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1 Introduction

M5-branes in M-theory have emerged as one of the most powerful tools for studying and

classifying superconformal field theories (SCFTs) in lower dimensions. These SCFTs arise

in the low-energy dynamics of twisted compactifications of M5-branes on manifolds of var-

ious dimensions. The possible choices of manifolds that can be wrapped by M5-branes are

restricted by supersymmetry. In turn, when these geometries are understood, the protected

sectors of the SCFTs can be studied in terms of the topological and geometric properties

of these manifolds. This then provides a new way to identify, study and classify SCFTs

without the requirement of a Lagrangian description. Moreover, the manifolds can also

have boundaries; in which case, supersymmetric boundary conditions are needed for the

M5-branes. In the field theories, this data manifests itself as various types of global sym-

metries; therefore the addition of boundaries enriches the geometric classification scheme.

In the present paper, we are interested in two-dimensional N = (0, 2) SCFTs that

arise in the low-energy dynamics of M5-branes wrapped on four-manifolds. We study this
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problem in AdS/CFT and derive the BPS system which gives rise to the holographic duals

of these field theories. In particular, we start with the supergravity equations of M-theory

for AdS3 vacua [1] and further reduce to cases where the vacua emerge from the near-

horizon limit of a stack of M5-branes wrapped on a four-manifold, C. We assume that

this four-manifold is generic and may admit boundaries. Furthermore, in order to preserve

supersymmetry, we consider cases where the four-manifold is embedded in a Calabi-Yau

fourfold (CY4). We further restrict to cases where we take CY4 to be a sum of two line

bundles over C. The reduction of the supergravity equations then allows for the classifica-

tion of the possible choices of C and boundary conditions of the M5-branes, and therefore

a classification for these N = (0, 2) SCFTs.

This program has been invigorated with the classification of four-dimensional N = 2

SCFTs in [2, 3] by considering twisted compactifications of M5-branes on two-dimensional

Riemann surfaces with punctures. Strong evidence for the existence of the N = 2 SCFTs

was provided in [4] by explicit constructions of families of AdS5 solutions dual to the

N = 2 SCFTs by using the Lin, Lunin and Maldacena (LLM) system in [5]. In these

solutions, punctures manifest themselves as localized sources on the Riemann surface that

are extended along the normal directions. The metric on this space is governed by a single

potential that satisfies a partial differential equation, the SU(∞) Toda equation; and the

set of sources to the Toda equation that lead to regular solutions corresponds to the set of

supersymmetric boundary conditions for the M5-branes at the punctures. For cases where

there are no punctures, the Toda equation reduces to Liouville equation, and the Riemann

surface has constant curvature and decouples from the normal directions. This program

has further been extended to four-dimensional N = 1 SCFTs. The N = 1 generalizations

of LLM are obtained in [6, 7], while the structure of general N = 1 punctures from the

AdS5 system is discussed in [7].

The results in the present paper can therefore be seen as generalizations of the LLM

system to AdS3 solutions dual to N = (0, 2) theories from M5-branes on four-manifolds.

In particular, the equations that govern the metric need to be general enough to allow for

the description of boundaries similar to the SU(∞) Toda equation.

A class of AdS3 solutions from M5-branes have been studied in [8, 9]. In both cases,

the authors consider twisted compactifications of M5-branes1 on a product of two Riemann

surfaces with no punctures and four-manifolds with no boundaries. Furthermore, their M-

theory constructions arise as AdS3 vacua in seven-dimensional gauged supergravity which

are then uplifted to M-theory. This procedure, while powerful in generating new solutions,

is very restrictive in capturing systems which involve boundaries or orbifolds. A strong

motivation for this work is to capture the more complex systems that involve boundaries.

This classification question for two-dimensional SCFTs has also been studied in the

context of quantum field theory and four-manifolds in [9, 11]. In fact, the authors in [12]

have studied a fairly large class of N = (0, 2) quiver gauge theories and discovered a new

type of duality that is very reminiscent of the 4d Seiberg duality. Moreover, AdS3 solutions

1The tools for twisted compactifications of branes in string theory and M-theory were developed in [10]

in the context of gauged supergravity.
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have also been obtained by using non-Abelian T-duality in [13, 14] and gauged supergravity

in lower dimensions [9, 15–19]. Gravity duals to N = (0, 4) SCFTs from M5-branes are

also discussed in [20, 21].

The plan of the rest of the paper is as follows. In section 2 we discuss generic properties

of the two-dimensional N = (0, 2) SCFTs by considering twisted compactifications of the

world volume theory of a stack of N M5-branes — the six-dimensional (2, 0) AN−1 SCFT.

We also consider some special twists where the supersymmetry enhances to (0, 4) and (2, 2).

In section 3 we start by reviewing the geometric set-up for the M5-branes on four-

manifolds in M-theory. Then, in section 3.1 we describe the general metric for AdS3

solutions dual to N = (0, 2) SCFTs from systems of M5-branes. In sections 3.2 and 3.3 we

motivate the ansatz for systems where a stack of M5-branes wrap a four-manifold, C, which
is embedded in a CY4 that is a sum of two line bundles over C. We end section 3 with a

presentation of the gravity duals in 3.4. In section 4 we further reduce to systems which

preserve (0, 4) and (2, 2). We conclude with a summary of our results and a discussion

about the next steps in this program in section 5. The work and results in this paper are

fairly technical; we do our best to hide this in the appendices.

2 N = (0, 2) from M5-branes

We start by reviewing some general properties of two-dimensional N = (0, 2) theories ob-

tained by compactifying a stack of N M5-branes on a Kähler four-manifold, M4. The

surface is given by a co-dimension two complex curve, C, in a Calabi-Yau fourfold. Equiv-

alently, we consider the compactifications of the six-dimensional AN−1 (0, 2) SCFT to two

dimensions. In particular, we study cases where the two-dimensional theory preserves at

least a U(1)2 global symmetry, one of which is the N = (0, 2) U(1) R-symmetry.

2.1 Twist and symmetries

Supersymmetry is generically broken when supersymmetric field theories are taken over

curved manifolds. However, we can preserve some fraction of the supersymmetries by

performing a partial topological twist [22, 23]. In particular, a constant global spinor is

obtained by gauging the R-symmetry in a way that trivializes the killing spinor equation.

In other words we pick a background gauge field, A valued in the R-symmetry, to solve the

killing spinor equation

(∂µ + iωµ − iAµ)ǫ = 0 (2.1)

where ωµ is the spin connection of the manifold and ε is the desired spinor. The possible

choices of twists are therefore determined by the holonomy group of the manifold, Hol(∇),

and the different ways we can embed it in the R-symmetry.

The compactifications under consideration involve a four-manifoldM4 which is Kähler2

and generically admits a U(2) holonomy group; in this paper though, we merely consider

twists of its Abelian subgroup, U(1)1 × U(1)2. Now, the six-dimensional (2,0) theory has

2In order to preserve (0,2) supersymmetry the M5-branes must wrap a Kähler 4-cycle in a CY4 [9, 20].
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an SO(5) R-symmetry whose Cartan subgroup is given as

U(1)+ ×U(1)− ⊂ SU(2)+ × SU(2)− ⊂ SO(5). (2.2)

Thus, the different Abelian twists, which we are interested in, are obtained by identifying

the U(1)’s in Hol(∇) with different combinations of the U(1)±. More formally, we can

relate the generators as

Jσ =
pσ

pσ + qσ
J+ +

qσ
pσ + qσ

J−, σ = 1, 2, (2.3)

where Jσ and J± are the generators of the U(1)σ and U(1)±, respectively. The (pσ, qσ) are

the fluxes of the background gauge fields; combinations of them are fixed by the topological

twist.

In the special case, for example, where the four-manifold is a trivial product of two

Riemann surfaces, M4 = Σ1 × Σ2, the U(1)1 × U(1)2 can be identified with the U(1)

holonomies of the surfaces, respectively. The fluxes are then fixed as

pσ + qσ = −χ (Σσ) , (2.4)

where χ (Σσ) is the Euler characteristic of the Riemann surface.

After the twist, the bosonic spacetime symmetries of the six-dimensional theory are

broken down as

SO(1, 5)× SO(5) → SO(1, 1)×U(1)+ ×U(1)− (2.5)

and the system generically preserves two supercharges. The field theory admits a (trial)

R-symmetry, R0, and a flavor symmetry, F ; these can be written in terms of the generators

of the U(1)± as

R0 =
1

2

(
J + + J −

)
, F =

1

2

(
J + − J −

)
. (2.6)

When the two-dimensional field theory is superconformal, we can write the superconformal

R-symmetry as

RN=(0,2) = R0 + ǫF = a+J + + a−J −, a± =
1

2
(1± ǫ) . (2.7)

The ǫ parameter is fixed by c-extremization when the two-dimensional SCFT is com-

pact [24].

Enhanced symmetry

For special values of the parameters, the two-dimensional theories can have enhanced sym-

metries. In particular we will be interested in cases where the supersymmetry enhances

to N = (0, 4) and to N = (2, 2) (see appendix E of [9] for a complete discussion of the

supersymmetries for twisted compactifications of M5-branes on four-manifolds).

(0, 4) theories. We can fix p1 = p2 = 0 or q1 = q2 = 0 to obtain (4, 0) or (0, 4) theories.

Consider the case when p1 = p2 = 0. The U(1)+ is not twisted and therefore it enhances to

SU(2)+ — the R-symmetry of the (0, 4) theories. The topological twist is along the U(1)−.

The bosonic symmetries of the six-dimensional theory are broken down as

SO(1, 5)× SO(5) → SO(1, 1)×U(1)− × SU(2)+. (2.8)
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(2, 2) theories. When p1 = q2 = 0 or p2 = q1 = 0, we obtain (2, 2) theories. In this

case, the symmetries are U(1)+ × U(1)− and they can be identified with the left/right R-

symmetry of (2, 2) theories. In these cases, only the supersymmetry enhances, the global

symmetry coming from the SO(5) R-symmetry does not change.

(0, 2) with SU(2)F . When pσ = qσ, the diagonal U(1) of U+(1)× U−(1) is not twisted

and instead, it enhances to a global SU(2)F flavor symmetry. This symmetry is also the

diagonal SU(2) of SU(2)+ × SU(2)− ⊂ SO(5).

3 Gravity duals to N = (0, 2) from M5-branes

Our primary interest is to understand when twisted compactifications of M5-branes flow

to two-dimensional N = (0, 2) SCFTs in the infrared (IR) limit. In the large N limit,

this question can be studied in AdS/CFT by classifying the set of AdS3 solutions that can

exist in the near-horizon limit of systems of N M5-branes wrapping a four-manifold, M4.

However, the problem of obtaining the full M-theory solution is in general hard, and since

we are only interested in cases where the near-horizon geometry contains a decoupled AdS3

factor, it suffices to look for these geometries directly. In this section, we discuss how to

construct these AdS3 solutions at a qualitative level. We refer the reader to the appendices

for a more quantitative discussion.

Our starting point is M-theory where we decompose the 11d spacetime as

M1,10 ∼= R
1,1 × R× CY4, (3.1)

and consider a stack of N M5-branes in this background with a world-volume R
1,1 × C.

Here we assume that the four-manifold M4 can be described by a complex co-dimension two

surface, C, in a CY4. We also assume that C is generic and may admit boundaries. Now,

in the region near the branes, the CY4 is given by a C
2 bundle over the complex surface C.

In the case of interest, the structure group of the bundle is U(1)2 and we can take CY4
to be a sum of two line bundles over C. That is

C
2 →֒ L+ ⊕ L−

↓
C,

(3.2)

The degrees of the line bundles are constrained by the vanishing of the first Chern class

of the CY4. The U(1)2 structure group corresponds to the phases of the line bundles and

are identified with the U(1)+×U(1)− subgroup of the six-dimensional SO(5) R-symmetry.

This is precisely the set-up that captures the abelian twists of the six-dimensional (2, 0)

SCFT described in section 2.1.

When the branes are backreacted, the near-horizon region is a warped geometry of the

form AdS3×wM8, where M8 is some compact eight-manifold. Now the main challenge boils

down to classifying all the possible choices of M8 which admit the following decomposition:

N4 →֒ M8

↓
MC .

(3.3)
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Here the base four-manifold MC is the IR limit of the complex two-dimensional surface C.
The structure group of the bundles must be U(1)2, and N4 must admit at least a U(1)2

isometry in accordance to the fact that M8 descended from a CY4 which is a sum of two

line bundles.

Now putting everything together, we conclude that in the region near the M5-branes,

the eleven-dimensional metric must be of the form

M1,10 → AdS3 ×w (MC × S1
+ × S1

− × [t+]× [t−]). (3.4)

The circles dual to the U(1)± are represented by S1
±; they are generically fibered over

the 4d base manifold MC . The last two directions with coordinates t± do not, generically,

correspond to any symmetries. The AdS3 radius and the two interval directions t± are com-

binations of the real line R in (3.1), and the radii of the fibers in the line bundles. In general,

the metric on M8 will depend on the coordinates of MC and on t±; therefore the restrictions

set by this metric ansatz (3.4) do not seem very constraining. Nevertheless, we can still gain

some control of the supergravity equations and bring them to a manageable form. At last,

in addition to this metric ansatz, we will also need to make an ansatz for the four-form flux.

In section 3.1 we describe the general form of AdS3 ×w M8 solutions of M-theory from

configurations of M5-branes. In section 3.2 we impose the U(1)2 isometry for M8 and

further reduce the BPS system. Then, in section 3.3 we fix an ansatz for the four-form

flux. This has the benefit of greatly simplifying the metric and the BPS equations. Finally

in section 3.4 we describe the metric for the spacetime in (3.4) that describes the system

of interest. This last section is a summary of our main results and is written so that it can

read separately from the previous ones. The reader interested merely in the results can

directly go to this section.

3.1 AdS3 spacetimes from M5-branes

The general BPS conditions for AdS3 solutions in M-theory are obtained in [1] by using

G-structure analysis. We describe these results in appendix A and reduce them for the case

where the solutions arise solely from M5-branes. In this section we summarize these results.

The eleven-dimensional metric for gravity duals of N = (0, 2) SCFTs from configura-

tions of M5-branes is given as

ds211 = L4/3e2λ
[
ds2(AdS3) + e−6λdŝ2(M8)

]

dŝ2(M8) = e3λĝ6dMN dxMdxN +
1

sin22β
dy2 +

e6λsin22β

n2
(dψ + P )2

(3.5)

where ĝ6d, λ, β and P = PMdxM are all functions of xM and y. The AdS radius is denoted

by L; it can be factored out as an overall parameter. We also have

1. ĝ6d is a family of complex metrics on M6 parametrized by y

2. ∂ψ is a Killing vector and generates a U(1)ψ isometry that is dual to the U(1) R-

symmetry of the N = (0, 2) SCFT2,

3. the corresponding complex structure is independent of ψ and y .
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The BPS equations can be written in terms of a compatible pair of SU(3)-structure

forms on M6; namely an almost symplectic structure, Ĵ , and a holomorphic three-form, Ω̂.

The integrability equations for Ĵ are given by

iĴd6Ĵ = 0 (3.6a)

iĴ∂yĴ = −1 + cos22β

sin22β
∂y ln e3λ (3.6b)

1

n
iĴd6P = 2

cos 2β

sin22β
∂y ln e

3λ (3.6c)

∂ψĴ = 0. (3.6d)

The integrability equations for the holomorphic three-form are given by

d6Ω̂ =

[
2i

n
P − 1

2
d6 ln(sin 2βtan 2β)

]
∧ Ω̂ (3.7a)

y∂yΩ̂ = −1

2

[
y∂y ln(sin 2βtan 2β) +

1 + cos22β

sin22β

]
Ω̂ (3.7b)

∂ψΩ̂ = i
2

n
Ω̂. (3.7c)

Note that the holomorphic three-form carries a charge under the U(1)ψ given as 2
n .

The four-form flux can be written completely in terms of the warp factor and almost

symplectic structure Ĵ ; it is given as

B4 =

[
∂yĴ +

1

n
cos 2β d6P

]
∧ Ĵ + cot 2β ⋆6 d6(sec 2β Ĵ) ∧ ρ̂+

1

sin 2β
d6

(
cos 2βĴ

)
∧ ψ̂

+

[
2Ĵ − ⋆6

1

n
d6P ∧ Ĵ − cos 2β

2
⋆6 ∂y(Ĵ ∧ Ĵ)

]
∧ ρ̂ ∧ ψ̂, (3.8)

with

cos 2β = 2ye−3λ, ρ̂ =
e−3λ

sin 2β
dy, ψ̂ =

sin 2β

n
(dψ + P ). (3.9)

The BPS equations tell us that B4 must satisfy

(e3λ cos 2β) d8B4 + d8

(
e3λ ⋆8 B4

)
= 0. (3.10)

We therefore see that when we impose the Bianchi identity

d8B4 = 0, (3.11)

the equation of motion of B4 naturally emerges from the BPS equations. In other words,

solving equations (3.6a)–(3.7c) together with the Bianchi identity is equivalent to solving

the supergravity equations (see [1, 25]). Thus, the main strategy we shall follow for finding

solutions, is to first solve the BPS equations for the metric ĝ6d and warp factor e3λ, and

further restrict the solutions to those that solve the Einstein equations by imposing the

Bianchi identity.
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3.2 The metric ansatz for U(1)2 systems

In this section, we describe the metric ansatz for the spacetime in (3.4). The geometry of

M8 in (3.5) has a built-in U(1)ψ isometry and admits the decomposition

M8 → M6 × S̃2
(y,ψ), (3.12)

where S̃2
(y,ψ) is a squashed 2-sphere fibered on some generic complex 6-manifold M6. Now

in accordance to (3.4) we need to impose a U(1)φ isometry for ĝ6d. This can be done by

decomposing M6 as

M6 → MC × S̃2
(z,φ), (3.13)

where S̃2
(z,φ) is a squashed 2-sphere fibered on the base four-manifold MC . Hence, the most

general ansatz for (ĝ6d, Ĵ , Ω̂) is given by

dŝ2(M6) = e2wds2(MC) + e2F−3λ||ηz + ieCηφ||2 (3.14)

Ĵ = e2wJC + e2F−3λeCηz ∧ ηφ (3.15)

Ω̂ = eiψ+iQφφe2weF− 3
2
λ ΩC ∧

(
ηz + ieCηφ

)
. (3.16)

This decomposition defines a (local) SU(2) structure on MC ; this is defined by a pair of a

compatible almost symplectic structure, JC , and a holomorphic two-form, ΩC , on MC .

The η one-forms are given by

ηz = dz + V R, ηφ = dφ+ V I , (3.17)

where V R and V I are some real one-forms on MC . All forms and functions depend on the

coordinates on MC , y and z. In writing the general ansatz, we also allow for the function

C. However, when C is independent of y, we can set it to zero by redefining the coordinate

z and by shifting the one-form V R and function F . When we expand the BPS equations

we find that C is indeed independent of y; we therefore fix C to zero.

Without loss of generality, the charge of the holomorphic three-form under the U(1)ψ,

in equation (3.7c), can be fixed as 2
n = 1. The coordinate φ parametrizes a circle that is

dual to the U(1)φ. The parameter Qφ is the charge of the holomorphic three-form under

the U(1)φ; while it is allowed, we can fix it as Qφ = 0 by shifting ψ and the connection

one-form P . Since we can make the holomorphic form neutral under the U(1)φ, the Killing

spinor for the background must be neutral under the U(1)φ; this isometry ∂φ is thus dual

to the flavor symmetry F in (2.6).

Now notice that so far we have decomposed M8 into a base manifold MC and two

squashed 2-spheres S̃2
(z,φ) and S̃2

(y,ψ). In particular, the 2-spheres have some non-trivial

composition which defines a four-manifold, parametrized by the coordinates (z, φ, y, ψ),

and this in turn is fibered on the base. This four-manifold is precisely the N4 fiber of the

normal bundle
N4 →֒ M8

↓
MC .

(3.18)
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The metric of the bundle takes the form

ds2(M8) = e2w+3λds2(MC) +
1

2
ds2(N4), (3.19)

ds2(N4) = 2e2F (η2z + η2φ) +
2

sin2 2β
dy2 +

sin2 2β

2
e6λ(dψ + P )2, (3.20)

and ds2(MC) is some complex metric on MC whose choice serves as the “initial data” of

the problem.

At last, recall that earlier we argued that in order to capture the twisted compactifica-

tions of the (2,0) theory in supergravity, the structure group of this bundle must be U(1)2.

This implies that we must trivialize the connection form V R appearing in ηz. We achieve

this in the following way. First, we decompose the exterior derivative on M6 as

d6 = dC + ηz ∧ ∂z, dC ≡ dx̂µ∂µ − V R ∧ ∂z (3.21)

where x̂µ are coordinates on MC . The twisted differential dC is the natural object that

appears in the system of equations. Next we assume that V R is exact and we write

V R = dCΓ, (3.22)

for some function Γ which depends on all the coordinates. We then consider a coordinate

transformation from (x̂µ, y, z) to (xµ, y′, z′) defined by

xµ = x̂µ, y′ = y′(y), z = −Γ(xµ, y′, z′), (3.23)

s.t. dC = dxµ∂µ, ηz = −(∂y′Γ)dy
′ − (∂z′Γ)dz

′. (3.24)

Hence, after the transformation the connection form V R gets completely eliminated from ηz
and in addition, the twisted differential operator dC becomes the exterior derivative on MC .

Having set up the metric ansatz, we next need to reduce the BPS equations and find

the constraints that the metric on MC , or equivalently, the SU(2) structure (JC ,ΩC) must

obey. In appendix B, we discuss this reduction in great detail. In particular, we find that

the base four-manifold MC is conformally Kähler, whose volume depends only on the xµ

coordinates of MC . Moreover, we find that the BPS equations reduce significantly the

number of unknown metric functions and they partially fix the U(1)ψ/φ connections P/V I .

However, the resulting set of equations is still highly non-linear and in order to simplify it

further we need to impose appropriate constraints on the four-form flux, B4.

3.3 Ansatz for the four-form flux

The system under consideration describes the near-horizon geometry obtained by a stack

of N M5-branes wrapped on a complex surface C ⊂ CY4. This brane configuration gives

rise to a magnetic flux, B4, which lies entirely on M8. In the region near the branes, the

four-form flux encodes the data of the original brane configuration that led to the AdS3

solution. We must therefore pick an appropriate ansatz for B4 that reflects the M5-brane

configurations for the set-up in (3.2).
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The expression of the magnetic flux is given in (3.8). For the U(1)2 ansatz described

above, this expression becomes (schematically)

B4 = B(0)v̂ol(N4) +
1

3!
B(1)
abc ∧ ea ∧ eb ∧ ec +

1

2!
B(2)
ab ∧ ea ∧ eb + B(3)

a ∧ ea + B(4), (3.25)

where ea = (dy, ηz, ηφ, Dψ), v̂ol(N4) = e1 ∧ e2 ∧ e3 ∧ e4 is the unit volume form on N4 and

the B(n) are n-forms on the base manifold MC . Now the number of M5-branes wrapped

on the surface C is measured by the magnetic flux threading a normal four-cycle. In the

near brane region, the flux is expected to lie entirely on the four-cycle defined by N4 and it

must therefore asymptote to the B(0) term in (3.25). However, N4 is non-trivially fibered

over MC and the B(0) term, alone, cannot satisfy the Bianchi identity. We must thus allow

for other terms in (3.25) which together with the B(0) term conspire to the closure of B4.

At a minimal level, this is achieved by allowing for B(1) and B(2) terms. Having said that,

we then need to impose that

B(4) = 0, B(3)
a = 0. (3.26)

Now, these additional constraints yield useful equations that greatly simplify the metric

and the BPS equations. In appendix C, we thoroughly discuss their consequences. Here

it is worth mentioning that upon analyzing these conditions, we find that there exists

a natural set of coordinates on the N4 fiber, which makes apparent the U(1)+ × U(1)−
isometry group coming from the C

2-bundle (3.2). To understand the physical significance

of this result, recall that N4 can be thought of as an Ŝ2
(y,ψ)-bundle over Ŝ2

(z,φ). Then in

this parametrization the 11d metric appears to enjoy a U(1)ψ ×U(1)φ isometry. However,

we expect that this isometry group, which we see near the horizon, originated from the

U(1)+×U(1)− isometry group appearing in the full M-theory solution. We should therefore

consider the coordinate transformation

(y, z, ψ, φ) −→ (t+, t−, φ+, φ−) (3.27)

s.t. N4 : [y]× [z]× S1
ψ × S1

φ −→ [t+]× [t−]× S1
+ × S1

−, (3.28)

where the S1
± circles now give rise to the U(1)± isometries. Such a transformation can

only be defined once we impose the flux constraints (3.26). As a consequence of this

transformation, the one-forms (ηφ, Dψ) transform into a new basis defined as

η± = dφ± + P±, (3.29)

where P± are the U(1)± connection forms of the S1
± circles.

3.4 The metric system

In sections 3.2 and 3.3, we fix a metric ansatz for AdS3 solutions that appear in the

near-horizon limit of M5-branes wrapping a four-manifold by considering the symmetries

imposed by the bundle in (3.2). In this section, we discuss the metric corresponding to

these geometries after taking into account the BPS equations described in section 3.1.
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The BPS equations fix the form of the 11d metric to

ds211 = L4/3e2λ
[
ds2(AdS3) + e2w−3λds2(MC) +

1

2
e−6λds2(N4)

]
(3.30)

ds2(N4) = gijdt
idtj + 4hijηiηj (3.31)

with i, j ∈ {+,−}. The AdS radius is denoted as L.

The MC base. The geometry of MC is described by an SU(2) structure (JC ,ΩC) which

satisfies

dC

(
e2w−3λJC

)
= 0, ∂i (volC) = 0, ∂iΩC = 0, (3.32)

where volC ≡ 1
2JC ∧ JC is the volume form on MC . The integrability condition of ΩC is

given below, (3.37). The four-manifold can be chosen so that it is Kähler by absorbing the

conformal factor e2w−3λ. Our choice in (3.30) and in (3.32) is such that the volume of the

manifold and the holomorphic two-form are constant on N4.

The N4 fiber. The N4 fiber is parametrized by the coordinates (t+, t−, φ+, φ−); these

correspond to the [t±] intervals and S1
± circles of the spacetime in (3.4). All the metric

functions of ds2(N4) are determined by a single potential, D0, and are given as

gij = −∂i∂jD0, hij = −∂i∂j (D0 + t(ln t− 1)) , where t = a+t
+ + a−t

−. (3.33)

Here, a± are the same parameters that appear in the N = (0, 2) R-symmetry in (2.7). In

field theory, the a± parameters are fixed by c-extrimization [24]; in the gravity duals, they

are fixed by the BPS equations. The matrix hij , appearing in the metric, is the inverse of

hij .

The one-forms η±, dual to the S1
± circles, can be written as

η± = dφ± + ∂±P0, (3.34)

where P0 is a one-form on MC which determines the U(1)± connections of N4, P±. More-

over, the associated Killing vectors (∂φ+ , ∂φ−
) are dual to the (J +,J −) generators of the

U(1)+ × U(1)− Cartan group of the 6d R-symmetry. In the gravity dual picture, the 2d

R-symmetry and flavor symmetry, as defined in (2.6)–(2.7), are described by the Killing

vectors

RN=(0,2) : ∂ψ = a+∂φ+ + a−∂φ−
, F : ∂φ = −1

2

(
∂φ+ − ∂φ−

)
. (3.35)

The BPS equations. The equations split into two classes; namely, into a set of holo-

morphicity conditions and a pair of BPS equations. The natural object appearing in the

holomorphicity conditions is the complex one-form

V0 ≡ P0 +
i

2
dCD0. (3.36)

This one-form is fixed by the conditions

dCΩC = (∂+ + ∂−) [iV0 ∧ ΩC ] , ∂i [ΩC ∧ dCV0] = 0, ∂i∂j [ΩC ∧ V0] = 0. (3.37)
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The natural objects appearing in the BPS equations are the warp factors e3λ and e2w. Like

the metric on N4, these functions are completely determined by the potential D0; more

precisely they are given by

e−6λ =
1

8t

det(h)

det(g)
, e4w =

t2

2
det(g)e(∂++∂−)D0 . (3.38)

At last, the BPS equations read as

∂i(e
4w) volC = −e2w−3λJC ∧ dC∂iP0. (3.39)

In addition to the system described here, we also need to impose the Bianchi identity

for the four-flux whose reduction is described in appendix C and final form is given in equa-

tion (C.7). It is completely determined by JC , P0 and D0. The constraints from the Bianchi

identity are significantly more complicated to analyze than the BPS equations. Therefore

it is not very instructive or any useful to write them down in generality. Nevertheless, if

we consider solutions to the BPS equations first, these equations can greatly simplify and

this will be our main strategy for constraining the space of solutions of these systems.

4 Enhanced supersymmetry

For the class of SCFTs obtained from M5-branes, the supersymmetry can get enhanced for

special cases of the normal bundle. In the field theory section 2.1, we briefly discussed the

enhancements to (0, 4) and (2, 2). In this section, we discuss these special configurations

and reduce the general (0, 2) system from section 3.4.

4.1 Systems with N = (0, 4) supersymmetry

We first consider configurations where the general N = (0, 2) system enhances to N =

(0, 4). In this special case, the surface wrapped by the M5-branes, C, is now embedded in

a Calabi-Yau three-fold that is locally CY3 ∼= C × C. The eleven-dimensional spacetime of

M-theory decomposes as

M1,10 → R
1,1 × CY3 × R

3. (4.1)

The CY3 is the canonical line bundle over C, and the M5-branes are extended along R
1,1×C.

This configuration is a special case of (3.2) where one of the line bundles L± is trivial. It

preserves an SU(2)×U(1) subgroup of the SO(5) R-symmetry of the six-dimensional (2, 0)

CFT living on the branes. This system also preserves four supercharges, thus the two-

dimensional CFTs in the IR can preserve N = (0, 4) supersymmetry. In the region near

the branes the spacetime decomposes as

M1,10 → AdS3 ×MC × S1 × [τ ]× S2. (4.2)

The S1 is non-trivially fibered over MC and descends from the phase of the line bundle;

the S2 corresponds to the isometries of the R
3 factor, in (4.1), and is dual to the SU(2)

R-symmetry of the N = (0, 4) SCFTs. The radii of R3 and the line bundle combine to give

the overall AdS3 radius and the interval τ .
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The metric for the spacetime in (4.2) can be obtained by trivializing one of the circle

bundles in the general (0, 2) systems in section 3.4. This is consistent with trivializing one

of the line bundles in (3.2). Without any loss of generality, we shall trivialize L+; this can

be achieved by turning off the connection for the S1
+ circle. In addition, we need to also

diagonalize the metric hij on the S1
± circles since the U(1)+ must enhance to SU(2)+, the

R-symmetry of (0, 4) SCFTs. These conditions are equivalent to imposing

∂+P0 = 0, and h+− = 0. (4.3)

In doing so, we expect the interval τ and circle S1 in (4.2) to be identified with the interval

t− and circle S1
− of (3.4) and (3.28). Furthermore, the interval t+ and circle S1

+ should

combine to make the S2 of (4.2). Our goal then is to show that these, indeed, follow from

the condition (4.3).

The restriction in (4.3) and the rightmost holomorphicity condition in (3.37) imply

that the potential D0 is separable and can be written as3

D0 = D̂(τ, xµ) + f(t+)− t(ln t− 1), (4.4)

with the identification τ = t−. Moreover the BPS equation along ∂+ in (3.39) implies that

e4w is independent of t+. This can be used to fix f(t+); we find

e∂+f = c0 − c1t
+, and a+a− = 0. (4.5)

There are two solutions to consider, one with a− = 0 and the other with a+ = 0. Without

loss of generality, we can fix the parameters as c0 = 1 and c1 = 4.

In both cases the four-manifold MC is complex and admits an SU(2)-structure (JC ,ΩC).

The integrability of the complex structure and the holomorphicity conditions for the con-

nection can be expressed as

dCΩC = iV− ∧ ΩC , ΩC ∧ dCV− = 0, ΩC ∧ ∂τV− = 0, (4.6)

where V− = ∂τV0. To this end, it is convenient to introduce the function D ≡ ∂τ D̂ and

connection one-form P− ≡ ∂τP0. We then have

V− ≡ P− +
i

2
dCD. (4.7)

In the special case where ΩC is closed, the complex one-form V− is holomorphic. This

implies that we can write
1

2
⋆̂CdCD = e2w−3λJC ∧ P− (4.8)

where ⋆̂C is the hodge star on the metric dŝ2(MC) ≡ e2w−3λds2(MC). This will have

interesting consequences for the BPS equations.

We shall now proceed with the reduction of the metric and BPS equations for the two

cases in 4.5. In the first case (a− = 0), we obtain a class where N4 admits an S2 and

3To be more precise, these two conditions actually imply thatD0 = D̂(τ, xµ)+f(t+)−t(ln t−1)+G(xµ)t+.

However the last term can be set to zero by a proper rescaling of (e2w, JC ,ΩC).
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we interpret them as gravity duals of (0, 4) SCFTs. In the second case (a+ = 0), the N4

admits a shrinking T 2 instead and we interpret this class as gravity duals of NS5-branes

on a four-manifold. We end this section with a brief discussion of general (0, 2) systems

with SU(2) isometry.

Gravity duals to N = (0, 4) CFTs

The gravity duals of two-dimensional CFTs with N = (0, 4) supersymmetry are given by

the metric

ds211 = L4/3

[
ds2(AdS3) +

1√
2
e2wds2(MC)−

1

4
∂τDdτ2 − 1

∂τD
(dφ− + P−)

2 +
1

4
dΩ2

2

]
.

(4.9)

The reduction to this metric corresponds to the solutions in (4.5) where a− = 0. In this

case the warp factor is constant and given as e−6λ = 1
2 ; we have rescaled the overall AdS

radius in writing the metric. The metric on the two-sphere is

dΩ2
2 = dθ2 + sin2(θ)dφ2

+, with 4t+ = cos2(θ). (4.10)

The SU(2) isometry group of this two-sphere is dual to the R-symmetry of the N = (0, 4)

CFTs. Notice that ∂+ has been promoted to an isometry. Furthermore, the symplectic

structure on MC satisfies the integrability condition

dC
(
e2wJC

)
= 0, with e4w = −1

2
∂τe

D. (4.11)

The leftover BPS equation (3.39) is best discussed once we consider the four-form flux.

This reduces to

B4 = − 1

sin θ
⋆6 d6Ĵ ∧ dθ + d6Ĵ ∧ (cos θdφ+)−

1√
2
Ĵ ∧ volS2 , (4.12)

where volS2 = sin θdθ ∧ dφ+ is the volume form on the two-sphere. Recall that Ĵ is the

symplectic structure on M6; for the metric (4.9), this is given as

Ĵ = e2wJC − 1√
2
dτ ∧ η−. (4.13)

Next, to ensure that the BPS system yields solutions to the supergravity equations of

motion we also need to impose the Bianchi identity. In doing so we find that for solutions

with a non-trivial U(1)− connection, Ĵ must be integrable, i.e. d6Ĵ = 0; this then yields

the following condition:

∂τ (e
2wJC) = − 1√

2
dCP−. (4.14)

This condition in turn implies that the BPS equation (3.39) is trivially solved and in

addition, the flux further reduces to

B4 =

(
1

2
dτ ∧ η− − 1√

2
e2wJC

)
∧ volS2 . (4.15)
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Thus we find that the space of these N = (0, 4) gravity duals is entirely determined by the

holomorphicity conditions (4.6) and the BPS equation (4.14).

It is worth noticing that these solutions come with two distinctive features. The first

is that there is no warping between the AdS3 and the internal space. The second is that

the topology of the N4 is not an S4 since the sphere dual to the R-symmetry is not warped

with the rest of the space. It is not clear why the gravity duals to (0, 4) theories should

be this way; however it is important to point out that this result is consistent with [9]

and [8]. The AdS3 solutions constructed in these papers were obtained by considering

AdS3 vacua of seven-dimensional gauged supergravity. These systems uplift to M-theory

as AdS3 ×w MC × S̃4 where S̃4 is a squashed four sphere. Indeed, the authors did not find

AdS3 vacua with N = (0, 4) supersymmetry.

In the special case where ΩC is closed, we can use the relation in (4.8) to simplify the

BPS equation in (3.39) to

dC ⋆̂CdCD = ∂2
τD volC (4.16)

This equation can be seen as a four-dimensional generalization of the SU(∞) toda equation

that governs the gravity dual of N = 2 SCFTs in LLM system [5].

AdS3 × CY3 × S2

So far we have been working with the U(1)2 system for the N = (0, 2) theories as derived in

section 3.4. We have seen that in the special limit where the U(1)−×U(1)+ isometry group

enhances to a U(1)− × SU(2)+ (see (4.3)), the BPS system gives rise to N = (0, 4) gravity

duals. These solutions take the form AdS3×M6×S2
(t+,φ+) with M6

∼= MC×w S̃2
(τ,φ−). After

considering the Bianchi identity, we have found that M6 must be Kähler, a fact which hints

that this particular class of (0,4) solutions may actually fall into a larger and more generic

class. Thus in this discussion, instead of working with the U(1)2 system, we directly reduce

the more generic (0,2) system, described in section 3.1, for the (0,4) limit.

In the previous system, we see that the S2
(t+,φ+) is actually spanned by the one-forms ρ̂

and ψ̂ (see (3.9)), with the identification (y2 = 2t+, ψ = φ+) and P = 0. Thus in order to

accommodate the SU(2) R-symmetry of the (0,4) theories we set the U(1)ψ connection to

zero and promote ∂y into a Killing vector field. The Ĵ equations then imply that e−6λ must

be constant, which in turn implies that the function β depends only on the y-coordinate

and therefore defines an angular coordinate for the metric. In order to form a round S2
(y,ψ),

the warp factor must be fixed to e−6λ = 1
2 . Notice also that d6Ω̂ = 0.

Now, once again we consider the Bianchi identity to find that d6Ĵ = 0. Since both Ĵ

and Ω̂ are closed on M6, we conclude that M6 must be Calabi-Yau. The magnetic flux, as

given in (3.8), reduces to

B4 = − 1√
2
Ĵ ∧ volS2 , (4.17)

where volS2 = −d(cos 2βdψ). Notice that there are no further restrictions from the super-

symmetry conditions.
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Putting everything together, we find that the gravity duals of these two-dimensional

CFTs with N = (0, 4) supersymmetry are given by the metric

ds211 = L4/3

[
ds2(AdS3) +

1√
2
ds2(CY3) +

1

4
dΩ2

2

]
(4.18)

dΩ2
2 = d(2β)2 + sin2(2β)dψ2. (4.19)

This is the well known AdS3 × CY3 × S2 solution. As discussed in section 6.2 of [20], this

class of solutions is obtained when, in the near-horizon, the radial coordinate of the R
3

in (4.1) is identified with the AdS3 one. Moreover, these geometries, where M5 branes

wrap a supersymmetric 4-cycle in a CY3, can also be obtained by taking the near horizon

limit of the MSW extremal black hole [26].

IIB NS5-branes on four-manifold

The second class of solutions, a+ = 0 in (4.5), leads to metrics where N4 admits a T 2. The

metric is given as

ds211 = L4/3e2λ
[
ds2(AdS3) + e2w−3λds2(MC) +

1

2
e−6λds2(N4)

]
(4.20)

ds2(N4) =
1− τ∂τD

τ
dτ2 − 4

∂τD
(dφ− + P−)

2 + ds2(T 2). (4.21)

The coordinates (t+, φ+) combine to make an R
2 plane which we identify with a shrinking

torus. This implies that the volume of N4 is non-compact. However, this plane in M-theory

can be taken as a T 2 with Planck size volume (see section 6.2 of [1] ). From this point of

view, these are singular solutions of M-theory. We can then compactify on one circle to

IIA supergravity and then T-dualize on the other to IIB supergravity.

In IIB supergravity, these solutions describe the near-horizon limit of NS5 branes

wrapped on a four-manifold, MC . This follows from the fact that when we compactify on

a circle that is not wrapped by the M5-branes, we obtain NS5 branes in IIA string theory.

The subsequent T-duality maps them to NS5 branes in IIB string theory that are wrapped

on MC . We explore these IIB systems in future publications.

Now the warp factors become

e4w = 2(1− τ∂τD)eD, e−6λ = −1

8

∂τD

1− τ∂τD
, D = ∂τ D̂. (4.22)

The symplectic structure, JC , satisfies a conformally Kähler condition

dC

(
e2w−3λJC

)
= 0. (4.23)

In addition to the conditions in (4.6), the BPS equation reduces to

∂τ (e
4w) volC = −e2w−3λJC ∧ dCP−. (4.24)

In the special case where ΩC is closed, we can use the relation in (4.8) to simplify the

BPS equation in (4.24) to
1

4
dC ⋆̂CdCD = ∂2

τ (e
D) volC . (4.25)

We obtain a four-dimensional generalization of the SU(∞) Toda equation.
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(0, 2) theories with SU(2) flavor

In general we can obtain systems with SU(2) global symmetry by degenerating the con-

nection along a line on the (t+, t−) plane. We can consider scenarios where

(n−∂+ − n+∂−)P0 = 0 (4.26)

for some parameters n±. This degeneration implies that the potential D0 can be written as

D0 = D̂(τ, x) + T (t+, t−), τ = n+t
+ + n−t

−. (4.27)

For generic values where n± 6= a±, the solutions with an SU(2) isometry map to (4.9) by

a coordinate transformation. This is due to the fact that there are large diffeomorphisms

that rotate the ± labels in the general (0, 2) system in section 3.4. The solutions for generic

n± can be obtained by making such transformation which redefines t± and then proceed

with the (0, 4) reduction above.

When n± = a± the solutions correspond to trivializing the connection, V I , for the ηφ
bundle in the ansatz (3.14)–(3.16). The directions (ηz, ηφ) combine to make a round sphere,

and the U(1) flavor symmetry in the dual (0, 2) theories is enhanced to an SU(2) flavor

symmetry. This reduction can be performed from the general (0, 2) system in section 3.1.

These more general reductions are expected to capture the systems described in sec-

tions 6.2 of [20] and in [27]. The solutions in these papers are claimed to be dual to SCFTs

with N = (0, 4) supersymmetry. It is unclear how this enhancement should occur. A more

careful study of these system should resolve this issue.

4.2 Systems with N = (2, 2) supersymmetry: I

In this section, we reduce the general N = (0, 2) system to cases where the supersymmetry

enhances to N = (2, 2). We summarize our results in the next section, 4.3.

The (2, 2) enhancement occurs when the CY4, in (3.1), is decomposable as CY4 =

CY
(1)
2 × CY

(2)
2 , where each Calabi-Yau two-fold is the cotangent bundle over a two-

dimensional Riemann surface Cσ (σ = 1, 2). The M-theory spacetime decomposes as

M1,10 → R
1,1 × R× CY

(1)
2 × CY

(2)
2 . (4.28)

The world volume of the M5-branes is R1,1 × C1 × C2. This configuration is a special case

of (3.2) where the complex surface C admits the product decomposition C = C1 × C2. We

identify the two line bundles L+/− to the canonical bundles over the complex curves C1/2,
respectively. This system preserves four supercharges with a U(1)+ × U(1)− R-symmetry

and therefore leads to two-dimensional CFTs withN = (2, 2) supersymmetry. In the region

near the branes, the M-theory metric takes the form

M1,10 → AdS3 ×
(
Σ1 × S1

+

)
×

(
Σ2 × S1

−

)
× [t+]× [t−]. (4.29)

The two dimensional Riemann surface Σσ are the near-horizon limits of Cσ. The four-

manifold in the region near the branes is given as MC = Σ1 × Σ2. The circle S1
+ (S1

−) has

a non-trivial connection only on the surface Σ1 (Σ2).
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Now, the product decomposition of MC , as appeared in (4.29), implies that the metric

on MC can be written as

ΩC = e2B (dx1 + idy1) ∧ (dx2 + idy2) (4.30)

JC = e3λ−2w
[
e2A1dx1 ∧ dy1 + e2A2dx2 ∧ dy2

]
(4.31)

ds2(MC) = e3λ−2w
[
e2A1

(
dx21 + dy21

)
+ e2A2

(
dx22 + dy22

)]
. (4.32)

In addition to this decomposition, we must also impose

d1∂−P0 = 0, d2∂+P0 = 0, (4.33)

where dσ are the exterior derivatives on the planes of Σg, i.e. dC = d1+ d2. The conditions

on MC in (3.32) and the compatibility condition between JC and ΩC imply

d1A2 = d2A1 = 0, ∂±B = 0, e2A1+2A2 = e4Be4w−6λ. (4.34)

The constraint in (4.33) and the ΩC conditions in (3.37) imply that the one-form, P0, and

scalar potential, D0, can be decomposed as4

P0 =
1

2
⋆1 d1D1(x1, y1, t

+) +
1

2
⋆2 d2D2(x2, y2, t

−) (4.35)

D0 = D1(x1, y1, t
+) +D2(x2, y2, t

−) + T (t+, t−)− 2(t+ + t−)B (4.36)

The potential P0 is given up to closed terms.

The functions Dσ and T are arbitrary in the decompositions of P0 and D0; they are

constrained by the BPS equations in (3.39). These equations reduce to

∂+e
4we4B =

1

2
e2A2∆1D+, ∂−e

4we4B =
1

2
e2A1∆2D− (4.37)

where ∆σ =
(
∂2
xσ

+ ∂2
yσ

)
, D+ = ∂+D1 and D− = ∂−D2. The warp factors are given as

e4we4B =
t2

2
det(g)e(∂++∂−)T eD+eD− (4.38)

e2A1+2A2 =
t

16
det(h)e(∂++∂−)T eD+eD− . (4.39)

Notice that the function B does not appear in any of the BPS equations or in the metric;

we therefore fix it to zero.

We have narrowed the system down to three unknown functions; namely, D± and T .

To proceed, we first notice that the l.h.s. of (4.39) is separable in the coordinates of the

two Riemann surfaces. To achieve separability of the r.h.s. we need to either make det(h)

separable too, or make it independent of one of the Riemann surfaces. The former is achieve

by letting D± be generic and choosing T = −t(ln t − 1).5 However, when we substitute

this ansatz into the BPS equations (4.37) we find that this choice is incompatible with

4Our convention for hodge star operator is ⋆adxa = −dya and ⋆adya = dxa.
5This choice sets the off-diagonal components of hij to zero, and thus det(h) = (∂+D+) × (∂−D−) as

required for separability.
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the functional dependence of the equations. We therefore let T be generic and instead, we

shall let one of the functions eD± be independent of the t± coordinates.6 Without loss of

generality, we choose D+ = 2A0
1(x1, y1) and substitute into (4.39) to find that

e2A1 = f1(t
+, t−)e2A

0
1(x1,y1) (4.40)

e2A2 =
t

16f1
det(h)e(∂++∂−)T eD− (4.41)

e4w = 2e4w0e2A
0
1 , e4w0 =

t2

4
det(g)e(∂++∂−)T eD− . (4.42)

for some function f1(t
+, t−). Moreover, the BPS equations (4.37) reduce to

∆1A
0
1 = −κ1e

2A0
1(x1,y1), ∂+e

4w0 = −κ1
2
e2A2 , (4.43)

∆2D− =
4

f1
∂−e

4w0 . (4.44)

This in turn implies that the metric along the (x1, y1) directions with the conformal factor

e2A
0
1 is that of a Riemann surface with curvature κ1. The different choices of κ1 ∈ {−1, 0, 1}

correspond to H2, T
2 and S2, respectively.

Now, depending on whether κ1 vanishes or not, the system of equations reduces dif-

ferently. For a vanishing κ1 we find that

κ1 = 0 : ∆2D− =
4

f1
∂−e

4w0 , ∂+e
4w0 = 0, ∂+f1 = 0. (4.45)

The constraint on f1 follows from the fact that both D− and e4w0 are independent of

the t+ coordinate. Also, the only constraint on the function T is the ∂+e
4w0 relation

and we therefore expect to find solutions where D− can have a non-trivial dependence on

(x2, y2, t
−). If κ1 is non-zero and eD− is not separable, the equations reduce as

κ1 6= 0 : ∆2D− =
1

g
∂−e

2A2 , e4w0 =
c− 2κ1t

+

4
e2A2 (4.46)

∂+e
2A2 = ∂+g = 0, f1 = (c− 2κ1t

+)g. (4.47)

The e4w0 and ∂+e
2A2 relations yield incompatible constraints for T . Therefore solutions

where eD− is not separable exist only when κ1 = 0. Now we summarize the main results

for (2, 2) theories.

4.3 Systems with N = (2, 2) supersymmetry: II

From the previous analysis in section 4.2, we observe that the (2, 2) theories fit into two

classes. In this section, we present the metrics in each class.

6Note that if we instead let, say, eD+ = F (t+, t−)×G(x1, y1), then we can simply remove F (t+, t−) by

redefining T ; so we may as well set F = 1 from the beginning.
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Gravity duals to N = (2, 2) CFTs

In the first class, the four-manifold MC is product of two constant curvature Riemann

surfaces. The eleven-dimensional metric is given as

ds211 = L4/3e2λ

[
ds2(AdS3) +

∑

σ

fσ(t
+, t−)e2A

0
σ
(
dx2σ + dy2σ

)
+

1

2
e−6λds2(N4)

]
(4.48)

ds2(N4) = gijdt
idtj + 4hijηiηj . (4.49)

The conformal factors of the two planes satisfy the Liouville equation:

(
∂2
xσ

+ ∂2
yσ

)
A0

σ(xσ, yσ) = −κσe
2A0

σ(xσ ,yσ). (4.50)

These describe Riemann surfaces with curvature κσ ∈ {−1, 0, 1}7 corresponding to H2, T
2

and S2. The H2 can be replaced with H2/Γ to obtain a compact surface with genus g > 1;

Γ is the Fuschian subgroup of the PSL(2,R) isometry group of the hyperbolic plane.

The metric components along N4, the warp factor e−6λ and the radii of the Riemann

surfaces, fσ, are given in terms of a single function T (t+, t−). They are given by

gij = −∂i∂jT, hij = −∂i∂j (T + t(ln t− 1)) , e−6λ =
1

8t

det(h)

det(g)
(4.51)

where t = a+t
+ + a−t

− and a+ + a− = 1. The radii are given as

κ1f2 = −∂+

[
t2 det(g)e(∂++∂−)T

]
, κ2f1 = −∂−

[
t2 det(g)e(∂++∂−)T

]
. (4.52)

There is an additional constraint between the radii which serves as the only constraint on

the function T ; it is given as

f1f2 =
t

16
det(h)e(∂++∂−)T . (4.53)

This equation is not enough to fix fσ and a±. Additional constraints should be obtained

by considering the Bianchi identity of the four-form flux in appendix C. The N = (2, 2)

solutions discussed in [9] and [8] correspond to cases when the f ’s are constant. In general

we expect solutions with non-constant fσ.

The one-forms dual to the circles are given as

η+ = dφ+ + 2κ1 (g1 − 1)V1, η− = dφ− + 2κ2 (g2 − 1)V2, (4.54)

where gσ are the genera of the surfaces and the connection forms8 satisfy
∫
Σσ

dσVσ = 2π.

If we denote the degree of the line bundles (L+,L−) over Σσ as (pσ, qσ), we then notice

that the vanishing of the first Chern class of CY4 implies equation (2.4).

At last, these solutions fit in a larger class of (0, 2) solutions where MC is a product of

two Riemann surfaces. We study this class in a separate publication where we also discuss

the details of the (2, 2) solutions including the flux and the constraints from the Bianchi

identity.

7A representative solution to the Liouville equation is eA
0
σ = 2

1+κσ(x2
σ
+y2

σ
)
.

8The connection forms can be written in terms of A0
σ as 2κσ(gσ − 1)Vσ = ⋆σdσA

0
σ.
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D3 branes on a Riemann surface

In this second class of solutions, the four-manifold is given as MC = Σg × T 2. We can

compactify to IIA supergravity on one circle of the T 2 and T-dualize on the other to IIB

supergravity. This family should be considered as gravity duals of D3-branes on a Riemann

surface. These solutions can also be obtained from the (0, 4) system in section 4.1 by taking

MC = Σg × T 2.

We reduce the ansatz in section 4.2 further to

eD+ = µ2
1e

2ν+ , µ2
1 = c1 − 2t+, e2A1 = e2ν+ , e2A2 = −1

8
∂τe

D (4.55)

where ν+ and R are constant. In addition, the BPS equations imply

a+a− = 0, ∆2D = 4a2−∂τe
D − 2

(
c1a

2
+ + 2a−τ

)
∂2
τ e

D. (4.56)

The potential D is ∂τD2(x2, y2, τ) in (4.37), where, in order to make contact with the

notation introduced in section 4.1, we have identified t− with τ . The solutions further

split into two classes, one with a+ = 0 and the other one with a− = 0. We can write the

system for each case.

Solutions with a− = 0. In the case where a− = 0, the metric

ds2 = L4/3

[
ds2(AdS3) + ds2(T 2) +

1

4
dΩ2

2 (4.57)

−1

4
∂τe

D
(
dx22 + dy22

)
− 1

4
∂τDdτ2 − 1

∂τD

(
dφ− +

1

2
⋆2 d2D

)2
]
. (4.58)

The warp factor, e−6λ, is constant and the potential D satisfies the SU(∞) Toda equation:

∆2D + ∂2
τ e

D = 0. (4.59)

In these solutions, the (µ1, φ+) combine to a form a two-sphere. The (x2, y2, τ, φ−) combine

to form a hyper-Kähler manifold. These solutions can be obtained from (4.9) by imposing

MC = Σg × T 2.

There is a larger class of solutions with MC = Σg × T 2 in the general (0, 2) system.

These are governed by Monge-Ampère systems similar to the one obtained in [7] for the

gravity duals of M5-branes on Riemann surfaces. We hope to explore these systems in

future work.

Solutions with a+ = 0. In the case when a+ = 0, the metric is

ds211 = L4/3e2λ
[
ds2(AdS3) + ds2(T 2)− ∂τe

D

4

(
dx22 + dy22

)
+

e−6λ

2
ds2(N4)

]
(4.60)

ds2N4 = ds2(T 2) +
(1− τ∂τD)

τ
dτ2 − 1

∂τD

(
dφ− +

1

2
⋆2 d2D

)2

. (4.61)

The (µ1, φ+) combine to make a torus. The warp factor is given as

e−6λ = −1

8

∂τD

1− τ∂τD
(4.62)
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and the potential D satisfies

∆2D = 4∂τe
D − 4τ∂2

τ e
D. (4.63)

This solution is also a special case of (4.20) where we fix MC = Σg×T 2. This system has a

shrinking T 4 and therefore have multiple interpretations depending on how we compactify

to IIB supergravity. We explore them also in future publications.

5 Summary and discussions

The main goal of this work has been to obtain the generating system of gravity duals to

N = (0, 2) two-dimensional SCFTs, that describe the IR dynamics of M5-branes wrapped

on four-manifolds. We have considered supersymmetric configurations where the four-

manifold is a complex surface, C, embedded in a Calabi-Yau four-fold that is a sum of two

line-bundles over C. We have also described the ansatz for the metric and flux for the AdS3

vacua in M-theory that can emerge in the near-horizon limit of the brane configurations,

and then reduced the supergravity equation of M-theory by using the general classifications

of supersymmetric AdS3 solutions described in [1].

After reducing the supergravity equations, we have found that the solutions are gener-

ically a warped product of AdS3 with an eight-manifold of the form M8 ≃ MC ×N4. The

four-manifold MC is Kähler and corresponds to the near-horizon limit of the surface C. The
four dimensional space N4 is non-trivially fibered over MC with a U(1)2 structure group and

therefore also admits a U(1)2 isometry. Its metric is expressed in terms of a single potential,

D0, that depends on the coordinates on MC and those on N4, while the U(1) connections

of the bundle are determined by a single one-form, P0, which lives entirely on MC . The

BPS equations reduce to holomorphicity constraints on a complex form constructed from

(D0, P0), and to partial differential equations between D0, P0 and the Kähler two-form on

MC . With appropriate choice of warping between MC and N4, we can make the volume

form of MC and its holomorphic two-form constant on N4. The generic dependence of the

functions between the two four-manifolds will allow us to describe solutions where C has

boundaries.

With an appropriate choice of the bundle, the two-dimensional SCFTs can preserve

N = (0, 4), N = (2, 2) or higher supersymmetry. We have reduced our general result for

the gravity duals of N = (0, 4) and N = (2, 2) SCFTs. In the case of (0, 4), the warp factor

is constant and we have found that N4 admits an SU(2) isometry, that is dual to the R-

symmetry; the two-sphere corresponding to this isometry has constant radius and shrinks

nowhere in the geometry. When the supersymmetry enhances to N = (2, 2), the base

manifold, MC , reduces to a product of two constant curvature Riemann surfaces. Their

radii, in general, depend on the coordinates on N4. The warp factor and metric functions

are given in terms of a single a function which satisfies a Monge-Ampère equation on MC .

Now with these results at hand, one can explore the space of two-dimensional SCFTs

from M5-branes and classify the allowed boundaries for the M5-branes. However, before

taking such a step, one first needs to classify all the solutions where MC is compact, i.e.

identify the metrics on N4. In general, these will be governed by Monge-Ampère equations.
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In an upcoming publication, we study these classes and also discuss solutions where MC

is a product of two Riemann surfaces. These solutions should include the ones discussed

in [8, 9]. In fact, this will be an important check for our reductions.

Once these classes of solutions are constructed, one can naturally consider probe branes

wrapping supersymmetric cycles in these backgrounds; these will appear as sources in

the BPS equations. Backreacting the probes then amounts to considering AdS3 vacua

obtained from M5-branes wrapped on four-manifolds with boundaries. From the field

theory perspective, these probes correspond to the possible supersymmetric defects of the

SCFTs. We therefore see that by studying the space of solutions of the BPS equations

derived in this paper as well as their possible sources one can provide a classification for

the N = (0, 2) SCFTs.

From the reduction so far, we observe that the possible sources for the (2, 2) case are

fairly restricted since MC is a product of two constant curvature Riemann surfaces. Defects

can only appear in the supergravity as sources to the Liouville equations that governs the

metrics on the Riemann surfaces. These simply lead to orbifold fixed points on the Riemann

surfaces [4].

At last, we have found that for certain classes of solutions, M8 admits torii submani-

folds. In these classes of solutions we expect to compactify to IIA supergravity and then

T-dualize to IIB supergravity. This procedure will yield gravity duals to SCFTs from either

D3-branes on Riemann surfaces with punctures or IIB NS5-branes on four-manifolds. This

is an interesting line of research that we hope to explore in the future.
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A The BPS equations

In this appendix we discuss the reduction of the BPS equations for AdS3 spacetimes in

M-theory. Since we are interested in geometries which are sourced solely by M5-branes,

we set the electric flux to zero. Now the metric for the most general supersymmetric AdS3

solution in M-theory has the form

ds211 = e2λ[ds2(AdS3) + ds2(M8)] (A.1)

ds2(M8) = ds2(M6) + ρ̂2 + ψ̂2 (A.2)
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where the 6d metric, ds2(M6), admits a local SU(3)-structure and ρ̂ and ψ̂ are two unit one-

forms which, generically, have some non-trivial dependence on M6. The SUSY conditions

tell us that the geometry of the overall 8d internal manifold M8 must satisfy the following

differential conditions:

d ln e6λ = e−3λsin 2β iJ∧ψ̂ ⋆8 B4 (A.3a)

d8(e
3λcos 2β) = 2e3λsin 2β ρ̂ (A.3b)

d8(e
3λ sin 2β ρ̂) = 0 (A.3c)

d8(e
6λ sin 2β ΩI) = −2e6λ(ΩR ∧ ψ̂ − cos 2β ΩI ∧ ρ̂) (A.3d)

d8

[
e6λ

(
1

2
J ∧ J + cos 2β J ∧ ψ̂ ∧ ρ̂

)]
= e3λsin 2βρ̂ ∧B4 (A.3e)

d8(e
6λsin 2β J ∧ ψ̂) = 2e6λ

(
1

2
J ∧ J + cos 2β J ∧ ψ̂ ∧ ρ̂

)
− e3λ(⋆8B4 + cos 2β B4) (A.3f)

as well as the algebraic constraints:

ΩI ∧B4 = 0 (A.4a)

ψ̂ ∧ ΩR ∧B4 = 0 (A.4b)

(iJ∧J + 2 cos 2β iJ∧ψ∧ρ̂) ⋆8 B4 = 12e3λ. (A.4c)

Here, B4 is the magnetic flux on M8, β is some unknown function and J and Ω = ΩR+ iΩI

are the (1,1) symplectic and (3,0) holomorphic forms on M6, respectively. Given a frame

{ei; i = 1, . . . , 6} on M6, we define the SU(3)-structure forms by

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6).
(A.5)

This SU(3)-structure has originated by reducing an SU(4)-structure on M8. Upon such a

reduction we find that J and Ω satisfy

iρ̂J = iψ̂J = iρ̂Ω = iψ̂Ω = 0. (A.6)

In addition to the BPS equations, we also need to impose the Bianchi identity

d8B4 = 0. (A.7)

Then solving the BPS equations together with the Bianchi identity is equivalent to solving

the supergravity equations. For example notice that when we hit (A.3f) with d8 and

substitute in (A.3b) and (A.3e) we find that

(e3λ cos 2β) d8B4 + d8

(
e3λ ⋆8 B4

)
= 0. (A.8)

We therefore see that when we impose the Bianchi identity the e.o.m. of B4 naturally

emerges from the BPS equations.

Our goal here is to bring this highly non-trivial set of equations down to a clean form

where it is transparent how the various metric functions are governed by this system.
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We begin our analysis by fixing the conventions which we will be using throughout this

reduction. We then consider some (minor) assumptions which are necessary, not only for

simplifying the system, but also for accommodating into our AdS3 solutions the various

ingredients required for studying the dual field theories. Next, we decouple the magnetic

flux from the SUSY equations and thereafter we reduce the system to a set of differential

equations for the SU(3)-structure (J,Ω).

Conventions

The orientation on M8 is given by vol8 =
1
6J ∧J ∧J ∧ ρ̂∧ ψ̂. We thus split the star operator

as ⋆8 = ⋆6⋆2 where ⋆6 acts on differential n-forms An lying entirely on M6 and ⋆2 acts on

the 2d space spanned by ρ̂ and ψ̂. It then follows that

⋆8A4 = ⋆6A4 ∧ ρ̂ ∧ ψ̂

⋆8A3 ∧ ρ̂ = ⋆6A3 ∧ ψ̂

⋆8A3 ∧ ψ̂ = − ⋆6 A3 ∧ ρ̂

⋆8A2 ∧ ρ̂ ∧ ψ̂ = ⋆6A2.

(A.9)

For example

⋆6 J =
1

2
J ∧ J. (A.10)

Given an n-form An and an (n+m)-form Bn+m we define their interior product by

(iAB)m =
1

m!
(iAB)µ1...µmdx

µ1 ∧ · · · ∧ dxµm (A.11)

where

(iAB)µ1...µm =
1

n!
Aρ1...ρnBρ1...ρnµ1...µm . (A.12)

It then follows that

ifAn+gBm = f × iAn + g × iBm (A.13a)

iAn∧BmCp = iBm(iAnCp) (A.13b)

iX1∧Y1(An ∧Bm) = iX1∧Y1An ∧Bm +An ∧ iX1∧Y1Bm

+ (−1)n−1
(
iX1An ∧ iY1Bm − iY1An ∧ iX1Bm

)
(A.13c)

for some functions f and g, and some one-forms X1 and Y1. In our case, it is useful to

consider the following contractions:

iJJ = 3; iJ∧JJ ∧ J = 12; iJX1 ∧ J = 2X1. (A.14)

At last, notice that if we rescale the frame on M6 by a factor of e3λ/2 such that

J = e−3λĴ , we have

⋆6 Ĵ =
1

2
e−3λĴ ∧ Ĵ ; iJ = e3λ × iĴ . (A.15)
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The simplifying ansatz

We begin by specializing the structure of the eight-manifold M8. In particular, we expect

that M8 naturally admits a U(1)ψ isometry associated to the R-symmetry of the dual field

theory. To accommodate this feature of M8 we shall let ψ̂ be the one-form dual to the

U(1)ψ isometry. Futhermore, this one-form combines with ρ̂ to form a squashed 2-sphere

S̃2
(y,ψ) which is fibered on M6.

To be more concrete, let xM = (xµ, z, φ) be the coordinates on M6 and (y, ψ) be the

coordinates on S̃2
(y,ψ). In these coordinates, we decompose the 8d derivative as

d8 = d6 + dy ∧ ∂y + dψ ∧ ∂ψ. (A.16)

Next we integrate equations (A.3b-c) to find that

ρ̂ =
1

e3λsin 2β
dy and e3λcos 2β = 2y. (A.17)

Now, we write ψ̂ as

ψ̂ =
sin 2β

n
(dψ + P ), (A.18)

where P = PM (xM , y)dxM is the U(1)ψ connection and n is an integer to be fixed. At last,

it is convenient to rescale the metric on M6 such that

g6d = e−3λĝ6d; J = e−3λĴ ; Ω = e−9λ/2Ω̂. (A.19)

Putting everything together, we find that the 11d metric reads as

ds211 = e2λ
[
ds2(AdS3) + e−6λdŝ2(M8)

]

dŝ2(M8) = e3λĝ6dMN dxMdxN +
1

sin22β
dy2 +

e6λsin22β

n2
(dψ + P )2.

(A.20)

The Ω̂ equations

Recall that by construction we have iψ̂Ĵ = iψ̂Ω̂ = 0. Let ∂ψ be the vector field dual to ψ̂.

Then to promote ∂ψ into a Killing vector field we need the SU(3)-structures to satisfy

∂ψĴ = 0; ∂ψΩ̂ = iQψΩ̂, (A.21)

where Qψ is the U(1)ψ charge of Ω̂. We therefore have the decomposition

Ω̂ = eiQψψΩ̂o (A.22)

for some ψ-independent complex (3,0)-form Ω̂o. Now we expand (A.3d) and collect the

cos(Qψψ) and sin(Qψψ) terms — these must vanish independently. This will then yield

the derivatives of the Ω̂o,R/I which we reassemble to obtain

d6Ω̂ =

[
2i

n
P − 1

2
d6 ln(sin 2βtan 2β)

]
∧ Ω̂ (A.23a)

y∂yΩ̂ = −1

2

[
y∂y ln(sin 2βtan 2β) +

1 + cos22β

sin22β

]
Ω̂ (A.23b)

∂ψΩ̂ = i
2

n
Ω̂. (A.23c)

Note that supersymmetry fixes Qψ to 2/n.
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Fixing B4

The most general form which B4 can take is

B4 = A4 +A3 ∧ ρ̂+A′
3 ∧ ψ̂ +A2 ∧ ρ̂ ∧ ψ̂, (A.24)

where An is an n-form with legs on M6 only. Substituting into equation (A.3e) and ex-

panding we deduce that

d6(Ĵ ∧ Ĵ) = 0 (A.25)

and that

B4 =

[
∂yĴ +

1

n
cos 2β d6P

]
∧ Ĵ +

1

sin 2β
d6

(
cos 2βĴ

)
∧ ψ̂ +A3 ∧ ρ̂+A2 ∧ ρ̂ ∧ ψ̂. (A.26)

Here we have used the fact that ∂ψĴ = 0. Now substituting the above expression for B4

into (A.3f) and solving for ⋆8B4 we find that

⋆8B4 = −
[
2cos 2β Ĵ + ∂y

(
e3λ(sin 2β)2Ĵ

)
+ cos 2β A2

]
∧ ρ̂ ∧ ψ̂

+

(
1

n
e3λ(sin 2β)3Ĵ ∧ ∂yP − cos 2β A3

)
∧ ρ̂

+

(
e−3λĴ − 1

n
d6P − cos 2β ∂yĴ

)
∧ Ĵ

− cot 2β d6

(
sec 2β Ĵ

)
∧ ψ̂.

(A.27)

Next, we directly compute ⋆8B4 by considering the Hodge-dual of (A.26), and there-

after, we compare it to the above expression. In doing so, we find that the unknown forms

A2 and A3 are given by

A2 = 2Ĵ − ⋆6

[
1

n
d6P ∧ Ĵ + cos 2β ∂y

(
Ĵ ∧ Ĵ

2

)]
(A.28)

A3 = cot 2β ⋆6 d6

(
sec 2βĴ

)
(A.29)

This completely fixes B4. We also find two consistency conditions which read as

∂y

(
Ĵ ∧ Ĵ

2

)
+ e3λ ⋆6 ∂yĴ = −1

y

[
y∂y ln (sin 2β tan 2β) +

1 + cos2 2β

sin2 2β

]
Ĵ ∧ Ĵ

2
(A.30)

e3λ sin4 2β Ĵ ∧ 1

n
∂yP = −2 ⋆6 d6 (cos 2β) ∧ Ĵ . (A.31)

It is also useful to write down ⋆8B4; this turns out to be

⋆8B4 = ⋆6

[(
∂yĴ +

1

n
cos 2β d6P

)
∧ Ĵ

]
∧ ρ̂ ∧ ψ̂

− 1

sin 2β
⋆6 d6

(
cos 2βĴ

)
∧ ρ̂

+

(
ω−3Ĵ − 1

n
d6P − cos 2β ∂yĴ

)
∧ Ĵ

− cot 2β d6

(
sec 2β Ĵ

)
∧ ψ̂.

(A.32)
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The Ĵ equations

First of all we observe that Ĵ and B4 appear together in four different SUSY equations.

We have already used two of those to fix the magnetic flux. It is then a straightforward

exercise to decouple B4 from the remaining two and obtain the differential constraints on

Ĵ . Using (A.32), we project ⋆8B4 onto the Ĵ ∧ ψ̂ and Ĵ ∧ Ĵ directions and then plug into

equations (A.3a) and (A.4c) to obtain

iĴ

(
d6 lnω

3 ∧ Ĵ + d6Ĵ
)
= 2d6 ln e

3λ (A.33a)

iĴ ⋆6

[
∂y

(
Ĵ ∧ Ĵ

2

)
+

1

n
cos 2β d6P ∧ Ĵ

]
= −2ω3∂y ln e

3λ (A.33b)

iĴ∧Ĵ

[
1

n
d6P ∧ Ĵ + cos 2β ∂y

(
Ĵ ∧ Ĵ

2

)]
= 4cos 2β ∂y ln e

3λ. (A.33c)

Observe that after applying (A.14), the first equation simplifies to iĴd6Ĵ = 0 which is

equivalent to d6(Ĵ ∧ Ĵ) = 0, equation (A.25). The last two equations involve only the ∂y
derivative of Ĵ and we shall therefore refer to them as the “∂yĴ” equations.

Note that even in the absence of B4 these equations still look messy. We can clean them

up a bit by the means of the following trick. First we observe that if we write Ĵ ≡ ∑3
i=1 Ĵi,

with Ĵ1 = e1 ∧ e2 and etc, then the most general form that ∂yĴ and d6P admit is

∂yĴ =
3∑

i=1

hiĴi + U j
2 ;

1

n
d6P =

3∑

i=1

fiĴi + Up
2 . (A.34)

Here the U2’s are some two-forms which are not proportional to any of the Ĵi, i.e. iĴiU2 =

0. Notice that this decomposition makes the contraction with iĴ more transparent; for

example

iĴ∂yĴ =
∑

i

hi. (A.35)

Now, we compute the following quantities

iĴ ⋆6 (∂yĴ ∧ Ĵ) = 2e3λ iĴ∂yĴ ; iĴ∧Ĵ(∂yĴ ∧ Ĵ) = 4 iĴ∂yĴ

iĴ ⋆6

(
1

n
d6P ∧ Ĵ

)
= 2e3λ

1

n
iĴd6P ; iĴ∧Ĵ

(
1

n
d6P ∧ Ĵ

)
= 4

1

n
iĴd6P.

(A.36)

Plugging into the ∂yĴ equations we find the following set of equations

iĴ∂yĴ + cos 2β
1

n
iĴd6P = −∂y ln e

3λ

cos 2β iĴ∂yĴ +
1

n
iĴd6P = cos 2β∂y ln e

3λ
(A.37)

which can be solved simultaneously to give

iĴ∂yĴ = −1 + cos22β

sin22β
∂y ln e

3λ;
1

n
iĴd6P = 2

cos 2β

sin22β
∂y ln e

3λ. (A.38)
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Torsion classes and structure equations

Given an SU(3)-structure we can decompose (d6Ĵ , d6Ω̂) in terms of SU(3)-representations

as follows:

d6Ĵ = −3

2
Im(W̄1Ω̂) +W4 ∧ Ĵ +W3

d6Ω̂ = W1Ĵ ∧ Ĵ +W2 ∧ Ĵ + W̄5 ∧ Ω̂,
(A.39)

where the Wi are the torsion classes of the SU(3)-structure. For the BPS system under

consideration, we see, by inspection, that W1 and W2 vanish. As a consequence, the

almost complex structure defined by Ω̂ is integrable on M6, i.e. M6 is a complex manifold.

Moreover, W4 is defined as W4 =
1
2 iĴd6Ĵ and it vanishes in accordance to the d6Ĵ equation.

Notice that supersymmetry says nothing about W3.

B The U(1)φ isometry

In this appendix we work out the details for the construction of the U(1)φ isometry. In

particular, we let the complex manifold M6 be an S̃2
(z,φ)-bundle over a four-manifold MC

and we write the ansatz

dŝ2(M6) = e2wds2(MC) + e2F−3λ||ηz + ieCηφ||2 (B.1)

Ĵ = e2wJC + e2F−3λeCηz ∧ ηφ (B.2)

Ω̂ = eiψ+iQφφe2weF− 3
2
λ ΩC ∧

(
ηz + ieCηφ

)
, (B.3)

Notice that we have introduced a rescaled metric on MC . As we will see, the BPS equa-

tions allow us to choose the rescaling factor e2w to be such that the volume of MC is

y-independent. The η one-forms are defined as

ηz = dz + V R, ηφ = dφ+ V I . (B.4)

Here V R and V I are real one-forms on the base which depend on all the coordinates.

Together they define the complex one-form

V ≡ V R + iV I . (B.5)

At last, we decompose the exterior derivative on M6 as

d6 = dC + ηz ∧ ∂z, dC ≡ dx̂µ∂µ − V R ∧ ∂z (B.6)

where x̂µ are coordinates on MC .

To this end, it is convenient to introduce the function Λ defined through

1 + cos2(2β)

sin2(2β)
≡ −(1 + y∂yΛ). (B.7)
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Notice that Λ is actually defined up to an arbitrary function which is independent of y.

Now using this definition, we can rewrite the ∂y equations as

iĴy∂yĴ = y∂y ln

(
y
cos(2β)

sin2(2β)
eΛ

)
(B.8)

y∂yΩ̂ = −1

2
y∂y ln

(
1

y

sin2(2β)

cos(2β)
e−Λ

)
Ω̂. (B.9)

When we substitute in the ansatz we find that if we choose the rescaling factor to be

e4w =
y2

8 sin2 2β
eΛ−2F , (B.10)

the ∂yĴ equation yields

∂y (JC ∧ JC) = 0. (B.11)

When we consider the ∂yΩ̂ we obtain

∂ye
C = 0, ∂yΩC = 0, ΩC ∧ ∂y (V ) = 0. (B.12)

Now since C is independent of y, we can set it to zero by redefining the coordinate z and

by shifting F . From now on, we assume that C is zero.

Next we want to reduce the d6Ω̂ equation. For, we decompose the U(1)ψ connection as

2

n
P =

1

2
PC + pzηz + pφηφ (B.13)

where PC is some real one-form on MC and pz and pφ are some real functions. Equa-

tion (A.23a) then reduces to

dCΩC =

(
iPC − 1

2
dCΛ

)
∧ΩC , ∂zΩC =

(
ipz − pφ − 1

2
∂zΛ

)
ΩC , ΩC∧dCV = ΩC∧∂zV = 0.

(B.14)

The integrability condition [∂y, ∂z]ΩC = 0 fixes pφ to

pφ = −1

2
∂zΛ. (B.15)

Here, we could allow for some y-independent integration function, but such a function can

always be set to zero by an appropriate redefinition of Λ. This integrability condition also

tells us that

∂zΩC = ipzΩC , ∂ypz = 0. (B.16)

At last, we consider the d6Ĵ and d6P equations given in (A.25) and (A.38), respectively.

The first one reduces to

dC

(
e2w+2F−3λJC

)
= e2w+2F−3λJC ∧ ∂zV

R (B.17)

∂z
(
e4wJC ∧ JC

)
= 2e2F e2w−3λJC ∧ dCV

I (B.18)

JC ∧ dCV
R = 0, (B.19)

while the second one becomes

1

y
∂y

(
e4w

)
JC ∧ JC = −e2w−3λ

[
dCPC − ∂zΛdCV

I
]
∧ JC −

1

2
e4w−2F

(
2

y
∂ye

2F − ∂2
zΛ

)
JC ∧ JC .

(B.20)
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The canonical system

Recall that we are looking at AdS3 solutions where the internal manifoldM8 admits a U(1)2

structure group. More particularly, recall that this condition led us to the conditions

pz = 0, V R = dCΓ, (B.21)

where Γ is some generic function. To eliminate V R from the metric we make the coordinate

transformation from (x̂i, z, y) to (xi, u, t) defined by

xi = x̂i, 2t = y2, z = −Γ(xi, t, u). (B.22)

The differential forms and differential operators transform as

dxi = dx̂i, dt = ydy, ηz = −∂uΓdu− ∂tΓdt, (B.23)

dC = dxi∂i, ∂z = − 1

∂uΓ
∂u, y∂y = 2t

(
∂t −

∂tΓ

∂uΓ
∂u

)
. (B.24)

Now in these new coordinates, the metric reads as

ds211 = e2λ
[
ds2AdS3

+ e2w−3λds2(MC) +
1

2
e−6λds2(N4)

]
(B.25)

ds2(N4) = − G

∂uΓ
η2φ − 4∂uΓ

det(h)
(dψ + P )2 −G∂uΓ

(
du+

∂tΓ

∂uΓ
dt

)2

− det(g)

∂uΓ
dt2, (B.26)

where G = −2e2F∂uΓ, y∂yΛ = − 2

sin2 2β
, (B.27)

det(g) = ∂tΛ∂uΓ− ∂tΓ∂uΛ (B.28)

det(h) = ∂t (Λ + ln t) ∂uΓ− ∂tΓ∂uΛ. (B.29)

The warp factors become

e−6λ =
1

8t

det(h)

det(g)
, e4w =

t2

2G
det(g)eΛ, (B.30)

and the connection form for the S1
ψ becomes

P =
1

2
PC +

1

2

∂uΛ

∂uΓ
ηφ. (B.31)

The SU(2)-structure, (JC ,ΩC), of MC satisfies

dCJC = −dC ln
(
Ge2w−3λ

)
∧ JC , dCΩC =

1

2
(iPC − dCΛ) ∧ ΩC (B.32)

and

∂t (JC ∧ JC) = ∂u (JC ∧ JC) = 0, ∂tΩC = ∂uΩC = 0. (B.33)

The connection forms satisfy the following holomorphicity conditions:

ΩC ∧ dCV
I = ΩC ∧ dCPC = 0 (B.34)

ΩC ∧ ∂t
(
dCΓ + iV I

)
= ΩC ∧ ∂u

(
dCΓ + iV I

)
= 0, (B.35)

ΩC ∧ ∂t (iPC − dCΛ) = ΩC ∧ ∂u (iPC − dCΛ) = 0. (B.36)
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We also have the following equations for the connection forms and the e4w warp factor:

∂ue
4wJC ∧ JC = Ge2w−3λJC ∧ dCV

I (B.37)

∂te
4wJC ∧ JC = e2w−3λJC ∧

[
G2dCV

I − dCPC

]
− e4w

G
[∂tG− ∂uG2] JC ∧ JC (B.38)

where

G2 =
G∂tΓ− ∂uΛ

∂uΓ
. (B.39)

At last, the magnetic flux is given by9

B4=B
(1)
4 +B

(2)
4 +B

(3)
4 +B

(4)
4

B
(1)
4 =

y

2
e4w

(∂uG2−∂tG)

G
JC∧JC

+
y

2
G

[
e2w−3λG(∂uG2−∂tG)JC+

∂tΓ

∂uΓ

(
∂u(e

2w−3λJC)−
1

2
Ge−6λdCV

I

)

−
(
∂t(e

2w−3λJC)+
1

2
e−6λdCPC

)
+
1

2
G2e

−6λdCV
I

]
∧ ηz
∂uΓ

∧ηφ

+
y

2
e2w−3λ

[
G2∂uV

I−G∂tV
I−∂uPC

]
∧JC∧

ηz
∂uΓ

+
y

2
e2w−3λ

[
dCG2−

∂tΓ

∂uΓ
dCG

]
∧JC∧ηφ

B
(2)
4 =

e−6λ

sin2 2β

{
e2w+3λ ⋆C dC lnG

+
1

∂uΓ

[
e2w+3λ∂u lne

6λJC+e6λ ⋆C

(
∂u(e

2w−3λJC)−
1

2
Ge−6λdCV

I

)]
∧ηφ

+
1

2
G⋆C

(
dC ln(Ge−6λ)∧JC

)
∧ ηz
∂uΓ

∧ηφ

}
∧dy

B
(3)
4 =−y

{
e2w−3λdC lnG∧JC+

[
∂u(e

2w−3λJC)−
1

2
Ge−6λdCV

I

]
∧ ηz
∂uΓ

(B.40)

+
1

2
Ge−6λdC ln(Ge−6λ)∧ ηz

∂uΓ
∧ηφ

}
∧Dψ

B
(4)
4 =

1

2
e−3λ

{
G

[
1

4

(∂uG2−∂tG)

G
− 1

4
sin2 2β

(
∂t−

∂tΓ

∂uΓ
∂u

)
lne4w−e−3λ

]
∧ ηz
∂uΓ

∧ηφ

− 1

4
⋆C

[
Gsin2 2β

(
∂tV

I− ∂tΓ

∂uΓ
∂uV

I

)
∧JC−

(
∂uPC+(G∂t−G2∂u)V

I

)
∧JC

]
∧ ηφ
∂uΓ

+
1

4
⋆C

[(
dCG2−

∂tΓ

∂uΓ
dCG

)
∧JC−Gsin2 2β dC

(
∂tΓ

∂uΓ

)
∧JC

]
∧ηz

9Note the decomposition ⋆6 = ⋆4⋆2 and furthermore, ⋆4An = e2(2−n)w ⋆C An where An is an n-form on

MC .
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+2e2w+3λ

[
e−3λ+

1

8
sin2 2β

2

y
∂y lne

2F +
1

4

(∂uG2−∂tG)

G

]
JC

+
1

2
e6λ ⋆C

[
∂tΓ

∂uΓ

(
cos2 2β∂u(e

2w−3λJC)−
1

2
Ge−6λdCV

I

)

−
(
cos2 2β∂t(e

2w−3λJC)+
1

2
e−6λdCPC

)
+
1

2
G2e

−6λdCV
I

]}
∧dy∧Dψ

In conclusion, the base four-manifold, MC is conformally Kähler. The metric on the N4

fiber is determined by the functions (G,Λ,Γ) while the forms (PC , V
I) fix the connection of

the bundle. This system of equations can be further reduced by imposing an appropriate

ansatz for the four-form flux, B4.

C Ansatz for the magnetic flux

Recall that the different terms of B4 can be organized in such a way that B4 takes the

form given in equation (3.25). Recall also our argument for setting B(4) and B(3)
a to zero.

In this appendix we discuss the consequences of that.

The vanishing of B(4), i.e. the vanishing of the JC ∧ JC term of B
(1)
4 , implies that

∂tG = ∂uG2. (C.1)

The vanishing of B(3)
a implies that

dCG = dCG2 = 0, ∂uPC + (G∂t −G2∂u)V
I = 0. (C.2)

The constraint on the one-forms (PC , V
I) also follows from the (G,G2) constraints and the

holomorphicity constraints in (B.35) and (B.36). Since the G’s are independent of the base

and satisfy (C.1), one can make a coordinate transformation10 that removes them from the

metric and the BPS equations. This is equivalent to fixing (G = 1, G2 = 0). The potentials

and one-forms sastisfy

∂tΓ = ∂uΛ, ∂tV
I = −∂uPC . (C.4)

These can be solved in terms of a single potential D0 and a one-form P0, in which case we

find that

Λ = ∂tD0, PC = 2∂tP0 (C.5)

Γ = ∂uD0, V I = −2∂uP0. (C.6)

Notice that after imposing these constraints, the number of undetermined forms has been

reduced from five down to two; namely, the zero-form D0 and the one-form P0. At last,

10This coordinate transformation is defined by

dt
′ = dt, du

′ = G2dt+Gdu. (C.3)
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the magnetic flux reduces to

B4=B
(1)
4 +B

(2)
4 +B

(3)
4 +B

(4)
4

B
(1)
4 =+

y

2

(
Au−At

)
∧ ηz
Duu

∧ηφ

B
(2)
4 =

1

sin2 2β

{
1

Duu

[
−e2w+3λ∂u(e

−6λ)JC+⋆C
Duu

Dtu
Au

]
∧ηφ

+
1

2
⋆C

(
dC(e

−6λ)∧JC

)
∧ ηz
Duu

∧ηφ

}
∧dy

B
(3)
4 =−y

{
Duu

Dtu
Au∧

ηz
Duu

+
1

2
dC(e

−6λ)∧ ηz
Duu

∧ηφ

}
∧Dψ

B
(4)
4 =

1

2
e−3λ

{
−
[
1

4
sin2 2β

(
∂t−

Dtu

Duu
∂u

)
lne4w+e−3λ

]
ηz
Duu

∧ηφ

+
1

2
⋆C

[
sin2 2β

(
∂t−

Dtu

Duu
∂u

)
∂uP0∧JC

]
∧ ηφ
Duu

+
1

4
⋆C

[
−sin2 2β dC

(
Dtu

Duu

)
∧JC

]
∧ηz

+2e2w+3λ

[
e−3λ+

1

8
sin2 2β

2

y
∂y lne

2F

]
JC

+
1

2
e6λ ⋆C

[
Au−At+sin2 2β

(
∂t−

Dtu

Duu
∂u

)
(e2w−3λJC)

]}
∧dy∧Dψ,

(C.7)

where Dtu = ∂t∂uD0, etc, and

Au =
Dtu

Duu

[
∂u(e

2w−3λJC) + e−6λ∂u(dCP0)
]

(C.8)

At = ∂t(e
2w−3λJC) + e−6λ∂t(dCP0). (C.9)

The ± coordinates

As discussed in section 3, there is a natural coordinate system on N4 where the circles S1
±

become apparent. Here we present in detail how the system can be put in this form.

After imposing the flux constraints, the metric on the N4 fiber becomes

ds2(N4) = −(Dttdt
2 + 2Dtudtdu+Duudu

2) (C.10)

− 4

det(h)

[
Duuη

2
t − 2Dtuηtηu + ∂t(Dt + ln t)η2u

]
. (C.11)

Here we have introduced the one-forms ηt and ηu; these are the natural objects appearing

in the metric and they are defined as

ηu = −1

2
ηφ, ηt = Dψ − 1

2

Dtu

Duu
ηφ, (C.12)

or, in terms of (D0, P0), as

ηu = −1

2
dφ+ ∂uP0, ηt = dψ + ∂tP0. (C.13)
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The functions det(g) and det(h) become

det(g) = DttDuu − (Dtu)
2, det(h) = ∂t(Dt + ln t)Duu − (Dtu)

2. (C.14)

Next, we notice that this metric can be written in a more compact form:

ds2(N4) = gijdy
idyj + 4hijηiηj (C.15)

gij = −∂i∂jD0 (C.16)

hij = −∂i∂j [D0 + t(ln t− 1)], (C.17)

with i, j ∈ {t, u}, and yt = t, yu = u. The matrix hij is the inverse of hij . Moreover, the

so far abstract notation of the functions det(g) and det(h) now acquires precise meaning,

i.e. these functions denote the determinant of the metrics gij and hij , respectively.

Now, this set up allows us to consider the following coordinate transformation:

ψ = φ+ + φ−,
1

2
φ = a+φ− − a−φ+, (C.18)

u = t+ − t−, t = a+t
+ + a−t

−, (C.19)

with a+ + a− = 1. The differential operators and the η one-forms transform as

∂φ = −1

2
(∂φ+ − ∂φ−

), ∂ψ = a+∂φ+ + a−∂φ−
, (C.20)

∂t = ∂+ + ∂−, ∂u = a−∂+ − a+∂− (C.21)

ηt = η+ + η−, ηu = a−η+ − a+η−, (C.22)

where

η± = dφ± + ∂±P0. (C.23)

At last, the full metric expressed in these coordinates is described in subsection 3.4.
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