given by ϕ(0) while, as usual, the ψ(0) contribution is scheme

dependent.

The holographic dictionary relates the stress-energy tensor in the gauge theory to

variations of the action with respect to the boundary metric, namely [27, 28]

〈Tij〉 = lim
ε→0

(
1

ε2
2
√
γ

δS

δγij

)
. (A.13)
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Taking S in (A.13) to be the total action (3.6), and doing some algebra, we obtain

16πG5〈Tij〉 = lim
ε→0

2

ε2

(
−Kij + 2FikFj

k(log ε− Csch)

− 1

2
γij

(
− 2K + 6 + ϕ2

(
1 +

1

2 log ε
+

Csch

2 log2 ε

)
+ F klFkl(log ε− Csch)

))
,

(A.14)

which after using the asymptotic expansions (A.2) rewrites as

16πG5〈Tij〉 = 4gij(4) + hij(1 + 4Csch) + 6CschHij

− gij(0)

(
gkl(0)(4gkl(4) + hkl) + ϕ(0)

(
ϕ(0) + ψ(0)

(
1− 2

3
Csch

)))
,

(A.15)

that is our final expression for the scheme dependent expectation value of the stress-energy

tensor. We see here that as in [32], choosing Csch = −1/4 would eliminate the explicit

contribution of the electromagnetic field to the boundary stress-energy tensor encoded

in hij . It is worth noticing that given (A.3), the terms involving gij(4) in (A.15) also

contain a contribution proportional to the electromagnetic part of the stress-energy tensor,

introducing subtleties concerning how much of it is proper to the plasma itself.

The trace of the stress-energy tensor is given by contracting (A.15) with g(0)
ij and

results in

16πG5〈T ii〉 = −FikFjlgij(0)g
kl

(0) − ψ(0)

(
2ϕ(0) +

1

2
ψ(0)(4Csch − 1)

)
, (A.16)

which is non-zero, showing the existence of a conformal anomaly in the theory.

A.3 Scaling

Here we will determine how 〈Tij〉 and 〈Oϕ〉 transform under a scaling of the form

xi → kxi, u→ ku, (A.17)

which in terms of the physical parameters is equivalent to

b→ k2b, T → kT, (A.18)

for k a positive real number.

Following [36], we note that the FG form of the metric (A.1) is preserved under (A.17)

as long as the coefficients appearing in (A.2) transform as

gij(4) → k4(gij(4) + hij log k +Hij log2 k),

hij → k4(hij + 2Hij log k),

Hij → k4Hij , (A.19)

ϕ(0) → k2(ϕ(0) + ψ(0) log k),

ψ(0) → k2ψ(0).
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Using (A.19) in (A.12) and (A.15) we respectively get that the transformation rule for

〈Oϕ〉 is given by

〈Oϕ〉 → k2〈Oϕ〉+ ψ(0)k
2 log k, (A.20)

and the one for 〈Tij〉 by

〈Tij〉 → k4〈Tij〉+ k4 log2 k
[
4Hij − gij(0)

(
4gkl(0)Hkl + ψ2

(0)

)]
+k4 log k

[
4hij + 2Hij(1 + 4Csch)

−gij(0)

(
gkl(0)(4hkl + 2Hkl) + ψ(0)(ψ(0)

(
1− 2

3
Csch

)
+ 2ϕ(0))

)]
. (A.21)

These rather complicated transformation rules simplify enormously when the source ψ(0)

for 〈Oϕ〉 is turn off, in which case they reduce to

〈Tij〉 → k4〈Tij〉+ 4k4hij log k,

〈Oϕ〉 → k2〈Oϕ〉. (A.22)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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