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1 Introduction

The conformal bootstrap program in two dimensions aims to classify and solve two-

dimensional conformal field theories (CFTs) based on the associativity of the operator

product expansion (OPE) and modular invariance [1–3]. A complete set of consistency

conditions is given by the crossing equations for sphere 4-point functions and modular

covariance of the torus 1-point function for all Virasoro primaries in the CFT [4, 5]. In

practice, while one may obtain nontrivial constraints on a specific OPE by analyzing a

specific sphere 4-point function [6, 7], or on the entire operator spectrum of the CFT by

analyzing the torus partition function [8–11], it has been generally difficult to implement

these constraints simultaneously.

In this paper, we analyze modular constraints on the genus two partition function of

a general unitary CFT. The modular crossing equation for the Virasoro conformal block

decomposition of the genus two partition function encodes both the modular covariance

of torus 1-point functions for all primaries and the crossing equation for sphere 4-point

functions of pairs of identical primaries. It in principle allows us to constrain the structure

constants across the entire spectrum of the CFT.

A technical obstacle in carrying out the genus two modular bootstrap has been the

difficulty in computing the genus two conformal blocks. Recently in [12] we found a com-

putationally efficient recursive representation of arbitrary Virasoro conformal blocks in the

plumbing frame, where the Riemann surface is constructed by gluing two-holed discs with
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SL(2,C) maps. For a general genus two Riemann surface, however, it is rather cumber-

some to map the plumbing parameters explicitly to the period matrix elements on which

the modular group Sp(4,Z) acts naturally [13].

To circumvent this difficulty, let us recall a well-known reformulation of the modular

invariance of the genus one partition function. A torus of complex modulus τ can be

represented as the 2-fold cover of the Riemann sphere, branched over four points at 0, 1,

z, and ∞. τ and z are related by

τ = i
K(1− z)

K(z)
, K(z) = 2F1

(
1

2
,

1

2
, 1|z

)
. (1.1)

The torus partition function Z(τ, τ̄) is equal, up to a conformal anomaly factor [14],

to the sphere 4-point function of Z2 twist fields of the 2-fold symmetric product CFT,

〈σ2(0)σ2(z, z̄)σ2(1)σ2(∞)〉. The modular transformation τ → −1/τ corresponds to the

crossing transformation z → 1− z. In this way, the modular invariance of the torus parti-

tion function takes a similar form as the crossing equation of the sphere 4-point function,

except that the sphere 4-point conformal block is replaced by the torus Virasoro character.

Usually in the numerical implementation, the crossing equation is rewritten in terms

of its (z, z̄)-derivatives evaluated at z = z̄ = 1
2 . While a priori this requires computing the

conformal block (the torus character in this example) at generic z, one could equivalently

compute instead the conformal block at z = 1
2 with extra insertions of the stress-energy

tensor, or more generally Virasoro descendants of the identity operator at a generic position

(on either sheet of the 2-fold cover).

Of course, the above reformulation is unnecessary for analyzing the modular invariance

of the genus one partition function, as the torus Virasoro character itself is quite simple.

However, it becomes very useful for analyzing genus two modular invariance. Let us begin

by considering a 1-complex parameter family of Z3-invariant genus two Riemann surfaces

that are 3-fold covers of the Riemann sphere, branched at 0, 1, z, and ∞. Following [15],

we will refer to them as “Renyi surfaces”; such surfaces have been studied in the context

of entanglement entropy [16, 17]. For instance, the period matrix of the surface is given by

Ω =

(
2 −1

−1 2

)
i 2F1(2

3 ,
1
3 , 1|1− z)

√
3 2F1(2

3 ,
1
3 , 1|z)

. (1.2)

The genus two partition function of the CFT in question on the Renyi surface is given,

up to a conformal anomaly factor, by the sphere 4-point function of Z3 twist fields in the

3-fold symmetric product CFT, whose conformal block decomposition takes the form

〈σ3(0)σ̄3(z, z̄)σ3(1)σ̄3(∞)〉 =
∑
i,j,k∈I

C2
ijkFc(hi, hj , hk|z)Fc(h̃i, h̃j , h̃k|z̄). (1.3)

Here I is the index set that labels all Virasoro primaries of the CFT, Cijk are the structure

constants, and Fc(h1, h2, h3|z) is the holomorphic genus two Virasoro conformal block in

a particular conformal frame, with central charge c and three internal conformal weights

h1, h2, h3. We will see that Fc can be put in the form

Fc(h1, h2, h3|z) = exp
[
cFcl(z)

]
Gc(h1, h2, h3|z), (1.4)
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where the factor exp
[
cFcl(z)

]
captures the large c behavior of the conformal block, essen-

tially due to the conformal anomaly. Gc is the genus two conformal block in the plumbing

frame of [12] (with a different parameterization of the moduli) whose c→∞ limit is finite.

It admits a recursive representation1

Gc(h1, h2, h3|z) = G∞(h1, h2, h3|z) +

3∑
i=1

∑
r≥2,s≥1

Arsi (h1, h2, h3)

c− crs(hi)
Gcrs(hi)(hi → hi + rs|z),

(1.5)

where crs(h) is a value of the central charge at which a primary of weight h has a null

descendant at level rs, and Arsi are explicitly known functions of the weights.

The Z3 cyclic permutations of the three sheets are themselves elements of the Sp(4,Z)

modular group. A nontrivial Sp(4,Z) involution that commutes with the Z3 is the trans-

formation z → 1− z. This gives rise to a genus two modular crossing equation,∑
i,j,k∈I

C2
ijk

[
Fc(hi, hj , hk|z)Fc(h̃i, h̃j , h̃k|z̄)−Fc(hi, hj , hk|1− z)Fc(h̃i, h̃j , h̃k|1− z̄)

]
= 0.

(1.6)

Together with the non-negativity of C2
ijk for unitary theories, this crossing equation now

puts nontrivial constraints on the possible sets of structure constants. For instance, we will

find examples of critical surfaces S that bound a (typically compact) domain D in the space

of triples of conformal weights (h1, h2, h3; h̃1, h̃2, h̃3), such that the structure constants Cijk
with (hi, hj , hk; h̃i, h̃j , h̃k) outside the domain D are bounded by those within the domain

D. In particular, applying this to noncompact unitarity CFTs, one concludes that there

must be triples of primaries in the domain D whose structure constants are nonzero. We

emphasize that the existence of a compact critical surface for the structure constants is a

genuinely nontrivial consequence of genus two modular invariance, which does not follow

simply from a combination of bounds on spectral gaps in the OPEs (from analyzing the

crossing equation of individual sphere 4-point functions) and modular invariance of the

torus partition function (which does not know about the structure constants).

The crossing equation for (1.3) does not capture the entirety of genus two modular

invariance, since the Renyi surfaces lie on a 1 complex dimensional locus (1.2) in the 3

complex dimensional moduli space of genus two Riemann surfaces. Instead of considering

general deformations of the geometry, equivalently we can again insert stress-energy tensors

on the Renyi surface, or more generally insert Virasoro descendants of the identity operator

in the twist field correlator (1.3) (on any of the three sheets). This will allow us to access

the complete set of genus two modular crossing equations, through the conformal block

decomposition of (1.3) with extra stress-energy tensor insertions, which is computable

explicitly as an expansion in z (or better, in terms of the elliptic nome q = eπiτ , where τ

is related to z by (1.1)).

Explicit computation of the genus two Virasoro conformal block of the Renyi surface in

the twist-field frame will be given in section 2. The genus two modular crossing equation

1In contrast to the form of the recursion formulae presented in [12], here we include the factor zh1+h2+h3

in the definition of the blocks, so that the residue coefficients do not depend on z.
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Figure 1. Left : the 3-fold cover of the Riemann sphere with four branch points is a genus-two

surface. The partition function of the CFT on the covering surface can be regarded as the four-point

function of Z3 twist fields in the 3-fold product CFT on the sphere. Right : the genus two conformal

block associated with the σ3σ̄3 OPE channel.

will be analyzed in section 3. In particular, we will find critical surfaces for structure

constants simply by taking first order derivatives of the modular crossing equation with

respect to the moduli around the crossing invariant point. In section 4, we formulate the

crossing equation beyond the Z3-invariant locus in the moduli space of genus two Riemann

surfaces. We conclude with some future prospectives in section 5.

Note added. This paper is submitted in coordination with [18] and [19], which explore

related aspects of two-dimensional conformal bootstrap at genus two.

2 The genus two conformal block

In this section, we will study the genus two Virasoro conformal block with no external

operators, focusing on the Z3-invariant Renyi surface that is a 3-fold branched cover of the

Riemann sphere with four branch points. The latter can be represented as the curve

y3 =
(x− x+

1 )(x− x+
2 )

(x− x−1 )(x− x−2 )
(2.1)

in P1 × P1. The genus two partition function of the CFT on the covering surface can be

viewed as a correlation function of the 3-fold symmetric product CFT on the sphere: up to

a conformal anomaly factor (dependent on the conformal frame), it is given by the 4-point

function of Z3 twist fields σ3 and anti-twist fields σ̄3,
〈
σ3(x+

1 )σ3(x+
2 )σ̄3(x−1 )σ̄3(x−2 )

〉
. We

present a sketch of the relevant configuration of twist fields and anti-twist fields, as well as

of the conformal block associated with the σ3σ̄3 OPE channel in figure 1.

2.1 OPE of Z3-twist fields in Sym3(CFT)

We will begin by analyzing the OPE of the Z3 twist field σ3 and the anti-twist field σ̄3.

The 3-fold symmetric product CFT on the sphere with the insertion of σ3(z1) and σ̄3(z2)

can be lifted to a single copy of the CFT on the covering space Σ, which is also a Riemann
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sphere. Let t be the affine coordinate on the covering sphere. It suffices to consider the

special case z1 = 0, z2 = 1, where the covering map can be written as

z =
(t+ ω)3

3ω(1− ω)t(t− 1)
, (2.2)

where ω = e2πi/3. The branch points z1 = 0, z2 = 1 correspond to t = −ω and t = 1 + ω

respectively. We have chosen this covering map (up to SL(2,C) action on Σ) such that the

three points t1 = 0, t2 = 1, and t3 =∞ on Σ are mapped to z =∞.

Now let us compute the 3-point function of the pair of twist fields σ3(0), σ̄3(1), and a

general Virasoro descendant operator in the 3-fold tensor product CFT of the form

Φ =
3⊗
i=1

L−Niφi (2.3)

inserted at z = ∞ (as a BPZ conjugate operator). Here we will keep track of the holo-

morphic z-dependence only, and omit the anti-holomorphic sector. For each i = 1, 2, 3, φi
is a primary of weight hi in a single copy of the CFT, Ni = {n(i)

1 , · · · , n(i)
k } is a partition

of the integer |Ni| in descending order, and L−Ni is the Virasoro chain L−n(i)
1

· · ·L
n

(i)
k

.

Following [14], we can write

〈σ3(0)σ̄3(1)Φ(∞)〉
〈σ3(0)σ̄3(1)〉

=
〈
O′1(0)O′2(1)O′3(∞)

〉
. (2.4)

Here O′i(ti) is the conformally transformed operator of L−Niφi on the ith covering sheet,2

O′i(ti) = (z′(ti))
−hiLti−Niφ

′
i(ti) = (z(ti))

−2hi [3ω(1− ω)]−hi Lti−Niφ
′
i(ti), (2.5)

where φ′i(ti) is the corresponding primary in the t-frame. Lt−N = Lt−n1
· · · Lt−nk is the lift

of L−N (acting on an operator at z = ∞) to the t-plane. When acting on an operator at

t = ti, Lt−n is given by

Lt−n =−
∮
Ct

du

2πi

(z(u))1+n

z′(u)

[
Tuu(u)− c

12
{z(u),u}

]
=− [3ω(1−ω)]−nResu→tu

1−n(u−1)1−n(u+ω)1+3n(u+ω2)−2

×
[
Tuu(u)− c

(u+ω)2(u+ω2)2

]
,

(2.6)

where we used the Schwarzian derivative

{z, t} =
12

(t+ ω)2(t+ ω2)2
. (2.7)

The contour integral in (2.6) is taken on the t-plane, parameterized by the variable u. Cti
is a small counterclockwise circular contour around ti for t1 = 0 and t2 = 1. For t3 = ∞,

C∞ is taken to be a large clockwise circular contour on the t-plane. Note that the sign

2The factor z(ti)
−2hi drops out of the correlator (2.4) due to the normalization convention of Φ(∞).
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convention for the residue at infinity is such that Resu→∞
1
u = −1. The overall minus sign

on the r.h.s. of (2.6) is due to the orientation of the original z-contour (where we replace

L−n acting on an operator at z =∞ by Ln acting on the product operator σ3(0)σ̄3(1)).

We proceed by putting (2.6) into the explicit form

Lt−n =
∑
m≥−n

at−n,mLm + c btn, (2.8)

where

a0
−n,m = − [3ω(1− ω)]−n Resu→0u

−n−m−1(u− 1)1−n(u+ ω)1+3n(u+ ω2)−2,

a1
−n,m = − [3ω(1− ω)]−n Resu→1u

1−n(u− 1)−n−m−1(u+ ω)1+3n(u+ ω2)−2,

a∞−n,m = − [3ω(1− ω)]−n Resu→∞u
−n+m−1(u− 1)1−n(u+ ω)1+3n(u+ ω2)−2,

(2.9)

and

btn = [3ω(1− ω)]−n Resu→tu
1−n(u− 1)1−n(u+ ω)−1+3n(u+ ω2)−4, (2.10)

for t = 0, 1,∞. On the r.h.s. of (2.8), Lm is understood to be acting on an operator inserted

at t = 0, 1, or ∞.

Putting these together, the 3-point function of interest is

〈σ3(0)σ̄3(1)Φ(∞)〉
〈σ3(0)σ̄3(1)〉

= C123 [3ω(1− ω)]−h1−h2−h3 ρ(L∞−N3
h3,L1

−N2
h2,L0

−N1
h1), (2.11)

where C123 = 〈φ1(0)φ2(1)φ3(∞)〉 is the structure constant of the primaries, and ρ(ξ3, ξ2, ξ1)

is the 3-point function of Virasoro descendants at∞, 1, 0 on the plane, defined as in [12, 20].

We remind the reader that so far we have only taken into account the holomorphic part

of the correlator, for the purpose of deriving the holomorphic Virasoro conformal block in

the next section.

2.2 The conformal block decomposition of 〈σ3(0)σ̄3(z)σ3(1)σ̄3(∞)〉

Now we turn to the 4-point function of twist fields, 〈σ3(0)σ̄3(z)σ3(1)σ̄3(∞)〉, and compute

the contribution from general untwisted sector descendants of the form Φ =
⊗3

i=1 L−Niφi
in the σ3(0)σ̄3(z) OPE, for a given triple of primaries φ1, φ2, φ3. Again, we focus only on

the holomorphic sector. This is given by

∑
{Ni},{Mi}

3∏
k=1

GNkMk
hk

〈σ3(0)σ̄3(z)
[
⊗3
i=1L−Ni |φi〉

][
⊗3
i=1〈φi|L

†
−Mi

]
σ3(1)σ̄3(∞)〉

=
∑

{Ni},{Mi}

z−2hσ+
∑3
i=1(hi+|Ni|)

3∏
k=1

GNkMk
hk

〈σ3(0)σ̄3(1)⊗3
i=1L−Niφi(∞)〉〈⊗3

j=1L−Mjφj(0)σ3(1)σ̄3(∞)〉

=
∑

{Ni},{Mi}

z−2hσ+
∑3
i=1(hi+|Ni|)

3∏
k=1

GNkMk
hk

〈σ3(0)σ̄3(1)⊗3
i=1L−Niφi(∞)〉〈σ̄3(0)σ3(1)⊗3

j=1L−Mjφj(∞)〉

=
∑

{Ni},{Mi}

z−2hσ+
∑3
i=1(hi+|Ni|)

[
3∏

k=1

GNkMk
hk

|z′(tk)|−2hk

]〈
3∏
i=1

L−Niφi(ti)

〉〈
3∏
j=1

L∗−Mj
φj(tj)

〉
.

(2.12)
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Here the summation is over integer partitions in descending order Ni and Mi, for i = 1, 2, 3,

and GNMh are the inverse Gram matrix elements for a weight h Verma module (nontrivial

only for |N | = |M |). L∗−M is defined as the complex conjugation of L−M (not to be confused

with the adjoint operator), which simply amounts to replacing ω by ω2 in (2.8)–(2.10). The

appearance of the complex conjugate factors is due to the exchange of σ3 with σ̄3 in the

last two factors in the third line of (2.12). hσ is the holomorphic conformal weight of the

Z3 twist field, given by

hσ =

(
3− 1

3

)
c

24
=
c

9
. (2.13)

Using the covering map in the previous section, we arrive at the genus two conformal block

for the Renyi surface in the twist field frame

Fc(h1, h2, h3|z) = 3−3
∑3
i=1 hi

∑
{Ni},{Mi}

z−2hσ+
∑3
i=1(hi+|Ni|)

3∏
k=1

GNkMk
hk

× ρ(L∞−N3
h3,L1

−N2
h2,L0

−N1
h1)ρ(L∞∗−M3

h3,L1∗
−M2

h2,L0∗
−M1

h1),

(2.14)

where L0,1,∞
−N are given by (2.8)–(2.10).

Let us comment on the hi → 0 limit, which is rather delicate. If one of the hi vanishes,

say h1 = 0, corresponding to the vacuum channel in one of the three handles of the genus

two surface, then the only conformal blocks that appear in the genus two partition function

involve h2 = h3. For h2 = h3 > 0, the h1 = 0 block is given by the h1 → 0 limit of (2.14).

This is not the case however for the vacuum block, where all three weights hi vanish: in fact

the vacuum block differs from the simultaneous hi → 0 limit of (2.14). This is because the

latter contains nonvanishing contributions from null descendants of the identity operator

that are absent in the vacuum block.

2.3 Recursive representation

As already mentioned in the introduction, the genus two conformal block (2.14) admits a

recursive representation in the central charge of the form (1.4), (1.5). The recursion formula

is useful in computing the z-expansion to high orders efficiently, and can be derived by

essentially the same procedure as in [12]. The only new feature is that the twist field frame

considered here is different from the plumbing frame of [12], which leads to the conformal

anomaly factor exp
[
cFcl(z)

]
in (1.4). While in principle Fcl(z) can be determined by

evaluating a suitable classical Liouville action as in [14], we find it more convenient to

compute Fcl(z) by directly inspecting the large c limit of logFc(h1, h2, h3|z). Indeed, the

latter is linear in c in the large c limit (with a leading coefficient that is independent of the

internal weights), with the following series expansion in z

Fcl(z)=−2

9
log(z)+6

( z
27

)2
+162

( z
27

)3
+3975

( z
27

)4
+96552

( z
27

)5
+2356039

( z
27

)6

+57919860
( z

27

)7
+

2869046823

2

( z
27

)8
+35771031918

( z
27

)9
+

4486697950566

5

( z
27

)10

+O(z11). (2.15)
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Note that c
3F

cl(z) agrees with the semiclassical Virasoro sphere 4-point conformal block

of central charge c in the vacuum channel with four external primaries of weight hσ
3 =

c
27 [21, 22]. For numerical computations, we can pass to the elliptic nome parameter

q = eπiτ , where τ is related to z via (1.1). The q-expansion converges much faster than

the z-expansion3 evaluated at the crossing symmetric point z = 1
2 , which corresponds

to q = e−π.

After factoring out exp
[
cFcl(z)

]
, the remaining part of the conformal block

Gc(h1, h2, h3|z) as a function of the central charge c has poles at

crs(h) = 1+6(brs(h)+brs(h)−1)2, with brs(h)2 =
rs−1+2h+

√
(r−s)2+4(rs−1)h+4h2

1−r2
,

(2.16)

where r ≥ 2 and s ≥ 1, for h = hi, i = 1, 2, 3. The residue at a pole c = crs(hi) is

proportional to the conformal block with central charge crs(hi) and the weight hi shifted

to hi + rs. The precise recursion formula is

Gc(h1,h2,h3|z) =G∞(h1,h2,h3|z)

+
∑

r≥2,s≥1

[
−∂crs(h1)

∂h1

]Acrs(h1)
rs

(
P rscrs(h1)

[
h2

h3

])2

c−crs(h1)
Gcrs(hi)(hi→hi+rs|z)

+(2 cyclic permutations on h1,h2,h3), (2.17)

where Acrs is the constant

Acrs =
1

2

r∏
m=1−r

s∏
n=1−s

(mb+ nb−1)−1, (m,n) 6= (0, 0), (r, s), (2.18)

for c = 1 + 6(b+ b−1)2, and P rsc is the fusion polynomial

P rsc

[
d1

d2

]
=

r−1∏
p=1−r step 2

s−1∏
q=1−s step 2

λ1 + λ2 + pb+ qb−1

2

λ1 − λ2 + pb+ qb−1

2
, (2.19)

where λi are related to the weights di by di = 1
4(b+ b−1)2 − 1

4λ
2
i .

The remaining undetermined piece in the formula (2.17) is the c → ∞ limit

G∞(h1, h2, h3|z). It was shown in [12] that G∞(h1, h2, h3|z) is the product of the vac-

uum block and SL(2,C) global block in the plumbing frame. The vacuum block is given

by the holomorphic part of the gravitational 1-loop free energy of the genus two hyper-

bolic handlebody, computed in [23]. To translate the result of [23] into the vacuum part

of our G∞ requires expressing the Schottky parameters of the Renyi surface in terms of

z; this can be achieved through the map between Schottky parameters and the period

matrix (1.2). Furthermore, the global block of [12] is naturally expressed in terms of the

3As explained in [22], the q-expansion of Fcl in general need not have unit radius of convergence, due

to possible zeroes of the conformal block. In the present example, the radius of convergence nonetheless

appears to be 1. We thank Y.-H. Lin for pointing out this subtlety and providing numerical verifications.
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plumbing parameters, whose map to z is nontrivial. The implementation of an efficient

recursive computational algorithm for the genus two conformal blocks in the twist field

frame will require knowing G∞, which is in principle computable given the above ingredi-

ents, based on the map from z to the Schottky parameters and the plumbing parameters

of the Renyi surface. Here we simply evaluate the z-expansion (2.14) directly, strip off the

conformal anomaly factor and then take the c→∞ limit, giving the result

G∞(h1,h2,h3|z) =
( z

27

)h1+h2+h3

{
1+

[
h1+h2+h3

2
+

(h2−h3)2

54h1
+

(h3−h1)2

54h2
+

(h1−h2)2

54h3

]
z

+
z2

2916h1(1+2h1)h2(1+2h2)h3(1+2h3)

[
4h2

2h
6
1+4h2

3h
6
1+6h2h

6
1+8h2h3h

6
1+6h3h

6
1+2h6

1

−16h3
2h

5
1−16h3

3h
5
1+94h2

2h
5
1+200h2h

2
3h

5
1+94h2

3h
5
1+45h2h

5
1+200h2

2h3h
5
1+188h2h3h

5
1

+45h3h
5
1−3h5

1+24h4
2h

4
1+24h4

3h
4
1−100h3

2h
4
1−208h2h

3
3h

4
1−100h3

3h
4
1+118h2

2h
4
1

+3380h2
2h

2
3h

4
1+1938h2h

2
3h

4
1+118h2

3h
4
1+87h2h

4
1−208h3

2h3h
4
1+1938h2

2h3h
4
1+1197h2h3h

4
1

+87h3h
4
1−16h5

2h
3
1−16h5

3h
3
1−100h4

2h
3
1−208h2h

4
3h

3
1−100h4

3h
3
1−330h3

2h
3
1+5376h2

2h
3
3h

3
1

+2008h2h
3
3h

3
1−330h3

3h
3
1−84h2

2h
3
1+5376h3

2h
2
3h

3
1+11776h2

2h
2
3h

3
1+4374h2h

2
3h

3
1

−84h2
3h

3
1+31h2h

3
1−208h4

2h3h
3
1+2008h3

2h3h
3
1+4374h2

2h3h
3
1+1722h2h3h

3
1+31h3h

3
1+h3

1

+4h6
2h

2
1+4h6

3h
2
1+94h5

2h
2
1+200h2h

5
3h

2
1+94h5

3h
2
1+118h4

2h
2
1+3380h2

2h
4
3h

2
1+1938h2h

4
3h

2
1

+118h4
3h

2
1−84h3

2h
2
1+5376h3

2h
3
3h

2
1+11776h2

2h
3
3h

2
1+4374h2h

3
3h

2
1−84h3

3h
2
1−62h2

2h
2
1

+3380h4
2h

2
3h

2
1+11776h3

2h
2
3h

2
1+11148h2

2h
2
3h

2
1+2926h2h

2
3h

2
1−62h2

3h
2
1−h2h

2
1+200h5

2h3h
2
1

+1938h4
2h3h

2
1+4374h3

2h3h
2
1+2926h2

2h3h
2
1+597h2h3h

2
1−h3h

2
1+6h6

2h1+8h2h
6
3h1+6h6

3h1

+45h5
2h1+200h2

2h
5
3h1+188h2h

5
3h1+45h5

3h1+87h4
2h1−208h3

2h
4
3h1+1938h2

2h
4
3h1

+1197h2h
4
3h1+87h4

3h1+31h3
2h1−208h4

2h
3
3h1+2008h3

2h
3
3h1+4374h2

2h
3
3h1+1722h2h

3
3h1

+31h3
3h1−h2

2h1+200h5
2h

2
3h1+1938h4

2h
2
3h1+4374h3

2h
2
3h1+2926h2

2h
2
3h1+597h2h

2
3h1−h2

3h1

+8h6
2h3h1+188h5

2h3h1+1197h4
2h3h1+1722h3

2h3h1+597h2
2h3h1+6h2h3h1+2h6

2

+4h2
2h

6
3+6h2h

6
3+2h6

3−3h5
2−16h3

2h
5
3+94h2

2h
5
3+45h2h

5
3−3h5

3+24h4
2h

4
3−100h3

2h
4
3

+118h2
2h

4
3+87h2h

4
3+h3

2−16h5
2h

3
3−100h4

2h
3
3−330h3

2h
3
3−84h2

2h
3
3+31h2h

3
3+h3

3+4h6
2h

2
3

+94h5
2h

2
3+118h4

2h
2
3−84h3

2h
2
3−62h2

2h
2
3−h2h

2
3+6h6

2h3+45h5
2h3+87h4

2h3+31h3
2h3−h2

2h3

]
+O(z3)

}
. (2.20)

As already noted, the analog of G∞ for the vacuum block, G0
∞(z), is not the same as the

simultaneous hi → 0 limit of (2.20). The first few terms in the z-expansion of G0
∞(z) is

given explicitly by

G0
∞(z) = 1+3

( z
27

)4
+168

( z
27

)5
+6567

( z
27

)6
+222012

( z
27

)7
+6960036

( z
27

)8
+O(z9).

(2.21)
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b b

b b

v = 0 v = 2π

v = 2πτ

+

T (v)

σ3

σ̄3

σ̄3

σ3

Figure 2. Left : the pillow geometry is the quotient T 2/Z2. The four branch points on the plane

0, z, 1,∞ are mapped to the Z2 fixed points v = 0, π, π(τ + 1), πτ respectively. Right : the pillow

with the Z3 twist fields inserted at the corners. In section 4 we will obtain the full set of genus

two modular crossing equations by inserting the stress-energy tensor or more generally arbitrary

Virasoro descendants of the identity at the front center on each sheet of the 3-fold-pillow.

2.4 Mapping to the 3-fold-pillow

In this section we consider the Renyi surface in the 3-fold-pillow frame, which makes obvious

certain positivity properties of the genus two conformal block. Following [24], the map from

the plane (parameterized by w) to the pillow (parameterized by v) is given by

v =
1

(θ3(τ))2

∫ w

0

dx√
x(1− x)(z − x)

. (2.22)

The four branch points on the plane at 0, z, 1,∞, where the Z3 twist fields and anti-twist

fields are inserted, are mapped to v = 0, π, π(τ + 1), πτ respectively, where τ is given

by (1.1). The covering surface is turned into a 3-fold cover of the pillow, with the twist

fields inserted at the four corners — see figure 2.

The Renyi surface conformal block in the twist field frame can be mapped to the pillow

frame as

Fc(h1, h2, h3|z) = (z(1− z))
c
8
−2hσθ3(τ)

3c
2
−16hσqh1+h2+h3− c8

∞∑
n=0

An(h1, h2, h3)qn, (2.23)

where q = eπiτ , hσ = c
9 . For instance, the first few coefficients A0, A1 and A2 are given by

A0 = 2−
c
2

(
16

27

)h1+h2+h3

,

A1 = 2−
c
2
−1

(
16

27

)h1+h2+h3+1 [(h1 − h2)2

h3
+

(h2 − h3)2

h1
+

(h3 − h1)2

h2

]
, (2.24)
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A2 =
2−

c
2
−9
(

16
27

)h1+h2+h3+2

h1(c+ 2h1(c+ 8h1 − 5))h2(c+ 2h2(c+ 8h2 − 5))h3(c+ 2h3(c+ 8h3 − 5))
×

{
2048

[
16(c+8h3)h3

2+2
(
128h2

3+24(c−5)h3+c(c+3)
)
h2

2

+
(
128h3

3+48(c−5)h2
3+4

(
c2−6c+25

)
h3+c(3c−10)

)
h2+c(h3+1)

(
16h2

3+2(c−5)h3+c
)]

h7
1

+256
[
−512(c+8h3)h4

2−16
(
256h2

3+8(7c−23)h3+c(3c+1)
)
h3

2

+2
(
−2048h3

3−128(3c+1)h2
3−8

(
c2+66c−195

)
h3+c

(
c2−34c−63

))
h2

2

+
(
−4096h4

3−128(7c−23)h3
3−16

(
c2+66c−195

)
h2

3+4
(
c3−43c2+247c−525

)
h3+c

(
3c2−73c+210

))
h2

+c
(
−512h4

3−16(3c+1)h3
3+2

(
c2−34c−63

)
h2

3+
(
3c2−73c+210

)
h3+(c−21)c

)]
h6

1

−128
[
−1536(c+8h3)h5

2−64
(
64h2

3+16(c−2)h3+(c−1)c
)
h4

2

+16
(
−1024h3

3−32(3c+20)h2
3+4

(
3c2−96c+227

)
h3+c

(
c2−15c−49

))
h3

2

+2
(
−2048h4

3−256(3c+20)h3
3−64(33c−103)h2

3+8
(
c3−27c2+42c−70

)
h3+c

(
7c2−103c+132

))
h2

2

+
(
−12288h5

3−1024(c−2)h4
3+64

(
3c2−96c+227

)
h3

3+16
(
c3−27c2+42c−70

)
h2

3

+4
(
7c3−186c2+779c−900

)
h3+3c

(
3c2−62c+120

))
h2+c

(
−1536h5

3−64(c−1)h4
3

+ 16
(
c2−15c−49

)
h3

3+2
(
7c2−103c+132

)
h2

3+3
(
3c2−62c+120

)
h3+3(c−12)c

)]
h5

1

+256
[
−512(c+8h3)h6

2+32
(
64h2

3+16(c−2)h3+(c−1)c
)
h5

2

+4
(
−1536h3

3−64(c+25)h2
3+8

(
5c2−106c+241

)
h3+c

(
3c2−38c−93

))
h4

2

+2
(
−3072h4

3−256(c+7)h3
3+16

(
2c2−57c+75

)
h2

3+2
(
c3−9c2−129c+225

)
h3+c

(
2c2−19c−39

))
h3

2

+
(
2048h5

3−256(c+25)h4
3+32

(
2c2−57c+75

)
h3

3+8
(
2c3−25c2−180c+515

)
h2

3+2
(
12c3−235c2+821c−950

)
h3

+ c
(
5c2−123c+200

))
h2

2+
(
−4096h6

3+512(c−2)h5
3+32

(
5c2−106c+241

)
h4

3+4
(
c3−9c2−129c+225

)
h3

3

+2
(
12c3−235c2+821c−950

)
h2

3+2
(
9c3−129c2+370c−250

)
h3+c

(
3c2−38c+50

))
h2

+c
(
−512h6

3+32(c−1)h5
3+4

(
3c2−38c−93

)
h4

3+
(
4c2−38c−78

)
h3

3+
(
5c2−123c+200

)
h2

3+
(
3c2−38c+50

)
h3−5c

)]
h4

1

−16
[
−2048(c+8h3)h7

2+256
(
256h2

3+8(7c−23)h3+c(3c+1)
)
h6

2

+128
(
−1024h3

3−32(3c+20)h2
3+4

(
3c2−96c+227

)
h3+c

(
c2−15c−49

))
h5

2

−32
(
−3072h4

3−256(c+7)h3
3+16

(
2c2−57c+75

)
h2

3+2
(
c3−9c2−129c+225

)
h3+c

(
2c2−19c−39

))
h4

2

+16
(
−8192h5

3+512(c+7)h4
3+48

(
6c2−68c−347

)
h3

3+2
(
6c3−31c2−1495c+5600

)
h2

3+
(
22c3−469c2+228c−600

)
h3

+ c
(
3c2−102c+40

))
h3

2+2
(
32768h6

3−2048(3c+20)h5
3−256

(
2c2−57c+75

)
h4

3+16
(
6c3−31c2−1495c+5600

)
h3

3

−2
(
2c3+365c2−6448c+18225

)
h2

3+
(
6c3−1419c2+7085c−4000

)
h3+4c

(
3c2−40c+100

))
h2

2

−
(
16384h7

3−2048(7c−23)h6
3−512

(
3c2−96c+227

)
h5

3+64
(
c3−9c2−129c+225

)
h4

3−16
(
22c3−469c2+228c−600

)
h3

3

− 2
(
6c3−1419c2+7085c−4000

)
h2

3+c
(
162c2+761c−800

)
h3+32c3)h2+8c

(
−256h7

3+32(3c+1)h6
3+16

(
c2−15c−49

)
h5

3

+
(
−8c2+76c+156

)
h4

3+
(
6c2−204c+80

)
h3

3+
(
3c2−40c+100

)
h2

3−4c2h3−c2)]h3
1

+2
[
2048

(
128h2

3+24(c−5)h3+c(c+3)
)
h7

2+256
(
−2048h3

3−128(3c+1)h2
3−8

(
c2+66c−195

)
h3+c

(
c2−34c−63

))
h6

2

−128
(
−2048h4

3−256(3c+20)h3
3−64(33c−103)h2

3+8
(
c3−27c2+42c−70

)
h3+c

(
7c2−103c+132

))
h5

2

+128
(
2048h5

3−256(c+25)h4
3+32

(
2c2−57c+75

)
h3

3+8
(
2c3−25c2−180c+515

)
h2

3+2
(
12c3−235c2+821c−950

)
h3

+ c
(
5c2−123c+200

))
h4

2−16
(
32768h6

3−2048(3c+20)h5
3−256

(
2c2−57c+75

)
h4

3+16
(
6c3−31c2−1495c+5600

)
h3

3

− 2
(
2c3+365c2−6448c+18225

)
h2

3+
(
6c3−1419c2+7085c−4000

)
h3+4c

(
3c2−40c+100

))
h3

2

+2
(
131072h7

3−16384(3c+1)h6
3+4096(33c−103)h5

3+512
(
2c3−25c2−180c+515

)
h4

3+16
(
2c3+365c2−6448c+18225

)
h3

3

+6
(
25c4−427c3−1605c2+17175c−32000

)
h2

3+c
(
75c3−1078c2−997c+12800

)
h3+128c2(5−2c)

)
h2

2+
(
49152(c−5)h7

3

−2048
(
c2+66c−195

)
h6

3−1024
(
c3−27c2+42c−70

)
h5

3+256
(
12c3−235c2+821c−950

)
h4

3−16
(
6c3−1419c2+7085c−4000

)
h3

3

+2c
(
75c3−1078c2−997c+12800

)
h2

3+5c2 (15c2−15c−512
)
h3−64c3)h2+64ch3

(
32(c+3)h6

3+4
(
c2−34c−63

)
h5

3

−2
(
7c2−103c+132

)
h4

3+2
(
5c2−123c+200

)
h3

3+
(
−3c2+40c−100

)
h2

3+4c(5−2c)h3−c2)]h2
1

+
[
2048

(
128h3

3+48(c−5)h2
3+4

(
c2−6c+25

)
h3+c(3c−10)

)
h7

2+256
(
−4096h4

3−128(7c−23)h3
3−16

(
c2+66c−195

)
h2

3

+ 4
(
c3−43c2+247c−525

)
h3+c

(
3c2−73c+210

))
h6

2−128
(
−12288h5

3−1024(c−2)h4
3+64

(
3c2−96c+227

)
h3

3

+ 16
(
c3−27c2+42c−70

)
h2

3+4
(
7c3−186c2+779c−900

)
h3+3c

(
3c2−62c+120

))
h5

2

+256
(
−4096h6

3+512(c−2)h5
3+32

(
5c2−106c+241

)
h4

3+4
(
c3−9c2−129c+225

)
h3

3+2
(
12c3−235c2+821c−950

)
h2

3

+2
(
9c3−129c2+370c−250

)
h3+c

(
3c2−38c+50

))
h4

2+16
(
16384h7

3−2048(7c−23)h6
3−512

(
3c2−96c+227

)
h5

3

+64
(
c3−9c2−129c+225

)
h4

3−16
(
22c3−469c2+228c−600

)
h3

3−2
(
6c3−1419c2+7085c−4000

)
h2

3+c
(
162c2+761c−800

)
h3

+32c3)h3
2+2

(
49152(c−5)h7

3−2048
(
c2+66c−195

)
h6

3−1024
(
c3−27c2+42c−70

)
h5

3+256
(
12c3−235c2+821c−950

)
h4

3

−16
(
6c3−1419c2+7085c−4000

)
h3

3+2c
(
75c3−1078c2−997c+12800

)
h2

3+5c2 (15c2−15c−512
)
h3−64c3)h2

2

+h3

(
8192

(
c2−6c+25

)
h6

3+1024
(
c3−43c2+247c−525

)
h5

3−512
(
7c3−186c2+779c−900

)
h4

3+512
(
9c3−129c2+370c−250

)
h3

3

+16c
(
162c2+761c−800

)
h2

3+10c2 (15c2−15c−512
)
h3+3c3(25c+256)

)
h2+128ch2

3

(
16(3c−10)h5

3+2
(
3c2−73c+210

)
h4

3

− 3
(
3c2−62c+120

)
h3

3+2
(
3c2−38c+50

)
h2

3+4c2h3−c2)]h1

+128c
(
16h2

2+2(c−5)h2+c
)

(h2−h3)2 (16h2
3+2(c−5)h3+c

)(
(h3+1)h3

2−2
(
h2

3+1
)
h2

2+
(
h3

3+1
)
h2+(h3−1)2h3

)}
.
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We also record here the first few coefficients A0
n in the q-expansion of the vacuum block in

the pillow frame analogous to (2.23), which, as already emphasized, differ from the hi → 0

limit of (2.24),

A0
0 = 2−

c
2 , A0

1 = 0, A0
2 = 2−

c
2
−1 25c

243
, A0

3 = 0,

A0
4 = 2−

c
2
−3 1875c2+83110c+524288

177147
, A0

5 =
2−

c
2

+21

4782969
,

A0
6 = 2−

c
2
−4 140625c3+18699750c2+349131040c+2969567232+2147483648c−1

387420489
.

(2.25)

Importantly, all of the coefficients An(h1, h2, h3) are non-negative, as they can be inter-

preted as inner products of level n descendant states created by pairs of twist-anti-twist

fields on two corners of the pillow, similarly to the sphere 4-point block analyzed in [24].

Indeed, we have explicitly verified the positivity of An(h1, h2, h3) with c > 1 and hi > 0,

for n ≤ 5.

3 The genus two modular crossing equation

3.1 Some preliminary analysis

Now we consider the genus two modular crossing equation restricted to the Renyi surface,

as given by (1.6). Some crude but rigorous constraints on the structure constants in unitary

CFTs can be deduced even without appealing to the details of the z-expansion of the genus

two conformal block. First, let us write the twist field 4-point function (1.3) in the pillow

coordinates,

〈σ3(0)σ̄3(z, z̄)σ3(1)σ̄3(∞)〉

=
∣∣∣(z(1− z))

c
8
−2hσθ3(τ)

3c
2
−16hσq−

c
8

∣∣∣2
×
∑
i,j,k

∞∑
n,m=0

C2
ijkAn(hi, hj , hk)Am(h̃i, h̃j , h̃k)q

hi+hj+hk+nq̄h̃i+h̃j+h̃k+m

=
∣∣∣(z(1− z))

c
8
−2hσθ3(τ)

3c
2
−16hσq−

c
8

∣∣∣2 ∑
(h,h̃)∈J

C̃2
h,h̃
qhq̄h̃.

(3.1)

In the last line, we simply grouped terms of the same powers of q and q̄ together in the

sum. The index set J is by construction the union of (
∑3

i=1 hi + Z≥0,
∑3

i=1 h̃i + Z≥0)

for all triples of conformal weights {(hi, h̃i), i = 1, 2, 3} that appear in nonzero structure

constants, including the case where one of the primaries is the identity and the structure

constant reduces to the two-point function coefficient. It follows from the non-negativity

of the coefficients An that C̃2
h,h̃

are non-negative quantities in a unitary CFT.

Let us now apply (3.1) to a unitary noncompact CFT, where the SL(2)-invariant vac-

uum is absent and the identity is not included in the spectrum of (δ-function) normalizable

operators. C̃2
h,h̃

now only receives contributions from the structure constants of nontriv-

ial primaries. Applying first order derivatives in z and z̄ to the crossing equation, and
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evaluating at z = z̄ = 1
2 , we have∑

(h,h̃)∈J ′
C̃2
h,h̃

∂z|z= 1
2

[
(z(1− z))

c
4
−4hσθ3(τ)3c−32hσqh+h̃− c

4

]
= 0.

(3.2)

In the above equation, the factor multiplying C̃2
h,h̃

is negative for ∆ ≡ h + h̃ below a

certain “critical dimension” ∆crit and positive for ∆ > ∆crit. It follows immediately that

there must be a nonzero C̃2
h,h̃

for ∆ < ∆crit, i.e. there must be a triple of primaries with

nonzero structure constant, whose total scaling dimension is less than ∆crit, in any unitary

noncompact CFT of central charge c. The value of (or rather, an upper bound on) the

critical dimension is easily computed from (3.2) to be

∆crit =

(
1

4
− 3

4π

)
c+

8

π
hσ =

9π + 5

36π
c ≈ 0.29421c. (3.3)

As a consistency check, the Liouville CFT of central charge c has nonzero structure con-

stants for triples of primaries of total scaling dimension above the threshold c−1
4 , which is

indeed less than (3.3).

Although rigorous, the bound (3.3) is quite crude. To deduce similar results in compact

CFTs, it will be important to distinguish the contributions of Virasoro descendants from

those of the primaries in (3.1). We will refine our analysis in the next subsection by

computing the z or q-expansion of the genus two conformal block to higher orders.

3.2 Critical surfaces

As is standard in the numerical bootstrap [25–27], we can turn the genus two modu-

lar crossing equation (1.6) into linear equations for C2
ijk by acting on it with the linear

functional

α =
∑

n+m=odd

an,m∂
n
z ∂

m
z̄

∣∣∣∣∣
z=z̄= 1

2

, (3.4)

where an,m are a set of real coefficients, and obtain constraints on the structure constants

of the general form ∑
i,j,k∈I

C2
ijkF

α
c (hi, hj , hk; h̃i, h̃j , h̃k) = 0, (3.5)

where Fαc is a function of a triple of left and right conformal weights. For typical choices

of the linear functional α, Fαc will be negative on a domain D in the space of triples of

conformal weights, and positive on the complement of the closure of D. A critical surface S

is defined to be the boundary of D where Fαc vanishes. With an appropriate choice of sign in

α, the domain D consists of triples of low lying weights (we will see that the critical surface

is often compact), and the equation (3.5) implies that the structure constants outside of D

are bounded by those that lie within D.

Clearly, the critical surface S depends on the choice of α. It is of interest to find

critical surfaces that bound a domain D that is as “small” as possible, so that we can

bound as many structure constants as possible based on the knowledge of a small set of

structure constants of low dimension operators in any unitary CFT. Here we will consider
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the simplest nontrivial linear functional α which involves only first order derivatives in z

or in z̄. In this case, the critical surface is the locus

a1,0Wc(h1, h2, h3) + a0,1Wc(h̃1, h̃2, h̃3) = 0, (3.6)

where Wc(h1, h2, h3) ≡ ∂z logFc(h1, h2, h3|z)|z= 1
2
. For instance, we can choose a0,1 = 0,

and the critical surface Wc(h1, h2, h3) = 0 bounds a compact domain Dh in R3
≥0 param-

eterized by the holomorphic weights (h1, h2, h3), and bound structure constants of triples

of primaries of higher twists by those of lower twists. From (2.23), we have

Wc(h1, h2, h3) =
π2

K(1
2)2

[
h1 + h2 + h3 −

(
1

8
+

5

72π

)
c+

∑∞
n=1 nAn(h1, h2, h3)e−nπ∑∞
n=0An(h1, h2, h3)e−nπ

]
.

(3.7)

The last term in the bracket is always positive (assuming c > 1 and hi > 0), thus the

domain Wc < 0 lies within the region h1 + h2 + h3 <
(

1
8 + 5

72π

)
c and is compact. This is

what we have seen in the previous subsection.

For numerical evaluation we may work with the truncated version

W (N)
c (h1, h2, h3) =

π2

K(1
2)2

[
h1 + h2 + h3 −

(
1

8
+

5

72π

)
c+

∑N
n=1 nAn(h1, h2, h3)e−nπ∑N
n=0An(h1, h2, h3)e−nπ

]
.

(3.8)

The domain D
(N)
h = {(h1, h2, h3) ∈ R3

≥0 : W
(N)
c (h1, h2, h3) < 0} becomes smaller with

increasing N (and of course, converges to Dh in the N → ∞ limit). In figure 3 we plot

some examples of the critical domain D
(N)
h with N = 3, for central charges c = 1, 4, and

25. The location of the critical surface converges rather quickly with the q-expansion order:

an example of a slice of the critical domain in the c = 4 case is shown in figure 4.

In particular, in the limit h1 → 0, with h2, h3 fixed at generic positive values, the

coefficients An diverge like h−1
1 Pn(h2, h3), where Pn is a rational function of h2, h3 that

vanishes quadratically along h2 = h3 (> 0). For h2 6= h3 > 0, for instance, we have

limh1→0W
(1)
c (h1, h2, h3) = π2

K( 1
2

)2

[
h2 + h3 −

(
1
8 + 5

72π

)
c+ 1

]
, which is always positive for

c < 6.79787. A slightly more intricate analysis of limh1→0W
(2)
c shows that it is positive for

c < 9.31751. Consequently, for this range of the central charge c, the domain D
(2)
h (and

thereby Dh) meets the h1 = 0 plane along a segment of the line h2 = h3 only. This is

demonstrated in figure 5.

For c > 1, we observe that Wc(h1, h2, h3) is minimized in the limit h1 = h2 = h3 → 0,

where it approaches a negative value −rc (note that in the simultaneous hi → 0 limit Wc

depends on the ratios of the hi’s). For a1,0 and a0,1 both positive, the domain D bounded

by the critical surface S then lies strictly within the domain

Wc(h1, h2, h3) <
a0,1

a1,0
rc, Wc(h̃1, h̃2, h̃3) <

a1,0

a0,1
rc. (3.9)

Let us choose a0,1 = a1,0, and define D̃ as the domain Wc(h1, h2, h3) < rc in R3
≥0. Now

the compact domain D∆ = D̃ + D̃ (the set of sums of vectors from each set) in R3
≥0

may be viewed as a critical domain in the triple of scaling dimensions (∆1,∆2,∆3), with
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2.0
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3.0
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h1=1.5
h1=2
h1=2.5

Figure 3. Top: three-dimensional plots of the domain D
(3)
h for c = 1, 4, 25. Bottom: plots of the

cross-sections of these domains for various values of h1. The structure constants of primaries with

twists (τ1, τ2, τ3) = (2h1, 2h2, 2h3) outside these critical domains are bounded by those whose twists

lie within the domains.

0.1 0.2 0.3 0.4
h2

0.1

0.2

0.3

0.4

h3

c=4, h1=0.1

N=2
N=3
N=4
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0.2426

Figure 4. A slice of the c = 4 critical domain D
(N)
h , which converges quickly with the truncation

order N of the q-expansion.

∆i = hi + h̃i, in the sense that structure constants of triples of primaries of dimensions

(∆1,∆2,∆3) outside D∆ are bounded by those that lie within D∆.4 Some examples of D∆

are shown in figure 6.

4Note that if D̃ is convex, then D∆ is simply D̃ rescaled by a factor of 2, but in fact D̃ is generally not

convex in the region where one of the weights is small.
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Figure 5. Slices of the critical domain D
(3)
h for c = 8 and c = 10 at small values of h1. For

c = 8, the critical domain Dh intersects the h1 = 0 plane only along a segment of the diagonal line

h2 = h3. This is not the case for c = 10.
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Figure 6. Top: three-dimensional plots of the domain D
(3)
∆ for c = 1, 4, 25. Bottom: plots of the

cross-sections of these domains for various values of ∆1.
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A subtlety pointed out at the end of section 2.2 is that the simultaneous hi → 0

limit of the genus two conformal block with three positive internal weights is distinct from

the vacuum block. If we define Wc,0 to be (3.7) computed using the vacuum block, we

would find a result that is slightly below limh1=h2=h3→0+ Wc(h1, h2, h3) = −rc. Since we

seek critical surfaces such that the structure constants of “heavy primaries” outside are

bounded by those of the “light primaries” that lie inside the surface, the vacuum block

which enters the genus two partition function with coefficient 1 is not relevant, and thus

the result (3.9) suffices.

4 Beyond the Z3-invariant surface

In order to write the modular crossing equation for the partition functions on genus two

Riemann surfaces of general moduli in a computationally useful manner, we will still work

at the Z3-invariant Renyi surface and expand around the crossing-invariant point z = 1
2 ,

but with extra insertions of stress-energy tensors T (zj) and T̃ (z̄j) on any of the three sheets.

Under the crossing z → 1−z, the transformation of the stress-energy tensors is simple.

For instance, it suffices to work with the insertion of V = L−N L̄−Ñ ·1 on one of the sheets at

the point w. Here L−N ≡ L−n1 · · ·L−nk is a Virasoro chain, and L̄−Ñ is defined similarly.

The crossing transformation sends V to the operator (−)|N |+|Ñ |L−N L̄−Ñ ·1 inserted at the

position 1 − w. The point w is mapped to the pillow coordinate via (2.22). In particular,

with z = 1
2 , τ = i, the points w = 1±i

2 are mapped to v = ±1+i
2 π (up to monodromies), i.e.

the center on the front and back of the pillow.

We can now define the modified conformal blocks with L̂−Ri(x) insertion on the

i-th sheet,

F(h1, h2, h3;R1, R2, R3;w|z)

= 3−3
∑3
i=1 hi

∑
{Ni},{Mi}

z−2hσ+
∑3
i=1(hi+|Ni|)w

∑3
k=1(|Mk|−|Nk|−|Rk|)

× ρ(L∞−N3
h3,L1

−N2
h2,L0

−N1
h1)ρ(L∞∗−M3

h3,L1∗
−M2

h2,L0∗
−M1

h1)

×
∑

|Pi|=|Ni|, |Qi|=|Mi|

3∏
k=1

GNkPkhk
GMkQk
hk

ρ(L−Qkhk, L−Rk id, L−Pkhk).

(4.1)

Here the level sum takes the form of a series expansion in w and z/w. For numerical

evaluation, it is far more efficient to reorganize the sum as an expansion in q1 ≡ ei(πτ−v)

and q2 ≡ eiv instead, where τ and v are given by (1.1) and (2.22). As is evident from the

pillow frame, evaluating at z = 1
2 and w = 1+i

2 , the effective expansion parameters are

|q1| = |q2| = e−π/2, with unit radius of convergence. Explicitly, we have

z

w
= 4q2 − 8q2

2 + 8q1q2 + 12q3
2 − 32q1q

2
2 + 4q2

1q2 − 16q4
2 + 64q1q

3
2 − 48q2

1q
2
2 + . . . , (4.2)

and w is given by the same series expansion with q1 and q2 exchanged.
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For example, the conformal block with a single stress-energy tensor inserted in the first

sheet, up to total level 2 in q1 and q2, is given by

F(h1,h2,h3;R1 = {2},R2 =∅,R3 =∅;q1, q2)

=

(
16q1q2

27

)h1+h2+h3 (16q1q2)−
2
9
c

q2
1

{
h1

16
+

1

36

(
18h1q1−i

√
3(h2−h3)(q1−q2)

)
+

1

216h1h2h3

[
h1h2h3q

2
1

(
8c+413h1−4(h2+h3)−48i

√
3(h2−h3)

)
+4q2q1

(
h2

1

(
6(c+9)h3h2+h3

2+h3
3

)
+h4

1 (h2+h3)−2h3
1

(
h2

2+h2
3

)
+h1h2h3 (h2−h3)

(
h2−h3+12i

√
3
)

+h2h3 (h2−h3)2

)
+h1h2h3q

2
2 (8c+35h1−4h2−4h3)

]
+. . .

}
. (4.3)

If we symmetrize (4.1) with respect to R1, R2, R3, we recover the conformal block of the

Z3-invariant Renyi surface considered in the previous section, differentiated with respect

to z, up to a conformal anomaly factor. In particular, summing over insertions of a single

stress-energy tensor on one of the three sheets, we find

F(h1, h2, h3;R1 = {2}, R2 = ∅, R3 = ∅; q1, q2) + (2 cyclic permutations on R1, R2, R3)

= C(q1, q2)∂qF(h1, h2, h3; q)
∣∣
q=q1q2

+ cB(q1, q2)F(h1, h2, h3; q = q1q2),

(4.4)

where the first term on the r.h.s. is due to deformation of the modulus z or q and the

second term is due to the conformal anomaly (from a Weyl transformation that flattens

out the pillow geometry after the insertion of the stress-energy tensor). The functions C

and B are independent of hi and c; they admit series expansions in q1 and q2 of the form

C(q1, q2) =
q2

16q1
+
q2

2
+
q2

8

(
15q1 + 8q2 +

q2
2

q1

)
+

1

2
q2

(
9q2

1 + 16q1q2 + 3q2
2

)
+ . . . ,

B(q1, q2) =
1

72q2
1

+
1

9q1
+

19q2
1 + 4q1q2 + 5q2

2

36q2
1

+
17q2

1 + 8q1q2 + 11q2
2

9q1
+ . . . .

(4.5)

A complete set of genus two modular crossing equations can now be written as

(−)
∑3
j=1(|Rj |+|R̃j |)

∑
(hi,h̃i)

C2
h1,h2,h3;h̃1,h̃2,h̃3

F(h1, h2, h3;R1, R2, R3;w|z)F(h̃1, h̃2, h̃3; R̃1, R̃2, R̃3; w̄|z̄)

=
∑

(hi,h̃i)

C2
h1,h2,h3;h̃1,h̃2,h̃3

F(h1, h2, h3;R1, R2, R3; 1− w|1− z)F(h̃1, h̃2, h̃3; R̃1, R̃2, R̃3; 1− w̄|1− z̄).

(4.6)

If we take into account all possible choices of integer partitions Rj and R̃j , it suffices to

evaluate this equation at the crossing-invariant point z = z̄ = 1
2 , with the choice w = 1+i

2 ,

w̄ = 1−i
2 . The consequence of (4.6) in constraining structure constants in unitary CFTs is

currently under investigation.
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5 Discussion

The main results of this paper are the formulation of genus two modular crossing equa-

tions in an explicitly computable manner, by working on the Renyi surface as well as

expanding around it. As an application, we found compact critical surfaces that bound

domains D ⊂ R3
≥0 such that structure constants Cijk involving a triple of primaries whose

dimensions (∆i,∆j ,∆k) or twists (τi, τj , τk) are outside of D are bounded by those that

lie within D. The existence of the compact critical surface is a nontrivial consequence of

genus two modular invariance that does not follow easily from the analysis of individual

OPEs: roughly speaking, the crossing equation for the sphere 4-point function bounds

light-light-heavy structure constants in terms of light-light-light ones, but the genus two

modular crossing equation also bounds light-heavy-heavy and heavy-heavy-heavy structure

constants in terms of light-light-light ones.

In deriving the critical surface, we have used merely a tiny part of the genus two

crossing equation, namely the first order z and z̄ derivatives of the Renyi surface crossing

equation evaluated at the crossing invariant point z = z̄ = 1
2 . Clearly, stronger results

for the critical surfaces (that bound smaller domains) should be obtained by taking into

account higher order z and z̄ derivatives of the crossing equation. This is rather tricky to

implement numerically through semidefinite programming, simply due to the fact the genus

two conformal block decomposition involves 3 continuously varying scaling dimensions and

3 spins. To implement the crossing equation through [28], for instance, one may attempt

to vary the sum of the 3 scaling dimensions, and sample over their differences as well as

truncating on the spins, but such a sampling would involve a huge set of conformal blocks

that is hard to handle numerically. At the moment this appears to be the main technical

obstacle in optimizing the genus two modular bootstrap bounds.5

Many more constraints on the structure constants Cijk can in principle be obtained by

consideration of higher order derivatives of the genus two crossing equation. For instance,

combining first and third order derivatives, analogously to [8, 25], one can deduce the

existence of structure constants Cijk with say the dimensions (∆i,∆j ,∆k) lying within a

small domain (typically, such a domain is strictly larger than one that is bounded by a

critical surface). The genus two modular invariance potentially has the power to constrain

CFTs with approximately conserved currents (i.e. primaries with very small twist): if such

a current operator propagates through one of the three handles of the genus two surface,

modular invariance should constrain the pairs of operators propagating through the other

two handles according to representations of an approximate current algebra or W -algebra.

Typically, when OPE bounds or (genus one) modular spectral bounds are close to being

saturated [11], one finds that there are necessarily low twist operators in the spectrum. For

instance, this strategy may be used to severely constrain (and possibly rule out) unitary

compact CFTs with central charge c slightly bigger than 1.

There is another genus two conformal block channel (the “dumbbell channel”) that we

have not discussed so far, namely one in which the genus two surface is built by plumbing

5A potentially more efficient numerical approach would be based on sum-of-squares optimization, as is

explained to us by D. Simmons-Duffin.
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together a pair of 1-holed tori. The conformal block decomposition of the genus two

partition function in this channel involves the torus 1-point functions, or the structure

constants Cijj where a pair of primaries are identified. The modular covariance of the torus

1-point function cannot be used by itself to constrain Cijj in a unitary CFT, since Cijj does

not have any positivity property in general. In the dumbbell channel decomposition of the

genus two partition function, the structure constants appear in the combination CijjCikk,

allowing for the implementation of semidefinite programming. In our present approach via

expansion around the Renyi surface, it appears rather difficult to perform the conformal

block decomposition in the dumbbell channel explicitly. How to incorporate this channel

in the genus two modular bootstrap is a question left for future work.
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