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1 Introduction

A two-dimensional conformal field theory is characterized by its spectrum of Virasoro pri-

maries and their OPE coefficients. Given these data, all correlation functions of the CFT

on any Riemann surface can be constructed, through the Virasoro conformal blocks [1, 2]
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which sum up all descendant contributions of the conformal families in consideration. Di-

rect evaluation of the conformal blocks based on the definition by summing over Virasoro

descendants is computationally costly and is practically intractable beyond the first few

levels even with computer algebra.

An efficient method for computing the sphere 4-point Virasoro conformal block was

found by Zamolodchikov in [3], in the form of a recurrence relation in the central charge

c. This is based on the observation that the conformal block can be analytically continued

as a meromorphic function in c, whose poles are dictated by degenerate representations of

the Virasoro algebra, together with a simplification in the large c limit where the Virasoro

block reduces to that of the global conformal group SL(2). An analogous recurrence formula

through the analytic continuation in the internal weight h rather than the central charge

was subsequently found in [4]. These recurrence formulae have played an essential role both

in computing string amplitudes [5, 6] and in the numerical conformal bootstrap approach

to 2D CFTs [7–9] (in [9], for instance, the explicit expansion of a Virasoro conformal block

to level 200 was used).

The recursive representations have also been extended to super-Virasoro conformal

blocks [10–12], and to torus 1-point conformal blocks [13, 14]. More general Virasoro

conformal blocks (higher points, higher genera) are important to the computation of certain

string amplitudes as well as for more sophisticated numerical conformal bootstrap analyses.

Our aim is to provide a complete set of recurrence relations for efficient evaluation of

Virasoro conformal blocks on a Riemann surface of any genus with any number of external

primary vertex operator insertions.

The main results of this paper are:

(1) We extend the c-recursion relation to sphere and torus N -point Virasoro conformal

blocks in all channels, such as those shown in figure 1.

The first key observation, which is common to all recurrence relations discussed in this

paper, is that when we analytically continue in the central charge c or the internal weights

hi, there is a pole whenever an internal Virasoro representation becomes degenerate and

develops a null state at some level rs [1, 15]. The residue of this pole is proportional to the

conformal block evaluated at the degenerate internal weight shifted by rs, with a universal

coefficient that is a known function of the internal and external weights.

With this understanding, the determination of the recurrence relation boils down to

identifying the large c or large internal weight limits. The large c limit of the sphere N -

point Virasoro conformal block reduces to that of the global SL(2) block, which is relatively

easy to compute. The large c limit of the torus N -point Virasoro conformal block turns out

to reduce to the product of the torus vacuum character and a corresponding global SL(2)

block. The factorization property of the large central charge limit of the ‘light’ block (with

all weights held fixed) was originally observed in the case of the torus 1-point block in [14].

(2) We find the h-recursion for the sphere N -point Virasoro blocks in the linear channel,

and torus N -point Virasoro blocks in the necklace channel, depicted in figure 2.
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Figure 1. The sphere six-point block in the trifundamental channel (left) and the torus two-point

block in the OPE channel (right). Our c-recursion representation for arbitrary sphere and torus

N -point blocks enables recursive evaluation of these blocks; we work these cases out explicitly in

section 4.4.
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Figure 2. The torus N -point block in the necklace channel (left) and the sphere N -point block in

the linear channel (right).

To determine the h-recursion relations, we need to know the behavior of the Virasoro

conformal block in suitable large internal weight limits, which turns out to be very subtle. In

the case of the torus N -point block in the necklace channel, for instance, the simplification

occurs when all internal weights hi along the necklace are taken to infinity simultaneously,

with hi − hj kept finite. In this limit, the necklace conformal block reduces to a non-

degenerate torus Virasoro character. This observation is powerful enough to determine the

recurrence relation for the necklace conformal block.

A degeneration limit of the torus (N−1)-point necklace block gives the sphere N -point

conformal block in the linear channel. In the latter case, our recurrence relation makes

use of the limit where all the internal weights hi and a pair of external weights d1 and dN
are taken to infinity simultaneously along a line that begins on d1 and ends on dN , again

with their differences hi − hj , hi − d1, and hi − dN kept finite. Note that this is different

from Zamolodchikov’s h-recurrence relation in the sphere 4-point case, where the recursion

only applies to the internal weight. In particular, in our formulation of the sphere N -point

– 3 –
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Figure 3. The large-c factorization of a genus-2 two-point block in the plumbing frame, in which

the punctured Riemann surface is built by plumbing together two-holed (or punctured) discs using

SL(2) maps.

recursion in the linear channel, it suffices to work with the standard cross ratios rather

than Zamolodchikov’s elliptic nome.

(3) We give a complete set of recipes for the c-recursion relation for the most general N -

point Virasoro conformal blocks on a genus g Riemann surface, based on a plumbing

construction through a given pair-of-pants decomposition.

In formulating the higher genus Virasoro conformal blocks, based on a particular pair-

of-pants decomposition, one must choose a conformal frame defined by a choice of the

fundamental domain and gluing maps along its boundaries. Differences in the choice of

conformal frame not only lead to different parameterizations of the moduli, but also extra

factors multiplying the conformal block due to the conformal anomaly. We choose to

construct the (punctured) Riemann surface by gluing together 3-holed Riemann spheres,

represented by 2-holed discs on the complex plane, with SL(2,C) Möbius maps along their

boundary components. Formally, since only SL(2) maps are used in such a plumbing

construction, it also makes sense to define a corresponding global SL(2) block, by summing

up L−1 descendants at the holes.

We will show that in this frame, the genus g, N -point Virasoro conformal block remains

finite in the c → ∞ limit. In particular, the same is true for the genus g vacuum block,

whose large c limit is expected to exponentiate into the form e−cF0 to leading order, where

F0 is the holomorphic part of a suitably regularized Einstein-Hilbert action on a hyperbolic

handlebody [16, 17]. In our frame, F0 is simply zero, and the c→∞ limit of the vacuum

block is finite. Further, the finite part of the c → ∞ vacuum block is given by the 1-loop

partition function of 3D pure gravity on the hyperbolic handlebody, as computed in [18].

We will show that the c→∞ limit of the genus g Virasoro conformal block factorizes

into the product of the c → ∞ vacuum block and the global SL(2) block defined through

the above mentioned plumbing construction, as shown in figure 3. This is a generalization

of the factorization property of the light block at large central charge first proven in the

case of the torus 1-point block in [14].

The paper is organized as follows. In section 2 we review Zamolodchikov’s recurrence

relations for the sphere 4-point Virasoro conformal block. The h-recurrence relations for

torus N -point necklace channel conformal block and the sphere N -point linear channel
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conformal block are derived in section 3. In section 4, we formulate and prove the c-

recurrence relation for sphere and torus N -point Virasoro conformal blocks in arbitrary

channels. The generalization to higher genus is presented in section 5. We conclude in

section 6 with a discussion of potential applications of our results, and issues concerning

the mapping of moduli parameters for the higher genus conformal blocks.

2 Review of the sphere 4-point Virasoro block

In this section, we review the recursive representations of the sphere 4-point Virasoro

conformal blocks, originally derived in [3, 4]. We follow the notations and derivations

of [10, 13, 19, 20] in detail, as we will generalize their features to higher-point cases in later

sections.

2.1 Definition of Virasoro conformal block

Using the global SL(2,C) invariance, the 4-point function of Virasoro primaries of weight

(di, d̄i), i = 1, ..., 4, on the Riemann sphere can be brought to the form

〈φ′4(∞,∞)φ3(1, 1)φ2(z, z̄)φ1(0, 0)〉 = 〈ν4 ⊗ ν̄4|φ3(1, 1)φ2(z, z̄)|ν1 ⊗ ν̄1〉, (2.1)

where φ′(∞,∞) = limw,w̄→∞w
2d4w̄2d̄4φ4(w, w̄), |νi ⊗ ν̄i〉 is the state corresponding to the

primary operator φi inserted at the origin in radial quantization, and 〈νi ⊗ ν̄i| is the BPZ

conjugate. Inserting a complete set of states in between φ2 and φ3, we can write

〈ν4 ⊗ ν̄4|φ3(1, 1)φ2(z, z̄)|ν1 ⊗ ν̄1〉=
∑
h,h̄

∑
|M |=|N |=n
|P |=|Q|=m

〈ν4 ⊗ ν̄4|φ3(1, 1)|L−Nνh ⊗ L−P ν̄h̄〉

×(Gnc,h)NM (Gmc,h̄)PQ〈L−Mνh ⊗ L−Qν̄h̄|φ2(z, z̄)|ν1 ⊗ ν̄1〉.
(2.2)

Let us explain the notations here. The first sum is over the spectrum of Virasoro primaries

of weights1 (h, h̄) and the second sum is over descendants in the corresponding conformal

family. M,N,P,Q are integer partitions in descending order that label Virasoro descen-

dants. L−N stands for a chain of Virasoro generators corresponding to a specific partition

N of the non-negative integer n = |N |. For example, N = {2, 1, 1} with |N | = 4 gives rise

to L−N = L−2L−1L−1. Gnc,h is the Gram matrix at level n for a weight h representation

of the Virasoro algebra of central charge c, and
(
Gnc,h

)NM
stands for the inverse Gram

matrix element.

We will make extensive use of the 3-point function of general Virasoro descendants,

which factorizes into its holomorphic and anti-holomorhic parts, of the form [19]

〈ξ3 ⊗ ξ̄3|V2(z, z̄)|ξ1 ⊗ ξ̄1〉 = C321ρ(ξ3, ξ2, ξ1|z)ρ(ξ̄3, ξ̄2, ξ̄1|z̄). (2.3)

Here Vi represents a general Virasoro descendant of the primary φi, while (ξi, ξ̄i) label

the corresponding states in the Verma modules associated with the left and right Virasoro

1To avoid overly cluttered notation, we have omitted the labels of possibly degenerate primaries, which

can be restored easily when necessary.
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algebra. The structure constant C321 is the coefficient of the 3-point function of the pri-

maries φ3, φ2, φ1. ρ(ξ3, ξ2, ξ1|z) is determined entirely by the Virasoro algebra in terms of

the weights of the primaries, as we briefly review in appendix A; in particular, for primary

states νi, we have ρ(ν3, ν2, ν1|z = 1) = 1. Using this notation, the 4-point function can be

written as

〈ν4 ⊗ ν̄4|φ3(1, 1)φ2(z, z̄)|ν1 ⊗ ν̄1〉=
∑
h,h̄

C43(h,h̄)C(h,h̄)21z
h−d2−d1F (h, z, d1, d2, d3, d4, c)

× z̄h̄−d̄2−d̄1F (h̄, z̄, d̄1, d̄2, d̄3, d̄4, c), (2.4)

where F (h, z, d1, d2, d3, d4, c) is the holomorphic Virasoro conformal block of interest,

F (h, z, d1, d2, d3, d4, c) =
∑

|N |=|M |=n≥0

znρ(ν4, ν3, L−Nνh|1)
(
Gnc,h

)NM
ρ(L−Mνh, ν2, ν1|1).

(2.5)

Let us note a subtlety in our convention of ρ(ξ3, ξ2, ξ1|z) that will become particularly

important later for the torus and higher genus conformal blocks. In the definition of this

3-point function, ξ1 and ξ2 are Virasoro descendants of the form L−N1 |h1〉 and L−N2 |h2〉
inserted on the complex plane at 0 and z, while ξ3 is the BPZ conjugate of a state of the

form L−N3 |h3〉, inserted at ∞. In constructing a more general conformal block, associated

with a pair-of-pants decomposition of a punctured Riemann surface, we will be contracting

such 3-point functions of descendants with inverse Gram matrices. This corresponds to a

plumbing construction where we cut out holes centered at 0, z, and∞ on the complex plane,

resulting in 2-holed discs, and identify boundary components of pairs of 2-holed discs via

SL(2,C) Möbius maps. This amounts to a choice of conformal frame for the conformal block

in question, which turns out to be particularly convenient for the c-recursive representation

to be discussed later. A different choice of frame would generally lead to a conformal block

that differs by a factor of the conformal anomaly.

One could consider a different 3-point function of descendants, ρ̃(ξ3, ξ2, ξ1|w), defined

as the matrix element of the Virasoro descendant ξ2 inserted at position w on the cylinder

w ∼ w+2π, between the states 〈ξ3| and |ξ1〉 on the cylinder (say both defined at Imw = 0).

While the cylinder can be conformally mapped to the complex plane via z = e−iw, ξ2 being

a descendant does not transform covariantly. For instance, ρ̃(ξ3, ξ2, ξ1|w = 0) coincides with

ρ(ξ3, ξ2, ξ1|z = 1) when ξ2 is a primary, but not otherwise. For certain conformal blocks

it may be convenient to use a plumbing construction based on gluing together 1-holed

cylinders rather than 2-holed discs, which would amount to contracting 3-point functions

like ρ̃(ξ3, ξ2, ξ1|0) rather than ρ(ξ3, ξ2, ξ1|1) with inverse Gram matrices. This would result

in the block in a different conformal frame.

2.2 Simple pole structure and its residue

Let us now consider the analytic continuation of the Virasoro conformal block in h and in

c. The presence of the inverse Gram matrix in (2.5) introduces simple poles, corresponding

to the values of h and c where the Virasoro representation admits a null state at the

– 6 –



J
H
E
P
0
4
(
2
0
1
9
)
0
1
8

corresponding level. Therefore, one can write

F (h, z, d1, d2, d3, d4, c) = fh(h, z, d1, d2, d3, d4, c) +
∑

r≥1,s≥1

Vrs(z, d1, d2, d3, d4, c)

h− drs(c)

= fc(h, z, d1, d2, d3, d4, c) +
∑

r≥2,s≥1

Wrs(z, h, d1, d2, d3, d4)

c− crs(h)
,

(2.6)

where fh and fc are entire holomorphic functions in h and in c respectively. In the first line,

we have assumed a generic value of c, whereas in the second we have assumed a generic

value of h. The pole positions drs(c) and crs(h) are [1, 15]2

drs(c) =
(b+ b−1)2

4
− (rb+ sb−1)2

4
with c=1 + 6(b+ b−1)2, r=1, 2, 3, . . . , s=1, 2, 3, . . .

crs(h) = 1 + 6(brs(h) + brs(h)−1)2 with

brs(h)2 =
rs− 1 + 2h+

√
(r − s)2 + 4(rs− 1)h+ 4h2

1− r2
, r=2, 3, 4, . . . , s=1, 2, 3, . . .

(2.7)

Note that the two types of residues Vrs and Wrs are related by

Wrs(z, h, di) = −∂crs(h)

∂h
Vrs(z, di, c = crs(h)). (2.8)

The Verma module of the degenerate primary of weight drs contains a null descendant

at level rs. In the degeneration limit h→ drs, a new primary emerges at level rs in place

of the null state, which generates a sub-Verma module. The key observation in [3] was that

the residue at h = drs is proportional to the Virasoro block whose internal representation

is given by this sub-Verma module, namely one with internal weight drs + rs. This can be

seen from (2.5) as follows. Following [10, 13, 20], we write the null descendant at level rs

corresponding to drs as

χrs =
∑
|M |=rs

χMrsL−Mνdrs , (2.9)

where the normalization convention is such that the coefficient χ
{1,1,··· ,1}
rs of Lrs−1 is equal

to 1. For any Verma module associated to a primary of weight h, one can choose a basis

for the level rs and higher descedants that includes the states

L−Nχ
h
rs with χhrs ≡

∑
M

χMrsL−Mνh. (2.10)

Here, χMrs is the coefficient that appears in (2.9), whereas χhrs denotes a state (at level rs,

which is not null for generic h). Other basis states are chosen generically. By definition,

limh→drsχ
h
rs = χrs. The residue Vrs in (2.6) receives contributions only from descendants

of the form L−Nχ
h
rs (whose level is rs+ |N |), and is given by

Vrs(z, di, c) = lim
h→drs

(h− drs)F (h, z, di, c)

=Acrsz
rs

∑
|N |=|M |=n≥0

znρ(ν4, ν3, L−Nχrs|1)
(
Gnc,drs+rs

)NM
ρ(L−Mχrs, ν2, ν1|1),

(2.11)

2As a subscript, rs stands for separate labels r and s, not to be confused with the product rs.
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where

Acrs = lim
h→drs

(〈χhrs|χhrs〉
h− drs

)−1

=
1

2

r∏
m=1−r

s∏
n=1−s

(mb+ nb−1)−1, (m,n) 6= (0, 0), (r, s) (2.12)

is guessed in [3] and checked in [21]. A key property that will be used repeatedly later is

the factorization [10, 13, 20]

ρ(L−Mχrs, ν2, ν1|1) = ρ(L−Mνdrs+rs, ν2, ν1|1)ρ(χrs, ν2, ν1|1). (2.13)

Here, νdrs+rs stands for a primary of weight drs + rs. The second factor on the r.h.s. is the

fusion polynomial

ρ(χrs, ν2, ν1|1) =P rsc

[
d1

d2

]

=

r−1∏
p=1−r step 2

s−1∏
q=1−s step 2

λ1 + λ2 + pb+ qb−1

2

λ1 − λ2 + pb+ qb−1

2
,

(2.14)

where the products are taken over p + r = 1 mod 2, q + s = 1 mod 2, and λi are defined

by di = 1
4(b + b−1)2 − 1

4λ
2
i . By plugging (2.13) into (2.11) and comparing with (2.5), we

determine the residue

Vrs(z, di, c) = zrsAcrsP
rs
c

[
d1

d2

]
P rsc

[
d4

d3

]
F (h→ drs + rs, z, di, c). (2.15)

Indeed, the residue is proportional to the Virasoro conformal block with internal weight

evaluated at the null descendant value drs + rs. This sets a recursive representation of the

Virasoro block, once the regular term fh or fc in (2.6) is known. In particular, the presence

of the factor zrs in (2.15) allows for the determination of the coefficient at any given order

in the power series expansion in z by finitely many iterations of (2.6).

2.3 Determining the regular part

First, let us determine the regular part fc(h, z, di, c) in (2.6) by studying the conformal

block in the large-c limit. The latter is computable by inspecting the definition (2.5).

It follows from Ward identities that the 3-point function of the form ρ(ν4, ν3, L−Nνh|1)

is independent of c, simply because there are no non-L−1 Virasoro generators acting on

ν4 and ν3. Meanwhile, the inverse Gram matrix elements are suppressed in the large c

limit, except for one matrix element that corresponds to the inner product of a pair of Ln−1

descendants,

lim
c→∞

(
Gnc,h

)Ln
−1L

n
−1 =

1

n!(2h)n
, (2.16)

where (a)n ≡ a(a+ 1)(a+ 2) . . . (a+n−1) is the Pochhammer symbol. This gives the only

level n term in (2.5) that survives at c → ∞. Using ρ(Ln−1νh, ν2, ν1) = (h + d2 − d1)n, we

obtain the result

fc(h, z, di, c) =

∞∑
n=0

zn
(h+ d2 − d1)n(h+ d3 − d4)n

n!(2h)n
= 2F1(h+ d2 − d1, h+ d3 − d4, 2h, z).

(2.17)

– 8 –
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In particular, fc is independent of c. This feature will make a reappearance in other cases

to be considered later. It is often asserted that “the large-c limit of the Virasoro block

is the global SL(2) block”, referring to the fact that only the contributions of the Ln−1

descendants survive in the large c limit here. We will see later that this is not true for the

large c limit of torus and higher genus Virasoro conformal blocks, but suitable modifications

of the statement do hold.

Together with Wrs acquired by (2.8) and (2.15), we have a complete c-recursive rep-

resentation of the sphere 4-point Virasoro conformal block

F (h, z, di, c) = 2F1(h+ d2 − d1, h+ d3 − d4, 2h, z)

+
∑

r≥2,s≥1

−∂crs(h)

∂h

zrsAcrsrs
c− crs(h)

P rscrs

[
d1

d2

]
P rscrs

[
d4

d3

]
F (h→ h+ rs, z, di, c→ crs).

(2.18)

The story for the h-regular part fh is more complicated. In [4], Zamolodchikov con-

sidered a semiclassical limit of large c with ratios c/h, c/di kept finite, where the conformal

block is expected to be the exponential of a “classical block” of order c. Through the

monodromy equation related to the classical block, the large-h behavior was determined as

a function of the elliptic nome q, related to the cross ratio z by q = exp
(
iπK

′(z)
K(z)

)
, where

K(z) is the complete elliptic integral of the first kind. The final answer is

zh−d1−d2F (h, z, di, c) (2.19)

=(16q(z))h−
(c−1)
24 z

(c−1)
24
−d1−d2(1−z)

(c−1)
24
−d2−d3θ3(q(z))

(c−1)
2
−4(d1+d2+d3+d4)H(c, h, di, q(z)),

where H(c, h, di, q) is determined recursively,

H(c, h, di, q) = 1 +
∑
rs≥1

(16q)rsAcrs
h− drs

P rsc

[
d1

d2

]
P rsc

[
d4

d3

]
H(c, h→ drs + rs, di, q). (2.20)

An alternative viewpoint on the q-expansion was provided in [22]. There, the 4-punctured

sphere was mapped to the “pillow” geometry T 2/Z2 with four corners. There is an external

vertex operator insertion at each corner. The q-expansion has the natural interpretation

in terms of matrix elements of the propagator along the pillow, between states created by

pairs of vertex operators at the corners. The q-expansion of the Virasoro conformal block

converges uniformly on the unit q-disc |q| < 1, which extends beyond the complex z-plane;

for this reason, it is typically preferred in evaluations at high precision such as in numerical

bootstrap, as well as for analytic continuation to Lorentzian signature. The solution to the

recursion relations was studied in [23].

At the moment, it is unclear whether there is a useful analog of the q-expansion for

more general Virasoro conformal blocks (higher points, higher genus). In the next section,

we will instead work with an expansion in the cross ratio z for the sphere N -point block

in the linear channel, and derive a recursion relation that involves simultaneous shifts of

the internal weights and a pair of external weights. In particular, we will not derive the

analog of fh in (2.6), but rather a different kind of large-weight limit of the conformal block.

The specialization of our h-recursion formula to the sphere 4-point block case differs from
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Figure 4. N -cylinder decomposition of necklace channel for N = 3 case.

Zamolodchikov’s h-recursion in several ways: we do not make use of the elliptic nome, the

regular (non-polar) part is very simple, but the recursion involves shifting both internal

and external weights.

3 h-recursion for torus N -point Virasoro conformal blocks in the neck-

lace channel (and sphere N -point blocks in the linear channel)

In this section, we derive recursion relations in the internal weights hi for torus N -point

Virasoro blocks in the necklace channel for N > 1. The N = 1 case is studied in [13]

and we will discuss this case in the next section. The necklace channel is where complete

sets of states are inserted in between every consecutive pair of external operators as shown

at figure 2. This channel can also be viewed as the N -cylinder channel, where the torus

is decomposed into N cylinders, each of which contains exactly one external operator of

weight di at its origin. The N = 3 case is illustrated in figure 4. The result for the torus

necklace channel reduces in a limit to the sphere block in the linear channel, thereby giving

a recursion formula for the latter as well.

3.1 Definition of the Virasoro block in the necklace channel

Consider a torus of modulus τ , parameterized by a complex coordinate z, with the iden-

tification z ∼ z + 2π ∼ z + 2πτ . We consider N primary operators φi of weights (di, d̄i)

inserted at positions z = wi for i = 1, · · · , N . We set wN = 0 by convention, and write

wi = 2π(τ −∑i
k=1 τk). In the necklace channel, the torus is decomposed into N cylinders,

of moduli τ1, τ2, · · · , τN , with
∑N

k=1 τk = τ . We will also write qi = e2πiτi . The torus

N -point function is decomposed in terms of Virasoro conformal blocks in this channel as

〈O1(w1)O2(w2) . . . ON−1(wN−1)ON (0)〉T 2 =
∑

(h1,h̄1),...,(hN ,h̄N )

(
N∏
i=1

C
h̄i,d̄i,h̄i+1

hi,di,hi+1
q
hi−c/24
i q̄

h̄i−c/24
i

)
× F (q1, h1, d1, . . . , qN , hN , dN , c)F

(
q̄1, h̄1, d̄1, . . . , q̄N , h̄N , d̄N , c

)
. (3.1)
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Here (hi, h̄i) are the weights of the internal primaries. F (q1, h1, d1, . . . , qN , hN , dN , c) is

the holomorphic torus N -point necklace conformal block,

F (q1, h1, d1, . . . , qN , hN , dN , c)

=

∞∑
n1,...,nN=0

(
N∏
i=1

qni
i

) ∑
|A1|=|B1|=n1

. . .
∑

|AN |=|BN |=nN

[
N∏
i=1

(
Gni
hi

)AiBi

ρ(L−Bihi, di, L−Ai+1hi+1)

]
.

(3.2)

The index i ranges from 1 to N cyclic, i.e. i = N + 1 is identified with i = 1. Here we have

made use of an exponential mapping from each of the cylinders to the annulus, relating

the matrix element of the primary φi at wi between a pair of descendant states to the

3-point function on the z-plane with the primary φi inserted at z = 1. By a slight abuse

of notation, in the sphere 3-point function of descendants ρ we have labeled the primaries

νi simply by their weights hi, and have set z = 1.

3.2 Polar part

Again due to the presence of the inverse Gram matrix, (3.2) has simple poles in hi or c at

values corresponding to degenerate Virasoro representations. Focusing on a single internal

weight hi, we have a simple pole expansion

F = Ui +
∑

1≤risi

Vrisi
hi − drisi

, (3.3)

where Ui is the hi-regular part of the conformal block. The factor in (3.2) responsible for

the pole at hi = drisi is

ρ(L−Bi−1hi−1, di−1, L−Aihi)
(
Gni
hi

)AiBi

ρ(L−Bihi, di, L−Ai+1hi+1). (3.4)

In the limit hi → drisi , we can repeat the arguments in section 2.2, now making use of

a factorization property of the 3-point function involving null states that slightly general-

izes (2.13)

ρ(L−Bχrs, ν2, L−Aν1|1) = ρ(L−Bνdrs+rs, ν2, L−Aν1|1)ρ(χrs, ν2, ν1|1). (3.5)

The derivation of this relation is discussed in appendix B. Therefore, the residue coefficient

is captured by

ρ(L−Bi−1hi−1, di−1, L−Aiχrisi)
(
Gni
drisi+risi

)AiBi

ρ(L−Biχrisi , di, L−Ai+1hi+1) (3.6)

= ρ(hi−1, di−1, χrisi)ρ(χrisi , di, hi+1)

×ρ(L−Bi−1hi−1, di−1, L−Aiνdrisi+risi)
(
Gni
drisi+risi

)AiBi

ρ(L−Biνdrisi+risi , di, L−Ai+1hi+1).

Following section 2.2, and using the definition of the fusion polynomial, the residue in (3.3)

is determined to be

Vrisi = qrisii Rrisi(hi−1, hi+1, di−1, di, c)F (hi → drisi + risi), (3.7)

with

Rrisi(hi−1, hi+1, di−1, di, c) = AcrisiP
risi
c

[
hi−1

di−1

]
P risic

[
hi+1

di

]
. (3.8)
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3.3 Regular part

The hi-regular part Ui in (3.3) is in fact quite complicated; fortunately, we do not need to

compute Ui directly. Let us define ai = hi − h1, for i = 2, · · · , N , and consider the limit

h1 → ∞ with all ai’s held fixed. In other words, we take the simultaneous large hi limit,

with the differences hi − hj kept finite. We will see that a drastic simplification of the

conformal block occurs in this limit, giving rise to the regular part

F (q1, h1, d1, . . . , qN , hN , dN , c)→
∞∏
n=1

1

1− (q1q2 . . . qN )n
, (3.9)

which takes the form of a (non-degenerate) torus character.

Let us begin with a basis of level n descendants of a primary |h〉, of the form L−A|h〉,
where A is a partition of the integer n in descending order. We will write |A| = n, and [A]

for the number of Virasoro generators in L−A (the length of the partition). Note that in

the large h, fixed c limit, the inner product 〈h|L†−AL−B|h〉 scales like h[A] for A = B, no

faster than h[A]−1 for [A] = [B], A 6= B, and no faster than hmin([A],[B]) for [A] 6= [B]. We

can thus construct via the Gram-Schmidt process an orthogonal basis of the form

`−A|h〉 = L−A|h〉+
∑

|B|=n, [B]≤[A], B 6=A

fAB (c, h)L−B|h〉, (3.10)

such that

fAB (c, h) ∼ O(h−1), [B] = [A], B 6= A;

fAB (c, h) ∼ O(h0), [B] < [A],
(3.11)

in the large h, fixed c limit. The norm of the basis state `−A|h〉 scales like

〈h|`†−A`−A|h〉 ∼ h[A]. (3.12)

In the large h1 limit with ai = hi − h1 fixed (i = 2, · · · , N), the torus N -point block

in the necklace channel (3.2) becomes

F →
∞∑

n1,...,nN=0

(
N∏
i=1

qni
i

) ∑
|A1|=n1

. . .
∑

|AN |=nN

[
N∏
i=1

ρ(`−Aih1, di, `−Ai+1h1)

〈h1|`†−Ai
`−Ai |h1〉

]
. (3.13)

Here we have traded every internal weight hi with h1, which is valid to leading order. Let

us investigate the large h1 behavior of the numerator,

ρ(`−Aih1, di, `−Ai+1h1) =
∑

|C|=|Ai|, |B|=|Ai+1|

fAi
C f

Ai+1

B ρ(L−Ch1, di, L−Bh1),
(3.14)

where we have extended the definition of fAB in (3.10) by setting fAA = 1 (no summation

over A) and fAB = 0 for [B] > [A]. We can now evaluate the 3-point functions on the

r.h.s. using the Ward identities discussed in appendix A. Moving L−C to the right past di,
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one picks up commutator terms involving [Lm, νdi ], but the latter does not scale with h1.

Thus, to leading order in the large h1 limit, we may freely move L−C through di to obtain

ρ(L−Ch1, di, L−Bh1) ∼ ρ(h1, di, L
†
−CL−Bh1) ∼ O(h

min([B],[C])
1 ). (3.15)

It then follows from (3.11) that the terms in (3.13) that survive in the large h1 limit have

A1 = A2 = · · · = AN , with

ρ(`−Ah1, di, `−Ah1)

〈h1|`†−A`−A|h1〉
→ 1. (3.16)

Thus, the sum in (3.13) collapses to (3.9).

3.4 h-recursion representation

We can now combine the above results on the polar part and the large h1, fixed ai asymp-

totics to obtain a complete recursive representation of torus N -point Virasoro conformal

blocks in the necklace channel. First, we fix ai for i = 2, 3, . . . , N and view the necklace

block as a meromorphic function of h1. Its simple pole expansion takes the form

F (q1, h1, d1, q2, a2, d1, . . . , qN , aN , dN , c) =

∞∏
n=1

1

1−(q1q2 . . . qN )n
+

N∑
i=1

∑
risi≥1

Brisi
h1+ ai− drisi

,

(3.17)

where we have extended the definition of ai by including a1 = 0. The residues Brisi are

determined using (3.7),

Br1s1 = qr1s11 Rr1s1(dr1s1 + aN , dr1s1 + a2, dN , d1, c)

× F (h1 → dr1s1 + r1s1, ai → ai − r1s1 for i = 2, . . . , N),

Br2s2 = qr2s22 Rr2s2(dr2s2 − a2, dr2s2 − a2 + a3, d1, d2, c)

× F (h1 → dr2s2 − a2, a2 → a2 + r2s2),

BrNsN = qrNsNN RrNsN (drNsN − aN + aN−1, drNsN − aN , dN−1, dN , c)

× F (h1 → drNsN − aN , aN → aN + rNsN ),

Brisi = qrisii Rrisi(drisi − ai + ai−1, drisi − ai + ai+1, di−1, di, c)

× F (h1 → drisi − ai, ai → ai + risi) for i = 3, . . . , N − 1.

(3.18)

We caution the reader that the shifted conformal blocks on the r.h.s. still depend on the

original ai = hi − h1. While they are independent of h1 as functions of ai, they would still

contain h1 dependence when viewed as functions of the hi’s.

Defining a reduced conformal block f by factoring out the torus character,

F (q1, h1, d1, q2, a2, d1, . . . , qN , aN , dN , c)

=

[ ∞∏
n=1

1

1− (q1q2 . . . qN )n

]
f(q1, h1, d1, q2, a2, d1, . . . , qN , aN , dN , c),

(3.19)
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we can express the recursion relation as

f(q1, h1, d1, q2, a2, d1, . . . , qN , aN , dN , c)

= 1 +
∑

r1s1≥1

qr1s11 Rr1s1(dr1s1 + aN , dr1s1 + a2, dN , d1, c)

h1 − dr1s1
× f(h1 → dr1s1 + r1s1, ai → ai − r1s1 for i = 2, . . . , N)

+

N∑
i=2

∑
risi≥1

qrisii Rrisi(drisi − ai + ai−1, drisi − ai + ai+1, di−1, di, c)

h1 + ai − drisi
× f(h1 → drisi − ai, ai → ai + risi).

(3.20)

This is a complete h-recursion representation of the torus N -point block in the necklace

channel.

3.5 Sphere N-point block in the linear channel

The sphere N -point Virasoro conformal block in the linear channel can be obtained as a

limit of the torus (N − 1)-point necklace block, by sending qN−2, qN−1 → 0. The weights

hN−2 and hN−1 will now be viewed as weights of a pair of external primary operators.

This makes it clear that our h-recursion relation will involve simultaneous shift of inter-

nal weights together with a pair of external weights, which is rather different from the

procedure of [4].

It is nonetheless useful to write the recurrence relation in the sphere linear channel in

a set of notations adapted to the Riemann sphere as below. The linear channel conformal

block amounts to inserting complete bases of states between successive pairs of external

operators, except for the two pairs at the ends, as shown in figure 2. This conformal block

has been studied in [24] from the perspective of the AGT relation. Mapping the torus to

the annulus by exponentiation, the expansion parameters qi used in the previous section

are related to the positions zi of the external operators on the complex plane by

z1 = 0, zN−1 = 1, zN =∞, zi+1 = qiqi+1 . . . qN−3 for 1 ≤ i ≤ N − 3. (3.21)

The sphere N -point function admits the Virasoro conformal block decomposition

〈ON (∞)ON−1(1)ON−2(zN−2) . . . O2(z2)O1(0)〉S2

=
∑

(h1,h̄1),...,(hN−3,h̄N−3)

C h̄1,d̄2,d̄1h1,d2,d1
C
d̄N ,d̄N−1,h̄N−3

dN ,dN−1,hN−3

(
N−4∏
i=1

C
h̄i+1,d̄i+2,h̄i
hi+1,di+2,hi

)
(3.22)

× zh1−d2−d12 z̄h̄1−d̄2−d̄12

(
N−2∏
i=3

z
hi−1−di−hi−2

i z̄
h̄i−1−d̄i−h̄i−2

i

)
× F (q1, h1, , . . . , qN−3, hN−3, d1, . . . , dN , c)F

(
q̄1, h̄1, , . . . , q̄N−3, h̄N−3, d̄1, . . . , d̄N , c

)
,
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where F (qi, hi, dj , c) is the linear channel block

F (qi, hi, dj , c) =

∞∑
n1,...,nN−3=0

(
N−3∏
i=1

qni
i

) ∑
|A1|=|B1|=n1

. . .
∑

|AN−3|=|BN−3|=nN−3

×
[
N−4∏
i=1

(
Gni
hi

)AiBi

ρ(L−Bi+1hi+1, di+2, L−Aihi)

]

×
(
G
nN−3

hN−3

)AN−3BN−3

ρ(dN , dN−1, L−AN−3
hN−3)ρ(L−B1h1, d2, d1).

(3.23)

For any i between 1 and N − 3, we could analytically continue the conformal block in hi,

and write a simple pole expansion analogously to (3.3), (3.7),

F (qi, hi, dj , c) =Ui +
∑

1≤risi

Vrisi
hi − drisi

, (3.24)

where the residues are given by

Vr1s1 = qr1s11 Rr1s1(d1, h2, d2, d3, c)F (h1 → dr1s1 + r1s1),

Vrisi = qrisii Rrisi(hi−1, hi+1, di+1, di+2, c)F (hi → drisi + risi), 2 ≤ i ≤ N − 4,

VrN−3sN−3 = q
rN−3sN−3

N−3 RrN−3sN−3(hN−4, dN , dN−2, dN−1, c)

× F (hN−3 → drN−3sN−3 + rN−3sN−3). (3.25)

To determine the regular part and thereby the full recurrence relation via the large

weight limit, it is important to specify how this limit is taken. As in the torus case, we will

consider the simultaneous large d1, h1, · · · , hN−3, dN limit. In other words, we will define

ai = hi − h1 for i = 2, . . . , N − 3 and e1 = d1 − h1, eN = dN − h1, and consider the limit

h1 →∞ with ai, e1, eN held fixed. Following the same arguments as in section 3.3, in (3.23)

only the terms with the equal internal levels n1 = . . . = nN−3 may survive. However, due

to the extra inverse Gram matrix element
(
G
nN−3

hN−3

)AN−3BN−3

, only the internal level zero

contribution survives (this can also be understood as effectively sending qN−2, qN−3 to

zero). Therefore, in this limit, we have simply F (qi, hi, dj , c)→ 1.

Combining these results, we obtain the following recursive representation of the sphere

N -point Virasoro block in the linear channel

F (qi, h1, a2, . . . , aN−3, e1, eN , c) = 1

+
∑

r1s1≥1

qr1s11 Rr1s1(dr1s1 + e1, dr1s1 + a2, d2, d3, c)

h1 − dr1s1
× F (h1 → dr1s1 + r1s1, ai → ai − r1s1, ej → ej − r1s1)

+
N−4∑
i=2

∑
risi≥1

qrisii Rrisi(drisi − ai + ai−1, drisi − ai + ai+1, di+1, di+2, c)

h1 + ai − drisi
× F (h1 → drisi − ai, ai → ai + risi)

+
∑
rs≥1

qrsN−3Rrs(drs − aN−3 + eN , drs − aN−3 + aN−4, dN−1, dN−2, c)

h1 + aN−3 − drs
× F (h1 → drs − aN−3, aN−3 → aN−3 + rs).

(3.26)
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Again, it is important to keep in mind that the shifted blocks on the r.h.s. are functions of

ai = hi−h1, and thus when viewed as functions of the hi’s, they still contain h1 dependence.

Let us comment that there is another expression for the sphere N -point linear channel

block in terms of a qi expansion (which also easily extends to the torus necklace channel)

obtained from the AGT relation [24, 25]. In the language of the latter, such channels include

only fundamental, anti-fundamental, or bi-fundamental hypermultiplets, whose Nekrasov

instanton partition functions have simplified expressions. The instanton partition function

gives a combinatorial formula for the Virasoro conformal blocks in these channels. Of

course, these expressions should agree with (3.20) and (3.26). This can be verified by

showing that the residues and large weight asymptotics agree. It is not hard to check that

the simultaneous large weight limit of the combinatorical formula of [24] is finite. The

residues were checked in [26, 27] for a small number of external operators.

4 c-recursion for all sphere and torus Virasoro conformal blocks

In this section, we derive recursive representation in the central charge c for sphere and

torus N -point Virasoro conformal blocks in arbitrary channels. The pole structure of the

blocks in c is similar to the analytic property in h considered in the previous section: the

poles are associated with degenerate Virasoro representations, while the residues are given

by appropriate fusion polynomials multiplying the blocks with shifted weights, as will follow

from a generic factorization property of 3-point functions of Virasoro descendants.

The key feature that will allow for the determination of c-recursion relations in all

channels (in contrast to just the linear and necklace channels in our h-recursion relation)

will be a drastic simplification in the large c limit. In this limit, the block reduces to the

product of the Virasoro vacuum block (i.e. all primaries, both internal and external, are

replaced by the identity operator) and a global SL(2) block that captures the contributions

of Ln−1 descendants of the primaries only. In the sphere case, the vacuum block is just 1,

while for the torus, the vacuum block is the Virasoro vacuum character. The global block

will be relatively simple to compute.

Throughout this paper we construct Virasoro conformal blocks in terms of ρ(ξ3, ξ2, ξ1),

the 3-point function of descendants on the plane. As remarked in section 2.1, this is natu-

ral in the conformal frame where the Riemann surface in question is formed by plumbing

together 2-holed discs with SL(2) maps. In describing torus and higher-genus conformal

blocks, we could alternatively have made use of ρ̃(ξ3, ξ2, ξ1), the matrix element of the

descendant ξ2 between 〈ξ3| and |ξ1〉 on the cylinder, which would be natural in an al-

ternative conformal frame in which the Riemann surface is formed by plumbing together

1-holed cylinders. While ρ̃(ξ3, ξ2, ξ1) can in principle be put in the form ρ(ξ3, ξ
′
2, ξ1) via the

exponential map from the cylinder to the plane, the conformally transformed descendant

ξ′2 generally differs from ξ2. Different conformal frames not only lead to different param-

eterizations of the moduli, but also conformal blocks that differ by a conformal anomaly

factor (a simple example is the Casimir energy on the cylinder). The simplification at large

c mentioned above only holds in the conformal frame defined by the plumbing construc-
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tion based on 2-holed discs; for this purpose, ρ(ξ3, ξ2, ξ1) rather than ρ̃(ξ3, ξ2, ξ1) is the

appropriate 3-point function building block.

4.1 Factorization of 3-point functions with degenerate representations and the

poles of conformal blocks

Previously, in our derivation of the h-recursive representation of the necklace and linear

channel blocks, a key ingredient that allowed for the determination of the polar part of

the block was the factorization property of 3-point functions that involve descendants of

degenerate primaries (2.13) and (3.5). Here we will need a slightly more general set of

identities,

ρ(L−Nχrs, L−Mν2, L−P ν3|1) = ρ(L−Nνdrs+rs, L−Mν2, L−P ν3|1)ρ(χrs, ν2, ν3|1)

ρ(L−Nν1, L−Mχrs, L−P ν3|1) = ρ(L−Nν1, L−Mνdrs+rs, L−P ν3|1)ρ(ν1, χrs, ν3|1)

ρ(L−Nν1, L−Mν2, L−Pχrs|1) = ρ(L−Nν1, L−Mν2, L−P νdrs+rs|1)ρ(ν1, ν2, χrs|1)

ρ(L−Nχrs, L−Mν2, L−Pχrs|1) = ρ(L−Nνdrs+rs, L−Mν2, L−P νdrs+rs|1)ρ(χrs, ν2, χrs|1).

(4.1)

We remind the reader that χrs is the level rs null descendant of a primary of weight drs, of

the form (2.9). Eq. (4.1) follows from Ward identities and the property that χrs behaves

like a Virasoro primary, as explained in more detail in appendix B.

On the r.h.s. of (4.1), the first factors will lead to the recursive representation, as they

contribute to new conformal blocks with shifted internal weight drs+rs. The second factors

are fusion polynomials P crs (B.2). Together, (4.1) will determine the residue of a Virasoro

conformal block on its poles either at a degenerate value of an internal weight, hi → drs, or

at a value of the central charge c → crs(hi) such that an internal weight hi becomes that

of a degenerate Virasoro representation. This statement applies to any N -point, genus g

Virasoro block in any given channel, as will become clear in the next section.

Consider for example the sphere 6-point block shown in figure 1, which we refer to as

the “trifundamental” channel block.3 We may build the 6-punctured sphere by connect-

ing three 2-punctured discs and a single two-holed disc through the following plumbing

construction. Consider the 2-punctured and 2-holed discs

Di = {zi ∈ C : |zi| < ri, zi 6= 0, 1}, i = 1, 2, 3

D4 = {z4 ∈ C : r̃1 < |z4| < r̃3, |z4 − 1| > r̃2}.
(4.2)

We glue each boundary component of D4 with the boundary of Di, i = 1, 2, 3, via the

SL(2) maps

|z4| = r̃1 : z4 = q1z1, |q1| =
r̃1

r1
,

|z4 − 1| = r̃2 : z4 − 1 = q2z2, |q2| =
r̃2

r2
,

|z4| = r̃3 : z4 =
1

q3z3
, |q3| =

1

r̃3r3
.

(4.3)

3The terminology comes from the corresponding quiver theory in the context of the AGT relation, which

involves a trifundamental hypermultiplet [28].
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d3

d4

h2

d5

d6

h3

h3

h2

h1

d1

d2

h1

Figure 5. Plumbing construction for sphere 6-point conformal block in the trifundamental channel.

The result of the plumbing construction, as shown in figure 5, is a Riemann sphere with 6

punctures at

0, q1, 1, 1 + q2, ∞,
1

q3
. (4.4)

The 6 external vertex operators will be inserted at these 6 points, parameterized by the

plumbing parameters q1, q2, q3. Note that q1, q2, q3 are not on equal footing. In such a

parameterization, the Virasoro block is given by

F (qi, hi, dj , c) =
∑

N,M,P,Q,A,B

q
|N |
1 q

|P |
2 q

|A|
3 ρ(L−Nh1, d2, d1)ρ(L−Ph2, d4, d3)ρ(L−Ah3, d6, d5)

× ρ(L−Mh1, L−Qh2, L−Bh3)
(
G
|N |
h1

)NM (
G
|P |
h2

)PQ (
G
|A|
h3

)AB
. (4.5)

Here the summation is over integer partitions N,M,P,Q,A,B, with |N | = |M |, |P | = |Q|,
|A| = |B|, that label Virasoro descendants.

A simple pole expansion of this conformal block in one of the weights, say h1, takes

the form

F (qi, hi, dj , c) = U1 +
∑
rs≥1

qrs1 A
c
rsP

rs
c

[
d1

d2

]
P rsc

[
h3

h2

]
h1 − drs

F (h1 → drs + rs),
(4.6)
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where the residue is readily determined using the factorization property (4.1) as before.

The h1-regular part U1 is more complicated. Instead of trying to determine U1 directly,

we can inspect similar polar terms in h2 and h3, and write a simple pole expansion in the

central charge c using (2.8), of the form

F (qi, hi, dj , c)

= Uc+
∑

r≥2,s≥1

[
−∂crs(h1)

∂h1

]qrs1 A
crs(h1)
rs P rscrs(h1)

[
d1

d2

]
P rscrs(h1)

[
h3

h2

]
c− crs(h1)

F (h1→ h1+ rs, c→ crs(h1))

+
∑

r≥2,s≥1

[
−∂crs(h2)

∂h2

] qrs2 A
crs(h2)
rs P rscrs(h2)

[
d3

d4

]
P rscrs(h2)

[
h3

h1

]
c− crs(h2)

F (h2→ h2 + rs, c→ crs(h2))

+
∑

r≥2,s≥1

[
−∂crs(h3)

∂h3

] qrs3 A
crs(h3)
rs P rscrs(h3)

[
d5

d6

]
P rscrs(h3)

[
h1

h2

]
c− crs(h3)

F (h3→ h3 + rs, c→crs(h3)).

(4.7)

Now the c-regular part Uc is the only term that survives in the large-c limit. This will be

analyzed next.

4.2 Large c, fixed hi limit of Virasoro conformal blocks

In the previous subsection, we have seen that the factorization property (4.1) fixes the

polar part of the recursive representation of an arbitrary Virasoro conformal block, and

the problem reduces to determining the large c limit of the block, such as Uc in the case of

the trifundamental block (4.7). We now show that a general Virasoro conformal block built

out of descendant 3-point functions of the form ρ(L−Ahi, L−Bhj , L−Chk) (A,B,C stand

for integer partitions) and inverse Gram matrices remains finite in the c→∞ limit (rather

than growing with c). Furthermore, it will turn out that the large c limit of a Virasoro

conformal block factorizes into the product of the large c limit of the vacuum block (defined

by setting all internal and external representations to the vacuum) and the global SL(2)

conformal block.

Note that the construction of the Virasoro block using descendant 3-point functions

and inverse Gram matrices amounts to a plumbing construction based on gluing together

2-holed discs via the inversion map, which specifies the coordinate charts for the punctured

Riemann surface as well as the conformal frame of the conformal block. We have already

seen such an example in (4.5). In the case of higher genus conformal blocks, this choice

of conformal frame fixes the conformal anomaly in such a way that the blocks are c-

independent to leading order.

We illustrate the large c factorization property by considering the genus two Virasoro

conformal block in the channel where the genus two Riemann surface is formed by plumbing
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together a pair of 2-holed discs. This conformal block takes the form4

F (h1, h2, h3, c) =
∑

|A|=|B|, |C|=|D|, |E|=|F |

q
|A|
1 q

|C|
2 q

|E|
3 GABh1 G

CD
h2 G

EF
h3

× ρ(L−Ah1, L−Ch2, L−Eh3)ρ(L−Bh1, L−Dh2, L−Fh3).

(4.8)

The strategy here closely parallels that of section 3.3, with slight modifications. We begin

with a basis of level n descendants of a primary |h〉 of the form L−A|h〉, where A is a

partition of the integer n = |A| in descending order. We will denote by 〈A〉 the number of

non-L−1 Virasoro generators in L−A. Note that in the large c limit with h fixed, the inner

product 〈h|L†−AL−B|h〉 scales like c〈A〉 for A = B, no faster than c〈A〉−1 for 〈A〉 = 〈B〉,
A 6= B, and no faster than cmin(〈A〉,〈B〉) for 〈A〉 6= 〈B〉. We can thus construct via the

Gram-Schmidt process an orthogonal basis of the form

L−A|h〉 = L−A|h〉+
∑

|B|=n, 〈B〉≤〈A〉, B 6=A

gAB(c, h)L−B|h〉, (4.9)

such that
gAB(c, h) ∼ O(c−1), 〈B〉 = 〈A〉, B 6= A;

gAB(c, h) ∼ O(c0), 〈B〉 < 〈A〉,
(4.10)

in the large c, fixed h limit. The norm of the basis state L−A|h〉 scales like

〈h|L†−AL−A|h〉 ∼ c〈A〉. (4.11)

Eq. (4.8) can now be written as

F (h1, h2, h3, c) =
∑
A,B,C

q
|A|
1 q

|B|
2 q

|C|
3

ρ(L−Ah1,L−Bh2,L−Ch3)2

〈h1|L†−AL−A|h1〉〈h2|L†−BL−B|h2〉〈h3|L†−CL−C |h3〉
.

(4.12)

By construction of (4.9), the three-point function ρ(L−Ah1,L−Bh2,L−Ch3) scales with c

no faster than c
〈A〉+〈B〉+〈C〉

2 . Therefore, (4.8) is finite in the c → ∞ limit. Moreover, in

this limit the only surviving contribution to ρ(L−Ah1,L−Bh2,L−Ch3) comes from the L−A
term in L−A (4.9), i.e.

ρ(L−Ah1,L−Bh2,L−Ch3)→ ρ(L−Ah1, L−Bh2, L−Ch3). (4.13)

To prove the large c factorization into the vacuum Virasoro block and the global SL(2)

block, we write Virasoro chains as L−A = L−A′L
kA
−1, where L−A′ does not include any

L−1 generators (by convention, A′ and A are both integer partitions in descending order).

The r.h.s. of (4.13) is now written as ρ(L−A′L
kA
−1h1, L−B′L

kB
−1h2, L−C′L

kC
−1h3). To leading

order in the large c limit, the (non-L−1) Virasoro generators in L−A′ , L−B′ , L−C′ must be

contracted pairwise via the Ward identities. In particular, the dependence on the weights hi

is suppressed by hi/c relative to the leading order scaling c
〈A〉+〈B〉+〈C〉

2 (when 〈A〉+〈B〉+〈C〉
4This object was referred to as the “naive” conformal block in [28].
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is even and the pairwise contraction is available). What remains is the 3-point function of

L−1 descendants. Thus, in the large c limit we can replace

ρ(L−Ah1,L−Bh2,L−Ch3)→ ρ(L−A′ν0, L−B′ν0, L−C′ν0)ρ(LkA−1h1, L
kB
−1h2, L

kC
−1h3), (4.14)

where ν0 is the vacuum primary. Note that if the 3-point function of vacuum descendants

on the r.h.s. of (4.14) vanishes, the contribution to the conformal block also vanishes in the

c→∞ limit, due to the factorization property of the 2-point function

〈h|L†−AL−A|h〉 → 〈ν0|L†−A′L−A′ |ν0〉〈h|LkA†−1 L
kA
−1|h〉. (4.15)

Rewriting the summation over partitions A,B,C in (4.12) in terms of (A′, kA), (B′, kB),

(C ′, kC), where A′, B′, C ′ involve only non-L−1 generators, and kA, kB, kC counts the length

of the L−1 chains, we arrive at the large c limit

lim
c→∞

F (h1, h2, h3) =

lim
c→∞

∑
A′,B′,C′

q
|A′|
1 q

|B′|
2 q

|C′|
3

ρ(L−A′ν0, L−B′ν0, L−C′ν0)2

〈ν0|L†−A′L−A′ |ν0〉〈ν0|L†−B′L−B′ |ν0〉〈ν0|L†−C′L−C′ |ν0〉

×
∑

k1,k2,k3≥0

qk11 q
k2
2 q

k3
3

ρ(Lk1−1h1, L
k2
−1h2, L

k3
−1h3)2

〈h1|Lk1†−1L
k1
−1|h1〉〈h2|Lk2†−1L

k2
−1|h2〉〈h3|Lk3†−1L

k3
−1|h3〉

.

(4.16)

The first factor on the r.h.s. is the large c limit of the vacuum block (note that the vacuum

is annihilated by L−1), while the second factor is the global SL(2) conformal block which

by definition is independent of the central charge.

Clearly, the above proof can be straightforwardly extended to any Virasoro conformal

blocks built from contracting 3-point functions of descendants with inverse Gram matrices,

as the argument was simply based on power counting in the large c limit. Note that the

vacuum Virasoro block on the sphere is equal to 1, and vacuum Virasoro block on the torus

(in any channel) is equal to the vacuum Virasoro character. Thus, the large c limit for

any N -point sphere or torus Virasoro conformal block in any channel C (corresponding to

a pair-of-pants decomposition of the N -punctured Riemann surface) is given by

lim
c→∞

(sphere Virasoro block in channel C) = (sphere global SL(2) block in channel C)

lim
c→∞

(torus Virasoro block in channel C)

= (vacuum Virasoro character) × (torus global SL(2) block in channel C).
(4.17)

Together with the residue structure of the c-polar part discussed in the previous section,

we obtain a complete c-recursive representation for any N -point sphere and torus Virasoro

conformal block. In the next two subsections, we will give the explicit formulae in several

examples.

An analogous large c factorization property holds for higher genus Virasoro conformal

blocks as well, provided that we define the latter in the appropriate conformal frame, based

on plumbing together 2-holed discs. This will be discussed in section 5.
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4.3 Global SL(2) blocks

Here we briefly describe the evaluation of global SL(2) blocks. Consider as an example the

sphere 6-point block in the trifundamental channel (4.5), defined in terms of the plumbing

parameters q1, q2, q3. Its corresponding global block reads

G(qi, hi, dj , c) =
∞∑

i,j,k=0

qi1q
j
2q
k
3ρ(Li−1h1, d2, d1)ρ(Lj−1h2, d4, d3)ρ(Lk−1h3, d6, d5)

× ρ(Li−1h1, L
j
−1h2, L

k
−1h3)

〈h1|Li1Li−1|h1〉〈h2|Lj1Lj−1|h2〉〈h3|Lk1Lk−1|h3〉
.

(4.18)

The global block is generally simple enough to evaluate in closed form. For instance,

ρ(Li−1h1, d2, d1) = (h1 + d2 − d1)i, (4.19)

where (a)i is the Pochhammer symbol. The most general 3-point function of L−1 descen-

dants is

ρ(Li−1h1, L
j
−1h2, L

k
−1h3) = (h1 + i− h2 − j + 1− h3 − k)jsik(h1, h2, h3), (4.20)

where we have defined sik(h1, h2, h3) = ρ(Li−1h1, h2, L
k
−1h3). It has a known closed form

expression [29]

skm(h1, h2, h3) =

min(m,k)∑
p=0

k!

p!(k − p)! (2h3 +m− 1)(p)m(p)

× (h3 + h2 − h1)m−p(h1 + h2 − h3 + p−m)k−p,

(4.21)

where (a)(p) = a(a− 1) . . . (a− p+ 1) is the descending Pochhammer symbol. The inverse

norms in (4.18) are given by

1

〈h|Ln1Ln−1|h〉
=

1

n!(2h)n
. (4.22)

Combining these, we arrive at the following closed form expression for the trifundamental

global block

G =

∞∑
i,j,k=0

qi1q
j
2q
k
3 (h1 + d2 − d1)i(h2 + d4 − d3)j(h3 + d6 − d5)k

× (h1 + i− h2 − j + 1− h3 − k)jsik(h1, h2, h3)

i!j!k!(2h1)i(2h2)j(2h3)k
.

(4.23)

The extension of such results to any global block is evident. Let us note that for a given

channel of an N -point, genus g conformal block, based on a pair-of-pants decomposition,

the global SL(2) block is only defined in the plumbing construction based on 2-holed discs

glued together via SL(2) maps.
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4.4 Examples of c-recursive representations

4.4.1 Sphere 6-point block in the trifundamental channel

Our first nontrivial example is the sphere 6-point block in the trifundamental channel (4.5).

(Note that the h-recursive representation given in the previous section is not available in

this channel.) Combining the large c limit and the polar structure determined earlier, we

have the following c-recursion formula

F (qi, hi, dj , c)

= Uc +
∑

r≥2,s≥1

[
−∂crs(h1)

∂h1

]qrs1 A
crs(h1)
rs P rscrs(h1)

[
d1

d2

]
P rscrs(h1)

[
h3

h2

]
c− crs(h1)

F (h1→ h1+ rs, c→ crs(h1))

+
∑

r≥2,s≥1

[
−∂crs(h2)

∂h2

] qrs2 A
crs(h2)
rs P rscrs(h2)

[
d3

d4

]
P rscrs(h2)

[
h3

h1

]
c− crs(h2)

F (h2→ h2 + rs, c→ crs(h2))

+
∑

r≥2,s≥1

[
−∂crs(h3)

∂h3

] qrs3 A
crs(h3)
rs P rscrs(h3)

[
d5

d6

]
P rscrs(h3)

[
h1

h2

]
c− crs(h3)

F (h3→ h3 + rs, c→ crs(h3)),

(4.24)

with

Uc =

∞∑
i,j,k=0

qi1q
j
2q
k
3 (h1 + d2 − d1)i(h2 + d4 − d3)j(h3 + d6 − d5)k

× (h1 + i− h2 − j + 1− h3 − k)jsik(h1, h2, h3)

i!j!k!(2h1)i(2h2)j(2h3)k
.

(4.25)

4.4.2 Torus 1-point block

Our next example is the torus 1-point block, which was already considered in [13, 14].

Properties of this block were used to derive an asymptotic formula for the average value of

heavy-heavy-light OPE coefficients from modular covariance of the torus 1-point function

in [30]. The block is given by

F (q, h, d, c) =
∑

|N |=|M |=n

qnρ(L−Nh, d, L−Mh)(Gnh)NM , (4.26)

where q = e2πiτ , τ being the modulus of the torus. Our conformal frame is defined by

identifying the inner and outer boundaries of the annulus via the rescaling z 7→ q−1z on

the complex plane, and thus the Casimir energy factor q−
c
24 is absent. This distinction is

rather minor in the present example, but will be important in more complicated examples

to be discussed later.
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The recursive representation of the torus 1-point block in the internal weight h

reads [13]

F (q, h, d, c) =

[ ∞∏
n=1

1

1− qn

]
f(q, h, d, c),

f(q, h, d, c) = 1 +
∑
rs≥1

AcrsP
rs
c

[
d

drs + rs

]
P rsc

[
d

drs

]
h− drs

f(h→ drs + rs).

(4.27)

Note that here we encounter a 3-point function involving a pair of null states χrs, resulting

in the product of two fusion polynomials that involve the weight drs and drs+rs respectively.

The corresponding global SL(2) block is [13, 14]

g(q, h, d) =
1

1− q 2F1

(
d, 1− d; 2h;

q

q − 1

)
. (4.28)

As originally observed in [14], the large c limit of the torus 1-point block reduces to the

product of the vacuum Virasoro character with the global block,

lim
c→∞

F (q, h, d, c) =

[ ∞∏
n=2

1

1− qn

]
g(q, h, d) =

[ ∞∏
n=1

1

1− qn

]
2F1

(
d, 1− d; 2h;

q

q − 1

)
.

(4.29)

We arrive at the following c-recursive representation, in agreement with [14]

F (q, h, d, c) =

[ ∞∏
n=1

1

1− qn

]
2F1

(
d, 1− d; 2h;

q

q − 1

)

+
∑

r≥2,s≥1

[
−∂crs(h)

∂h

] qrsAcrs(h)
rs P rscrs(h)

[
d

h+ rs

]
P rscrs(h)

[
d

h

]
c− crs(h)

× F (h→ h+ rs, c→ crs(h)),

(4.30)

where we have used that drs(crs(h)) = h.

4.4.3 Torus 2-point block in the OPE channel

The last example is the torus 2-point conformal block in the OPE channel, that is, two

external vertex operators fusing into one that is inserted on the torus. Our conformal frame

is defined by the plumbing construction illustrated in figure 6.

We begin with a 2-punctured disc and a 2-holed disc,

D1 = {w ∈ C : |w| < r1, w 6= 0, 1},

D2 =

{
u ∈ C : ε < |u| < ε

|q| , |u− 1| > r2

}
.

(4.31)
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0d2
1d1

∞

0
1

∞v

q

Figure 6. The plumbing construction of the torus 2-point function in the OPE channel.

The SL(2) gluing maps identify

|u− 1| = r2 : u− 1 = vw, |v| = r2

r1
, and

u ∼ qu.
(4.32)

The result of the plumbing construction is the annulus on the u plane with the identification

u ∼ qu and two vertex operators inserted at u = 1 and u = 1+v. In terms of the parameters

q1, q2 previously used for the necklace channel, we have

q = q1q2, v =
1− q2

q2
. (4.33)

The Virasoro conformal block in this frame is given by

F (q, h1, v, h2, d1, d2, c)

=
∑

N,M,P,Q

q|N |v|P |
(
G
|N |
h1

)NM
ρ(L−Nh1, L−Ph2, L−Mh1)

(
G
|P |
h2

)PQ
ρ(L−Qh2, d1, d2).

(4.34)

It is important that ρ is defined as the 3-point function of descendants on the plane (as

opposed to on the cylinder), as is clear from the above plumbing construction. The c-

recursive representation takes the form

F =Uc +
∑

r≥2,s≥1

[
−∂crs(h1)

∂h1

] qrsAcrs(h1)
rs P rscrs(h1)

[
h2

h1 + rs

]
P rscrs(h1)

[
h2

h1

]
c− crs(h1)

× F (h1 → h1 + rs, c→ crs(h1)) (4.35)

+
∑

r≥2,s≥1

[
−∂crs(h2)

∂h2

] vrsAcrs(h2)
rs P rscrs(h2)

[
h1

h1

]
P rscrs(h2)

[
d2

d1

]
c− crs(h2)

F (h2→ h2+ rs, c→ crs(h2)).
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0
1

∞

0
1

∞

0
1

∞

Figure 7. Building blocks for the plumbing construction. Discs with 2 punctures (left), 1 hole

and 1 puncture (middle), and 2 holes (right). Here we describe them using spheres with at least

one hole around ∞, which are SL(2)-equivalent to discs with the appropriate number of holes and

punctures.

The c-regular part Uc is again c-independent, and is given by the product of the torus

vacuum character and the global block,

Uc =

[ ∞∏
n=2

1

1− qn

] ∑
i,j≥0

qivj
(1− h2 − j)jsii(h1, h2, h1)(h2 + d1 − d2)j

i!(2h1)i j!(2h2)j
. (4.36)

5 Generalization to higher genus

We now describe the extension of c-recursive representation to N -point Virasoro confor-

mal blocks on arbitrary higher genus Riemann surfaces in an arbitrary channel. The N -

punctured genus g Riemann surface will be constructed by plumbing together 2g − 2 +N

discs with either 2 holes, 1 hole and 1 puncture, or 2 punctures as illustrated in figure 7.

For instance, a 2-holed disc is the domain

D = {z ∈ C : |z| > r1, |z − 1| > r2, |z| < r3}. (5.1)

Boundary components of the holed/punctured discs will be identified pairwise using 3g −
3 +N SL(2,C) Möbius maps. For instance, we may glue the inner boundary |z| = r1 of a

2-holed disc D with the outer boundary |z̃| = r̃3 of another 2-holed disc D̃ via z̃ = z/q. The

moduli of the N -punctured genus g Riemann surface will be parameterized by 3g − 3 +N

plumbing parameters qi.

The plumbing construction not only gives a parameterization of the moduli, but also

specifies the conformal frame in which the Virasoro conformal block is defined. As already

mentioned, this is a particularly convenient frame for the c-recursive representation, be-

cause (1) the Virasoro conformal block remains finite in the c→∞ limit in this frame, and

(2) the global SL(2) block is naturally defined in this frame since only SL(2) gluing maps

are involved.

To build the Virasoro block, we begin with 3-point functions ρ of Virasoro descendants

inserted at z = 0, 1,∞ on the plane, associated with each holed/punctured disc. A puncture

corresponds to an external primary, while a hole corresponds to an internal descendant of

– 26 –



J
H
E
P
0
4
(
2
0
1
9
)
0
1
8

h3

h2

h1

h3

h2

h1

q3

q2

q1

0
1

∞

0
1

∞

Figure 8. The plumbing construction for a genus two Riemann surface in two channels.

the form L−Aνh. Each gluing map in the plumbing construction amounts to contracting

a pair of descendants from two ρ’s, say of primary weight h and level N , with the inverse

Gram matrix, multiplied by a power of the plumbing parameter, qN (by convention, we

have separated qh as an overall prefactor that multiplies the conformal block). We have

already seen this through a number of examples: for instance, the sphere 6-point block in

the trifundamental channel (4.5) corresponds to figure 5; the genus two conformal block

corresponding to the left figure of figure 8 was considered in (4.8).

As described in section 4.1, the factorization property of descendant 3-point functions

ρ involving null states leads to the determination of the residues of the conformal block at

its poles either in one of the internal weights or in the central charge. For instance, the

genus two block (4.8) has the simple pole expansion in one of its internal weights h1,

F = U1 +
∑
rs≥1

qrs1 Ars

(
P rs

[
h3

h2

])2

h1 − drs
F (h1 → drs + rs),

(5.2)

where U1 is regular in h1. Similar results of course hold for the simple pole expansion in

h2 and in h3, with regular parts U2 and U3 respectively. The Ui’s are a priori complicated.

Instead, we now pass to the simple pole expansion in c, which is readily read off from the

polar terms in h1, h2, h3 (this is very similar to the (4.24) for the sphere 6-point trifunda-

mental block). It then remains to determine the regular part of the conformal block in c,

which is equivalent to knowing the large c limit.

As we showed in section 4.2, the Virasoro conformal block in the plumbing frame built

out of of 3-point functions of descendants contracted with inverse Gram matrices has a

very simple large c limit: it reduces to the product of the c → ∞ limit of the vacuum

Virasoro block and the global SL(2) block (both defined in the plumbing frame). That is,

lim
c→∞

(genus g Virasoro block in channel C)

= lim
c→∞

(genus g vacuum block in channel C)× (genus g global block in channel C).
(5.3)

A genus two example of this was shown in (4.16).5

5We have also confirmed (5.3) for the genus two block (4.8) up to total level 12 in q1, q2, q3 by scanning

over a set of numerical values of the internal weights hi with Mathematica.
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As already pointed out, the global SL(2) block is easy to compute explicitly in any

channel. It is less obvious how to determine the vacuum Virasoro block in the c→∞ limit

on a genus g Riemann surface (since all external and internal primaries are set to identity,

there are no more punctures) in a general channel in the plumbing frame, as it receives

contributions from all 3-point functions of descendants of the vacuum Verma module. The

answer, in fact, is already known, as the holomorphic part of the 1-loop partition function

of 3D pure gravity on the corresponding genus g hyperbolic handlebody [18].

Firstly, note that the vacuum block has the special property that it depends only

on the choice of a genus g handlebody that “fills in” the Riemann surface, i.e. different

channels corresponding to the same handlebody (related by crossing moves at the level of

sphere 4-point functions) lead to the same answer. In the Schottky parameterization of

the moduli, the Riemann surface is realized as a quotient of the form

(C ∪ {∞} − Λ)/〈α1, · · · , αg〉, (5.4)

where αi’s are loxodromic elements of PSL(2,C) that act on the Riemann sphere C∪ {∞}
via Möbius transformation, and 〈α1, · · · , αg〉 is the free group generated by α1, · · · , αg,
known as the Schottky group. Λ is the limit set of the Schottky group action. Now

given any element γ of the Schottky group, as an element of PSL(2,C) it is conjugate to(
q

1/2
γ 0

0 q
−1/2
γ

)
, with |qγ | < 1. Obviously, qγ depends only on the conjugacy class of γ.

Now the c =∞ vacuum block in the pluming frame is given by the product formula [18]

∏
γ∈P

∞∏
n=2

(1− qnγ )−
1
2 , (5.5)

where P is the set of primitive conjugacy classes of the Schottky group. The relation

between the Schottky parameters and the plumbing parameters is straightforward. Let us

consider as a simple example the genus two partition function. We construct a Virasoro

block for the genus two partition function in the plumbing frame by gluing together two

2-holed discs. Gluing one disc into a hole of the other disc leads to a 3-holed disc, where

a pair of inner holes are glued together and the remaining inner hole is glued to the outer

boundary. The two PSL(2,C) maps used in sewing up the boundaries of the 3-holed disc are

precisely generators of the Schottky group. The generalization of this procedure to higher

genus (involving the gluing of 2(g− 1) 2-holed discs) is entirely straightforward. Thus, the

result of [18] combined with the global SL(2) block provide the required c-regular part in

the plumbing frame, thereby completing the c-recursive representation of a general genus

g conformal block.

Note that if we move to a different conformal frame, the vacuum block would pick up

a conformal anomaly factor, of the form exp(−cF0), where F0 is a function of the moduli.

From the holographic perspective, F0 is the holomorphic part of the regularized Einstein-

Hilbert action evaluated on a genus g hyperbolic handlebody [16, 17], and the choice of

conformal frame is tied to a choice of the cutoff surface along the conformal boundary. The

logarithm of the vacuum conformal block is expected to have a 1/c asymptotic expansion of
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the form −∑∞k=0 c
1−kFk, where Fk is the holomorphic part of the k-loop free energy of the

3D pure gravity at the handlebody saddle point of the gravitational path integral [18]. For

our purposes here, exp(−F1) is what survives in the large c limit in the plumbing frame,

and serves as the seed that determines the c-recursion relation.

To go from the plumbing parameters qi or the Schottky parameterization of the moduli

to the period matrix of the genus g Riemann surface is rather nontrivial (see [31] for the

construction of such a mapping in the genus two case). This is now the main technical

obstacle before our recursive representation can be applied to, say, higher genus modular

bootstrap.

6 Discussion

In the first part of this work, we derived the h-recursion representation of Virasoro con-

formal blocks for the sphere linear channel and torus necklace channel. The key to this

derivation was the determination of the h-regular part by taking a simultaneous large

weight limit, such that every 3-point function of descendants that appears in the confor-

mal block involves a finite weight primary and a pair of large weights (either primary or

descendants), which leads to a drastic simplification of the Virasoro block. Such a limit is

not available however for more general conformal blocks, such as the sphere 6-point block

in the trifundamental channel.6 For practical computations, while our h-recursive repre-

sentation does compute order-by-order the expansion of Virasoro block in the plumbing

parameters, it is not quite as efficient as that of [4]: even in the sphere 4-point case, the

residues of the recursive formula involve shifted blocks with a pair of new external weights

that now depend on the original internal weight.

The c-recursion representations appear to be much more powerful, both in that they

apply to arbitrary channel Virasoro conformal blocks on any Riemann surface (provided

that we work in the plumbing frame), and they are more efficient for practical evaluation

of the qi-expansion.7 It is now possible to compute efficiently the torus 2-point Virasoro

blocks in both the necklace channel and the OPE channel, making it possible to analyze

the torus 2-point conformal bootstrap for unitary CFTs with semidefinite programming.

Note that unlike the conformal bootstrap where crossing symmetry of the sphere four-point

function is imposed, here (and generically in higher genus bootstrap) there are multiple

internal weights over which the positivity properties must be imposed. This is currently

under investigation.

Even though a complete set of consistency constraints on a 2D CFT is captured by

the crossing relation of the sphere 4-point function and the modular covariance of the

torus 1-point function, the numerical approach to bootstrapping unitary CFTs can hardly

incorporate more than a few external operators simultaneously. For this reason it has been

6In this case, sending 3 of the external weights together with 3 internal weights to infinity while holding

their differences fixed indeed still gives a finite limit, but we have not been able to find a closed form

expression for the result.
7For instance, using Mathematica on a laptop, symbolic evaluation of the torus 2-point function in the

necklace channel for both q1 and q2 up to level 10 takes typically ∼ O(10) minutes using c-recursion, while

the same evaluation using h-recursion at level 7 takes ∼ O(10) minutes.
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rather difficult to combine modular bootstrap and the sphere crossing equation in a useful

way. The higher genus conformal bootstrap based on the modular crossing equation would

effectively take into account the OPEs of all primaries in the spectrum, without having to

work with them individually. This could be very useful especially for theories with large

degeneracy/density in the operators.

The remaining complication in implementing higher genus modular bootstrap is to

efficiently go between the plumbing parameterization of the moduli and the period matrix,

since the latter has a simple modular transformation property while the former trans-

forms in a complicated manner under the modular group. These have been studied in the

genus two case in [17, 31], but a more efficient computational algorithm will be needed for

applications to bootstrap.

Finally, let us mention that our recursive formula allows for the evaluation of torus

(and potentially higher genus) correlation functions in Liouville CFT and the SL(2) WZW

model, based on integrating a continuous family of conformal blocks with known structure

constants. This makes it possible to perform direct numerical evaluation of string loop

amplitudes in c = 1 string theory [32, 33], doubled scaled little string theory [7, 8, 34–36],

and string theory in AdS3 [37].
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A Virasoro Ward identities

The Virasoro algebra is defined by

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,−m. (A.1)

Ward identities for 3-point functions of Virasoro descendants (2.3) were used extensively

in [10, 19, 20]. Here we summarize the relevant results in our notation. The z-dependence

of the 3-point function ρ takes the form

ρ(ξ3, ξ2, ξ1|z) = zL0(ξ3)−L0(ξ2)−L0(ξ1)ρ(ξ3, ξ2, ξ1|1), (A.2)
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where L0(ξi) is the holomorphic conformal weight of the descendant ξi. Recall that ξ1 is

inserted at z = 0 and ξ3 at z =∞. We have the following Ward identities:

ρ(ξ3, L−1ξ2, ξ1|z) =∂zρ(ξ3, ξ2, ξ1|z),

ρ(ξ3, Lnξ2, ξ1|z) =

n+1∑
m=0

(
n+ 1

m

)
(−z)m(ρ(Lm−nξ3, ξ2, ξ1|z)− ρ(ξ3, ξ2, Ln−mξ1|z)),

n > −1,

ρ(ξ3, L−nξ2, ξ1|z) =
∞∑
m=0

(
n− 2 +m

n− 2

)
×
[
zmρ(Ln+mξ3, ξ2, ξ1|z) + (−)nz−n+1−mρ(ξ3, ξ2, Lm−1ξ1|z)

]
,

n > 1,

ρ(L−nξ3, ξ2, ξ1|z) =ρ(ξ3, ξ2, Lnξ1|z) +

l(n)∑
m=−1

(
n+ 1

m+ 1

)
zn−mρ(ξ3, Lmξ2, ξ1|z).

(A.3)

In the last line, l(n) = n for n ≥ −1, and l(n) = ∞ otherwise. In particular, to move Lm
acting on ξ1 through a primary ν2(z) of weight d2, we can use the commutator

[Lm, ν2(z)] = zm(z∂z + (m+ 1)d2)ν2(z). (A.4)

B Factorization of 3-point functions

Here we explain the factorization properties of generic 3-point functions of three descen-

dants involving null states, as given in (4.1). Using the Ward identities (A.3), we can

move the Virasoro generators L−M in the second entry of ρ on the l.h.s. of (4.1) to the

first and third entries. Thus it suffices to consider the case where L−M is the empty

chain. To give a flavor of the derivations, we shall prove (3.5) which is one of the iden-

tities in (4.1) with M = ∅. Suppose L−A in (3.5) is a Virasoro chain of length m, i.e.

L−A = L−amL−am−1 . . . L−a1 . The m = 0 case is easy to prove and was given in [20]. We

will induct on m: suppose the property holds for [A] = m, and now consider the [A] = m+1

case. Repeatedly applying the commutation relation (A.4), we have

ρ(L−Bχrs, ν2, L−am+1L−am . . . L−a1ν1) = ρ(Lam+1L−Bχrs, ν2, L−am . . . L−a1ν1)

− z−am+1 ((−am+1 + 1)d2 + z∂z) ρ(L−Bχrs, ν2, L−am . . . L−a1ν1)

= ρ(Lam+1L−Bνdrs+rs, ν2, L−am . . . L−a1ν1)ρ(χrs, ν2, ν1)

− z−am+1 ((−am+1 + 1)d2 + z∂z) ρ(L−Bχrs, ν2, L−am . . . L−a1ν1)

= ρ(L−Bνdrs+rs, ν2, L−am+1L−am . . . L−a1ν1)ρ(χrs, ν2, ν1)

+ z−am+1 ((−am+1 + 1)d2 + z∂z) ρ(L−Bνdrs+rs, ν2, L−am . . . L−a1ν1)ρ(χrs, ν2, ν1)

− z−am+1 ((−am+1 + 1)d2 + z∂z) ρ(L−Bχrs, ν2, L−am . . . L−a1ν1)

= ρ(L−Bνdrs+rs, ν2, L−am+1L−am . . . L−a1ν1)ρ(χrs, ν2, ν1).

(B.1)

The other identities in (4.1) can be proven similarly, by repeatedly applying (A.4) and

using the property that the null state χrs behaves as a primary.
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Note importantly that the second factors on the r.h.s. of (4.1) are fusion polynomials,

P rs

[
d2

d1

]
= ρ(χrs, ν1, ν2|1) = ρ(ν1, χrs, ν2|1) = ρ(ν2, ν1, χrs|1),

ρ(χrs, ν1, χrs) = P rs

[
d1

drs + rs

]
P rs

[
d1

drs

]
.

(B.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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