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without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how

this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold.

The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P1× P3

and we obtain an explicit result for the matter field Kähler metric in this case.
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1 Introduction

The computation of four-dimensional Yukawa couplings from string theory is notoriously

difficult, mainly because methods to compute the matter field Kähler metric which enters

the physical Yukawa couplings are lacking. In this note we report some progress in this

direction. We outline a method to calculate the matter field Kähler metric in the context

of Calabi-Yau compactifications of the heterotic string with Abelian internal gauge fluxes.

Models of particle physics derived from the E8×E8 heterotic string can be remarkably

successful in accounting for the qualitative features of the Standard Model; much progress

has been made in this direction, both in the older literature [1–6] and more recently [7–

27]. In fact, heterotic models with the correct spectrum of the (supersymmetric) standard

model can now be obtained with relative ease and in large numbers, particularly in the

context of Abelian internal gauge flux [18, 19], the case we are focusing on in this note.

One of the next important steps towards realistic particle physics from string theory

is to find models with the correct Yukawa couplings. The calculation of physical Yukawa

coupings in string theory proceeds in three steps. First, the holomorphic Yukawa couplings,

that is, the trilinear couplings in the superpotential have to be determined. As holomor-

phic quantities, their calculation can be accomplished either by algebraic methods [28–31]

or by methods rooted in differential geometry [28, 32–34]. The second step is the calcu-

lation of the matter field Kähler metric which determines the field normalisation and the

re-scaling required to convert the holomorphic into the physical Yukawa couplings. As a
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non-holomorphic quantity, the matter field Kähler metric is notoriously difficult to calcu-

late since it requires knowledge of the Ricci-flat Calabi-Yau metric for which analytical

expressions are not available. This technical difficulty has held up progress in calculat-

ing Yukawa couplings from string theory for a long time and it will be the focus of the

present paper.

The third step consists of stabilising the moduli and inserting their values into the

moduli-dependent expressions for the physical Yukawa couplings to obtain actual numerical

values. We will not address this step in the present paper, but rather focus on developing

methods to calculate the matter field Kähler metric as a function of the moduli.

The only class of heterotic Calabi-Yau models where an analytic expression for the

matter field Kähler metric is known is for models with standard embedding of the spin

connection into the gauge connection. In this case, the matter field Kähler metrics for

the (1, 1) and (2, 1) matter fields are essentially given by the metrics on the corresponding

moduli spaces [28, 35]. Recently, Candelas, de la Ossa and McOrist [36] (see also ref. [37])

have proposed an α′-correction of the heterotic moduli space metric, which includes bundle

moduli. This information may be used to infer the Kähler metric of matter fields that

arise from bundle moduli. However, we will not pursue this method here, since our main

interest is not in bundle moduli but in the gauge matter fields which can account for the

physical particles.

There are two other avenues for calculating the matter field Kähler metric suggested

by results in the literature. The first one relies on Donaldson’s numerical algorithm to

determine the Ricci-flat Calabi-Yau metric [38–40] and subsequent work applying this

algorithm to various explicit examples and to the numerical calculation of the Hermitian

Yang-Mills connection on vector bundles [41–48]. At present, this approach has not been

pushed as far as numerically calculating physical Yukawa couplings. However, it appears

that this is possible in principle and, while constituting a very significant computational

challenge, would be very worthwhile carrying out. A disadvantage of this method is that

it will only provide the Yukawa couplings at specific points in moduli space and that

extracting information about their moduli dependence will be quite difficult.

In this paper, we will focus on a different approach, based on localisation due to

flux, which can lead to analytic results for the matter field Kähler metric. This method

is motivated by work in F-theory [49–53] where the localisation of matter fields on the

intersection curves of D7-branes and Yukawa couplings on intersections of such curves

facilitates local computations of the Yukawa couplings which do not require knowledge

of the Ricci-flat Calabi-Yau metric. It is not immediately obvious whether and how this

approach might transfer to the heterotic case, since heterotic compactifications lack the

intuitive local picture, related to intersecting D-brane models, which is available in F-

theory. In this paper, we will show, using methods from differential geometry developed in

refs. [32–34], that localisation of wave functions can nevertheless arise in heterotic models.

The underlying mechanism is, in fact, similar to the one employed in F-theory. Sufficiently

large flux - in the heterotic case E8 × E8 gauge flux - leads to a localisation of wave

functions which allows calculating their normalisation locally, without recourse to the Ricci-

flat Calabi-Yau metric.

– 2 –



J
H
E
P
0
4
(
2
0
1
8
)
1
3
9

To carry this out explicitly we will proceed in three steps. First, we derive the general

formula for the matter field Kähler metric for heterotic Calabi-Yau compactifications by a

standard reduction of the 10-dimensional supergravity. This formula, which provides the

matter field Kähler metric in terms of an integral over harmonic bundle valued forms is not,

in itself, new (see, for example, ref. [54]). Our re-derivation serves two purposes. First, we

would like to fix conventions and factors as this will be required for an accurate calculation

of the physical Yukawa couplings and, secondly, we will show explicitly how this formula

for the matter field Kähler metric is consistent with four-dimensional N = 1 supergravity.

We observe that this consistency already determines the dependence of the matter field

Kähler metric on the T-moduli, a result which, to our knowledge, has not been pointed

out in the literature so far.

The second step is to show how (Abelian) E8×E8 gauge flux can lead to a localisation of

the matter field wave functions around certain points of the Calabi-Yau manifold. We will

first demonstrate this for toy examples based on line bundles on P1 as well as on products

of projective spaces and then show that the effect generalises to Calabi-Yau manifolds. As

a result, we obtain local matter field wave functions on Calabi-Yau manifolds and explicit

results for their normalisation integrals.

The final step is to express these results in terms of the global moduli of the Calabi-

Yau manifold. We show that this can indeed be accomplished by relating global to local

quantities on the Calabi-Yau manifold and by using information from four-dimensional

N = 1 supersymmetry. In this way, we can obtain explicit results for the matter field

Kähler metric as a function of the Calabi-Yau moduli and this is carried out for the Calabi-

Yau hyper-surface in P1 × P3. We believe this is the first time such a result for the matter

field Kähler metric as a function of the properly defined moduli has been obtained in any

geometrical string compactification, including F-theory.

The plan of the paper is as follows. In the next section, we sketch the supergravity

calculation which leads to the general formula for the matter field Kähler metric and we

discuss the implications from four-dimensional N = 1 supersymmetry. In section 3, we

show how gauge flux leads to the localisation of matter field wave functions, starting with

toy examples on P1 and then generalising to products of projective spaces. Section 4

contains the local calculation of the wave function normalisation on a patch of the Calabi-

Yau manifold. In section 5, we express this result in terms of the properly defined moduli

by relating global and local quantities and we obtain an explicit result for the matter field

Kähler metric on Calabi-Yau hyper-surfaces in P1 × P3. We conclude in section 6.

2 The matter field Kähler metric in heterotic compactifications

Our first step is to derive a general formula for the matter field Kähler metric, in terms

of the underlying geometrical data of the Calabi-Yau manifold and the gauge bundle. The

basic structure of this formula is well-known for some time, see, for example ref. [54],

and our re-derivation here serves two purposes. Firstly, we would like to fix notations

and conventions so that our result is accurate, as is required for a detailed calculation of
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Yukawa couplings. Secondly, we would like to explore the constraints on the matter field

Kähler metric which arise from four-dimensional N = 1 supergravity.

Starting point is the 10-dimensional N = 1 supergravity coupled to a 10-dimensional

E8×E8 super Yang-Mills theory. This theory contains two multiplets, namely the gravity

multiplets which consists of the metric g, the NS two-form B, the dilaton φ as well as their

fermionic partners, the gravitino and the dilatino, and an E8 × E8 Yang-Mills multiplet

with gauge field A and associated field strength F = dA+A∧A as well as its superpartners,

the gauginos. To first order in α′ and at the two-derivative level, the bosonic part of the

associated 10-dimensional action is given by

S =
1

2κ

∫
d10x

√
−ge−2φ

(
R+ 4 (∂φ)2 − 1

2
H2 − α′

4
TrF 2

)
, H = dB − α′

4
(ωYM − ωL) ,

(2.1)

where κ is the ten-dimensional gravitational coupling constant and ωYM and ωL are the

gauge and gravitational Chern-Simons forms, respectively.

We consider the reduction of this action on a Calabi-Yau three-folds X, with Ricci-

flat metric g(6) and a holomorphic bundle V → X with a connection A(6) that satisfies the

Hermitian Yang-Mills equations, as usual. Let us introduce the Kähler form J on X, related

to the Ricci-flat metric g(6) on X by g
(6)
mn̄ = −iJmn̄ and a basis Ji, where i = 1, . . . , h1,1(X),

of harmonic (1,1)-forms. Then we can expand

J = tiJi , B = B(4) + τ iJi , (2.2)

with the Kähler moduli ti, their axionic partners τi and the four-dimensional two-form B(4).

In addition, we have the zero mode φ(4) of the 10-dimensional dilaton φ as well as complex

structure moduli Za, where a = 1, . . . , h2,1(X). It is well-known that, in the absence of

matter fields, these bosonic fields fit into four-dimensional N = 1 chiral multiplets as

S = Ve−2φ(4) + iσ , T i = ti + iτ i , (2.3)

with the volume V of X and the dual σ of the four-dimensional two-form B(4). We note

that the Calabi-Yau volume can be written as

V =

∫
X
d6x

√
g(6) =

1

6
K , K = dijkt

itjtk , dijk =

∫
X
Ji ∧ Jj ∧ Jk , (2.4)

where dijk are the triple intersection numbers of X. Further, the Kähler moduli space

metric takes the form

Gij = −1

4

∂2

∂ti∂tj
lnκ = −3

2

(
Kij
K
− 3

2

KiKj
K2

)
, (2.5)

where Ki = dijkt
jtk and Kij = dijkt

k. The complex structure moduli Za each form the

bosonic part of an N = 1 chiral multiplet which we denote by the same name.

In addition, there are matter fields CI which arise from expanding the gauge field as

A = A(6) + νIC
I , (2.6)
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where νI are harmonic one-forms which take values in the bundle V . It is important to

stress that the correct matter field metric has to be computed relative to harmonic forms

νI and this is, in fact, how the dependence on the Ricci-flat metric and the Hermitian

Yang-Mills connection comes about. The fields CI each form the bosonic part of an N = 1

chiral supermultiplet. It is known that the definition of the T i superfields in eq. (2.3) has

to be adjusted in the presence of these matter fields. In the universal case with only one

T-modulus and one matter field C, the required correction to eq. (2.3) has been found to

be proportional to |C|2 (see, for example, ref. [55]). For our general case, we, therefore

start by modifying the definition of the T-moduli in eq. (2.3) by writing

T i = ti + iτ i + ΓiIJC
IC̄J , (2.7)

where ΓiIJ is a set of (potentially moduli-dependent) coefficients to be determined.1 To our

knowledge, no general expression for ΓiIJ has been obtained in the literature so far.

The kinetic terms of the above superfields derive from a Kähler potential of the gen-

eral form

K = − log(S + S̄) +Kcs − log
(
dijk(T

i + T̄ i)(T j + T̄ j)(T k + T̄ k)
)

+GIJC
IC̄J , (2.8)

where Kcs is the Kähler potential for the complex structure moduli Za whose explicit

form is well-known but is not relevant to our present discussion and GIJ is the (moduli-

dependent) matter field Kähler metric we would like to determine. The general task is now

to compute the kinetic terms which result from this Kähler potential, insert the definitions

of S in eq. (2.3) and of T i in eq. (2.7) and compare the result with what has been obtained

from the reduction of the 10-dimensional action (2.1). This comparison should lead to

explicit expressions for GIJ and ΓiIJ .

A quick look at the Kähler potential (2.8) shows that achieving this match is by no

means a trivial matter. The matter field Kähler metric GIJ depends on the T-moduli

and, hence, the kinetic terms from (2.8) can be expected to include cross terms of the

form ∂µt
i∂µCI . However, such cross terms can clearly not arise from the dimensional

reduction of the 10-dimensional action (2.1) and, hence, there must be non-trivial can-

cellations which involve the derivatives of GIJ and ΓiIJ . We find that this issue can be

resolved and indeed a complete match between the reduced 10-dimensional action (2.1)

and the four-dimensional Kähler potential (2.8) can be achieved provided the following

three requirements are satisfied.

• The coefficients ΓiIJ which appear in the definition (2.7) of the T I superfields are

given by

ΓiIJ = −1

2
Gij ∂GIJ

∂T̄ j
, (2.9)

where Gij is the inverse of the Kähler moduli space metric Gij .

1The dilaton superfield S receives a similar correction in the presence of matter fields [55] but this arises

at one-loop level and will not be of relevance here.
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• The matter field Kähler metric is given by

GIJ =
1

2V

∫
X
νI ∧ ?̄V (νJ) , (2.10)

where ?̄V refers to a Hodge dual combined with a complex conjugation and an action

of the hermitian bundle metric on V .

• Since the Hodge dual on a Calabi-Yau manifold acting on a (1, 0) form ρ can be

carried out as ?ρ = − i
2J ∧ J ∧ ρ the result (2.10) for the matter field Kähler metric

can be re-written as

GIJ = −3ititj

2K
ΛijIJ , ΛijIJ =

∫
X
Ji ∧ Jj ∧ νI ∧ (Hν̄J) , (2.11)

where H is the hermitian bundle metric on V . The final requirement for a match

between the dimensionally reduced 10-dimensional and the four-dimensional the-

ory (2.8) can then be stated by saying that the above integrals ΛijIJ do not explicitly

depend on the Kähler moduli ti.

The above result means that the Kähler moduli dependence of the matter field metric is

completely determined as indicated in the first equation (2.11), while the remaining inte-

grals ΛijIJ are ti-independent but can still be functions of the complex structure moduli. To

our knowledge this is a new result which is of considerable relevance for the structure of the

matter field Kähler metric and the physical Yukawa couplings. Note that the ti dependence

of GIJ in eq. (2.11) is homogeneous of degree −1, as expected on general grounds.

It is worth noting that the Kähler potential (2.8) with the matter field Kähler metric

as given in eq. (2.11) can, alternatively, also be written in the form

K = − log(S + S̄) +Kcs − log
(
dijk(T

i + T̄ i − γi)(T j + T̄ j − γj)(T k + T̄ k − γk)
)

γi = 2 ΓiIJC
IC̄J ,

(2.12)

provided that terms of higher than quadratic order in the matter fields CI are neglected.

This can be seen by expanding the logarithm in eq. (2.12) to leading order in γi and

by using 3Ki
K ΓiIJ = GIJ . (The latter identity follows from Gij 3Kj

4K = ti, the fact that

GIJ is homogeneous of degree −1 in ti and the result (2.9) for ΓiIJ). This form of the

Kähler potential, together with the definition (2.7) of the fields T i, means that, in terms

of the underlying geometrical Kähler moduli ti, the dependence on the matter fields CI

cancels. Indeed, inserting the definition (2.7) of the T i moduli into eq. (2.12) turns the

last logarithm into − ln(8K). That this part of the Kähler potential can be written as the

negative logarithm of the Calabi-Yau volume is in fact expected and provides a check of

our calculation.

3 Localisation of matter field wave functions on projective spaces

As a warm-up, we first discuss wave function normalisation on Pn and products of projective

spaces, beginning with the simplest case of P1. (For a related discussion, in the context of F-

theory, see ref. [53].) In doing so we have two basic motivations in mind. First, considering
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projective space and P1 in particular provides us with a toy model for the actual Calabi-

Yau case which we will tackle later. From this point of view, the following discussion will

provide some intuition as to when wave function localisation occurs and when it leads to a

good approximation for the normalisation integrals. On the other hand, projective spaces

and their products provide the ambient spaces for the Calabi-Yau manifolds of interest

and, hence, this section will be setting up some of the requisite notation and results we

will be using later.

3.1 Wave functions on P1

Homogeneous coordinates on P1 are denoted by x0, x1, the affine coordinates on the patch

{x0 6= 0} by z = x1/x0 and we also define κ = 1 + |z|2. For simplicity, we will write

all quantities in terms of the affine coordinate z and we will ensure they are globally well-

defined by demanding the correct transformation property under the transition z → 1/z. In

terms of z, the standard Fubini-Study Kähler potential and Kähler form can be written as

K =
i

2π
lnκ , J = ∂∂̄K =

i

2πκ2
dz ∧ dz̄ . (3.1)

Here, J has the standard normalisation, that is,
∫
P1 J = 1. The associated Fubini-Study

metric is Kähler-Einstein and, hence, the closest analogue of a Ricci-flat Calabi-Yau metric

we can hope for on P1.

We are interested in line bundles L = OP1(k) on P1 with first Chern class c1(L) = kJ

on which we introduce a hermitian structure with the bundle metric and the associated

(Chern) connection and field strength given by

H = κ−k , A = ∂ ln H̄ = −kz̄
κ
dz , F = dA = ∂̄∂ ln H̄ = −2πikJ . (3.2)

The analogue of the harmonic forms νI in eq. (2.6) associated to matter fields are harmonic

L-valued forms α, that is, forms satisfying the equations

∂̄α = 0 , ∂(H̄ ? α) = 0 , (3.3)

where the Hodge star is taken with respect to the Fubini-Study metric. We would like to

compute their normalisation integrals

〈α, β〉 =

∫
P1

α ∧ ?(Hβ̄) , (3.4)

the analogue of the matter field Kähler metric (2.10). These harmonic forms are in one-to-

one correspondence with the bundle cohomologies Hp(P1, L) and, depending on the value

of k, we should distinguish three case.

• k ≥ 0: in this case, the only non-vanishing cohomology of L is h0(P1, L) = k + 1, so

that the relevant harmonic forms α are L-valued zero forms. The relevant solutions

to eqs. (3.3) are explicitly given by the degree k polynomials in z.

• k = −1: in this case, all cohomologies of L vanish so there are no harmonic forms.

– 7 –
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• k ≤ −2: in this case, the only non-vanishing cohomology of L is h1(P1, L) = −k − 1

and the corresponding L-valued (0, 1)-forms which solve eqs. (3.3) can be written as

α = κkh(z̄)dz̄, where h is a polynomial of degree −k − 2 in z̄. In the following, it is

useful to work with the monomial basis

αq = κkz̄qdz̄ , q = 0, . . . ,−k − 2 (3.5)

for these forms.

Given that the forms νI which appear in the actual reduction (2.6) are (0, 1)-forms the

most relevant case is the last one for k ≤ −2. In this case, inserting the forms (3.5) into

the normalisation integral (3.4) leads to

〈αq, αp〉 = −i
∫
C
zq z̄pκkdz ∧ dz̄ =

2π q!

(−k − 1) · · · (−k − 1− q)
δqp . (3.6)

In physical terminology, the integer k quantifies the flux and the integer q labels the families

of matter fields. It is clear that the above integrals receive their main contribution from

a patch near the affine origin z ' 0, provided that the flux |k| is sufficiently large and

the family number q is sufficiently small. In this case, it seems that the above integrals

can be approximately evaluated locally near z ' 0, by using the flat metric instead of the

Fubini-Study metric as well as the corresponding flat counterparts of the bundle metric and

the harmonic forms. Formally, these flat space quantities can be obtained from the exact

ones by setting κ to one in the expression (3.1) for the Kähler form and by the replacement

κk → ek|z|
2

in the other quantities. That is, we use the replacements

J =
i

2πκ
dz ∧ dz̄ → i

2π
dz ∧ dz̄ , H = κ−k → e−k|z|

2
, αq = κkz̄qdz̄ → ek|z|

2
z̄qdz̄ .

(3.7)

to work out the local version of the normalisation integrals which leads to

〈αq, αp〉loc = −i
∫
C
zq z̄pek|z|

2
dz ∧ dz̄ =

2π q!

(−k − 1)q+1
δqp . (3.8)

For the ratio of local to exact normalisation this implies

〈αq, αq〉loc

〈αq, αq〉
=

(−k − 2) · · · (−k − 2− q)
(−k − 1)q+1

= 1−O
(

q2

−k − 1

)
. (3.9)

Hence, as long as the flux |k| is sufficiently large and the family number satisfies q2 � |k| the

local versions of these integrals do indeed provide a good approximation. It is worth noting

that a transformation z → 1/z to the other standard coordinate patch of P1 transforms

the monomial basis forms αq into forms of the same type but with the family number

changing as q → (−k− 1)− q. This means that families with a large family number q close

to −k − 1 in the patch {x0 6= 0} acquire a small family number when transformed to the

patch {x1 6= 0} and, hence, localise at the affine origin of this patch, that is near z = ∞.

From this point of view it is not surprising that families with large q in the patch {x0 6= 0}
cannot be dealt with by a local calculation near z ' 0. Instead, for such modes, we can
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carry out a local calculation analogous to the above one but near the affine origin of the

patch {x1 6= 0}.
In summary, the harmonic bundle valued (0, 1) forms for L = OP1(k), where k ≤ −2,

are given by αq as in eq. (3.5). For sufficiently large flux |k| the modes with small family

number q localise near the affine origin of the path {x0 6= 0}, that is at z ' 0 and their

normalisation can be obtained from a local calculation near this point. The modes with

large family number q localise near the affine origin of the other path {x1 6= 0}, that is,

near z =∞ and their normalisation can be obtained by a similar local calculation around

this point.

3.2 Wave functions on products of projective spaces

The previous discussion for line bundles on P1 can be straightforwardly generalised to line

bundles on arbitrary products of projective spaces. For the sake of keeping notation simple,

we will now illustrate this for the case of A = P1 × P3 which is, in fact, the ambient space

of the Calabi-Yau manifold on which we focus later. The situation for general products of

projective spaces is easily inferred from this discussion.

Homogeneous coordinates on A = P1 × P3 are denoted by x0, x1 for the P1 factor and

by y0, y1, y2, y3 for P2. The associated affine coordinates on the patch {x0 6= 0, y0 6= 0}
are z1 = x1/x0 and zα+1 = yα/y0 for α = 1, 2, 3 and we define κ1 = 1 + |z1|2 and

κ2 = 1 +
∑4

α=2 |zα|2. The Fubini-Study Kähler forms for the two projective factors are2

Ĵ1 =
i

2π
∂∂̄ log κ1 =

i

2πκ2
1

dz1 ∧ dz̄1 ,

Ĵ2 =
i

2π
∂∂̄ log κ2 =

i

2πκ2
2

4∑
α,β=2

(κ2δαβ − z̄αzβ) dzα ∧ dz̄β , (3.10)

and, more generally, we can introduce the Kähler forms

Ĵ = t1Ĵ1 + t2Ĵ2 , (3.11)

with Kähler parameters t1 > 0, t2 > 0 on A. Line bundles L̂ = OA(k1, k2) with first Chern

class c1(L̂) = k1Ĵ1 + k2Ĵ2 can be equipped with the hermitian bundle metric

Ĥ = κ−k11 κ−k22 ⇒ F̂ = ∂̄∂ ln H̄ = −2πi(k1Ĵ1 + k2Ĵ2) . (3.12)

Specifically, we are interested in those line bundles L̂ with a non-vanishing first cohomology

which are precisely those with k1 ≤ −2 and k2 ≥ 0. In these cases

h1(A,OA(k1, k2)) = (−k1 − 1)
(k2 + 3)(k2 + 2)(k2 + 1)

6
(3.13)

and a basis for the associated harmonic L̂-valued (0, 1) forms is provided by

ν̂q = κk11 z̄
q̂1
1 z

q̂2
2 z

q̂3
3 z

q̂4
4 dz̄1 , (3.14)

2From now on we will denote quantities defined on the “ambient space” A by a hat in order to distinguish

them from their Calabi-Yau counterparts to be introduced later.
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where q̂ = (q̂1, q̂2, q̂3, q̂4) is a positive integer vector which labels the families and whose

entries are constrained by q̂1 = 0, . . . ,−k1−2 and q̂2 + q̂3 + q̂4 ≤ k2. Given these quantities,

the integrand of the normalisation integral is proportional to

ν̂q̂ ∧ ?(Ĥ ¯̂νq̂) ∼ κk11 κ
−k2
2

4∏
α=1

|zα|2q̂α . (3.15)

Hence, provided the fluxes |k1| and k2 are sufficiently large and the family numbers qα
sufficiently small, we expect localisation on a patch Û around the affine origin zα ' 0. In

this case, we can again work with the flat limit where the above quantities turn into

Ĵ1 → i
2πdz1 ∧ dz̄1 Ĵ2 → i

2π

∑4
α=2 dzα ∧ dz̄α Ĵ → t1Ĵ1 + t2Ĵ2

Ĥ → e−k1|z1|
2−k2

∑4
α=2 |zα|2 ν̂q → ek1|z1|

2
z̄q̂11 z

q̂2
2 z

q̂3
3 z

q̂4
4 dz̄1 .

(3.16)

A few general conclusions can be drawn from this. First, localisation near a point in A does

require all fluxes |ki| to be large. If one of the fluxes is not large then localisation will happen

near a higher-dimensional variety in A. For example, if |k1| is not large then the wave

function will localise near P1 times a point in P3. We note that such a partial localisation

may actually be sufficient when we come to discuss Calabi-Yau manifolds embedded in

A. For example, localisation near a curve in A will typically lead to localisation near a

point on a Calabi-Yau hyper-surface embedded in A. Secondly, provided all |ki| are indeed

large, localisation on Û near the affine origin zα ' 0, for α = 1, 2, 3, 4, requires all q̂α to be

sufficiently small. If a certain q̂α is large localisation may still arise near another point in

A. For example, if q̂1 is large while the other q̂α are small, then localisation occurs near

z1 =∞, z2 = z3 = z4 = 0.

4 A local Calabi-Yau calculation

So far, we have approached the problem of computing wave function normalisations on

Calabi-Yau manifolds from the viewpoint of the prospective ambient embedding spaces. In

this section, we will take the complementary point of view and carry out a local calculation

on a Calabi-Yau manifold. In the next section, we will show how to connect this local

Calabi-Yau calculation with the ambient space point of view in order to obtain results as

functions of globally defined moduli.

We start with a Calabi-Yau three-fold X and a line bundle L→ X with a non-vanishing

first cohomology and associated L-valued harmonic (0, 1) forms. Our goal is to determine

the normalisation of these harmonic forms by a local calculation, assuming, at this stage,

that localisation indeed occurs. To do this, we focus on a patch U ⊂ X with local complex

coordinates Za, where a = 1, 2, 3, chosen such that the Kähler form J , associated to the

Ricci-flat Calabi-Yau metric, is locally on U well approximated by3

J =
i

2π

3∑
a=1

βadZa ∧ dZ̄a , (4.1)

3We will denote local quantities, defined on the patch U , by script symbols.
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where the βa are positive constants. (It is, of course, possible to set βa equal to one by

further coordinate re-definitions but, for later purposes, we find it useful to keep these

explicitly.) On U , we can approximate the hermitian bundle metric H and the associated

field strength F of L by

H = e−
∑3
a=1Ka|Za|2 ⇒ F = ∂̄∂ lnH =

3∑
a=1

KadZa ∧ dZ̄a , (4.2)

where Ka are constants which will ultimately become functions of the Calabi-Yau moduli.

The Hermitian Yang-Mills equation, J∧J∧F = 0, should be satisfied locally which leads to

J ∧ J ∧ F = 0 ⇔ β1β2K3 + β1β3K2 + β2β3K1 = 0 . (4.3)

The resulting equation for the Ka will translate into a constraint on the Calabi-Yau moduli

in a way that will become more explicit later. For now we should note that it implies not

all Ka can have the same sign (given that the βa need to be positive). Consider harmonic

(0, 1)-forms v ∈ H1(X,L). On U they are approximated by (0, 1)-forms ν which must

satisfy the local version of the harmonic equations

∂̄ν = 0 , J ∧ J ∧ ∂(Hν) = 0 . (4.4)

In analogy with the projective case, specifically eq. (3.16), we assume that K1 < 0

and K2,K3 > 0. Wether these sign choices are actually realised cannot be checked lo-

cally but requires making contact with the global picture - we will come back to this

later. If they are, potentially localising solutions to these equations are of the form

ν = eK1|Z1|2P (Z̄1, Z2, Z3)dZ̄1, where P is an arbitrary function of the variables indicated.

Localisation of these solution still depends on the precise form of the function P which

cannot be determined from a local calculation. We will return to this issue in the next

section when we discuss the relation to the global picture. For now, we take a practical

approach and work with a monomial basis of solutions given by

νq = eK1|Z1|2Z̄q11 Z
q2
2 Z

q3
3 dZ̄1 , (4.5)

where q = (q1, q2, q3) is a vector with non-negative integers. The normalisation of these

monomial solutions can be explicitly computed and is given by

Mq,p := 〈νq, νp〉loc =

∫
U
νq ∧ ?(Hν̄p) =

i

2
δq,p

∫
U
J ∧ J ∧ νq ∧ (Hν̄q)

' i

4π2
β2β3δq,p

3∏
a=1

∫
C
dZa ∧ dZ̄a|Za|2qae−|Ka||Za|

2
(4.6)

After performing the integration we find for the locally-computed normalisation

Mq,p = 〈νq, νp〉loc = 2πβ2β3δq,p

3∏
a=1

qa! |Ka|−qa−1 . (4.7)
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The appearance of the exponential in each of the integrals in the second line indicates

that there is indeed a chance for localisation to occur. However, the validity and practical

usefulness of this result depends on a number of factors which are impossible to determine

in the local picture. First of all, we should indeed have K1 < 0 and K2,K3 > 0 for

localisation to happen, but these conditions can only be verified by relating to the global

picture. Secondly, families are defined as cohomology classes in H1(X,L) and at this stage

it is not clear precisely how these relate to the monomial basis forms (4.5). The above

calculation shows that the smaller the integers in q = (q1, q2, q3) the better the localisation

and this ties in with the result on projective spaces in the previous section. Finding the

relation between the elements of H1(X,L) and the local basis forms νq is, therefore, crucial

in deciding the validity and accuracy of the approximation for the physical families. Finally,

we would like to express the local result (4.7) in term of the properly defined global Calabi-

Yau moduli. We will now address these issues by relating the above local calculation to

the full Calabi-Yau manifold.

5 Relating local and global quantities

We will start by relating the local quantities which have entered the previous calculation

to global quantities on the Calabi-Yau manifold, starting with the Kähler form and the

connection on the bundle and then proceeding to bundle-valued forms. This will allows

us to express the result (4.7) for the wave function normalisation in terms of properly

defined moduli.

5.1 Kähler form and connection

We begin, somewhat generally, with a Calabi-Yau three-fold X, a basis Ji, where i =

1, . . . , h1,1(X) of its second cohomology and Kähler forms

J =
∑
i

tiJi (5.1)

with the Kähler moduli t = (ti) restricted to the Kähler cone. Further, we assume that all

the forms Ji, and, hence, J are chosen to be harmonic relative to the Ricci-flat metric on X

specified by the Kähler class [J ]. Note that, despite what eq. (5.1) might seem to suggest,

the harmonic forms Ji are typically ti-dependent — all we know is that their cohomology

classes [Ji] do not change with the Kähler class so they are allowed to vary by exact forms.

On a small patch U ⊂ X, we would like to introduce the forms Ji, where i =

1, . . . , h1,1(X), and

J =
∑
i

tiJi (5.2)

which are local (1, 1)-forms with constant coefficients which approximate their global coun-

terparts Ji and J on U . How are these global and local forms related? We first note that

the top forms J ∧ J ∧ J and Ji ∧ J ∧ J are harmonic and must, therefore be proportional

Ji ∧ J ∧ J = ci(t)J ∧ J ∧ J , (5.3)
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where ci(t) are functions of the Kähler moduli but independent of the coordinates of X.

By inserting eq. (5.1) and integrating over X we can easily compute these constants as

ci(t) =
κi
κ
, (5.4)

where the quantities κ and κi were defined in and around eq. (2.4). On the other hand,

the relation (5.3) holds point-wise and, hence, has a local counterpart

Ji ∧ J ∧ J = ci(t)J ∧ J ∧ J , (5.5)

which must involve the same constants ci(t). Inserting flat forms into eq. (5.5) then allows

us to determine the ci(t) in terms of the parameters in these forms and equating these

expressions to the global result (5.4) leads to constraints on the local forms Ji.
This global-local correspondence has an immediate implication for bundles on X and

their local counterparts on U . Consider a line bundle L→ X with first Chern class c1(L) =

kiJi and field strength F = −2πi
∑

i k
iJi. Then, for the local version F = −2πi

∑
i k

iJi of

the field strength we find, using eqs. (5.5) and (5.4), that

F ∧ J ∧ J =
kiKi
K
J ∧ J ∧ J (5.6)

and, hence, that the local version of the Hermitian Yang-Mills equation is satisfied as long

as the slope µ(L) = kiKi of L vanishes.

To work out the above global-local correspondence more explicitly, we consider a case

with two Kähler moduli, so h1,1(X) = 2. In this case, we can choose complex coordinates

za, where a = 1, 2, 3, on the patch U ⊂ X such that

J1 =
i

2π

3∑
a=1

λadza∧dz̄a , J2 =
i

2π

3∑
a=1

dza∧dz̄a , J =
i

2π

3∑
a=1

(λat1+t2)dza∧dz̄a , (5.7)

where the λa are constants. (More specifically, starting with two arbitrary (1, 1) forms J1

and J2 with constant coefficients, by standard linear algebra, we can always diagonalise J2

into “unit matrix form” and then further diagonalise J1 without affecting J2.) Inserting

the above forms into eq. (5.5) gives

c1(t) =

∑
a λa

∏
b 6=a(λbt1 + t2)

3
∏
c(λct1 + t2)

, c2(t) =

∑
a

∏
b 6=a(λbt1 + t2)

3
∏
c(λct1 + t2)

(5.8)

and equating these results to the global ones in eq. (5.4) imposes constraints on the unknown

local coefficients λa. However, it is not obvious that the λa are Kähler moduli independent,

particularly since the forms Ji do, in general, depend on Kähler moduli. In the following,

we will assume that this is indeed the case, although we do not, at present, have a clear-cut

proof. There are two pieces of evidence which support this assumption. First, it is not

obvious that equating (5.8) with (5.4) allows for a solution with constant λa (valid for

all t) but we find that, in all cases which we have checked, that it does. Secondly, it is

hard to see how a local calculation of the integrals in eq. (2.11) can lead to Kähler moduli

independent results for ΛijIJ , as four-dimensional supersymmetry demands, if the λa are

ti-dependent. In the following, we will proceed on the assumption that the λa are indeed

ti-independent.
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5.2 An example

To complete the above calculation we should consider a specific Calabi-Yau manifold. As

before, we focus on the ambient space A = P1 × P3, discussed in section 3.2, and use the

same notation for coordinates, Kähler forms and Kähler potentials as introduced there.

The Calabi-Yau hyper-surfaces X ⊂ A we would like to consider are then defined as the

zero loci of bi-degree (2, 4) polynomials p, that is sections of the bundle N̂ = OA(2, 4). This

manifold has Hodge numbers h1,1(X) = 2, h2,1(X) = 86 and Euler number η(X) = −168.

Its second cohomology is spanned by the restrictions Ĵi|X , where i = 1, 2, of the two ambient

space Kähler forms and, relative to this basis, the second Chern class of the tangent bundle

is c2(TX) = (24, 44). The Kähler class on X can be parametrised by the restricted ambient

space Kähler forms

Ĵ |X = t1Ĵ1|X + t2Ĵ2|X , (5.9)

where t1, t2 > 0 are the two Kähler parameters. Of course neither of these forms is

harmonic relative to the Ricci-flat metric on X associated to the class [Ĵ |X ] (as they

are obtained by restricting the ambient space Fubini-Study Kähler forms) but there exist

forms Ji and J in the same cohomology classes which are. In other words, J and Ji are

the harmonic forms introduced in eq. (5.1) and we demand that their cohomology classes

satisfy [J ] = [Ĵ |X ], [Ji] = [Ĵi|X ].

The non-vanishing triple intersection numbers of this manifold are given by

d122 = 4 , d222 = 2 ⇒ K = dijkt
itjtk = 2t22(6t1 + t2) . (5.10)

Inserting these results into eq. (5.4) we find

c1(t) =
2

6t1 + t2
, c2(t) =

4t1 + t2
t2(6t1 + t2)

, (5.11)

and equating these expressions to the local results (5.8) leads to the solution

λ1 = 6 , λ2 = λ3 = 0 , (5.12)

which is unique, up to permutations of the coordinates za. This means, from eqs. (5.7), the

local forms Ji and J can (after another coordinate re-scaling z1 → z1/
√

6) be written as

J1 =
i

2π
dz1 ∧ dz̄1 (5.13)

J2 =
i

2π

(
1

6
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3

)
(5.14)

J =
i

2π

(
t1dz1 ∧ dz̄1 + t2

(
1

6
dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3

))
. (5.15)

We note that J is of the form (4.1) used in our local calculation and we can match

expressions by setting za = Za and

β1 = t1 +
1

6
t2 , β2 = β3 = t2 . (5.16)
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Another interesting observation is that these forms satisfy

Ji ∧ Jj ∧ Jk = − 1

16π3
dijk

3∧
a=1

dza ∧ dz̄a , (5.17)

where dijk are the intersection numbers (5.10) of the manifold in question, that is, our local

forms “intersect” on the global intersection numbers. They also relate in an interesting

way to the ambient space Kähler forms Ĵi. So far, we have considered an arbitrary patch

U on X but from now on let us focus on a specific choice, starting with the ambient space

patch Û ⊂ A near the affine origin zα ' 0. This patch is of obvious interest since we know

from the ambient space discussion in section 3.2 that some wave functions localise on it.

If it is sufficiently small, the defining equation of the Calabi-Yau manifold on Û can be

approximated by

p = p0 +
4∑

α=1

pαzα +O(z2) , (5.18)

where p0 and pα are some of the parameters in p. It is possible, by linear transformations of

the homogeneous coordinates on P1 and P3, to eliminate the p0 term and, in the following,

we assume that this has been done. Then, the Calabi-Yau manifold X = {p = 0} intersects

the patch Û at the affine origin and near it X is approximately given by the hyper-plane

equation
∑4

α=1 pαzα = 0. By a further linear re-definition of coordinates on the P3 factor

of the ambient space this equation can be brought into the simpler form

z4 = az1 , (5.19)

where a is a constant. If we restrict the flat versions of the ambient space Kähler forms,

as given in eq. (3.16), to U using eq. (5.19) we find that

Ĵi|U = Ji , (5.20)

provided we set a = 1/
√

6. This means on the patch U we understand the relation between

ambient space Kähler froms Ĵi, local Kähler forms Ji and their global counterparts Ji on X.

We can now extend this correspondence to (line) bundles and their connections. As in

section 3.2 we consider line bundles L̂ = OA(k1, k2) and we restrict these to line bundles

L = OX(k1, k2) := L̂|X on the Calabi-Yau manifold X. (Of course, the line bundle L

should be thought off as merely part of the full vector bundle of the compactification in

question.) The hermitian bundle metric Ĥ for L̂ was given in eq. (3.12) and its local

approximation on Û in eq. (3.16). If we restrict this local bundle metric on Û to U , using

the defining equation (5.19) with a = 1/
√

6 we find

H = Ĥ|U = exp
(
−(k1 + k2/6)|z1|2 − k2|z2|2 − k2|z|23

)
⇒ F = ∂̄∂ lnH = −2πi(k1J1 + k2J2) . (5.21)

We note that this expression of H is of the general form (4.2) used in the local calculation,

provided we set za = Za and identify

K1 = k1 +
1

6
k2 , K2 = K3 = k2 . (5.22)
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From the discussion around eq. (5.6) we also conclude that the Hermitian Yang-Mill equa-

tion is locally satisfied for F provided that the slope µ(L) = dijkk
itjtk = 2t2(2k1t2 +

k2(4t1 + t2)) vanishes. As usual, this is the case on a certain sub-locus of Kähler moduli

space, provided that k1 and k2 have opposite signs.

5.3 Wave functions and the matter field Kähler metric

As the last step, we should work out the global-local correspondence for wave functions.

As in section 3.2 we consider line bundles L̂ = OA(k1, k2) with k1 ≤ −2 and k2 > 0

with a non-zero first cohomology H1(A, L̂) whose dimension is given in eq. (3.13) and

with harmonic basis forms ν̂q̂ introduced in eq. (3.14). These line bundles restrict to line

bundle L = OX(k1, k2) := L̂|X on the Calabi-Yau manifold X with a non-vanishing first

cohomology (see, for example, ref. [34])

H1(X,L) ∼=
H1(A, L̂)

p(H1(A, N̂∗ ⊗ L̂))
. (5.23)

Explicit representatives for this cohomology can be obtained by restrictions ν̂q̂|X although

these forms are not necessarily harmonic with respect to any particular metric. (Also, they

have to be suitably identified due to the quotient in eq. (5.23). As long as k2 < 4 the

cohomology in the denominator of eq. (5.23) vanishes so that the quotient is trivial and

the restrictions ν̂q̂|X form a basis of H1(X,L) as stands.) Finally, we have the monomial

basis νq of locally harmonic forms defined in eq. (4.5). In summary, we are dealing with

three sets of basis forms and their linear combinations, namely

ν̂q̂ = ek1|z1|
2
z̄q̂11 z

q̂2
2 z

q̂3
3 z

q̂4
4 dz̄1 ν̃q̃ = ek1|z1|

2
z̄q̃11 z

q̃2
2 z

q̃3
3 z

q̃4
1 dz̄1 νq = eK1|z|2 z̄q11 z

q2
2 z

q3
3 dz̄1

ν̂(â) =
∑
q̂

âq̂ν̂q̂ ν̃(ã) =
∑
q̃

ãq̃ν̃q̃ ν(a) =
∑
q

aqνq .

(5.24)

To be clear, hatted wave functions ν̂q̂ are defined on the ambient space A, wave functions

ν̃q̃ refer to their restrictions to the Calabi-Yau patch U and the νq are the harmonic wave

functions on the patch U .

Recall that we need K1 < 0 as a necessary condition for the harmonic solutions νq to

have a finite norm and, by virtue of the identification (5.22), this translates into

K1 < 0 ⇔ −k1 >
k2

6
. (5.25)

Hence, for this particular example, the condition K1 < 0 is not moduli-dependent and can

be satisfied by a suitable choice of line bundle.

We would like to determine the relation between the above three types of forms, or,

equivalently, the relation between the coefficients â, ã and a, given that ν̃(ã) = ν̂(â)|U are

related by restriction and that ν̃(ã) and ν(a) are in the same cohomology class so must

differ by a ∂̄-exact L-valued (0, 1)-form.

The first of these correspondences between â and ã is easy to establish. Given the

relation is by restriction, there is a matrix S such that ã = Sâ and using the approximate
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defining equation (5.19) we find that

Sq̃,p̂ = δq̃,p̂6q̂4/2 . (5.26)

To establish the correspondence between a and ã we first define the matrix T by

〈νq, ν̃p̃〉 = (MT )q,p̃ (5.27)

where M is the local normalisation matrix computed in eq. (4.7). Since ν(a) and ν̃(ã)

differ by an exact form we know that 〈ν(a), ν(b)〉 = a†Mb and 〈ν(a), ν̃(b̃)〉 = a†MT b̃

must be equal to each other and, since this holds for all a, it follows that

b = T b̃ . (5.28)

The explicit form of the matrix T , from its definition (5.27), is

Tq,p̃ = δq1,p̃1−p̃4δq2,p̃2δq3,p̃3
p̃1! |k1|−p̃1−1

q1! |K1|−q1−1
. (5.29)

As discussed earlier, the families correspond to cohomology classes in H1(X,L) and in

view of eq. (5.23) and subject to possible identifications it, therefore, makes sense to label

families by the hatted basis ν̂q̂ on the ambient space. For simplicity of notation, we write

the hated indices as I = q̂ form now on. We also recall from section 3.2 that these indices

are non-negative and further constrained by I1 = 0, . . . ,−k1 − 2 and I2 + I3 + I4 ≤ k2.

With this notation, the matter field Kähler metric is given by the general expression

GI,J :=
1

2V
(S†T †MT S)I,J . (5.30)

Inserting the above results for S and T as well as the local normalisation matrix (4.7) we

find explicitly,

GI,J =
NI,J

6t1 + t2
, (5.31)

where the constants NI,J are given by

NI,J =
πJ1! I1! I2! I3! |k1 + k2/6|I1−I4+1 6I4/2+J4/2+1

2(I1 − I4)! |k1|J1+1kI2+I3+2
2

θ(I1 − I4)δI1−I4,J1−J4δI2,J2δI3,J3 .

(5.32)

For the lowest mode, I = 0, this number specialises to

N0,0 = 3π
|k1 + k2/6|

k2
2

. (5.33)

A few remarks about this result are in order. First, we note that the Kähler moduli

dependence in eq. (5.31) is in line with the result (2.11) from dimensional reduction. In

general, the matter field Kähler metric is also a function of complex structure moduli.

For our example, this dependence has dropped out completely, that is, the quantities NI,J

are constants. This feature results from our linearised local approximation (5.19) of the

Calabi-Yau manifold, where all remaining complex structure parameters can be absorbed
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into coordinate re-definitions. We do expect complex structure dependence to appear at

the next order, that is, if we approximate the defining equation locally by a quadric in affine

coordinates. Also, our result (5.31) has an implicit complex structure dependence in that

its validity depends on the choice of complex structure. Whether neglecting the quadratic

and higher terms in z in eq. (5.18) does indeed provide a good approximation depends,

among other things, on the choice of coefficient in the defining equation p, that is, on the

choice of complex structure. Another feature of our result (5.31) is that it is diagonal in

family space and, formally, this happens because the matrices M , S and T are all diagonal.

We have seen in section 4 that this is a general feature of the matrix M . However, S and

T do not need to be diagonal in general. In our example, this happens due to the simple

form (5.19) of the local Calabi-Yau defining equation and the resulting diagonal form of

the local Kähler form J in eq. (5.15). Finally, we remind the reader that the result (5.31)

can only be trusted if the line bundle L = OX(k1, k2) satisfies the condition (5.25), if the

flux parameters |ki| are sufficiently large and if the family numbers I are sufficiently small,

in line with our discussion in section 3.

6 Conclusion

In this note, we have reported progress on computing the matter field Kähler metric in

heterotic Calabi-Yau compactifications. Three main results have been obtained. First, by

dimensional reduction we have derived a general formula (2.11) for the matter field Kähler

metric and we have argued that constraints from four-dimensional supersymmetry already

fully determine the Kähler moduli dependence of this metric.

Secondly, provided large flux leads to localisation of the matter field wave function, we

have shown how the matter field Kähler metric can be obtained from a local computation

on the Calabi-Yau manifold, leading to the general result (4.7). This result, while quite

general, is unfortunately of limited use, mainly since it is not expressed in terms of the

global moduli of the Calabi-Yau manifold. This makes it difficult to identify the conditions

for its validity and it falls short of the ultimate goal of obtaining the matter field Kähler

metric as a function of the properly defined moduli superfields.

We have attempted to address these problems by working out a global-local rela-

tionships and by expressing the local result in terms of global quantities. This has been

explicitly carried out for the example of Calabi-Yau hyper-surfaces X in the ambient space

P1 × P3 but the method can be applied to other Calabi-Yau hyper-surfaces (and, possibly

complete intersections) as well. Our main result in this context is the Kähler metric for

matter fields from line bundles L = OX(k1, k2) on X given in eqs. (5.31), (5.32), which is

expressed as a function of the proper four-dimensional moduli fields. We have also stated

the conditions for this result to be trustworthy, namely the constraint (5.25) on the line

bundle L as well as large fluxes |ki| and small family numbers. More details and examples

will be given in a forthcoming paper.

The global-local relationship established in this way points to two problems of localised

calculations both of which are intuitively plausible. First, the large flux values demanded

by localisation typically also lead to large numbers of families. For this reason, there is
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a tension between localisation and the phenomenological requirement of three families.

Secondly, large flux typically leads to a “large” second Chern class c2(V ) of the vector

bundle which might violate the anomaly constraint c2(V ) ≤ c2(TX). Hence, there is also

a tension between localisation and consistency of the models. It remains to be seen and is

a matter of ongoing research whether consistent three-family models with localisation of

all relevant matter fields can be constructed.

It is likely that some of our methods can be applied to F-theory and be used to express

local F-theory results in terms of global moduli of the underlying four-fold. It would be

interesting to carry this out explicitly and check if the tension between localisation on

the one hand and the phenomenological requirement of three families and cancelation of

anomalies on the other hand persists in the F-theory context.
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