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1 Introduction and motivations

Motivated by a possible resolution to black hole information paradox and also by a red-

erivation and reinterpretation of soft theorems, studying algebras of “soft charges” has

attracted a lot of attention, see [2–4] and references therein or their citations list. Soft

charges are associated with a specific subsector of gauge or diffeomorphism transforma-
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tions which are singled out by an appropriate falloff behavior or boundary conditions. As

such, the states carrying these charges all have the same energy. That is, turning on these

charges do not alter the energy of the state, hence justifying the name soft charge.

Being associated with (continuous) local gauge symmetries, there are generically infi-

nite (but countable) number of soft charges and they form an infinite dimensional algebra.

Prime examples of such algebras are the bms3, bms4 and two copies of Virasoro algebras,

respectively studied in [5–16] and [17, 18], and associated with asymptotic symmetry al-

gebras of nontrivial diffeomorphisms on 3d and 4d flat spaces and on AdS3. One may

analyze charges and symmetry algebras of near-horizon nontrivial diffeomorphisms leading

to u(1) Kac-Moody algebra, Heisenberg algebra or sl(2,R) current algebras in the context

of 3d gravity theories [19–24], or BMS-type or Heisenberg algebras in higher dimensional

cases [25–27]. Analysis of nontrivial gauge transformations for the Maxwell theory leads to

an infinite dimensional Abelian algebra [28] while addition of magnetic soft charges leads

to an infinite dimensional Heisenberg algebra [29–31]. Similar analysis may be carried out

for p-form gauge theories and associated soft charges [32, 33].

Deformation theory of Lie algebras has been introduced in 1960s [34–38] and immedi-

ately was applied by physicists to study important Lie algebras in physics [39]. The idea is

to analyze possible deformations one can make in structure constants of a given Lie algebra.

Some of such deformations may just be a change of the basis which are called trivial de-

formations. There could be nontrivial deformations which deform the algebra into another

algebra with the same number of generators. If an algebra does not admit any nontrivial

deformation, it is called to be rigid or stable. For finite dimensional Lie algebras it has been

proven that (Whitehead and Hochschild-Serre factorization theorems) any semi-simple Lie

algebra is stable [40–42]. These theorems relate the stability of the algebra to its second

adjoint cohomology, see [1] for a short review and summary. The deformation and stabi-

lization of an algebra is inverse of the contraction procedure first introduced by Inönü and

Wigner [43]. As a well-known example, one may show that the Poincaré algebra may be

contracted to Galilean algebra and conversely the Galilean algebra may be stabilized into

the Poincaré algebra [44]. For a more recent analysis on stabilization of symmetry algebras

with a rotation subgroup (“kinematical algebras”) see [45–52].

The Hochschild-Serre factorization theorem, however, does not apply to infinite dimen-

sional algebras, like the asymptotic symmetry algebras discussed above. In the absence of

general theorems, stability of these algebras has been studied in case-by-case basis, e.g.

see [53–58]. In particular, in our previous paper [1], we studied stability of bms3 and its

centrally extended versions b̂ms3. Besides recovering cases where the algebra could be

deformed into two Virasoro algebras,1 we found that bms3 can be deformed into a two-

parameter family of W (a, b) algebras (which were first introduced in [56]). This provides

an explicit example of evasion of the Hochschild-Serre factorization for infinite dimensional

algebras. We also analyzed rigidity of W (a, b) algebras and showed that for generic values

of a, b parameters this family of algebras are stable. Furthermore, we studied how the

deformation of the algebra interplays with admission of central extensions.

1It was shown in [59] that b̂ms3 may be obtained as an Inönü contraction of two Virasoro algebras.
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In this work we focus on the bms4 algebra and study its deformations and stability.

The “original” bms4 algebra introduced in [7, 8] is a semi-direct sum of Lorentz algebra

with Abelian ideal spanned by supertranslations

(bms4)old = Lorentz A Supertranslations,

which has 4d Poincaré a subalgebra. Barnich and Troessaert in [11, 12] suggested the

Lorentz part of the bms4 might be replaced by a larger (infinite dimensional) algebra

called superrotations. In this work, as it is common in the recent literature, we use bms4

to denote this extended version. bms4 is hence semi-direct sum of superrotations and

supertranslations as

bms4 = Superrotations A Supertranslations.

Later, they also classified its central extensions b̂ms4 in [12, 15].

There are many physical or mathematical motivations to carry out the stability analysis

of the bms4. To state our main motivation, let us review some facts:

(1) As mentioned, the asymptotic symmetries of AdS3 space is two Virasoro algebra at

Brown-Henneaux central charge [17]. The seminal Brown-Henneaux analysis was a

precursor of the celebrated AdS/CFT.

(2) This algebra upon the Inönü contraction goes over to the b̂ms3 [59], which is asymp-

totic symmetry group of 3d flat space. This contraction is geometrically the large

AdS radius ` limit under which the AdS3 goes over to 3d flat space.

(3) Under a similar large radius limit, geometrically, AdSd space yields a d dimensional

flat Minkowski space for any d.

(4) It has been argued that the asymptotic symmetry group of AdSd, d > 3 is nothing

more than isometries of the spacetime so(d− 1, 2) [18, 60–62].

(5) Asymptotic symmetry algebra analysis depends very much on the choice of boundary

falloff behavior on metric fluctuations and there could always be a question whether

the results mentioned in item (4) above could some how be evaded by a more relaxed

boundary condition.

(6) The asymptotic symmetry group of 4d flat space is known to be the infinite dimen-

sional bms4 algebra.2

Therefore, it is natural to wonder if the bms4 may come from contraction of an infinite

dimensional “asymptotic symmetry algebra of AdS4”. In this work we confirm these earlier

results, in the sense that we show bms4 algebra cannot be deformed into an algebra which

has so(3, 2) as its subalgebra. Our algebraic analysis and results has the advantage that

2Note that the notion of BMS algebra, which includes superrotations plus supertranslations, does not

seemingly exist in dimensions higher than 4 [63, 64].
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it roles out possibility of existence of falloff conditions (for metric fluctuations) which may

allow for a bigger symmetry algebra than so(3, 2) for AdS4 asymptotic symmetry algebra.

As another motivation, we note that the asymptotic symmetry algebras has been

argued to be relevant for formulation of holographic dual field theories, e.g. see [65]. As

argued in [1] the deformation of asymptotic symmetry algebras may be attributed to the

holographic renormalization of the conformal weight (scaling dimension) of the operators.

This analysis may also shed more light on field theory dual to gravity on 4d flat space. We

will make more comments on this in the discussion section.

The full stability analysis of bms4 algebra and its centrally extended version b̂ms4 which

we carry out here, reveals that bms4 algebra can be deformed into a four parameter family

of algebras W(a, b; ā, b̄). This algebra is an analogue of the W (a, b) algebras obtained in

bms3 stability analysis [1]. We then study stability of the W(a, b; ā, b̄) family of algebras

and show that they are generically stable. We also extend this analysis to the centrally

extended versions of these algebras and classify all possible central extensions W(a, b; ā, b̄)

algebras can admit, for generic values of the four parameters as well as in the special points.

Organization of the paper. In section 2, we review and introduce bms4, its central

extension b̂ms4 and its global subalgebra (4d Poincaré algebra). In section 3, we study

all possible infinitesimal deformations of bms4 algebra. We show that this algebra can

only be deformed to W(a, b; ā, b̄). In section 4, we analyze the most general formal (fi-

nite) deformations of bms4 and study integrability of the infinitesimal deformations. This

section contains our main result on bms4, as we prove that bms4 can only be deformed

into W(a, b; ā, b̄). In section 5, we study W(a, b; ā, b̄) algebras, their subalgebras, deforma-

tions and stability and prove a theorem that W(a, b; ā, b̄) family of algebras are stable for

generic values of the four parameters. In section 6, we repeat analysis of previous sections

considering central extensions. In section 7, we present algebraic cohomology arguments,

based on Hochschild-Serre spectral sequence [42, 66], for the bms4 and W(a, b; ā, b̄) alge-

bras. In this way we provide a cohomological basis for our explicit computations of previous

sections. Section 8 is devoted to summary of results and discussions. In a couple of ap-

pendices we have gathered some more technical analysis. In appendix A we have reviewed

the fact that generators of bms4 or W(a, b; ā, b̄) algebras may be viewed as functions on

an S2 and analyze implications of this on the index structure of possible deformations. In

appendix B, for completeness we have reviewed some basic facts of algebra cohomologies

and the Hochschild-Serre spectral sequence.

Notation. We adopt the same notation as [1] for the algebras; for algebras we generically

use “mathfrak” fonts, like witt, bms3, bms4 and KMu(1) (u(1) Kac-Moody algebra). We will

also be dealing with two and four parameter algebras, W (a, b) andW(a, b; ā, b̄), where in our

conventions, bms3= W (0,−1), KMu(1) = W (0, 0) and bms4=W(−1/2,−1/2;−1/2,−1/2).

The centrally extended version of an algebra g will be denoted by ĝ, e.g. Virasoro al-

gebra vir = ŵitt. We will be using “W (a, b) family” of algebras (of W (a, b) family, in

short), to denote set of algebras for different values of the a, b parameters and similarly for

W(a, b; ā, b̄) family.
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2 Introduction to bms4 algebra

In this section we review the structure of asymptotic symmetry algebras appearing in the

context of 4d gravity. Depending on the asymptotic behavior of the metric and the chosen

boundary falloff conditions one can get different asymptotic symmetry algebras.

2.1 4d flat space asymptotic symmetry algebra

The centerless asymptotic symmetry algebra of 4d flat spacetime is bms4:

[Lm,Ln] = (m− n)Lm+n,[
L̄m, L̄n

]
= (m− n) L̄m+n,[

Lm, L̄n
]

= 0,

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q,[

L̄n, Tp,q
]

=

(
n+ 1

2
− q
)
Tp,q+n,

[Tp,q, Tr,s] = 0,

(2.1)

where m,n, p, q, r, s ∈ Z and it is defined over the field of real numbers R. The bms4 is an

infinite dimensional algebra with countable basis which is spanned by the generators Lm,

L̄m and Tp,q. The generators Lm and L̄m generate the direct sum of two Witt subalgebra

of bms4 and are usually called “superrotations”. Tp,q, the “supertranslations,” construct

an adjoint representation of the direct sum of two Witt algebras and form the ideal part

of bms4. Eq. (2.1) makes it clear that bms4 has a semi-direct sum structure:

bms4 =
(
witt⊕witt

)
A Tab, (2.2)

where the subscript ab is to emphasize Tp,q being abelian and ad denotes the adjoint action.

The global part, i.e. the maximal finite subalgebra, of bms4 is 4d Poincaré algebra

iso(3, 1) and is generated by L0,L±1 and L̄0, L̄±1 (which form Lorentz algebra so(3, 1)) and

T0,0, T0,1, T1,0, T1,1 as the translations. In the next subsection we will make the connection

to the more usual basis for Poincaré algebra explicit.

The above bms4 admits central extensions in Ln, L̄n sectors [12, 13]. The centrally

extended algebra which will be denoted by b̂ms4 is

[Lm,Ln] = (m− n)Lm+n +
CL
12

(
m3 −m

)
δm+n,0,[

L̄m, L̄n
]

= (m− n) L̄m+n +
CL̄
12

(
m3 −m

)
δm+n,0,[

Lm, L̄n
]

= 0,

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q,[

L̄n, Tp,q
]

=

(
n+ 1

2
− q
)
Tp,q+n,

[Tp,q, Tr,s] = 0,

(2.3)

– 5 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
8

in which CL and CL̄ are called central charges. We note that these central charges do

not appear in computation of surface charges associated with the asymptotic symmetries

of 4d flat space gravity [13]. One may readily see that the central terms, which vanish

for m = 0,±1, do not appear in the global part of the algebra. Therefore, global part of

b̂ms4 is also 4d Poincaré. We note that the second real cohomology of the bms4 algebra,

H2(bms4;R), which classifies (global) central extensions of the algebra does not allow for

any other central extension [12], other than CL, CL̄.

2.2 More on global part of the bms4 algebra

As mentioned the bms4 algebra which is the asymptotic symmetry algebra of 4d flat space,

should contain Poincaré algebra which is the isometry algebra of the flat space. Generators

of the Poincaré algebra is usually written in the 4d tensorial basis, Jµν , the generator of

Lorentz algebra, and Pµ, the generator of translations, as it discussed in [67]

[Jµν , Jρσ] = i(ηµρJνσ + ησµJρν − ηνρJµσ − ησνJρµ),

[Jµν , P ρ] = i(ηρµP ν − ηρνPµ),

[Pµ, P ν ] = 0,

(2.4)

where µ, ν = 0, 1, 2, 3 and ηµν = diag(−,+,+,+) is the Minkowski metric. To relate

the above algebra to the global part of bms4 one should decompose the Lorentz part into

sl(2)⊕ sl(2) basis:

L± ≡ iR1 ±R2,

L̄± ≡ iL1 ± L2,

L0 ≡ R3, L̄0 ≡ L3,

where

Li ≡ 1

2
(J i + iKi), Ri ≡ 1

2
(J i − iKi), i = 1, 2, 3. (2.5)

Here J i,Ki are generators of rotation and boost:

J i :=
1

2
εijkJ

jk, Ki := J0i,

where εijk is an antisymmetric quantity with ε123 = +1. In other words, the generators of

4d Lorentz algebra J µν can be decomposed as (1,3)⊕ (3,1) of sl(2)⊕ sl(2) algebra. One

may then readily show that

[Lm,Ln] = (m− n)Lm+n,

[Lm, L̄n] = 0,

[L̄m, L̄n] = (m− n)L̄m+n,

(2.6)

where m,n = ±1, 0.

– 6 –
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The translation generators, which are Lorentz four-vectors Pµ can be decomposed into

(2,2) of sl(2)⊕ sl(2) algebra, i.e. Pµ are linear combinations of Tm,n,m, n = 0, 1:

P 0 ≡ H = (T1,0 − T0,1),

P 3 = (T1,0 + T0,1),

P 1 = (−i)(T1,1 + T0,0),

P 2 = (T1,1 − T0,0).

(2.7)

2.3 AdS4 isometry, so(3, 2) algebra

For our later use we also discuss the AdS4 isometry algebra generated by Jab, a, b =

−1, 0, 1, 2, 3

[Jab, Jcd] = i(ηacJbd + ηdaJcb − ηbcJad − ηdbJca), (2.8)

where ηab = (−1,−1,+1,+1,+1). Jab which is in 15 representation of so(3, 2) may be

decomposed in terms of sl(2) ⊕ sl(2) as (1,3) ⊕ (3,1) ⊕ (3,3). The first two are just

Lm, L̄m,m = 0,±1, and the last one may be denoted by Tm,n,m, n = 0,±1 with the

commutation relations:

[Lm,Ln] = (m− n)Lm+n,[
L̄m, L̄n

]
= (m− n) L̄m+n,[

Lm, L̄n
]

= 0,

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q,[

L̄n, Tp,q
]

=

(
n+ 1

2
− q
)
Tp,q+n,

[Tm,n, Tp,q] =
1

2

(
(q − n)Lm+p−1 + (p−m) L̄q+n−1

)
,

(2.9)

where m,n, p, q = 0,±1.

It is known that iso(3, 1) is not a rigid (stable) algebra and may be deformed into

so(3, 2) or so(4, 1), which are stable [39]. In the sl(2)⊕ sl(2) notation adopted above, one

may readily use the Hochschild-Serre factorization theorem to argue that only the ideal

part of iso(3, 1), the [T, T ] commutator, can be deformed such that only Lm, L̄m appears

in the right-hand-side of the commutator. This can be manifestly seen in the last equation

in (2.9).3 As reviewed in the introduction, these theorems do not apply to the infinite

dimensional algebras and one cannot extend the above result which is about the global

part bms4 to the whole algebra. We will show in the rest of this work that there is no

infinite dimensional algebra in the family of bms4 deformations which has so(3, 2) as its

global part.

3Conversely, one may view iso(3, 1) algebra as the Inönü-Wigner contraction of the so(3, 2) algebra.

Geometrically, this contraction corresponds to a large radius limit of an AdS4 space yielding a 4d flat space.
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3 Deformations of bms4 algebra

In this section we consider deformations of bms4 defined in (2.1). As discussed the

Hochschild-Serre factorization theorem is not applicable for infinite dimensional Lie al-

gebras and working with them is more complicated than finite dimensional cases. Here,

we first analyze possible deformations of bms4 algebra by deforming each commutation

relation of bms4 algebra separately. Of course one should check that in this way we do

not miss any possible deformation which may involve more than one set of commutators.

Finally, we study obstructions, which infinitesimal deformations yield formal deformations

and what are the rigid algebras obtained from deformations of bms4.

3.1 Deformation in the two Witt subalgebras

The Witt algebra is known to be rigid and hence there is no 2-cocycle which deforms

[Lm,Ln] by coefficients of Lp [54, 68]. Similarly, we cannot deform witt⊕witt algebra [1].

Therefore, in this sector the only option is deforming witt ⊕ witt sector by coefficients of

Tm,n generators:4

[Lm,Ln] = (m− n)Lm+n + (m− n)
∑
d,d̄

hd,d̄(m,n)Tm+n+d,d̄,

[L̄m, L̄n] = (m− n)L̄m+n + (m− n)
∑
d,d̄

h̄d,d̄(m,n)Td,m+n+d̄,

[Lm, L̄n] =
∑
d,d̄

Hd,d̄(m,n)Tm+d,n+d̄,

(3.1)

where h, h̄ are symmetric and H is arbitrary functions and d and d̄ are arbitrary numbers

but we should note that the indices d, d̄ should be equal with each other in all three

relations.

The Jacobi [Lm, [Ln,Ll]] + cyclic permutation = 0 leads to

∑
d,d̄

(
(n−l)(m−n−l)hd,d̄ (m,n+l)+(n−l)

(
m+1

2
−n−l−d

)
hd,d̄ (n, l)

+(l−m)(n−m−l)hd,d̄ (n,m+l)+(l−m)

(
n+1

2
−m−l−d

)
hd,d̄ (l,m) (3.2)

+(m−n)(l−m−n)hd,d̄ (l,m+n)+(m−n)

(
l+1

2
−m−n−d

)
hd,d̄ (m,n)

)
Tm+n+l+d,d̄ = 0,

which its solution is hd,d̄(m,n) = constant = hd,d̄. The same relation can be obtained

from the Jacobi [L̄m, [L̄n, L̄l]] + cyclic permutation = 0 for h̄d,d̄(m,n) which its solution is

h̄(m,n) = constant = h̄d,d̄.

4Here we are allowing for d, d̄ to take arbitrary values. However, as the discussions in the appendix A

indicates one could have fixed them by the requirement that the generators are functions on the S2. This,

however, does not affect our analysis and results in this subsection as all these deformations happen to be

trivial and may be absorbed into redefinition of generators.
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The next two Jacobi identities to analyze are [Lm, [Ln, L̄l]] + cyclic permutation = 0

and [L̄m, [L̄n,Ll]] + cyclic permutation = 0 which yield(
m+ 1

2
− n− d

)
Hd,d̄ (n, l)−

(
n+ 1

2
−m− d

)
Hd,d̄ (m, l)

− (m− n)

(
Hd,d̄ (m+ n, l)−

(
l + 1

2
− d̄
)
hd,d̄

)
= 0, (3.3)(

n+ 1

2
−m− d̄

)
Hd,d̄ (l,m)−

(
m+ 1

2
− n− d̄

)
Hd,d̄ (l, n)

+ (m− n)

(
Hd,d̄ (l,m+ n) +

(
l + 1

2
− d
)
h̄d,d̄

)
= 0. (3.4)

Let us first consider the special case of hd,d̄ = h̄d,d̄ = 0. In this case one can easily see that

Hd,d̄
0 (m,n) = Hd,d̄

0 (m+ 1− 2d)(n+ 1− 2d̄), (3.5)

where Hd,d̄
0 is an arbitrary coefficient. Next, let us consider the generic case where

hd,d̄, h̄d,d̄ 6= 0. In this case the solution is of the form

Hd,d̄(m,n) = Hd,d̄
0 (m,n) + H̃d,d̄(m,n),

where H̃d,d̄(m,n) is a solution to (3.3) and (3.4) which vanishes as h, h̄ = 0. The form of

equations (3.3) and (3.4) suggests that the most general solution is of the form H(m,n) =

amn+bm+cn+d. The mn term, however, can be absorbed in the “homogeneous solution”

part Hd,d̄
0 (m,n). Therefore, we consider the solution ansatz H̃d,d̄(m,n) = Am + Bn + C.

Plugging this into (3.3) and (3.4) yields A = h̄, B = −h, C = h(2d̄ − 1) + h̄(1 − 2d).

To summarize,

Hd,d̄(m,n) = Hd,d̄
0 (m+ 1− 2d)(n+ 1− 2d̄) + h̄(m+ 1− 2d)− h(n+ 1− 2d̄). (3.6)

On triviality of these deformations. One may examine whether the h, h̄ and H(m,n)

deformations are nontrivial or may be absorbed in the redefinition of generators. To this

end let us consider redefined generators as

L̃m ≡ Lm +
∑
d,d̄

Xd,d̄(m)Tm+d,d̄,

˜̄Lm ≡ L̄m +
∑
d,d̄

Y d,d̄(m)Td,m+d̄,

T̃m,n ≡ Tm,n,

(3.7)

where Xd,d̄(m) and Y d,d̄(m) are functions to be determined upon requirement of removing

hd,d̄, h̄
d,d̄

and Hd,d̄ terms in (3.1). Removal of h, h̄, i.e. requiring [L̃m, L̃n] = (m− n)L̃m+n

and performing the same analysis for ˜̄Lm yields Xd,d̄(m) = A(m+1−2d)−2hd,d̄, Y d,d̄(m) =

Ā(m + 1 − 2d̄) − 2h̄d,d̄. Requiring [L̃m, ¯̃Ln] = 0, yields A − Ā = 2Hd,d̄
0 . One may take

A = −Ā = Hd,d̄
0 and hence

Xd,d̄(m) = Hd,d̄
0 (m+ 1− 2d)− 2hd,d̄, Y d,d̄(m) = −Hd,d̄

0 (m+ 1− 2d̄)− 2h̄d,d̄ (3.8)

would remove the deformations. Therefore, the deformations in (3.1) are all trivial.
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3.2 Deformation of [L, T ] commutators

The deformations in this sector could be with coefficients of Tm,n or Lm. We consider these

two cases separately.

With coefficients in T . Consider the deformations of commutator of superrotations and

supertranslations which is the fourth line in (2.1) without changing other commutators.

To this end as in the previous subsection we add a 2-cocycle function:

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q +K(m, p)Tp+m,q. (3.9)

We have fixed the first index of T on the right-hand-side to be m + p, see appendix A

for further discussions. Here, K(m,n) is an unknown function to be determined through

closure of algebra requirements.

To find the explicit form of function K(m,n), there are two Jacobi identities to check.

The first one is [Lm, [Ln, Tp,q]] + cyclic permutations = 0, which to first order in the

deformation parameter yields(
n+1

2
−p
)
K (m,p+n)+

(
m+1

2
−p−n

)
K (n,p)+

(
p−m+1

2

)
K (n,p+m)

+

(
p+m−n+1

2

)
K (m,p)+(n−m)K (m+n,p) = 0. (3.10)

For p,m = 0 we get (
n+ 1

2

)
(K(0, n)−K(0, 0)) = 0,

and hence

K(0, n) = constant. (3.11)

To solve (3.10) we note that it is linear in K and hence linear combination of any two

solutions is also a solution. One may then check that

K(m,n) = α+ βm, (3.12)

is a solution for any α, β. This equation has solutions which involve higher powers of m,n.

One may then examine a degree N , i.e. K(m,n) =
∑N

r=1Arsm
rns ansatz. At N = 2 we

obtain a solution of the form

K (m,n) = γm

(
m+ 1

2
− n

)
, (3.13)

where γ is an arbitrary constant and we have added the 1/2 factor for later convenience.

This solution, however, is a trivial deformation as it can be absorbed in rescaling of

Tm,n generators:

Tm,n → T̃m,n = M(m)Tm,n (3.14)

with M(m) = 1 + γm. In general, one can show that the most general solution to (3.10) is

K(m,n) =

(
m+ 1

2
− n

)(
M(m+ n)

M(n)
− 1

)
, (3.15)
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which again can be absorbed in a redefinition of T of the form (3.14). (Note that here

K(m,n) is to be viewed as an infinitesimal function. In section 4.1 we discuss finite

deformations.5)

The other Jacobi to be checked is [L̄m, [Ln, Tp,q]] + cyclic permutations = 0, which

does not yield a new constraint on K(m, p). So the most general solutions of (3.10) are

those we have derived. Deformations in [L̄n, Tp,q] can be analyzed in a similar manner,

yielding similar results.

To summarize, the only non-trivial deformations are those generated by (3.12) which

yields W(a, b; ā, b̄) algebra defined through commutation relations,

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = −(p+ bm+ a)Tp+m,q,

[L̄n, Tp,q] = −(q + b̄n+ ā)Tp,q+n,

[Tp,q, Tr,s] = 0.

(3.16)

The above is a 4d extension of the W (a, b) algebra which is a deformation of bms3 [1].

One may wonder if the index of T generator appearing in the r.h.s. of [Ln, Tp,q] is

restricted to be Tn+p,q. As in the previous subsection, cf. (3.1), the answer is no, at least

as far as the Jacobi identity and the closure of the algebra is concerned. Explicitly, let us

consider the following deformation,

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q +K(m, p)Tp+m+d0,q+d̄0

, (3.17)

where d0, d̄0 are two arbitrary constants. The Jacobi identity then leads to(
n+1

2
−p
)
K (m,p+n)+

(
m+1

2
−p−n−d0

)
K (n,p)+

(
p−m+1

2

)
K (n,p+m) (3.18)

+

(
p+m+d0−

n+1

2

)
K (m,p)+(n−m)K(m+n,p) = 0.

It can be readily seen that for d 6= 0 the only solution to (3.18) is K(m,n) = K = constant.

Nonetheless, this is trivial deformation, as it can be absorbed in the redefinition of Tm,n
as follows:

T̃m,n =
∑
d

CdTm+d,n

where Cd are coefficients to be fixed upon request that [Ln, T̃p,q] = (n+1
2 − p)T̃n+p,q. This

requirement yields KCd−d0 = dCd.

The deformations discussed above and also those of (3.1) involve an index structure

which has a shift (by d, d̄). In all of these cases, as we explicitly showed, such deformations

are trivial ones and can be absorbed in the redefinition of generators. One may show that

5A similar pattern was also found in the 3d case, cf. section 4.2 of [1].
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all such shifts in the indices are trivial deformations. This may be understood geometrically

recalling that the bms4 algebra is associated with asymptotic symmetry algebra of 4d flat

space and the generators are functions on the 2d celestial sphere [12, 13]. The deformations

with the shifted indices are then an inner automorphism of the asymptotic symmetry

generating diffeomorphisms; see appendix A for more discussions on this point. Therefore,

from now on we only consider deformations with appropriately fixed indices; we do not

consider the extra shifts.

With coefficients in L and L̄. As the bms3 case, we can consider deformations of the

[L, T ] (or [L, T ]) by L and L̄ terms:

[Lm, Tp,q] =

(
m+ 1

2
− p
)
Tp+m,q + ηf (m, p)Lp+m−1δq,0 + σg (m) L̄q−1δm+p,0,[

L̄n, Tp,q
]

=

(
n+ 1

2
− p
)
Tp,n+q + η̄f̄(n)Lp−1δn+q,0 + σ̄ḡ(n, q)L̄n+q−1δp,0,

(3.19)

where functions f, g, f̄ and ḡ are functions to be fixed upon the requirement of closure of the

algebra. The index structure of the deformations has been fixed recalling the discussions

in last part of the previous subsubsection.

To find the explicit form of the functions we should consider three different Jacobi

identities. The Jacobi [Lm, [L̄n, Tp,q]] + cyclic permutation = 0 leads to one relation for

each of L and L̄ coefficients as

δn+q,0

(
(m− p+ 1) f̄ (n) +

(
p− m+ 1

2

)
f̄ (n) +

(
n+ 1

2
− q
)
f(m, p)

)
= 0, (3.20)

and

δm+p,0

(
− (n− q + 1) g (m) +

(
n+ 1

2
− q
)
g (m) +

(
p− m+ 1

2

)
ḡ (n, q)

)
= 0. (3.21)

From the first relation we have(
m+ 1

2

)
f̄ (n) = −

(
3n+ 1

2

)
f(m, p), (3.22)

which suggests that f(m,n) = a(1 +m) and f̄(n) = −a(3n+ 1) and similarly for ḡ(m,n)

and g(n).

The next Jacobi we should consider is [Lm, [Ln, Tp,q]] + cyclic permutation = 0 which

leads to,

δm+p+n,0

((
n+ 1

2
− p
)
g (m) +

(
p− m+ 1

2

)
g (n) + (n−m)g(m+ n)

)
L̄q−1 = 0,

(3.23)

and

δq,0
(

(m−n−p+1)f (n,p)+

(
n+1

2
−p
)
f (m,p+n)−(n−m−p+1)f (m,p)

+

(
p−m+1

2

)
f (n,p+m)+(n−m)f (m+n,p)

)
Lm+p−1 = 0,

(3.24)
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One may readily verify that g(n) = −a(1 + 3n) and f(m,n) = a(1 + m) respectively

solve (3.23) and (3.24), as also implied from our previous analysis.

The last Jacobi we should consider is [Tp,q, [Tr,s,Lm]] + cyclic permutation = 0 which

leads to

δs,0

(
m+ r

2
− p
)
f (m, r)Tm+r+p−1,q + δr+m,0

(s
2
− q
)
g (m)Tp,q+s−1

+δq,0

(
r − m+ p

2

)
f (m, p)Tm+r+p−1,s + δp+m,0

(
s− q

2

)
g (m)Tr,q+s−1 = 0.

(3.25)

There is a similar equation for f̄ and ḡ from [Tp,q, [Tr,s, L̄m]] + cyclic permutation = 0.

The terms with coefficients g should be equal to zero as they are coefficients of different

Tm,n’s. In a similar way the f(m,n) terms should be zero. So, [L, T ] cannot be deformed

with coefficients in L, L̄.

To summarize this subsection, bms4 algebra can be deformed to a four parameter

family of W(a, b; ā, b̄) algebras; where bms4 =W(1
2 ,−

1
2 ; 1

2 ,−
1
2). W(a, b; ā, b̄) for any value

of parameters a, b; ā, b̄ share a witt⊕witt subalgebra spanned by Ln and L̄n. In section 5

we will study this family of algebras, its stability and deformations in more details.

3.3 Deformations of commutator of [T, T ]

[T, T ] commutator may be deformed in terms involving T or L and L̄. In what follows we

consider these cases separately.

With coefficients in T . As general case, we can consider the deformation of [T, T ] as

[Tm,n, Tp,q] = G(m,n; p, q)Tm+p,n+q, (3.26)

in which G is an antisymmetric function under the replacements m ↔ p and n ↔ q. One

must check the Jacobi identity [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0, which yields(
p− r + 1

2

)
G (m,n; p+ r, q) +

(
r + 1

2
−m

)
G (p, q;m+ r, n)

+

(
r + 1

2
−m− p

)
G (m,n; p, q) = 0.

(3.27)

For r = 0, and recalling G(m,n; p, q) = −G(p, q;m,n), we get((
p− 1

2

)
−
(

1

2
−m

)
+

(
1

2
−m− p

))
G (m,n; p, q) = 0, (3.28)

which means that G(m,n; p, q) = 0. In this way, we have shown that the ideal part

of bms4 cannot be deformed by terms with coefficients in T , when other commutators

are untouched.
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With coefficients in L and L̄. We next consider deformation of the [T, T ] by terms

with coefficients in L and L̄ as

[Tm,n, Tp,q] = A(m,n; p, q)Lm+p−1 +B(m,n; p, q)L̄n+q−1 (3.29)

in which the coefficients A(m,n; p, q) and B(m,n; p, q) are antisymmetric under the replace-

ment m,n↔ p, q.6 The index structure of L and L̄ in (3.29) is chosen recalling discussions

of appendix A that the generators may be viewed as fields (operators) on an S2 in Poincaré

coordinates. Moreover, the Jacobi [L, [T, T ]] + cyclic permutations = 0 restricts the index

of L to be a linear function of the first indices of T . The same argument is obtained for L̄.

One should examine the Jacobi identities [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0

and [Tr,s, [Tm,n, Tp,q]] + cyclic permutations = 0. From the first identity for the terms with

coefficients L̄ one gets((
p− r + 1

2

)
B (m,n; p+ r, q) +

(
r + 1

2
−m

)
B (p, q;m+ r, n)

)
L̄n+q−1 = 0. (3.30)

For r = 0 and recalling the antisymmetry of B function, we find (m+p−1)B(m,n; p, q) = 0

and therefore, B(m,n; p, q) = B0(n, q)δm+p,1, where B0(n, q) = −B0(q, n). Next we plug

this form of B back into (3.30) to obtain −2rB0(n, q)δm+p+r,1 = 0 which implies B0(n, q) =

0 and hence B should vanish. A similar argument works for A(m,n; p, q) when we consider

the Jacobi [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0 and hence A = B = 0.

To summarize this section, we have shown that bms4 algebra admits non-trivial in-

finitesimal deformation only in [L, T ] and [L̄, T ] parts of the algebra by coefficients in T .

Therefore, the only allowed infinitesimal deformations of the bms4 algebra is W(a, b; ā, b̄).

4 Most general formal deformations of bms4 algebra

Here we complete the analysis of previous section by showing that (1) the infinitesimal

deformations of bms4 into W(a, b; ā, b̄) are also formal deformations and (2) there are

no other deformations possible when we consider simultaneous deformations of two or

more commutators. To this end, let us consider the schematic form of the most general

deformations of bms4 in which all deformations are turned on simultaneously

[L,L] = L+ hT,

[L̄, L̄] = L̄+ h̄T,

[L, L̄] = HT,

[L̄, T ] = T + K̄T + f̄L+ ḡL̄,
[L, T ] = T +KT + fL+ gL̄,
[T, T ] = GT +AL̄+BL,

(4.1)

The Jacobi [L, [L,L]]+cyclic permutations = 0 (and [L̄, [L̄, L̄]]+cyclic permutations =

0) leads to some relations just for h (and h̄), in accord with the analysis of section 3.1,

6Note that the global part of this deformed algebra is always a deformation of 4d Poincaré which is not

(necessarily) AdS4 algebra so(3, 2).
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have solution h, h̄ = constant up to first order in deformation parameters (infinitesi-

mal deformation). The Jacobi [L, [L, L̄]] + cyclic permutations = 0 (and [L̄, [L̄,L]] +

cyclic permutations = 0) up to first order just leads to (3.3) and (3.4); deformations in

the [L, T ], [L̄, T ], [T, T ] parts do not alter the equations on h, h̄ and H. Therefore, there

are no non-trivial deformations coming from this sector.

The Jacobi [L, [L̄, T ]] + cyclic permutations = 0 up to first order just leads to the

constraints (3.20) and (3.21).

The Jacobi [L, [L, T ]]+cyclic permutations = 0 (and [L̄, [L̄, T ]]+cyclic permutations =

0) up to first order just leads to the constraints (3.10), (3.23) and (3.24).

The Jacobi [T, [T, T ]] + cyclic permutations = 0 does not lead to any constraints up to

first order in the deformation parameter.

Finally, the Jacobi [T, [T,L]] + cyclic permutations = 0 (and [T, [T, L̄]] +

cyclic permutations = 0) up to first order leads to the following three independent re-

lations

δs,0

(
m+ r

2
− p
)
f (m, r)Tm+r+p−1,q + δr+m,0

(s
2
− q
)
g (m)Tp,q+s−1

+δq,0

(
r − m+ p

2

)
f (m, p)Tm+r+p−1,s + δp+m,0

(
s− q

2

)
g (m)Tr,q+s−1

+

((
r − m+ 1

2

)
G (p, q; r +m, s) +

(
m+ 1

2
− p
)
G (r, s; p+m, q)

+

(
m+ 1

2
− (r + p+ d)

)
G (p, q; r, s)

)
Tm+p+r,s+q = 0,

(4.2)

[(
r − m+ 1

2

)
A (p, q;m+ r, s) +

(
m+ 1

2
− p
)
A (r, s; p+m, q)

+ (m− p− r + 1)A (p, q; r, s)

]
Lm+p+r−1 = 0,

(4.3)

and((
r − m+ 1

2

)
B (p, q;m+ r, s) +

(
m+ 1

2
− p
)
B (r, s; p+m, q)

)
L̄s+q−1 = 0. (4.4)

As discussed, (4.4) leads to B(p, q; r, s) = 0. A similar argument (analyzing (4.3) for

m = 0) yields A(p, q; r, s) = 0. So we should just analyze (4.2). Since Tm,n for different

m,n are linearly independent, a careful analysis of the indices of T generators in (4.2)

reveals that f(m,n), g(m) and G(m,n; p, q) should all vanish. To summarize, turning on

deformations simultaneously, up to the first order, does not yield any new deformation

other than W(a, b; ā, b̄) algebra.

4.1 Integrability, obstructions and formal deformation.

We have shown in the previous section that the most general infinitesimal nontrivial de-

formation of bms4 is W(a, b; ā, b̄). Now, we would like to explore integrability of these

deformations and check if they are formal deformations. As in the case of bms3 discussed
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in [1] one only needs to consider the relation(
n+1

2
−p
)
K (m,p+n)+

(
m+1

2
−p−n

)
K (n,p)+K (n,p)K (m,n+p)

+

(
p−m+1

2

)
K (n,p+m)+

(
p+m−n+1

2

)
K (m,p)

−K (m,p)K (n,p+m)+(n−m)K (m+n,p) = 0, (4.5)

which is satisfied by K(m,n) = α + βm.7 (Considering the Jacobi [L̄m, [Ln, Tp,q]] +

cyclic permutations = 0 does not change this result.) This means that the obtained in-

finitesimal deformation is integrable and can be extended to formal deformation.

Analysis of previous and this section may be summarized in the following theorem:

Theorem 4.1 The most general formal deformation of bms4 is W4(a, b; ā, b̄) algebra.

5 On W(a, b; ā, b̄) algebra, its subalgebras and deformations

We have introduced W(a, b; ā, b̄) which appears as formal deformation of bms4 and here

we would like to study this algebra a bit more. We first analyze its global subalgebras

and then consider possible deformations of W(a, b; ā, b̄), particularly for special values of

a, b, ā, b̄ parameters. Before starting we note that, as in the bms3 and W (a, b) algebra

cases [1],

• W(a, b; ā, b̄) and W(ā, b̄; a, b) algebras are isomorphic.

• the range of a, ā parameters may be limited to [−1/2, 1/2), as a = k + r, k ∈ Z and

a = r cases can be related by just a shift in the index of the associated Tm,n generator,

Tm,n → Tm−k,n, and simiarly for the ā.

• W(a, b; ā, b̄) and W(−a, b; ā, b̄) algebras are isomorphic, as renaming Lm → −L−m
and Tp,q → T−p,q relates these two algebras. Therefore, one may restrict the range of

a and ā parameters to [0, 1/2].

5.1 Subalgebras of W(a, b; ā, b̄)

Irrespective of the values of a, b; ā, b̄ parameters, allW(a, b; ā, b̄) algerbas share a witt⊕witt

subalgebra spanned by Ln and L̄n. This subalgebra in turn has a Lorentz subalgebra

so(3, 1) = sl(2R)L ⊕ sl(2R)R spanned by L0,L±1, L̄0, L̄±1. Depending on the values of

the four parameters, some Tm,n generators may also be a part of this global subalgebra,

e.g. as discussed in the previous section for bms4 =W(−1
2 ,−

1
2 ;−1

2 ,−
1
2), T0,0, T0,1, T1,0, T1,1

are the other four generators which turn the global subalgebra to 4d Poincaré iso(3, 1). To

7We note that the most general solution of (4.5) is α+ βm plus the solution given in (3.15). However,

the latter is trivial deformation and may be absorbed in redefinition of T as in (3.14). A similar pattern

was also found in the 3d case, cf. section 4.2 of [1].
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verify which of Tm,n appear in the global subalgebra, we consider the relevant commutators:

[L+1, Tp,q] = −(p+ b+ a)Tp+1,q,

[L0, Tp,q] = −(p+ a)Tp,q,

[L−1, Tp,q] = −(p− b+ a)Tp−1,q,

(5.1)

and

[L̄+1, Tp,q] = −(q + b̄+ ā)Tp,q+1,

[L̄0, Tp,q] = −(q + ā)Tp,q,

[L̄−1, Tp,q] = −(q − b̄+ ā)Tp,q−1.

(5.2)

The above commutations close off for finite number of Tm,n generators only for three cases,

a = b = 0, a = 0, b = −1 and a = b = −1/2, and similarly for ā, b̄. For generic values

of a, b other than these two cases the global part (finite subalgebra) of W(a, b; ā, b̄) is just

so(3, 1). We have therefore, nine independent special cases for which the global part of the

algebra is bigger than the Lorentz algebra so(3, 1):

1. W(−1/2,−1/2;−1/2,−1/2) which is nothing but the bms4 and its global part is 4d

Poincaré algebra iso(3, 1).

2. W(0, 0; 0, 0), where T0,0 falls into the global part and hence we have so(3, 1) ⊕ u(1)

global algebra.

3. W(0,−1; 0, 0) (or W(0, 0; 0,−1)), where Tr,0, r = 0,±1 (or T0,r) fall into the global

part and the global subalgebra is iso(2, 1)⊕sl(2,R)R (or iso(2, 1)⊕sl(2,R)L). Gener-

ators of this algebra may be represented in usual Minkowski tensors: Jµν , F
+
µν , where

F+
µν is a self-dual (anti-self-dual) anti-symmetric object, representing the Tr,0:

[Jµν , Jαβ ] = i(ηµαJνβ + ηβµJαν − ηναJµβ − ηβνJαµ),

[Jµν , F
+
αβ ] = i(ηµαF

+
νβ + ηβµF

+
αν − ηναF+

µβ − ηβνF
+
αµ),

[F+
µν , F

+
αβ ] = 0.

(5.3)

4. W(0,−1; 0,−1) where the global subalgebra involves nine generators Trs̄, r, s̄ = 0,±1.

This 15 dimensional algebra which generated by Lr, L̄s̄, Trs̄, r, s̄ = 0,±1. These gener-

ators may be gathered in a traceless Lorentz two-tensor Kµν , where its antisymmetric

part is Lorentz generators Jµν and its symmetric part captures Trs̄ and satisfy the

algebra

i[Kµν ,Kαβ ] = ηµβKαν − ηανKµβ . (5.4)

The above algebra is so(3, 1) Aad T subalgebra where T denotes the ideal part which

is spanned by Trs̄; the Trs̄ are in the bi-adjoint of the sl(2,R)L ⊕ sl(2,R)R.

5. W(0, 0;−1/2,−1/2) (or W(−1/2,−1/2; 0, 0)), where T0,α, α = 0, 1 (or Tα,0) are also

in the global algebra which is eight dimensional. This global algebra is sl(2,R)⊕sch2

algebra where sch2 denotes the 2d Schrödinger algebra without central element.
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6. W(0,−1;−1/2,−1/2) (or W(−1/2,−1/2; 0,−1)) where its global subalgebra is

so(3, 1) Aad Tαr, where Tαr is spanned by Tαr, α = 0, 1, r = 0,±1 which are in

the vector and spinor representation of sl(2,R)L ⊕ sl(2,R)R subalgebra.

Some other infinite dimensional subalgebras of W(a, b; ā, b̄). Besides the above

examples, one may consider other infinite dimensional subalgebras of W(a, b; ā, b̄). The

simplest of these subalgebras are witt ⊕ witt or W (a, b)p algebras generated by Ln, Tm,p
where p is a fixed (but arbitrary) number. As a subalgebra of W(a, b; 0,−1) one may

consider the one generated by Ln, Tm,r, L̄r (r = 0,±1). In special case a = b = 0 one

may view this as a u(1)3 Kac-Moody algebra where the three currents fall into triplet

representation of the sl(2,R)R generated by L̄r. This latter may be viewed as an “internal

symmetry” of the Kac-Moody part.

5.2 Deformations of generic W(a, b; ā, b̄) algebra

As discussed formal deformations of bms4 algebra yields the four parameter family

W(a, b; ā, b̄) algebra. As such, one expects this algebra to be rigid. However, a more

careful look into the analysis of previous section also reveals that deformations may move

us in the a, b; ā, b̄ plane. This is very similar to the 3d example of W (a, b) discussed in [1],

and is what we will explore more explicitly in this section. Here we use W(a, b; ā, b̄) in two

different meanings, which will hopefully be clear from the context: (1) W(a, b; ā, b̄) for a

given (but generic) value of the four parameter. This latter denotes a specific algebra; (2)

W(a, b; ā, b̄) as “family” of algebras for different values of the parameters.

While theW(a, b; ā, b̄) family is expected it to be rigid, as in the 3d example of W (a, b)

discussed in [1], there could be special values of parameters where one can deform the

algebra to other families of algebras. These special points, as we will see, correspond

to cases with larger global part discussed in the previous subsection. To make a formal

analysis of W(a, b; ā, b̄) as in the previous section we consider all possible deformations of

its commutators and check the closure conditions.

Deformations of witt⊕witt part. One can deform this sector ofW(a, b; ā, b̄) algebra as

[Lm,Ln] = (m− n)Lm+n + (m− n)
∑
d,d̄

hd,d̄(m,n)Tm+n+d,d̄,

[L̄m, L̄n] = (m− n)L̄m+n + (m− n)
∑
d,d̄

h̄d,d̄(m,n)Td,m+n+d̄,

[Lm, L̄n] =
∑
d,d̄

Hd,d̄(m,n)Tm+d,n+d̄,

(5.5)

in which hd,d̄(m,n), h̄d,d̄(m,n) are symmetric and Hd,d̄(m,n) an arbitrary functions. As

the first step, one considers the Jacobi [Lm, [Ln,Ll]] + cyclic permutations = 0 which leads
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to∑
d,d̄

{(
(n−l)(m−n−l)hd,d̄(m,n+l)+(n−l)(−bm−a−n−l−d)hd,d̄(n, l)

+(l−m)(n−m−l)hd,d̄(n,m+l)+(l−m)(−bn−a−m−l−d)hd,d̄(l,m) (5.6)

+(m−n)(l−m−n)hd,d̄(l,m+n)+(m−n)(−bl−a−m−n−d)hd,d̄(m,n)
)
Tm+n+l+d,d̄

}
= 0,

and the same relation for h̄d,d̄(m,n). The only solution to the above equations for generic

a, b is hd,d̄(m,n) = constant (and h̄d,d̄(m,n) = constant).

The next two Jacobi identities to analyze are [Lm, [Ln, L̄l]] + cyclic permutations = 0

and [L̄m, [L̄n,Ll]] + cyclic permutations = 0, which yield(
−(a+ bm+ n+ d)Hd,d̄(n, l) + (a+ bn+m+ d)Hd,d̄(m, l) + (n−m)Hd,d̄(m+ n, l)

+ (n−m)(ā+ b̄l + d̄)hd,d̄(m,n)
)
Tm+n+d,l+d̄ = 0, (5.7)(

(ā+ b̄m+ n+ d̄)Hd,d̄(l, n)− (ā+ b̄n+m+ d̄)Hd,d̄(l,m) + (m− n)Hd,d̄(l,m+ n)

+ (n−m)(a+ bl + d)h̄d,d̄(m,n)
)
Tl+d,m+n+d̄ = 0. (5.8)

As in the bms4 case one can obtain the most general form of the Hd,d̄(m,n) as

Hd,d̄(m,n) = Hd,d̄
0 (bm+ a+ d)(b̄n+ ā+ d̄) +

h̄

b̄
(bm+ a+ d)− h

b
(b̄n+ ā+ d̄). (5.9)

One can then show that for generic a, b, ā, b̄ through the redefinitions (3.8) in which

Xd,d̄(m), Y d,d̄(m) are changed to

Xd,d̄(m) = Hd,d̄
0 (bm+ a+ d) +

hd,d̄

b
, Y d,d̄(m) = −Hd,d̄

0 (b̄m+ ā+ d̄) +
h̄d,d̄

b̄
, (5.10)

these deformations can be reabsorbed and hence they are all trivial. However, as we see

for the special case of b = 0 or b̄ = 0 these redefinitions are not well-defined and hence

there remains a non-trivial deformation forW(a, b; 0, 0),W(0, 0; ā, b̄) andW(0, 0; 0, 0) cases

which we discuss below separately.

Deformations of [L, T ] and [L̄, T ] commutators. The most general deformations in

this sector of W(a, b; ā, b̄) algebra is

[Lm, Tp,q] = −(a+ bm+ p)Tp+m,q +K(m, p)Tp+m,q

+ ηf(m, p)Lp+m−1δq,0 + σg(m)L̄q−1δm+p,0,

[L̄n, Tp,q] = −(ā+ b̄n+ q)Tp,q+n + K̄(n, q)Tp,n+q + η̄f̄(n)Lp−1δn+q,0 + σ̄ḡ(n, q)L̄n+q−1δp,0,

(5.11)

in which K, K̄, f, g, f̄ and ḡ are arbitrary functions. As the first step, we considers the

Jacobi [Lm, [Ln, Tp,q]] + cyclic permutations = 0, leading to

(−a−bn−p)K(m,p+n)+(−a−bm−p−n)K(n,p)+(p+a+bm)K(n,p+m)

+(p+m+a+bn)K(m,p)+(n−m)K(m+n,p) = 0, (5.12)
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and the same relation for K̄(m,n). One can solve the latter to get K(m,n) = α+ βm and

similar result for K̄(m,n). From previous Jacobi one also obtains two other relations for

f(m,n) and g(m,n) as

δm+p+n,0

(
(−a− bn− p)g(m) + (p+ a+ bm)g(n) + (n−m)g(m+ n)

)
L̄q−1 = 0, (5.13)

and

δq,0
(
(m− n− p+ 1)f(n, p) + (−a− bn− p)f(m, p+ n)− (n−m− p+ 1)f(m, p)

+ (p+ a+ bm)f(n, p+m) + (n−m)f(m+ n, p)
)
Lm+p−1 = 0,

(5.14)

and similar relations for f̄(m,n) and ḡ(m,n) can be obtained from the Jacobi

[L̄m, [L̄n, Tp,q]] + cyclic permutations = 0.

On the other hand, the Jacobi [Lm, [L̄n, Tp,q]] + cyclic permutations = 0 leads to one

relation for each of L and L̄ coefficients as

δn+q,0

(
(m− p+ 1)f̄(n) + (p+ a+ bm)f̄(n) + (−a− bn− q)f(m, p)

)
= 0, (5.15)

and

δm+p,0

(
− (n− q + 1)g(m) + (−a− bn− q)g(m) + (p+ a+ bm)ḡ(n, q)

)
= 0. (5.16)

From the first relation we have

(m(b+ 1) + a+ 1)f̄(n) = (a+ n(b− 1))f(m, p), (5.17)

which suggests that f(m,n) = c(m(b + 1) + a + 1) and f̄(n) = −c(a + n(b − 1)) where

c = constant and similarly for ḡ(m,n) and g(n) which is in agreement with (5.17) obtained

for a = b = −1
2 case.

The last Jacobi we should consider is [Tp,q, [Tr,s,Lm]] + cyclic permutation = 0 which

leads to

δs,0(a+b(m+r−1)+p)f(m,r)Tm+r+p−1,q+δr+m,0(ā+b̄(s−1)+q)g(m)Tp,q+s−1

−δq,0(a+b(m+p−1)+r)f(m,p)Tm+r+p−1,s−δp+m,0(ā+b̄(q−1)+s)g(m)Tr,q+s−1 = 0.

(5.18)

There is a similar equation for f̄ and ḡ from [Tp,q, [Tr,s, L̄m]]+cyclic permutation = 0. The

terms with coefficients g should be equal to zero as they are coefficients of different Tm,n’s.

In a similar way f(m,n) terms should be zero.

Deformations of W(a, b; ā, b̄)’s ideal part:

i[Tm,n, Tp,q] = G(m,n; p, q)Tm+p,n+q +A(m,n; p, q)Lm+p−1 +B(m,n; p, q)L̄n+q−1, (5.19)

in which G,A and B are antisymmetric functions under m ↔ p and n ↔ q.

The Jacobi identities [Lr, [Tm,n, Tp,q]] + cyclic permutations = 0 and [L̄r, [Tm,n, Tp,q]] +

cyclic permutations = 0 yield two relations for G,

(p+a+br)G(m,n; p+r, q)−(a+br+m)G(p, q;m+r, n)−(a+br+m+p)G(m,n; p, q) = 0,

(5.20)
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and

(ā+ b̄r+q)G(m,n; p, q+r)− (ā+ b̄r+n)G(p, q;m,n+r)− (ā+ b̄r+n+q)G(m,n; p, q) = 0,

(5.21)

and two relations for A,

(
(r −m− p+ 1)A(m,n; p, q) + (p+ a+ br)A(m,n; p+ r, q)

+(m+ a+ br)A(m+ r, n; p, q)
)
Lm+p+r−1 = 0, (5.22)

and

(
(q + ā+ b̄r)A(m,n; p, q + r) + (−ā− b̄r − n)A(p, q;m,n+ r)

)
Lm+p−1 = 0. (5.23)

The same relation can be obtained from these two Jacobi for B(m,n; p, q).

One can check that our argument in section 3.3 also works for deformations of

W(a, b; ā, b̄)’s in this sector, in the sense that for generic a, b, ā and b̄ it does not admit any

non-trivial deformation in its ideal part.

The most general deformations of W(a, b; ā, b̄) algebra. When we consider the

most general deformations of W(a, b; ā, b̄) algebra simultaneously as in the bms4 case

of (4.1), one can verify that except one case, similar to bms4 case, all Jacobi identities lead

to the relations obtained in the above. Similarly the bms4 case, the only case we must study

is the Jacobi [T, [T,L]] + cyclic permutations = 0 and [T, [T, L̄]] + cyclic permutations = 0

which leads to the relations (5.22), (5.23) and their analogue for B and sum of two rela-

tions (5.20) and (5.18). One can then show that these two latter are independently equal

to zero. In this way the most general deformations of W(a, b; ā, b̄) are restricted to that

induces by K(m,n) and takes the W(a, b; ā, b̄) to W(a′, b′; ā′, b̄′) with shifted parameters.

The following theorem summarizes our above discussion as:

Theorem 5.1 The family of W4(a, b; ā, b̄) algebra for generic values of the four parame-

ters is stable (rigid) algebra.

5.3 Deformations of special W algebras

As discussed while in generic points of the parameter space of W algebra they are rigid,

there are special points in the parameter space where the algebra is not rigid and may

admit other deformations. In this subsection we discuss such special cases.

Deformations of W(a, b; 0, 0). As discussed for a = b = 0 case the h-deformations

(cf. (5.5)) become non-trivial and cannot be absorbed into a redefinition of generators. One

can go through the Jacobi’s of the previous subsection and verify allowed deformations.

Here we do not repeat the analysis and just present the final result. The most general new
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non-trivial deformation of W(a, b; 0, 0) is:

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n + ν̄ (m− n)T0,m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = −(p+ bm+ a)Tp+m,q,

[L̄n, Tp,q] = −(q)Tp,q+n,

[Tm,n, Tp,q] = 0.

(5.24)

Some comments are in order:

• Among the h̄
d,d̄

deformations only d̄ = 0 terms remain. The others are still trivial or

do not satisfy Jacobi identity.

• The possibility of moving in the (a, b, ā, b̄) parameter space via the deformation still

exists and the above is the new non-trivial deformation which did not exist for ā, b̄ 6= 0

point. That is, the ν̄ deformation and moving in ā, b̄ plane are not mutually inclusive.

• [Tm,n, Tp,q] cannot be deformed. Once again, [Lm, Tp,q], [L̄n, Tp,q] can only be de-

formed into those of W(a, b; ā, b̄) algebra, but in that case we need to set ν = 0.

• Here we are considering a, b 6= 0 case. The special case of W(0, 0; 0, 0) will be dis-

cussed next.

The special case ofW(0, 0; 0, 0). In this case one can deform the algebra into a generic

point in the (a, b, ā, b̄) parameter space or alternatively deform the [Lm,Ln] (or [L̄m, L̄n])

with the coefficients in Tm+n,0 (or in T0,m+n) while moving in ā, b̄ (or a, b) plane; or turn

on the two [Lm,Ln] and [L̄m, L̄n] deformations without moving in the parameter space.

These possibilities are mutually exclusive and the last deformation has the explicit form:

[Lm,Ln] = (m− n)Lm+n + ν (m− n)Tm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n + ν̄ (m− n)T0,m+n,

[Lm, L̄n] = H0(α+ βm)(ᾱ+ β̄n),

[Lm, Tp,q] = (−p)Tp+m,q,
[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = 0.

(5.25)

To summarize, W(0, 0; 0, 0) can be deformed to the four parameter family W(a, b; ā, b̄)

or (exclusively) by three independent formal deformations parametrized by ν, ν̄,H0. Also,

if one chooses to move in (ā, b̄) or (a, b) planes, we are left with ν̄ or ν deformations,

respectively, cf. the W(a, b; 0, 0) case discussed above.
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Deformations of W(0,−1; 0, 0). The next special case we study is W(0,−1; 0, 0):

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = (m− p)Tp+m,q,
[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = 0,

(5.26)

which is obtained from (3.16) when we put a = ā = b̄ = 0 and b = −1. As discussed

W(0,−1; 0, 0) can be considered as combination of a u(1) Kac-Moody algebra (on the right

sector) and a bms3 (on the left sector). The global part ofW(0,−1; 0, 0) is iso(2, 1)⊕sl(2,R)

spanned respectively by Lr, Tr,0 and L̄r̄, r, r̄ = ±1, 0.

Inspired by the discussions of previous subsection and recalling the results of [1] for

deformations of bms3, we expect to be able to turn on a T0,m+n deformation in [L̄m, L̄n]

and also be able to deform the ideal part; this is of course besides deforming by moving in

the (a, b; ā, b̄) parameter space. The two allowed deformations are hence

[Lm,Ln] = (m− n)Lm+n,

[L̄m, L̄n] = (m− n)L̄m+n + ν̄ (m− n)T0,m+n,

[Lm, L̄n] = 0,

[Lm, Tp,q] = (m− p)Tp+m,q,
[L̄n, Tp,q] = (−q)Tp,q+n,

[Tm,n, Tp,q] = ε(m− p)Tm+p,n+q.

(5.27)

One can readily verify that the above deformations are formal.

For the ν̄ = 0 the global part of the above algebra is sl(2,R) ⊕ sl(2,R) ⊕ sl(2,R),

which is generated by Lr − 1
εTr,0,

1
εTr,0, L̄r̄, (r, r̄ = 0,±1). The first two sl(2,R)’s may be

viewed as so(2, 2), the isometry of AdS3 space and the last sl(2,R) factor as an “internal

symmetry” for the AdS3 space. One can then observe that the above algebra for ν̄ = 0 has

a witt ⊕ witt ⊕ witt subalgebra generated by Ln − 1
εTn,0,

1
εTn,0, L̄n. This latter has been

studied as deformation of Maxwell algebra [69–72]. Moreover, this algebra has a witt⊕u(1)

Kac-Moody subalgebra generated by Ln, L̄n, T0,n.

To summarize, one can deform W(0,−1; 0, 0) to a generic W(a, b; ā, b̄) by moving in

(a, b; ā, b̄) plane, or by turning on ν or, exclusively, ε(m− p) deformations.8 If we move in

(ā, b̄) plane we cannot turn on ν or ε deformations and if we move in (a, b) plane we cannot

turn on ε while ν deformation is possible.

6 Deformation of centrally extended W(a, b; ā, b̄) algebra, Ŵ(a, b; ā, b̄)

Global central extensions (which in short are usually called central extensions) of an alge-

bra g are classified by its second real cohomology H2(g;R). Central extensions may hence

8Note that while ν and ε deformations can be turned on simultaneously at infinitesimal level, they cannot

both be elevated to a formal deformation at the same time.
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be viewed as a special class of deformations given by Gel’fand-Fucks 2-cocycles [73]. One

may show, following analysis of [12], that W(a, b; ā, b̄) for generic values of the parameters

admits two independent central extensions which may be associated with deforming the

algebra by two independent unit elements added to the algebra. The centrally extended

W-algebra which will be denoted by Ŵ(a, b; ā, b̄) is given by:

[Lm,Ln] = (m− n)Lm+n +
CL
12
m3δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n +
CL̄
12
m3δm+n,0,

[Lm, L̄n] = 0,

[Lm, Tp,q] = −(p+ bm+ a) Tp+m,q,

[L̄n, Tp,q] = −(q + b̄n+ ā) Tp,q+n,

[Tm,n, Tp,q] = 0,

(6.1)

where CL and CL̄ are central charges. Algebras with different nonzero values of central

charges CL and CL̄, are cohomologous, i.e they are isomorphic to each other. As we can

see for the generic a, b, ā and b̄, in the centrally extended W(a, b; ā, b̄) algebra the witt

subalgebras are turned to two Virasoro algebras and other commutators are untouched.

As in the case of W (a, b) algebras discussed in [1, 56], there may be special points

in the (a, b, ā, b̄) parameter space which admit other central terms. As the first case let

us consider bms4= W(−1
2 ,
−1
2 ,
−1
2 ,
−1
2 ). This algebra admits only two independent central

terms in its two witt algebras [12].

Recalling that in the W (a, b) case there is a possibility of a central extension in L, T
sector a = 0, b = 1 case [56], we examine if there is a possibility of central extension in

[Lm, Tp,q] or [L̄m, Tp,q] for specific values of a, b, ā, b̄ parameters. Explicitly, consider

[Lm, Tp,q] = −(a+ bm+ p)Tm+p,q + f(m, p)δq,0, (6.2)

and

[L̄n, Tp,q] = −(ā+ b̄n+ p)Tp,n+q + f̄(n, q)δp,0, (6.3)

where f(m,n) and f̄(m,n) are arbitrary functions. [Lm, [Ln, Tp,q]]+cyclic permutations =

0 and [L̄m, [L̄n, Tp,q]] + cyclic permutations = 0 Jacobi relations lead to

− (a+ bn+ p)f(m, p+ n) + (a+ bm+ p)f(n, p+m) + (n−m)f(m+ n, p) = 0, (6.4)

and

− (ā+ b̄n+ p)f̄(m, p+ n) + (ā+ b̄m+ p)f̄(n, p+m) + (n−m)f̄(m+ n, p) = 0. (6.5)

Let us now examine the equations for m (or n) or p equal to zero. For p = 0 (6.4) yields

− (a+ bn)f(m,n) + (a+ bm)f(n,m) + (n−m)f(m+ n, 0) = 0. (6.6)

We can consider two cases, either f is symmetric f(m,n) = f(n,m), or it is antisymmetric

f(m,n) = −f(n,m). For the symmetric case we get bf(m,n) = f(m + n, 0). So, either
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b = 0 which leads to f(m+n, 0) = 0, or b 6= 0 for which f(m,n) = 1
bf(m+n, 0) = F (m+n).

For the former one learns that the only solution is f(m,n) = m2δm+n,0 as we expected for

the u(1) Kac-Moody algebra, cf. [1]. Plugging the solution f(m,n) = F (m+ n) into (6.4)

restricts us to b = 1 and arbitrary a.

For the antisymmetric f(m,n), putting p = 0 in (6.4) one finds

(2a+ b(m+ n))f(n,m) = (m− n)f(m+ n, 0), (6.7)

which for m = 0 yields, either b = −1, a = 0 or f(n, 0) = 0. One may then examine these

two possibilities in (6.4) to find that b = −1, a = 0 and that f(m,n) = m3δm+n,0 is the

only non-trivial solution. This latter is of course expected recalling the bms3 analysis of [1].

Similar analysis goes through for (6.5). To summarize so far, the f, f̄ type central terms are

allowed only for a = b = 0, f(m,n) = m2δm+n,0; b = 1, a = arbitrary, f(m,n) = F (m+n);

b = −1, a = 0, f(m,n) = m3δm+n,0.

We should now verify if the central terms in special points obtained above satisfy the

Jacobi [Lr, [L̄s, Tm,n]] + cyclic permutations = 0. For generic a, b, ā and b̄ one obtains

(a+ br + p)f̄(s, q)− (ā+ b̄s+ q)f(r, p) = 0. (6.8)

For the special point a = b = ā = b̄ = 0 corresponding to W(0, 0; 0, 0) algebra, we ob-

tained f̄(m,n) = f(m,n) = m2δm+n,0 which does not fulfill (6.8). The next point is

W(0,−1; 0, 0), which can be viewed as combination of bms3 and u(1) Kac-Moody, we ob-

tained f(m,n) = m3δm+n,0 and f̄(m,n) = m2δm+n,0. This too, does not satisfy (6.8). One

therefore concludes that W(0, 0; 0, 0) and W(0,−1; 0, 0) do not admit a central term in its

[Lm, Tp,q] or [L̄m, Tp,q] commutators. But one can consider W(0, 1; 0, 0) and W(0, 1; 0,−1)

which admit central terms as f̄(m,n) = m2δm+n,0 and f̄(m,n) = m3δm+n,0 respectively.

For the special case W(0, 1; 0, 1) one learns that it admits two independent central terms

as f(m,n) = (α+ βm)δm+n,0 and f̄(m,n) = (ᾱ+ β̄m)δm+n,0.

The specific case W(0, 0; a, b) algebra which can be seen as combination of W (a, b)

and u(1) Kac-Moody algebras may also admit central terms in its ideal part which can be

parametrized as

[Tm,n, Tp,q] = c1mδm+p,0δn,q + c2nδm,pδn+q,0. (6.9)

This structure guarantees antisymmetry w.r.t. m ↔ p and n ↔ q. The Jacobi

[Lr, [Tm,n, Tp,q]] + cyclic permutation = 0 leads to

− p
(
(ā+ b̄r + q)δn,q+r + (ā+ b̄r + n)δq,n+r

)
= 0, (6.10)

which cannot be satisfied for any values of ā and b̄. Therefore, one finds that W(0, 0; ā, b̄)

admits only central terms in its two Witt algebras (unless the case ā = 0 and b̄ = 1), just

as bms4 and W(a, b; ā, b̄) for generic a, b, ā and b̄.

6.1 Most general deformations of centrally extended W(a, b; ā, b̄) algebra

Let us now consider the most general deformations of the Ŵ(a, b; ā, b̄) algebra. As we

checked in the previous part Ŵ(a, b; ā, b̄) admits two nontrivial central charges in its two
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Witt algebras. We start with this algebra and schematically consider its most general

deformations as

[L,L] = L+ CL + hT +X,

[L̄, L̄] = L̄+ C̄L̄ + h̄T + X̄,

[L, L̄] = HT + U,

[L, T ] = T +KT + fL+ gL̄+ Y,

[L̄, T ] = T + K̄T + f̄L+ ḡL̄+ Ȳ,

[T, T ] = GT +AL+BL̄+ Z.

(6.11)

in which we dropped the indices of generators and arguments of functions to simplify

the notation. The functions X, U , Y and Z and their analogues in barred sector, are

deformations by terms with coefficients in unit generators (central terms). As we have seen

in the case of W (a, b) algebra which has been studied in [1], the Jacobi analysis leads to

two different family of relations. The first family is exactly the same as relations analyzed

in the previous section for the functions related to non-central parts while the second set

of relations include linear combinations of central and non-central functions. In this way,

for the generic values of a, b, ā and b̄ we obtained that the only nontrivial solutions are

K(m,n) = α + βm and K̄(m,n) = ᾱ + β̄m which lead to a new Ŵ(a, b; ā, b̄) with shifts

in the four parameters and none of the other functions, central or non-central, cannot be

turned on. So, one concludes that the family of Ŵ(a, b; ā, b̄) algebras are rigid (or stable),

in the sense that it can just be deformed to another Ŵ(a, b; ā, b̄) in the same family. As

we discussed, however, there are special points in the space (a, b, ā, b̄) which can admit

some other deformations. Now, we are going to review the results of the most general

deformations of Ŵ(a, b; ā, b̄) in special points.

The most general deformations of b̂ms4. As the first case we consider

Ŵ(−1
2 ,
−1
2 ; −1

2 ,
−1
2 ) which is the central extension of bms4 denoted by b̂ms4. As mentioned,

from the first family of relations, the only nontrivial functions are K(m,n) = α+ βm and

K̄(m,n) = ᾱ+ β̄m and other non-central functions are zero, as we have shown in section 4.

The Jacobi [L, [L̄, T ]]+cyclic permutation = 0 leads to Y = Ȳ = 0. The Jacobi [L̄, [L,L]]+

cyclic permutation = 0 leads to U = 0. The Jacobi [L, [T, T ]] + cyclic permutation = 0

leads to Z = 0. The Jacobi [L, [L,L]] + cyclic permutation = 0 leads to X(m) = m3δm+n,0

and a similar result for X̄(m) which just lead to a shift of CL and CL̄. However, as

mentioned, the algebras with different values of CL and CL̄ are cohomologous and iso-

morphic to each other. In this way, we have found that the most general deformations of

b̂ms4= Ŵ(−1/2,−1/2;−1/2,−1/2) is Ŵ(a, b; ā, b̄) with the shifted parameters.

6.2 Most general deformations of specific points in (a, b; ā, b̄) space

The next special point is Ŵ(0, 0; 0, 0). We showed in the previous section that non-central

functions with nontrivial solutions are h(m,n) = constant, K(m,n) = α+βm and the same

result for h̄(m,n) and K̄(m,n) and H(m,n) = H0(α+βm)(ᾱ+β̄n). The Jacobi [L, [L̄, T ]]+

cyclic permutation = 0 leads to Y = Ȳ = 0. The Jacobi [L̄, [L,L]]+cyclic permutation = 0
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leads also to U = 0. The Jacobi [L, [T, T ]] + cyclic permutation = 0 leads to Z = 0. The

Jacobi [L, [L,L]] + cyclic permutation = 0 leads to X(m) = m3δm+n,0 and a similar result

for X̄(m) which just shifts the value of CL and CL̄. We hence recover exactly the same

results as the infinitesimal single deformation case.

The next special point is Ŵ4(0,−1; 0, 0). Non-central functions with nontrivial solu-

tions are h̄(m,n) = constant, K(m,n) = α + βm, K̄(m,n) = ᾱ + β̄n and G(m,n; p, q) =

(m− p) and other functions are zero. The Jacobi [L, [L̄, T ]] + cyclic permutation = 0 leads

to Y = Ȳ = 0. The Jacobi [L̄, [L,L]] + cyclic permutation = 0 leads to U = 0. The

Jacobi [L, [L,L]] + cyclic permutation = 0 leads to X(m) = m3δm+n,0 and a similar re-

sult for X̄(m). Finally, when we deform the ideal part as [Tm,n, Tp,q] = (m− p)Tm+p,n+q +

Z(m,n; p, q), the Jacobi [Lm, [Tp,q, Tr,s]]+cyclic permutation = 0 leads to Z(m,n; p, q) = 0.

One may consider the specific subalgebra of Ŵ4(0,−1; 0, 0) generated by L1
n ≡

Tn,0,L2
n = Ln − Tn,0,L3

n = L̄n for which,

[Lan,Lbn] = δab
(

(n−m)Lan+m +
1

12
Can3δm+n,0

)
, a, b = 1, 2, 3.

For this subalgebra, Z(m,n; p, q) = m3δm+p,0δn,0δq,0 is an allowed central extension (as

well as a formal deformation), denoted by Ca in the above algebra. This subalgebra hence

admits three central charges and is therefore, direct sum of three Virasoro algebras.

The next specific point is Ŵ4(0, 1; 0, 0). Non-central functions with nontrivial solutions

are h̄(m,n) = constant, K(m,n) = α+βm and K̄(m,n) = ᾱ+ β̄n. The Jacobi [L̄, [L,L]]+

cyclic permutation = 0 leads to U = 0. The Jacobi [L, [L,L]] + cyclic permutation =

0 leads to X(m) = m3δm+n,0 and a similar result for X̄(m). The Jacobi [L, [T, T ]] +

cyclic permutation = 0 leads to Z = 0. The Jacobi [L, [L̄, T ]] + cyclic permutation =

0 yields Y = 0. Unlike the previous cases, however, we obtained Ȳ (m) = m2δm+n,0.

Although the latter is a formal deformation, when we turn on K̄, h̄ and Ȳ simultaneously

they cannot satisfy the Jacobi in higher order in deformation parameter, so they should be

considered as independent formal deformations.

The next specific case is Ŵ4(0, 1; 0,−1). Non-central functions with nontrivial solutions

are K(m,n) = α+βm and K̄(m,n) = ᾱ+β̄n. The Jacobi [L̄, [L,L]]+cyclic permutation =

0 leads to U = 0, [L, [L,L]] + cyclic permutation = 0 to X(m) = m3δm+n,0, and a similar

result for X̄(m). The Jacobi [L, [L̄, T ]] + cyclic permutation = 0 leads to Y = 0 and

Ȳ (m) = m3δm+n,0. As in the previous cases one can show that the functions K̄ and Ȳ

cannot be turned on simultaneously, implying that we do not have formal deformations

induced with both K̄ and Ȳ .

The next specific point is Ŵ4(0, 1; 0, 1). Non-central functions with nontrivial solutions

are K(m,n) = α+βm and K̄(m,n) = ᾱ+β̄n.The Jacobi [L̄, [L,L]]+cyclic permutation = 0

leads to U = 0, and [L, [L,L]]+cyclic permutation = 0 to X(m) = m3δm+n,0, and similarly

for X̄(m). The Jacobi [L, [L̄, T ]]+cyclic permutation = 0 leads to Y (m) = (α̃+ β̃m)δm+n,0

and Ȳ (m) = (˜̄α+ ˜̄βm)δm+n,0. One can show that the functions K,Y and K̄, Ȳ cannot be

turned on simultaneously.
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7 Cohomological consideration of W(a, b; ā, b̄) algebra

The direct and explicit verification of Jacobi identities for deformations may be presented

in the language of algebraic cohomology. Following our discussions for bms3 in [1], here

we study second adjoint cohomology of bms4 and its central extension b̂ms4 as well as the

W(a, b; ā, b̄) and its central extension Ŵ(a, b; ā, b̄) for generic a, b, ā and b̄. The main tools

to this cohomological analysis is the Hochschild-Serre spectral sequence which has been

reviewed in appendix B. As similar analysis for infinite dimensional Schrödinger-Virasoro

type algebras may be found in [74].

7.1 Cohomological consideration of bms4 algebra

As we know H2(bms4; bms4) classifies all infinitesimal deformations of bms4 algebra which

may be computed using the spectral sequence (B.3) and the long exact sequences (B.5)

and (B.6). By the former we obtain information about H2(bms4; (witt ⊕ witt)) and

H2(bms4;T) independently where T and (witt ⊕ witt) respectively denote the ideal part

and the Witt subalgebra of the bms4. Note that since (witt ⊕ witt) algebra is not a bms4

module by the adjoint action, H2(bms4; (witt⊕witt)) is defined by the action used in the

short exact sequence (7.1) below, as discussed in appendix B. Note also that given the semi-

direct sum structure of the bms4 algebra (2.2), one should not expect H2(bms4; bms4) to be

equal to H2(bms4; (witt⊕witt))⊕H2(bms4;T). Nonetheless, as we will see, direct analysis

of H2(bms4; (witt ⊕ witt)) and H2(bms4;T) may carry information about the structure of

H2(bms4; bms4).

To this end, we follow the Hochschild-Serre spectral sequence method (cf. appendix B)

and consider the following short exact sequence of bms4 algebra

0 −→ Tab −→ bms4 −→ bms4/Tab ∼= (witt⊕witt) −→ 0, (7.1)

where Tab is the abelian ideal of the bms4 algebra which is spanned by Tm,n generators. As

in the case of bms3 [1], we compute H2(bms4;witt⊕witt) and H2(bms4;Tab) separately.

Computation of H2(bms4;T). As is reviewed in appendix B and from (B.3) and (B.4)

one can compute the H2(bms4;T) as

H2(bms4;T) = ⊕p+q=2E
p,q
2;T = E2,0

2;T ⊕ E
1,1
2;T ⊕ E

0,2
2;T

= H2((witt⊕witt);H0(T;T))⊕H1((witt⊕witt);H1(T;T))

⊕H0((witt⊕witt);H2(T;T)),

(7.2)

where the subscript T in Ep,q2;T means we are computing H2(bms4;T). We compute the

three terms above separately. H2((witt⊕ witt);H0(T;T)) contains H0(T;T) which by the

definition (3.14) of [1] (or [66]) and the fact that the action of T on T is trivial, one

concludes that H0(T;T) = T then H2((witt ⊕ witt);H0(T;T)) = H2((witt ⊕ witt);T). On

the other hand, by the direct computations in subsection 3.1 we have shown that two Witt

subalgebras in bms4 do not admit any nontrivial deformation with terms by coefficients in

T . So one concludes that H2((witt ⊕ witt);T) = 0. Therefore the two first commutators

in (2.1) remains intact by deformation procedure, in accord with results of subsection 3.1.
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Next we analyze H1((witt⊕witt);H1(T;T)). It is constructed by 1-cocycle ϕ1 which is

defined as a function ϕ1 : (witt⊕witt) −→ (T;T)
ϕ̃−→ T, where here ϕ̃ is a 1-cocycle used

in the definition of H1(T;T). The expression of ϕ1(Lm, L̄m)(Tp,q) can hence be expanded

in terms of T ’s as ϕ1(Lm, L̄m)(Tp,q) = K̃(m, p)Tm+p,q+ ˜̄K(m, q)Tp,m+q, where K̃(m, p) and
˜̄K(m, q) are arbitrary functions. The deformation of [L, T ] part corresponding to ϕ1 is

[Lm, Tp,q] = (m+1
2 − p)Tm+p,q + K̃(m, p)Tm+p,q. The Jacobi identity for the above bracket

imposes restraints on K̃(m,n) exactly like the ones on K(m,n) in (3.10), so one finds the

same result as K̃(m,n) = α+ βm and the same result is obtained for ˜̄K(m,n).

The last term we study is H0((witt⊕witt);H2(T;T)). We use the definition of H0

H0((witt⊕witt);H2(T;T)) = {ψ ∈ H2(T;T)|(L⊕ L̄) ◦ ψ = 0, ∀ L and L̄ ∈ (witt⊕witt)},
(7.3)

where ψ is a T -valued 2-cocycle. The action “◦” of L on a 2-cocycle ψ is defined as [42]

(Lr ◦ ψ)(Tm,n, Tp,q) = [Lr, ψ(Tm,n, Tp,q)]− ψ([Lr, Tm,n], Tp,q)− ψ(Tm,n, [Lr, Tp,q]). (7.4)

Expanding ψ in terms of T s as ψ(Tm,n, Tp,q) = G(m,n; p, q)Tm+p,n+q, we get the same

relation as (3.27) which has the solution G(m,n; p, q) = 0. The same relation can be

obtained by L̄. The above discussion leads to

H2(bms4;T) = H1((witt⊕witt);H1(T;T)), (7.5)

which means that turning on deformations with coefficients in T, we can only deform the

[L, T ] part by K̃(m,n). This is exactly in agreement of our results of direct and explicit

calculations in section 3.

Computation of H2(bms4; (witt⊕witt)). One can expand the latter as

H2(bms4; (witt⊕witt)) = ⊕p+q=2E
p,q
2;(w⊕w) = E2,0

2;(w⊕w) ⊕ E
1,1
2;(w⊕w) ⊕ E

0,2
2;(w⊕w)

= H2((witt⊕witt);H0(T; (witt⊕witt)))

⊕H1((witt⊕witt);H1(T; (witt⊕witt)))

⊕H0((witt⊕witt);H2(T; (witt⊕witt))),

(7.6)

where the subscript (w⊕w) denotes we are computing H2(bms4; (witt⊕witt)).

To compute H2((w⊕w);H0(T; (witt⊕witt))), we recall that the action of T on (witt⊕
witt) (which is induced via the short exact sequence (7.1)), is trivial and henceH0(T; (witt⊕
witt)) ∼= (witt⊕witt). We then conclude

H2((witt⊕witt);H0(T; (witt⊕witt))) ∼= H2((witt⊕witt); (witt⊕witt)) ∼= 0, (7.7)

where in the last step we used the fact that (witt⊕witt) algebra is rigid [1].

Next, we consider the second term in (7.6), H1((witt ⊕ witt);H1(T; (witt ⊕ witt)))

which is constructed by 1-cocycle ϕ2 as ϕ2 : (witt ⊕ witt) −→ H1(T; (witt ⊕ witt)). A

similar analysis as the previous case tells us that ϕ2 deforms the commutator [L, T ] part as
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[Lm, Tp,q] = (m+1
2 −p)Tm+p,q+f(m, p)Lp+m−1δq,0 +g(m)L̄q−1δm+p,0 (and a similar relation

can be obtained for [L̄, T ]). Recalling the arguments of previous section, one concludes

H1((witt⊕witt);H1(T; (witt⊕witt))) = 0. (7.8)

This means that the [L, T ] and [L̄, T ] commutators cannot be deformed by terms with

coefficients in L and L̄.

We finally compute the last term in (7.6), H0((witt⊕witt);H2(T; (witt⊕witt))). One

can repeat the procedure exactly the same as the previous case to get

(Lm ◦ ψ)(Tp,q, Tr,s) = [Lm, ψ(Tp,q, Tr,s)]− ψ([Lm, Tp,q], Tr,s)− ψ(Tr,s, [Lm, Tp,q]), (7.9)

and

(L̄m◦ψ)(Tp,q, Tm,n) = [L̄m, ψ(Tp,q, Tm,n)]−ψ([L̄m, Tp,q], Tm,n)−ψ(Tm,n, [L̄m, Tp,q]), (7.10)

with ψ(Tp,q, Tm,n) = A(m,n; p, q)Lm+p−1 + B(m,n; p, q)L̄n+q−1 where A(m,n; p, q) and

B(m,n; p, q) are arbitrary antisymmetric functions. Inserting the latter into (7.9)

and (7.10) we get the same relation as (3.30) and its analogue for A, leading to

A(m,n; p, q) = B(m,n; p, q) = 0. Therefore, H0((witt ⊕ witt);H2(T; (witt ⊕ witt))) = 0

for bms4 case. This is in contrast to the bms3 case [1].

As summary of the above discussions one concludes that

H2(bms4, bms4) = H1((witt⊕witt);H1(T;T)). (7.11)

That is, deformations of bms4 are just those that deform the [L, T ] and [L̄, T ] commutators

by terms with coefficients in T . In other words, bms4 algebra can only be deformed into

W(a, b; ā, b̄), in accord with our direct Jacobi identity analysis of previous section.

7.2 Cohomological consideration for b̂ms4 algebra

As discussed in [1, 6] for a given algebra g, (1) central extensions are classified by Gel’fand-

Fucks 2-cocycles, or by H2(g;R) and, (2) to deal with the central extensions in the coho-

mological analysis we need to extend the algebra by adding unit elements, one unit element

for each possible central term, explicitly, we need to consider ĝ = g ⊕ u(1) ⊕ · · · ⊕ u(1),

where the number of u(1) factors is equal to the number of independent commutators in

the algebra, i.e. for bms3 it is three and for bms4 it is six. Of course closure condition may

not allow to turn on all these central terms.9 In our analysis, we adopt the viewpoint that

each central extension is a deformation in the u(1) extended algebra and that turning on a

central charge is like a deformation in ĝ. Therefore, we need not first study H2(g;R) and

then analyze the deformation, we may directly focus on H2(ĝ; ĝ).

As in the bms4 case, (vir ⊕ vir) is not a b̂ms4 module by the adjoint action and

H2(b̂ms4; (vir⊕vir)) is defined by the action induced from the short exact sequence (7.12),

9For instance, the Jacobi identity allows bms3 to have two central terms in the [J ,J ] and [J ,P] com-

mutators, for the KMu(1) we can also have central term in [P,P] commutators, altogether three central

extensions [1, 56]. The bms4, however, just admits two central terms in its two Witt subalgebras.
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as was discussed, we should not expect H2(b̂ms4; b̂ms4) to be equal to H2(b̂ms4; (vir ⊕
vir))⊕H2(b̂ms4;Tab). As in the bms4 case, computation of each of these two factors would

be helpful in computing the former. To this end we employ the Hochschild-Serre spectral

sequence theorem. The b̂ms4 has semi-direct sum structure b̂ms4
∼= (vir⊕ vir) A Tab where

(vir⊕ vir) is spanned by L and L̄ generators plus two unit elements as central generators

and Tab is ideal part which is spanned by T . The short exact sequence for the above is

0 −→ T −→ b̂ms4 −→ b̂ms4/T ∼= (vir⊕ vir) −→ 0. (7.12)

Computation ofH2(b̂ms4; (vir⊕vir)). Using the Theorem 1.2 in [75] and Hochschild-

Serre spectral sequence theorem we get

H2(b̂ms4; (v⊕ v)) = ⊕p+q=2E
p,q
2;(v⊕v) = E2,0

2;(v⊕v) ⊕ E
1,1
2;(v⊕v) ⊕ E

0,2
2;(v⊕v)

= H2((vir⊕ vir);H0(T, (vir⊕ vir)))

⊕H1((vir⊕ vir);H1(T, (vir⊕ vir)))

⊕H0((vir⊕ vir);H2(T, (vir⊕ vir))),

(7.13)

where Ep,q2;(v⊕v) ≡ H
p((vir⊕ vir);Hq(T, (vir⊕ vir))).

The first term we have to consider is E2,0
2;(v⊕v) = H2((vir⊕vir);H0(T, (vir⊕vir))). From

the definition of H0 one gets H0(T, (vir ⊕ vir)) = (vir ⊕ vir) because the action of T as

an ideal part of the algebra, on (vir ⊕ vir), induced by the short exact sequence (7.12),

is trivial. Then, recalling the fact that (vir ⊕ vir) algebra is rigid [1] one concludes that

E2,0
2;(vir⊕vir) = H2((vir⊕ vir); (vir⊕ vir)) = 0.

We should next consider E1,1
2;(v⊕v) = H1((vir ⊕ vir);H1(T, (vir ⊕ vir))). One may

generalize discussions of the case without the central elements to conclude H1((vir ⊕
vir);H1(T, (vir ⊕ vir))) = 0. Therefore, the [L, T ] and [L̄, T ] commutators cannot be

deformed by the terms with coefficient of L̂ and ˆ̄L where the hatted objects, such as L̂m,

denote generators of the Virasoro algebra, i.e. Witt algebra plus central element hence

E1,1
2;(v⊕v) = 0.

The last term we compute is E0,2
2;(v⊕v) = H0((vir ⊕ vir);H2(T, (vir ⊕ vir))). Using

definition of H0, one observes that its elements are solutions to

(L̂m ◦ ψ̂)(Tp,q, Tr,s) = [L̂m, ψ̂(Tp,q, Tr,s)]− ψ̂([L̂m, Tp,q], Tr,s)− ψ̂(Tp,q, [L̂m, Tr,s]), (7.14)

and

(
¯̂Lm ◦ ψ̂)(Tp,q, Tr,s) = [

¯̂Lm, ψ̂(Tp,q, Tr,s)]− ψ̂([
¯̂Lm, Tp,q], Tr,s)− ψ̂(Tp,q, [

¯̂Lm, Tr,s]), (7.15)

where ψ̂(Tp,q, Tr,s) is a 2-cocycle. The linear expansion of ψ̂ in terms of generators is

ψ̂(Tm,n, Tp,q) = Ã(m,n; p, q)Lm+p−1 + B̃(m,n; p, q)L̄n+q−1 + Z̃(m,n; p, q).

Inserting the expansion of ψ̂ into (7.14) and (7.15) we reach to some relations which force

all of the above functions to be zero so E0,2
2;(v⊕v) = H0((vir⊕ vir);H2(T, (vir⊕ vir))) = 0.

To conclude this part, we have shown that H2(b̂ms4; (vir⊕ vir)) = 0.
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Computation of H2(b̂ms4;T). Using the Theorem 1.2 in [75] and Hochschild-Serre

spectral sequence theorem we get

H2(b̂ms4;T) = ⊕p+q=2E
p,q
2;T = E2,0

2;T ⊕ E
1,1
2;T ⊕ E

0,2
2;T

= H2((vir⊕ vir);H0(T,T))⊕H1((vir⊕ vir);

H1(T,T))⊕H0((vir⊕ vir);H2(T,T)),

where we defined Ep,q2;T = Hp((vir⊕ vir);Hq(T,T)). Unlike the b̂ms3 case, the ideal part of

the b̂ms4 do not admit any central generator in its ideal part, so the results of the case

without central extension can be generalized to this case too.

In summary, we conclude that

H2(b̂ms4, b̂ms4) = H1((vir⊕ vir);H1(T;T)). (7.16)

That is, in accord with our closure condition analysis, b̂ms4 algebra can only be deformed

to Ŵ(a, b; ā, b̄).

7.3 Cohomological consideration of W(a, b; ā, b̄) algebra

W(a, b; ā, b̄) which is introduces by (3.16) can be considered as semi-direct sum of (witt⊕
witt) A T which it has the following short exact sequence

0 −→ T −→W(a, b; ā, b̄) −→W(a, b; ā, b̄)/T ∼= (witt⊕witt) −→ 0, (7.17)

where T and (witt⊕witt), respectively, denote the ideal part and subalgebra ofW(a, b; ā, b̄).

Note that since (witt ⊕ witt) is not a W(a, b; ā, b̄) module by the adjoint action,

H2(W(a, b; ā, b̄); (witt⊕witt)) is defined by the action induced from the above short exact

sequence. The relevant second adjoint cohomology of H2(W(a, b; ā, b̄);W(a, b; ā, b̄)) may

hence be computed much the same as the bms4 case discussed earlier, with the same re-

sult, namely, H2(W(a, b; ā, b̄);W(a, b; ā, b̄)) = 0 for the family of W(a, b; ā, b̄) algebras ; i.e.

W(a, b; ā, b̄) family for generic value of parameters is infinitesimally and formally rigid.

Cohomological consideration of Ŵ(a, b; ā, b̄) algebra. The case Ŵ(a, b; ā, b̄) is ex-

actly the same as b̂ms4 from cohomological point of view: it just admits two nontrivial

central terms in its two Witt subalgebras and that H2(Ŵ(a, b; ā, b̄); Ŵ(a, b; ā, b̄)) = 0 for

the family of Ŵ algebras.

8 Summary and concluding remarks

We analyzed the deformation and stability (rigidity) of bms4 and its central extension b̂ms4

algebra. While the former appears as asymptotic symmetry of the 4d flat space [12], the

latter does not [13]. We showed that although they are stable (rigid) in their ideal part,

they can be formally deformed in other commutators which lead to a family of new non-

isomorphic infinite dimensional algebras we called W(a, b; ā, b̄) and Ŵ(a, b; ā, b̄). Among

other things, this implies that there is no such infinite dimensional algebra associated with
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AdS4 space which upon contraction yields bms4 or b̂ms4. This is unlike the 3d case where

b̂ms3 and vir⊕ vir are related through deformation/contraction, which prompts a possible

formulation of field theory holographically dual to gravity on 3d flat space [65, 76–78]. In

the 4d case one should seek a different way to tackle the question of field theories dual to

gravity on 4d flat space.

We also showed that while the family of W(a, b; ā, b̄) and Ŵ(a, b; ā, b̄) are stable

(rigid) for generic values of their parameters, for specific points such as Ŵ(0, 0; 0, 0) and

Ŵ(0,−1; 0, 0), there are other possibilities for deformation which takes us out of the

W-algebra family. As the first interesting follow-up question one may explore whether

W(a, b; ā, b̄) and Ŵ(a, b; ā, b̄) algebras may appear as asymptotic symmetries of a physical

theory. One may first tackle a similar question in the simpler case of W (a, b) algebra dis-

cussed in [1, 56]. The next natural question is then what is the physical/geometric meaning

of the deformations and motion in the parameter space of the algebras.

Hochschild-Serre factorization (HSF) theorem for infinite dimensional alge-

bras?! We already discussed the HSF theorem states that a non-rigid finite dimensional

algebra can only be deformed in its ideal part and other parts of the algebra cannot be

deformed. It is, however, known that this theorem does not apply to infinite dimensional

algebras. Our analysis in [1] for the bms3, KMu(1) and W (a, b), led us to a proposal for a

version of HSF which works for the infinite dimensional algebras: For infinite dimensional

algebras with countable basis the deformations may appear in ideal and non-ideal parts,

however, the deformations are always by coefficients of term in the ideal part. For the

W (a, b) class with generators Ln,Pn the deformations may appear in [L,L], [L,P], [P,P],

nonetheless it is proportional to P generators. Our analysis of bms4, W(a, b; ā, b̄) algebras

confirm this extended HSF theorem, providing more supportive examples for it. It would

be desirable to attempt proving this proposal, maybe using cohomological arguments.

As we mentioned although the W(a, b; ā, b̄) algebrafamily and their central extensions

are stable and cannot be deformed, there are some specific points which can be deformed

in other commutators. The most interesting case is the W(0,−1; 0, 0) algebra which ad-

mits a formal deformation in its ideal part. The central extension of W(0,−1; 0, 0) al-

gebra can also be deformed to a new algebra which has a direct sum of three Virasoro

subalgebras. As we discussed the W(0,−1; 0, 0) algebra has iso(2, 1) ⊕ sl(2,R) global

part. By deformation of the W(0,−1; 0, 0) algebra we obtain a new algebra which has

so(2, 2)⊕ so(2, 1) (so(3, 1)⊕ so(2, 1)) which is direct sum of isometry algebra of AdS3 (dS3)

spacetime with 3d Lorentz algebra [69, 70]. It is interesting to explore if this subalgebra is

related to the asymptotic symmetry algebra of 3d Einstein-Maxwell theory (see [71, 72, 79])

or to the “meta” conformal algebras [80] which can have a connection with conformal

field theory.

Here we focused on the algebras and their deformations. We know that there are

groups associated with bms4 and its central extension b̂ms4 algebras [81]. One may ask

how the deformation of algebras appear in the associated groups, e.g. whether there are

groups associated withW(a, b; ā, b̄) and its central extension Ŵ(a, b; ā, b̄) algebras. Another

related question is analyzing the (co)adjoint orbits of these groups and algebras and how
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the deformations affect the coadjoint orbits which is crucial for building Hilbert space of

physical theories invariant under the deformed symmetry algebras.
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A Algebra generators as functions on celestial two sphere

The bms3 and bms4 algebras may be obtained as asymptotic symmetry algebra 3d and 4d

flat spacetimes, respectively. As such the generators of these algebras are given through

co-dimension two surface integrals which is an integral over a circle for bms3 case and over

a two-sphere for the bms4 case. In other words, the generators of bms3 and bms4 algebras

respectively may be viewed as functions on an S1 or S2. In fact, it is known that witt (or

Virasoro algebra) is nothing but algebra of diffeomorphisms on an S1. In this appendix we

explore this viewpoint and its implications.

witt algebra case, a warm up example. Let us first analyze the case of witt. The

case of bms3 was analyzed in [1]. Generators of the witt are Fourier modes of a (periodic)

function on S1:

Ln =
1

2π

∫ 2π

0
dϕL(ϕ) exp (inϕ). (A.1)

The index n on the generators, hence, depends on the Fourier basis used. Explicitly, one

may use

L̃n =
1

2π

∫ 2π

0
dϕL(ϕ) exp (inϕ)Φ′(ϕ)

=
1

2π

∫ 2π

0
dΦL̃(Φ) exp (inϕ(Φ)),

(A.2)

where Φ(ϕ) is some periodic function, ϕ(Φ) is its inverse and L̃(Φ) = L(ϕ). For example, if

we choose Φ = K
d0
eid0ϕ, then L̃n =

∑
dCdLn+d with Cd = (Kd0 )l 1

l! in which K is a constant

number.

The above simple analysis shows that one have the freedom to shift the index n on Ln
generators an go to another equivalent basis; this change of basis geometrically corresponds

to a diffeomorphism on circle.

bms4 algebra case. We are now ready to make a similar analysis for bms4 case where

the generators are function on an S2 [11, 12]. To this end, let adopt Poincaré coordinates

for the S2, ds2 = 1
(1+ζζ̄)2

dζdζ̄. In this coordinates the standard basis for expansion of

generators are

L(ζ) =
∑
Lnζn+1, L̄(ζ) =

∑
L̄nζ̄n+1,

T (ζ, ζ̄) =
∑

Tm,nζ
nζ̄m

(A.3)
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where ζ, ζ̄ are coordinates on the sphere. A change of coordinates on the S2, for example like

the one discuss above for the case of a circle, yields a change in the indices on Ln, L̄n, Tm,n.

Fixing this coordinates, fixes the conventions on the indices.10 Analyzing the commutators

and hence in what can appear on the Right-Hand-Side of the deformed commutators, we

are dealing with product of these functions. Let us e.g. consider T (1)(ζ, ζ̄)T (2)(ζ, ζ̄),

T (1)(ζ, ζ̄)T (2)(ζ, ζ̄) =
∑

T (1)
m,nT

(2)
p,q ζ

m+pζ̄n+q ≡
∑

Tk,lζ
kζ̄ l =⇒ Tk,l =

∑
T (1)
m,nT

(2)
k−m,l−n,

(A.4)

so one finds that the index k, l are fixed to be sum indices of T
(1)
m,n and T

(2)
k−m,l−n. In a

similar way, the indices in deformations of [Ln,Lm], [Ln, L̄m], [Ln, Tp,q], [Ln, L̄m], [L̄m, L̄n]

and [L̄m, Tp,q] are fixed.

B Hochschild-Serre spectral sequence

It is known that Hochschild-Serre factorization theorem does not work infinite dimensional

Lie algebras, nonetheless the Hochschild-Serre spectral sequence method applies also to

infinite dimensional cases and can be used to extract information about deformations and

hence second adjoint cohomology. For a Lie algebra (g, [, ]) with a semi-direct sum structure

as g = g0 A h where h is an abelian ideal and g0
∼= g/h is its quotient Lie algebra, we have

the following short exact sequence

0 −→ h −→ g −→ g/h ∼= g0 −→ 0, (B.1)

where arrows show Lie algebra morphisms. The arrows in the short exact sequence means

the image of each morphism is equal to the kernel of the next. For this sequence one obtains

the Hochschild-Serre spectral sequence of cochain complexes whose first terms are (see [1]

for a more detailed review and references)

Ep,q0 = Cp(g0, Cq(h,M)), Ep,q
1 = Hp(g0; Cq(h,M)), Ep,q

2 = Hp(g0;Hq(h;M)), . . . , Ep,q
n , . . .

in which M is a g-module, Cp is the space of p-cochains and E’s are related to each other

by the differential operator dp,qn : Ep,qn −→ Ep+n,q−n+1
n [42, 66]. In some specific cases one

finds the differential function becomes trivial for n ≥ n0 (for certain n0) and Ep,qn , ∀n ≥ n0

are isomorphic to each other and therefore, Ep,qn ∼= Ep,q∞ . So for the latter we have11

Hn(g;M) = ⊕p+q=nEp,q∞ . (B.2)

In this setting by the Hochschild-Serre spectral theorem [42] we have

Ep,q2 = Hp(g0;Hq(h,M)). (B.3)

10Of course, recalling that the global part of the supertranslations T00, T01, T10, T11 are in the (2, 2)

representation of the Lorentz group su(2)L × su(2)R, it is also natural to choose the indices to be half-

integer valued, as suggested in [15].
11Note that, in general, this equality is true modulo extensions but all the terms in our cases are vector

spaces and hence those extensions do not appear.
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This theorem works for both finite and infinite dimensional Lie algebras. For those split

abelian extensions with the property that the ideal action on M is trivial, Theorem 1.2

in [75] states that we always have n0 = 2 and therefore Ep,q2
∼= Ep,q∞ . So, combining (B.2)

and (B.3) one finds

H2(g;M) = ⊕p+q=2E
p,q
2 . (B.4)

Note that h is an ideal of g and hence a g-module and because it is abelian, as a

g-module its action on itself is trivial. Using the short exact sequence (B.1) we consider g0

as a g-module as well. In this way the action of h on g0 is trivial. We conclude that via

the above arguments, g0 and h are both g-modules satisfying the conditions of Theorem

1.2 in [75], and one can compute the spaces H2(g; g0) and H2(g; h).

The short exact sequence (B.1) induces the long exact sequence at the level of coho-

mologies

· · · −→ H1(g; g0) −→ H2(g; h) −→ H2(g; g) −→ H2(g; g0) −→ H3(g; g0) −→ · · · (B.5)

One may use the above sequence to get information about H2(g; g) or even compute it. The

long exact sequence (B.5) is true for both finite and infinite dimensional Lie algebras with

the semi-direct sum structure. In finite dimensional cases as a consequence of Hochschild-

Serre factorization theorem we have H2(g; g) ∼= H2(g; h). The latter can be obtained from

another long exact sequence

· · · −→ H1(h; g) −→ H2(g0; g) −→ H2(g; g) −→ H2(h; g) −→ H3(g0; g) −→ · · · (B.6)

in which H2(g0; g) = H3(g0; g) = 0. In the case of infinite dimensional Lie algebras we

can still use (B.5). While the sequence has in general infinite terms, in some specific cases

one finds that some of terms in (B.5) are equal to zero, leading to another short exact

sequence. In such situations we can infer some information about lower cohomologies,

see [1] for some examples.
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