
J
H
E
P
0
4
(
2
0
1
8
)
1
3
3

Published for SISSA by Springer

Received: February 14, 2018

Accepted: April 18, 2018

Published: April 26, 2018

Near horizon symmetry and entropy formula for

Kerr-Newman (A)dS black holes

Mohammad Reza Setare and Hamed Adami

Department of Science, Campus of Bijar, University of Kurdistan,

Bijar, Iran

Research Institute for Astronomy and Astrophysics of Maragha (RIAAM),

P.O. Box 55134-441, Maragha, Iran

E-mail: rezakord@ipm.ir, hamed.adami@yahoo.com

Abstract: In this paper we provide the first non-trivial evidence for universality of the

entropy formula 4πJ+
0 J
−
0 beyond pure Einstein gravity in 4-dimensions. We consider the

Einstein-Maxwell theory in the presence of cosmological constant, then write near horizon

metric of the Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. We

consider near horizon fall-off conditions for metric and U(1) gauge field. We find asymptotic

combined symmetry generator, consists of diffeomorphism and U(1) gauge transformation,

so that it preserves fall-off conditions. Consequently, we find supertranslation, supperro-

tation and multiple-charge modes and then we show that the entropy formula is held for

the Kerr-Newman (A)dS black hole. Supperrotation modes suffer from a problem. By

introducing new combined symmetry generator, we cure that problem.

Keywords: Black Holes, Gauge Symmetry, Global Symmetries, Space-Time Symmetries

ArXiv ePrint: 1802.04665

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2018)133

mailto:rezakord@ipm.ir
mailto:hamed.adami@yahoo.com
https://arxiv.org/abs/1802.04665
https://doi.org/10.1007/JHEP04(2018)133


J
H
E
P
0
4
(
2
0
1
8
)
1
3
3

Contents

1 Introduction 1

2 Conserved charges in Einstein-Maxwell theory 2

3 Kerr-Newman (A)dS black hole 6

3.1 Geomerty 6

3.2 Near horizon behaviour 7

4 Near horizon fall-off conditions 9

5 Near horizon symmetries 10

6 Charges and soft hairs 12

7 Sugawara deconstruction and new entropy formula 15

8 Conclusion 16

1 Introduction

It seems that any valid theory of quantum gravity must incorporate the Bekenestein-

Hawking definition of black hole entropy [1–5] into its conceptual framework. The black

hole has a thermodynamical entropy as

SBH =
A

4l2p
(1.1)

where SBH is the Bekenstein-Hawking entropy, A is the area of the event horizon and

lP = (~G
c3

)
1
2 is the Planck length. One may be ask, what is the microscopic origin of

this entropy? Although the various counting methods have pointed to the expected semi-

classical result, there is still a lack of recognition as to what degrees of freedom are truly

being counted.

Recently, motivated in great part by the recent works of Hawking, Perry and Stro-

minger [6, 7], it has appeared that a new way to approach the information paradox for

black holes lies in a careful analysis of near horizon symmetries and the existence (in 4

dimensions) of an infinite-dimensional asymptotic symmetry group, the bms4 group (For a

good review and references, see [8]). Also, recently the authors of [9] have obtained a very

simple horizon entropy formula,

S = 2π(J+
0 + J−0 ) (1.2)
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for black hole solutions in 3D Einstein gravity, where J±0 are zero mode charges of U(1)

current algebra near horizon. In our previous paper [10] (see also [11]), we have studied

the near horizon symmetry of spacelike warped AdS3 black hole solutions of Generalized

Minimal Massive Gravity (GMMG) [12]. Similar to the near horizon symmetry algebra of

the black flower solutions in Generalized minimal massive gravity [13], the near horizon

symmetry algebra of the warped black flower consists of two U(1) current algebras, with

different levels. We have shown that the formula (1.2) exactly works for warped black

flower solutions. So these investigations give us a non-trivial evidence for universality of

this simple entropy formula in the context of 3D gravity. More recently an analog of the

above entropy formula emerged in the near horizon description of non-extermal Kerr black

holes in 4-dimensions [14],

S = 4πJ+
0 J
−
0 (1.3)

Now an interesting question is this: “if the simple entropy formula (1.3) is again as universal

as its 3-dimensional pendant (1.2)” [14]. Therefore, in order to investigate universality of

the entropy formula (1.3) beyond pure Einstein gravity in 4-dimension, we consider the

Einstein-Maxwell theory in the presence of cosmological constant. We show that this

entropy formula give us the correct results for Kerr-Newman (A)dS black holes. We show

that Kerr-Newman (A)dS black holes in 4-dimension Einstein-Maxwell exhibit an infinite-

dimensional symmetry in their near horizon region.

2 Conserved charges in Einstein-Maxwell theory

First of all, we briefly review the approach of the covariant phase space method for obtaining

conserved charges in Einstein-Maxwell Theory. To do this, we follow references [15–19].

Suppose spacetime (M, g) is globally hyperbolic and orientable. Suppose Φ is a collection

of dynamical fields. The Lagrangian of Einstein-Maxwell theory is a functional of metric

gµν and the gauge field Aµ, then in this theory, we have Φ = {gµν , Aµ}. The Lagrangian

of given theory is written as

L[Φ] =
√
−gL[Φ], (2.1)

where

L[Φ] = R− 2Λ− 4πFµνF
µν , (2.2)

here R, Fµν = ∂µAν − ∂νAµ and Λ are respectively the Ricci scalar, electromagnetic field

strength and the cosmological constant. First order variation of the Lagrangian (2.1) is

δL[Φ] = EΦ[Φ]δΦ + ∂µΘµ[Φ, δΦ], (2.3)

in which EΦ have dual indices with Φ and sum on Φ is explicitly assumed. In the equa-

tion (2.3), Θµ[Φ, δΦ] is the surface term and we refer to it as symplectic potential. Also,

EΦ = 0 give us the field equations. In Einstein-Maxwell theory, they are given as

Eµν(g) = −
√
−g (Gµν + Λgµν − 8πTµν) = 0, (2.4)

Eµ(A) = 16π
√
−g∇νF νµ = 0, (2.5)

Θµ[Φ, δΦ] = 2
√
−g
{
∇[α

(
gµ]βδgαβ

)
− 8πFµνδAν

}
. (2.6)
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Equations (2.4) are known as Einstein’s field equations, where Gµν is the Einstein tensor

and Tµν is the electromagnetic energy-momentum tensor

Tµν = FµαF να −
1

4
gµνFαβFαβ . (2.7)

Also, equations (2.5) together with ∇[λFµν] = 0 are Maxwell field equations in the curved

spacetime.

Now consider two arbitrary variations δ1 and δ2. Suppose these two variations do not

commute δ1δ2 6= δ2δ1. By varying eq.(2.3), we find second order variation of the Lagrangian

δ1δ2L[Φ] = δ1EΦ[Φ]δ2Φ + EΦ[Φ]δ1δ2Φ + ∂µδ1Θµ[Φ, δ2Φ]. (2.8)

Similarly, one can write

δ2δ1L[Φ] = δ2EΦ[Φ]δ1Φ + EΦ[Φ]δ2δ1Φ + ∂µδ2Θµ[Φ, δ1Φ]. (2.9)

By subtracting eq.(2.9) from eq.(2.8), we have

δ[1,2]L[Φ] = δ1EΦ[Φ]δ2Φ− δ2EΦ[Φ]δ1Φ + EΦ[Φ]δ[1,2]Φ + ∂µ (δ1Θµ[Φ, δ2Φ]− δ2Θµ[Φ, δ1Φ]) ,

(2.10)

where δ[1,2] = δ1δ2− δ2δ1 is commutator of two variations δ1 and δ2. By using eq.(2.3), and

replacing δ → δ[1,2], we can write eq.(2.10) as

∂µω
µ
LW[Φ; δ1Φ, δ2Φ] = − 1

16π
(δ1EΦ[Φ]δ2Φ− δ2EΦ[Φ]δ1Φ) , (2.11)

where

ωµLW[Φ; δ1Φ, δ2Φ] =
1

16π

(
δ1Θµ[Φ, δ2Φ]− δ2Θµ[Φ, δ1Φ]−Θµ[Φ, δ[1,2]Φ]

)
, (2.12)

is the Lee-Wald symplectic current. Since the symplectic potential is linear in δΦ then the

terms containing δ1Φ, δ2Φ and δ[1,2]Φ eliminate each other and ωµLW is a skew-symmetric

bilinear in δ1Φ and δ2Φ. The Lee-Wald symplectic current is conserved when equations of

motion and linearized equations of motion are satisfied. In other words, if Φ is a solution of

EΦ = 0 and δ1Φ and δ2Φ are solutions of δEΦ = 0, then the Lee-Wald symplectic current

is conserved

∂µω
µ
LW[Φ; δ1Φ, δ2Φ] ' 0. (2.13)

The sign ' indicates that the equality is held on-shell. We can define symplectic 2-form

on solution space through the Lee-Wald symplectic current

ΩLW[Φ; δ1Φ, δ2Φ] =

ˆ
C
ωµLW[Φ; δ1Φ, δ2Φ]d3xµ, (2.14)

where C is a codimension-1 spacelike surface. Solution phase space can be constructed

by factoring out the degeneracy subspace of configuration space (see ref. [15] for detailed

discussion). Hence ΩLW will be a symplectic form on solution phase space and it is closed,

skew-symmetric and non-degenerate.
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Suppose ξµ(x) and λ(x) to be generators of diffeomorphism and U(1) gauge transfor-

mation. We can introduce a combined transformation so that χ = (ξ, λ) is the generator

of such transformations [20]. The change in metric and U(1) gauge field induced by an

infinitesimal transformation generated by χ are given by

δχgµν = Lξgµν , (2.15)

δχAµ = LξAµ + ∂µλ, (2.16)

respectively. Here, Lξ denotes the Lie derivative along the vector field ξ. Also, the change

in Lagrangian (2.1) induced by an infinitesimal transformation generated by χ is

δχL[Φ] = LξL[Φ] = ∂µ (ξµL[Φ]) . (2.17)

Since change in metric and U(1) gauge field are linear in generator χ and change in the

Lagrangian is a total derivative then χ generates a local symmetry on solution phase

space [15]. The generators of such local symmetry on solution phase space are conserved

charges. The charge perturbation conjugate to χ is defined as

δQχ = ΩLW[Φ; δΦ, δχΦ]. (2.18)

The algebra among conserved charges is

{Qχ1 , Qχ2} = Q[χ1,χ2] + C̃(χ1, χ2), (2.19)

where C̃(χ1, χ2) is extension term and the Dirac bracket is defined as

{Qχ1 , Qχ2} = δχ2Qχ1 . (2.20)

Now, we want to find explicit form of conserved charges in the Einstein-Maxwell theory.

To this end, we assume that the variation in eq.(2.3) is induced by an infinitesimal trans-

formation generated by χ

δχL[Φ] ' ∂µΘµ[Φ, δχΦ], (2.21)

then we can define an on-shell Noether current

JµN[Φ;χ] ' Θµ[Φ, δχΦ]− ξµL[Φ], (2.22)

which is conserved on-shell, i.e. ∂µJ
µ
N ' 0. Thus there exists a second rank tensor density

Kµν
N [Φ;χ] of weight +1 so that JµN ' ∂νK

µν
N . We refer to Kµν

N as Noether potential and in

the given theory it is given by

Kµν
N [Φ;χ] ' −2

√
−g
{
∇[µξν] + 8πFµνλ

}
, (2.23)

which can be obtained by substituting eq.(2.1) and eq.(2.6) into eq.(2.22). To find explicit

form of the symplectic current, first, we take an arbitrary variation from eq.(2.22)

∂νδK
µν
N [Φ;χ] ' δΘµ[Φ, δχΦ]− δ (ξµL[Φ]) . (2.24)
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To have generality we assume that χ depends on the dynamical fields. On the other hand,

second variation of eq.(2.3), induced by an infinitesimal transformation generated by χ, is

δχδL[Φ] ' ∂µδχΘµ[Φ, δΦ]. (2.25)

Since the commutator of an arbitrary variation and a variation induced by an infinitesimal

transformation generated by χ is δδχ−δχδ = δδχ then the equation (2.25) can be written as

δδχL[Φ]− δδχL[Φ] ' ∂µδχΘµ[Φ, δΦ]. (2.26)

By substituting eq.(2.21) into eq.(2.26), we find the explicit form of the symplectic cur-

rent as

ωµLW[Φ; δΦ, δχΦ] ' ∂νQµνLW[Φ, δΦ;χ], (2.27)

with

QµνLW[Φ, δΦ;χ] =
1

16π

{
δKµν

N [Φ;χ]− δKµν
N [Φ; δχ] + 2ξ[µΘν][Φ, δΦ]

}
. (2.28)

In the Einstein-Maxwell theory the explicit form of QµνLW can be found by substituting

equations (2.23) and (2.6) into the above equation

QµνLW[Φ, δΦ;χ] =
1

8π

[
hλ[µ∇λξν] − ξλ∇[µh

ν]
λ −

1

2
h∇[µξν] + ξ[µ∇λhν]λ − ξ[µ∇ν]h

]
− 2ξ[µF ν]αδAα − λ

(
δFµν +

1

2
hFµν

)
,

(2.29)

where hµν = δgµν . The first line in the right hand side of eq.(2.29) is the contribution from

the gravity part and the second line is the contribution from the U(1) gauge field part in

the Lagrangian (2.1). We can use eq.(2.27) and Stokes’ theorem to write conserved charge

perturbation (2.18) as

δQχ =

˛
D
QµνLW[Φ, δΦ;χ]d2xµν , (2.30)

where D denotes boundary of C and it is a spacelike codimension-2 surface. Usually it is

thought that the linearization is just valid at spatial infinity. To overcome this problem,

we take an integration from eq.(2.30) over one-parameter path on the solution phase space.

To this end, suppose that Φ(N ) is a collection of fields which solve the equations of motion

of the Einstein-Maxwell theory, where N is a free parameter in the solution phase space.

Now, we replace N by sN , where 0 ≤ s ≤ 1 is just a parameter. By expanding Φ(sN )

in terms of s we have Φ(sN ) = Φ(0) + s∂Φ
∂s

∣∣
s=0

+ · · · . By substituting Φ = Φ(sN ) and

δΦ = ds∂Φ
∂s

∣∣
s=0

into eq.(2.30), we can define the conserved charge conjugate to χ. Then we

will have

Qχ =

ˆ 1

0
ds

˛
D
QµνLW[Φ;χ|s]d2xµν , (2.31)

where integration over s denotes integration over the one-parameter path on the solution

phase space. In the equation (2.31), s = 0 is the value of the parameter corresponds to the

background configuration. In this way, background contribution in the conserved charge is

subtracted and then the conserved charge will be always finite. Therefore, this method is

applicable to spacetimes with any backgrounds.
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3 Kerr-Newman (A)dS black hole

In this section we briefly review the Kerr-Newman (A)dS black hole geometry (see e.g. [21])

and then we will find the near horizon behavior of this black hole in the Gaussian

null coordinates.

3.1 Geomerty

The Kerr-Newman (A)dS black hole is a solution for the Einstein-Maxwell theory. The

metric corresponding to the given black hole in the Boyer-Lindquist coordinate system

(t, r, θ, φ̂) is

ds2 = −∆r −∆θa
2 sin2 θ

Σ
dt2 +

2a sin2 θ
(
∆r −∆θ(r

2 + a2)
)

ΞΣ
dtdφ̂+

Σ

∆r
dr2 +

Σ

∆θ
dθ2

+
sin2 θ

Ξ2Σ

(
∆θ(r

2 + a2)2 −∆ra
2 sin2 θ

)
dφ̂2, (3.1)

with

Σ = r2 + a2 cos2 θ, ∆θ = 1 +
Λa2

3
cos2 θ, Ξ = 1 +

Λa2

3
, (3.2)

∆r =
(
r2 + a2

)(
1− Λ

3
r2

)
− 2Mr +

Q2

4π
, (3.3)

where M , a and Q are constants and they parameterize the solution phase space. Also,

the gauge field is given by

A =
Q

4π

r

Σ

(
dt− a sin2 θ

Ξ
dφ̂

)
. (3.4)

The mass, angular momentum and electric charge of the Kerr-Newman (A)dS black hole

are related to M , a and Q as

M =
M

Ξ2
, J =

Ma

Ξ2
, Q =

Q

Ξ
, (3.5)

respectively [22]. Spacetime described by metric (3.1) is stationary and axially symmetric.

Strictly speaking, it admits ξ(t) = ∂t and ξ(φ̂) = −∂φ̂. Also, the theory considered in this

paper is invariant under U(1) gauge transformation. One can use covariant phase space

method to find conserved charges conjugate to symmetry generators. According to the

results of previous literature, mass, angular momentum and electric charge are conserved

charges conjugate to symmetry generators χ(t) = (1, 0, 0, 0, 0), χ(φ̂) = (0, 0, 0,−1, 0) and

χ(λ) = (0, 0, 0, 0, 1), respectively. The Killing horizon-generating Killing vector field is

ζH = ∂t + ΩH∂φ̂, where ΩH denotes the horizon velocity. In gravity theories, conserved

charges conjugate to the Killing vector ζH is proportional to product of surface gravity

and black hole entropy. In Einstein-Maxwell theory this statement is no longer held and

it has to be improved. Instead, conserved charge conjugate to the symmetry generator

χH = (ζµH , ζ
ν
HAν) provides the desired result (for instance, see refs. [19, 20, 22]). The

steps of calculating mass, angular momentum, electric charge and entropy of Kerr-Newman

– 6 –
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(A)dS Black Hole are exactly the same as what were done in [19]. Therefore, we refrain

from expressing the steps. The equation ∆r = 0 has at least two real roots r+ and r−
provided that the parameters M , a, Q, and Λ are chosen suitably. The event horizon is

located at r = r+ (the largest real root of ∆r) and r− is the inner horizon radii. In this

way we can rewrite ∆r in the following form

∆r = (r − r+) (r − r−)

[
−Λ

3
r2 − Λ

3
(r+ + r−)r +

1

r+r−

(
a2 +

Q2

4π

)]
, (3.6)

where M and a are related to r+ and r− as

M =
(r+ + r−)

2
(
1 + Λ

3 r+r−
) [(1 +

Λ

3
r+r−

)2

− Λ

3
(r+ + r−)2 +

Λ

3

Q2

4π

]
, (3.7)

a2 =
1(

1 + Λ
3 r+r−

) [r+r−

(
1− Λ

3
(r2

+ + r2
− + r+r−)

)
− Q2

4π

]
. (3.8)

The above expressions will be reduced to the corresponding expressions for Kerr-Newman

black hole when we set Λ = 0.

3.2 Near horizon behaviour

In order to find near horizon geometry of the Kerr-Newman (A)dS black hole first we write

the metric (3.1) in the advanced Eddington-Finkelstein coordinates (v, r, θ, φ̃). To this end,

we transform coordinates as

dv = dt+
(r2 + a2)

∆r
dr, dφ̃ = dφ̂+

aΞ

∆r
dr, (3.9)

and we find that

ds2 = −∆r −∆θa
2 sin2 θ

Σ
dv2 + 2dvdr +

2a sin2 θ
(
∆r −∆θ(r

2 + a2)
)

ΞΣ
dvdφ̃+

Σ

∆θ
dθ2

− 2a sin2 θ

Ξ
drdφ̃+

sin2 θ

Ξ2Σ

(
∆θ(r

2 + a2)2 −∆ra
2 sin2 θ

)
dφ̃2. (3.10)

Since the horizon velocity is given by ΩH = aΞ
r2++a2

then it is natural that we perform

another coordinates transformation as φ̃ = φ+ ΩHv. Here index H refers to the Horizon.

In this way, we have

ds2 =−
Σ2
H∆r−(r2−r2

+)2∆θa
2 sin2 θ

Σ(r2
++a2)2

dv2+
2asin2 θ

(
ΣH∆r+∆θ(r

2+a2)(r2−r2
+)
)

ΞΣ(r2
++a2)

dvdφ

+
2ΣH

(r2
++a2)

dvdr− 2asin2 θ

Ξ
drdφ+

Σ

∆θ
dθ2+

sin2 θ

Ξ2Σ

(
∆θ(r

2+a2)2−∆ra
2 sin2 θ

)
dφ2.

(3.11)

In this coordinate system the U(1) gauge field can be written as

A =
Q

4π

r

Σ

(
ΣH

(r2
+ + a2)

dv − a sin2 θ

Ξ
dφ

)
, (3.12)
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and we have gvv = gvφ = 0 on the event horizon. Now we write near horizon fall-off

conditions for Kerr-Newman (A)dS black hole in the Gaussian null coordinate system. To

do this, we follow the method proposed in appendix A of the paper [23]. Therefore, we

rewrite the metric relative to the correct set of geodesics. A suitable pair of cross-normalized

null normals is

l = ∂v, and n =
a2 sin2 θ

2∆θΣH
∂v +

(r2
+ + a2)

ΣH
∂r +

aΞ

∆θ(r
2
+ + a2)

∂φ. (3.13)

These vectors are defined on horizon and we have l · l|H = n · n|H = 0 and l · n = 1. Now

we consider a family of null geodesics that crosses H. The vector field tangent to them is n

and they are labeled by (v, θ, φ). Suppose ρ is an affine parameter which parameterize the

given geodesics so that ρ = 0 on H. The geodesics can be constructed up to third order

in ρ:

Xµ
(v,θ,φ)(ρ) = Xµ

∣∣
ρ=0

+ ρ
dXµ

dρ

∣∣∣∣
ρ=0

+
1

2
ρ2d

2Xµ

dρ2

∣∣∣∣
ρ=0

+O(ρ3), (3.14)

where Xµ
∣∣
ρ=0

= (v, r+, θ, φ) and dXµ

dρ

∣∣
ρ=0

= nµ. Also, by using geodesic equation

nν∇νnµ|H = 0, one can find the second order derivative of Xµ with respect to ρ at horizon

d2Xµ

dρ2

∣∣∣∣
ρ=0

= −Γµαβn
αnβ

∣∣∣∣
ρ=0

. (3.15)

The equation (3.14) defines a transformation from (v, r, θ, φ) to (v, ρ, θ, φ) and then we can

calculate the first order expansion of the metric gµν = g
(0)
µν + ρg

(1)
µν +O(ρ2), where

g(0)
vρ = 1, g

(0)
θθ =

ΣH

∆θ
, g

(0)
φφ =

∆θ(r
2
+ + a2)2 sin2 θ

Ξ2ΣH
, (3.16)

g(1)
vv = −2κ, g

(1)
vθ =

2a2 sin θ cos θ

ΣH
, g

(1)
vφ =

a sin2 θ

ΞΣ2
H

[
ΣH∆′r(r+) + 2r+∆θ(r

2
+ + a2)

]
,

(3.17)

g
(1)
θθ =

2r+(r2
+ + a2)

∆θΣH
, g

(1)
φφ =

2r+(r2
+ + a2)2∆θ sin2 θ

Ξ2Σ3
H

(
2ΣH − (r2

+ + a2)
)
,

g
(1)
θφ = −

2a3(r2
+ + a2) sin3 θ cos θ

ΞΣ2
H∆θ

(
1− Λ

3
r2

+

)
, (3.18)

here the prime denotes derivative with respect to radial coordinate. Also, κ is surface

gravity of the Kerr-Newman (A)dS black hole

κ =
∆′r(r+)

2(r2
+ + a2)

. (3.19)

In the new coordinate system, the gauge field can be expanded as

Av =
Q

4π

r+

(r2
+ + a2)

− Q

4π

(r2
+ − a2 cos2 θ)

Σ2
H

ρ+O(ρ2), Aφ = − Q
4π

ar+ sin2 θ

ΞΣH
+O(ρ),

Aρ = O(ρ2), Aθ = O(ρ).

(3.20)
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We have avoided writing the first order terms in Aφ and Aθ because we do not need them.

From eq.(3.16), the full 2-metric on horizon is

dσ2 =
ΣH

∆θ
dθ2 +

∆θ(r
2
+ + a2)2 sin2 θ

Ξ2ΣH
dφ2. (3.21)

This metric is conformally related to Riemann sphere. To show this relation, we introduce

a field-dependent change of coordinates

z = eiφµ(θ), z̄ = e−iφµ(θ), (3.22)

where µ(θ) is a real function of θ and z̄ is complex conjugate to z. Depending on the sign

of cosmological constant, µ(θ) will be different. The explicit form of µ(θ) can be written as

µ(θ) = e
− a2

r2++a2
W(θ)

cot(θ/2), (3.23)

where W(θ) is a function of θ and its explicit form depends on the sign of cosmological

constant

W(θ) =


cos θ for Λ = 0

l
a

(
1− r2+

l2

)
tan−1

(
a
l cos θ

)
for Λ = 3

l2
> 0

l
a

(
1 +

r2+
l2

)
tanh−1

(
a
l cos θ

)
for Λ = − 3

l2
< 0

(3.24)

The both Λ > 0 and Λ < 0 cases will tend to Λ = 0 case when l→∞. Now, we can write

the metric of the horizon in the conformal form

dσ2 = ΩγABdx
AdxB

= Ω
4dzdz̄

(1 + zz̄)2 ,
(3.25)

with

Ω =
∆θ(r

2
+ + a2)2

Ξ2ΣH

(
e
− a2

r2++a2
W(θ)

cos2(θ/2) + e
+ a2

r2++a2
W(θ)

sin2(θ/2)

)2

. (3.26)

The conformal factor Ω is a function of z and z̄. Hence, the metric of the horizon is locally,

conformally equivalent to the two-sphere.

4 Near horizon fall-off conditions

In the previous section, we wrote the near horizon metric in the Gaussian null coordinate

system. Therefore, following [24], we can consider near horizon fall-off conditions for the

Kerr-Newman (A)dS black hole to be

ds2 = −2κρdv2 + 2dvdρ+ 2ρθAdvdx
A + (ΩAB + ρλAB)dxAdxB +O(ρ2), (4.1)
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where v is the advanced time coordinate such that a null surface is defined by gαβ∂αv∂βv =

0 and the vector tangent to this surface is given by kµ = gµν∂νv which defines a ray. Also,

ρ is the affine parameter of the generator kµ. Suppose κ, θA, ΩAB and λAB are functions of

xA, where two coordinates xA are chosen constant along each ray. Also, one can introduce

following near horizon fall-off conditions for the U(1) gauge field

A = (ϕv + ρψv) dv + (ϕA + ρψA) dxA +O(ρ2), (4.2)

where we set Aρ = 0 as a gauge condition and ϕv, ψv, ϕA and ψA are functions of xA.

By substituting fall-off conditions (4.1) and (4.2) into the field equations, we can find

additional restrictions. The (v,A) components of Einstein’s field equations at zeroth order

restrict κ to be a constant, i.e. κ is independent of xA. Also, the (v, v) component of

Einstein’s field equations at zeroth order yields

ΩAB∂Aϕv∂Bϕv = 0, (4.3)

where ΩAB is the inverse of ΩAB (we explicitly assume that ΩAB is invertible). Since the

metric of horizon ΩAB is a Riemannian (not Lorentzian) one, then ϕv has to be a constant.

The other components of the equations of motion relate first order terms to zeroth order

ones in metric and gauge field expansions and we do not need them later.

5 Near horizon symmetries

The change in metric and U(1) gauge field induced by an infinitesimal transformation

generated by χ are given by (2.15) and (2.16). Now, we want to find the residual symme-

tries such that they respect to fall-off conditions (4.1) and (4.2). We find that symmetry

generator χ with following components

ξv = T, ξρ =
1

2
ρ2ΩABθA∂BT +O(ρ3),

ξA = Y A − ρΩAB∂BT +
1

2
ρ2ΩACΩBDλCD∂BT +O(ρ3),

(5.1)

λ = λ̂+ ρΩABϕA∂BT −
1

2
ρ2
(
ΩACΩBDλCDϕA∂BT − ΩABψA∂BT

)
+O(ρ3), (5.2)

preserves the given near horizon fall-off conditions. Here T , Y A and λ̂ are arbitrary func-

tions of xA. In order to obtain the asymptotic symmetry generator χ, we assumed that

the leading terms does not depend on the dynamical fields. Under such an assumption

the boundary conditions will be “state independent”, which means that the form of the

asymptotic symmetry generators are not considered to depend explicitly of the charges [26].

The change in dynamical fields under the action of symmetry generator χ can be read as

δχθA = LY θA − 2κ∂AT, δχΩAB = LY ΩAB,

δχλAB = LY λAB + θA∂BT + θB∂AT − 2∇̄A∇̄BT,
(5.3)

δχψv = LY ψv, δχϕA = LY ϕA + ϕv∂AT + ∂Aλ̂,

δχψA = LY ψA + ψv∂AT + ΩBC (∂AϕB − ∂BϕA) ∂CT,
(5.4)
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where LY denotes the Lie derivative along Y A and ∇̄A is the covariant derivative with

respect to connection Γ̄ABC compatible with the metric of the horizon ΩAB. It is worth

mentioning that because κ and ϕv are not dynamical then they will remain unchanged

under the action of the symmetry generator χ, i.e. δχκ = 0 and δχϕv = 0.

The asymptotic Killing vectors (5.1) are functions of the dynamical fields. To take it

into account we introduce a modified version of Lie brackets [25]

[ξ1, ξ2] = Lξ1ξ2 − δ(g)
ξ1
ξ2 + δ

(g)
ξ2
ξ1, (5.5)

where ξ1 = ξ(T1, Y
A

1 ) and ξ2 = ξ(T2, Y
A

2 ) and δ
(g)
ξ1
ξ2 denotes the change induced in ξ2 due

to the variation of metric δ
ξ1
gµν = Lξ1gµν . Therefore one finds that

[ξ1, ξ2] = ξ12, (5.6)

with ξ12 = ξ(T12, Y
A

12), where

T12 = Y A
1 ∂AT2 − Y A

2 ∂AT1, Y A
12 = Y B

1 ∂BY
A

2 − Y B
2 ∂BY

A
1 . (5.7)

Thus, the algebra of asymptotic Killing vectors is closed. In addition to T and Y A, the

symmetry generator χ = χ(T, Y A, λ̂) contains another degree of freedom, λ̂. Here, λ̂ is an

arbitrary function of xA and generates U(1) symmetry. Hence, we need to introduce two

other commutators

[χ(0, 0, 0, λ̂1), χ(0, 0, 0, λ̂2)] = 0, (5.8)

[χ(0, 0, 0, λ̂1), χ(0, Y A
2 , 0)] = −[χ(0, Y A

2 , 0), χ(0, 0, 0, λ̂1)] = χ(0, 0, 0,−LY2 λ̂1), (5.9)

in addition to eq.(5.6). The equation (5.8) comes from the fact that U(1) is an Abelian

group and we will justify eq.(5.9) when we consider the algebra among conserved charges.

The induced metric on the horizon ΩAB is conformally related to the Riemann sphere

and the Laurent expansion on the Riemann sphere is allowed. Since the general solution of

the conformal Killing equations is Y = Y z(z)∂z +Y z̄(z̄)∂z̄ and T = T (z, z̄) and λ̂ = λ̂(z, z̄)

are arbitrary functions of z and z̄, we can define modes as

T(m,n) = χ(zmz̄n, 0, 0, 0), Ym = χ(0,−zm+1, 0, 0), Ȳm = χ(0, 0,−z̄m+1, 0),

λ̂(m,n) = χ(0, 0, 0, zmz̄n), (5.10)

where m,n ∈ Z. By using equations (5.6), (5.8) and (5.9), we find the algebra among

these modes

[Ym,Yn] = (m−n)Ym+n, [Ȳm, Ȳn] = (m−n)Ȳm+n, [Ym, Ȳn] = 0,

[T(m,n),T(k,l)] = 0, [Yk,T(m,n)] =−mT(m+k,n), [Ȳk,T(m,n)] =−nT(m,n+k),

(5.11)

[λ̂(m,n), λ̂(k,l)] = 0, [Yk, λ̂(m,n)] =−mλ̂(m+k,n), [Ȳk, λ̂(m,n)] =−nλ̂(m,n+k),

[λ̂(m,n),T(k,l)] = 0,
(5.12)
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This algebra contains a set of supertranslations current T(m,n) and two sets of Witt algebra

currents, given by Ym and Ȳm. It also contains a set of multiple-charges current λ̂(m,n).

Two sets of Witt currents are in semi-direct sum with the supertranslations and multiple-

charges current. The subalgebra (5.11) is known as bmsH4 [26, 27] and it differs from

Bondi-Metzner-Sachs algebra bms4 [25, 28, 29](the structure constants are different).

6 Charges and soft hairs

Now we are ready to find conserved charge conjugate to the asymptotic symmetry generator

χ with components (5.1) and (5.2). To this end, we take codimension-two surface D in

eq.(2.30) to be the horizon

δQχ =

˛
H
QµνLW[Φ, δΦ;χ]d2xµν ,

=

ˆ
d2x
√

det ΩQvρLW

∣∣
ρ=0

.

(6.1)

By substituting the boundary conditions and components of the asymptotic symmetry

generators into eq.(6.1), we have

Qχ =
1

8π

ˆ
d2x
√

det Ω

(
κT − 1

2
Y AθA − 8πλ̂ψv

)
, (6.2)

where an integral over one-parameter path on solution phase space was taken. As we

mentioned earlier, one can use equations (2.19) and (2.20) to find the algebra among the

conserved charges. After performing some calculations, we find that

{Qχ1 , Qχ2} = Q[χ1,χ2], (6.3)

where equations (5.3) and (5.4) were used also [χ1, χ2] is given by equations (5.6)–(5.9).

In this case, by comparing eq.(2.19) and (6.3), we see that the central extension term

does not appear. Since the algebra among the conserved charges is isomorphic to algebra

among symmetry generators and the commutation relation (5.9) is appeared in the right

hand side of eq.(6.3) then it seems reasonable to consider such a commutation relation.

By substituting eq.(5.10) into eq.(6.2), supertranslation, superrotation and multiple-charge

modes can be obtained as

T(m,n) =
κ

8π

ˆ
dzdz̄Ω

√
γzmz̄n, (6.4)

Ym =
1

16π

ˆ
dzdz̄Ω

√
γzm+1θz, (6.5)

Ȳm =
1

16π

ˆ
dzdz̄Ω

√
γz̄m+1θz̄, (6.6)

Q(m,n) = −
ˆ
dzdz̄Ω

√
γzmz̄nψv, (6.7)
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respectively, where γ = det(γAB). Also, the equation (6.3) gives us the algebra among

these modes

{Ym,Yn}= (m−n)Ym+n, {Ȳm, Ȳn}= (m−n)Ȳm+n, {Ym, Ȳn}= 0,

{T(m,n),T(k,l)}= 0, {Yk,T(m,n)}=−mT(m+k,n), {Ȳk,T(m,n)}=−nT(m,n+k),

(6.8)

{Q(m,n),Q(k,l)}= 0, {Yk,Q(m,n)}=−mQ(m+k,n), {Ȳk,Q(m,n)}=−nQ(m,n+k),

{Q(m,n),T(k,l)}= 0.
(6.9)

Now we apply the above considerations on the Kerr-Newman (A)dS black hole. Conse-

quently, we can obtain charge zero-modes explicitly and then interpret them. Since (z, z̄)

coordinates are related to (θ, φ) coordinates through the equation (3.22) and

dzdz̄Ω
√
γ =

(r2
+ + a2)

Ξ
sin θdθdφ, (6.10)

then we can easily read supertranslation charge modes as

T(m,n) =
κ(r2

+ + a2)

4Ξ
I(m)δm,n, (6.11)

where

I(m) =

ˆ π

0
µ(θ)2m sin θdθ. (6.12)

Hence, the supertranslation double-zero-mode charge T(0,0) is

T(0,0) =
κ(r2

+ + a2)

2Ξ
, (6.13)

where I(0) = 2 was used. The entropy of the Kerr-Newman (A)dS black hole is given by

(see e.g. [22])

S =
π(r2

+ + a2)

Ξ
(6.14)

then the supertranslation double-zero-mode charge T(0,0) is equal to the Kerr-Newman

(A)dS black hole entropy multiplied by Hawking temperature TH = κ/2π, as expected [26,

27, 30]. Similarly, multiple-charge modes are

Q(m,n) =
Q(r2

+ + a2)

2Ξ
W (m)δm,n, (6.15)

with

W (m) =

ˆ π

0

(r2
+ − a2 cos2 θ)

(r2
+ + a2 cos2 θ)2

µ(θ)2m sin θdθ, (6.16)

where ψv = A
(1)
v was used. One can show that the multiple-charge double-zero-mode gives

the Kerr-Newman (A)dS black hole electric charge

Q(0,0) =
Q

Ξ
. (6.17)
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Now we calculate superrotation charges. θz and θz̄ are related to θθ and θφ as

zθz =
1

2

(
µ

∂θµ
θθ − iθφ

)
, z̄θz̄ =

1

2

(
µ

∂θµ
θθ + iθφ

)
. (6.18)

These relations are deduced from the fact that θzdz + θz̄dz̄ = θθdθ + θφdφ. Also, we

have θθ = g
(1)
vθ and θφ = g

(1)
vφ . Therefore, the explicit form of the charges associated to

superrotations are

Ym = −iMa

2Ξ2
δm,0 + i

Q2

4π

(r2
+ + a2)2 tan−1( a

r+
)− r+a(r2

+ − a2)

8Ξ2r2
+a

2
δm,0, (6.19)

Ȳm = +i
Ma

2Ξ2
δm,0 − i

Q2

4π

(r2
+ + a2)2 tan−1( a

r+
)− r+a(r2

+ − a2)

8Ξ2r2
+a

2
δm,0. (6.20)

From previous considerations, we expect that superrotation zero-mode gives us the angular

momentum of black holes. The equations (6.19) and (6.20) obey this property when the

black hole does not have electric charge. But it is not true when electric charge turns on.

To cure this problem, we consider two subalgebras of the algebra (5.12). We construct

them by introducing two new modes

ηm = χ(0, 0, 0,−zm+1), η̄m = χ(0, 0, 0,−z̄m+1). (6.21)

One can show that ηm and η̄m obey the following commutation relations

[Ym, ηn] = −(n+ 1)ηm+n, [Ȳm, η̄n] = −(n+ 1)η̄m+n,

[Ȳm, ηn] = 0, [Ym, η̄n] = 0, [T(m,n), ηk] = 0, [T(m,n), η̄k] = 0,

[λ̂(m,n), ηk] = 0, [λ̂(m,n), η̄k] = 0, [ηm, η̄n] = 0,

(6.22)

which are extracted from the equations (5.6)–(5.9). Now we define new superrotation

modes as follows:

Y (new)
m = Ym + ηm, Ȳ (new)

m = Ȳm + η̄m, (6.23)

so that they obey same algebra as the old ones do. Strictly speaking, these new modes

obey the algebra (5.11) and (5.12) with Ym → Y
(new)
m and Ȳm → Ȳ

(new)
m . Thus, we are

allowed to use U(1) gauge fixing to cure the problem. To this end, we fix the U(1) gauge

freedom as

λ̂ = Y AϕA, (6.24)

so that corresponding modes are given by eq.(6.21). In this way, we can define new super-

rotation charges conjugate to superrotation modes Y
(new)
m and Ȳ

(new)
m as

Y(new)
m =

1

16π

ˆ
dzdz̄Ω

√
γzm+1 (θz + 16πψvϕz) , (6.25)

Ȳ(new)
m =

1

16π

ˆ
dzdz̄Ω

√
γz̄m+1 (θz̄ + 16πψvϕz̄) . (6.26)

In fact, these are charge modes corresponding to charge conjugate to symmetry generator

χ = χ(0, Y z, Y z̄, Y BϕB). For the Kerr-Newman (A)dS black hole, we will have

Y(new)
m = −iMa

2Ξ2
δm,0, Ȳ(new)

m = +i
Ma

2Ξ2
δm,0. (6.27)
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So the problem is cured. Since λ̂ is in general a dynamical field independent function and

we set it as eq.(6.24) in the last step, i.e. when we want to calculate charges, then Y(new)
m

and Ȳ(new)
m will satisfy the same algebra as (6.8) and (6.9):

{Y(new)
m ,Y(new)

n } = (m− n)Y(new)
m+n , {Ȳ(new)

m , Ȳ(new)
n } = (m− n)Ȳ(new)

m+n ,

{Y(new)
k , T(m,n)} = −mT(m+k,n), {Ȳ(new)

k , T(m,n)} = −nT(m,n+k),

{Y(new)
k ,Q(m,n)} = −mQ(m+k,n), {Ȳ(new)

k ,Q(m,n)} = −nQ(m,n+k).

(6.28)

where brackets not displayed vanish. We conclude this section by mentioning that T(m,n),

Y
(new)
m and Ȳ

(new)
m are generators of soft hairs and λ̂(m,n) are generators of soft electric hairs.

7 Sugawara deconstruction and new entropy formula

Now, we define T̃(m,n) = 1
2κT(m,n) and replace the brackets with commutators, namely

{ , } ≡ i[ , ], then (6.28) becomes

i[Y(new)
m ,Y(new)

n ] = (m− n)Y(new)
m+n , i[Ȳ(new)

m , Ȳ(new)
n ] = (m− n)Ȳ(new)

m+n ,

i[Y(new)
k , T̃(m,n)] = −mT̃(m+k,n), i[Ȳ(new)

k , T̃(m,n)] = −nT̃(m,n+k),

i[Y(new)
k ,Q(m,n)] = −mQ(m+k,n), i[Ȳ(new)

k ,Q(m,n)] = −nQ(m,n+k).

(7.1)

where commutators not displayed vanish. It is clear form eq.(6.13) and eq.(6.14) that the

supertranslation double-zero-mode T̃(0,0) is related to the Kerr-Newman (A)dS black hole

entropy as

S = 4πT̃(0,0). (7.2)

Therefore, we can apply the Sugawara deconstruction proposed in [14]. To do this, we

introduce four new generators Ĵ±m and K̂±m so that they obey the following algebra

i[Ĵ±m, K̂
±
n ] = mδm+n,0, (7.3)

where commutators not displayed vanish. The algebra (7.3) consists of two copies of

the 3-dimensional flat space near horizon symmetry algebra [9]. Hence we can construct

generators T̃(m,n), Y
(new)
m and Ȳ(new)

m as follows:

T̃(m,n) = Ĵ+
mĴ
−
n , Y(new)

m =
∑
p

Ĵ+
m−pK̂

+
p , Ȳ(new)

m =
∑
p

Ĵ−m−pK̂
−
p . (7.4)

It is easy to check that the definitions presented in eq.(7.4) obey the algebra (7.1) provided

that Ĵ±m and K̂±m satisfy the algebra introduced in eq.(7.3). By comparing eq.(7.4) and

equations (6.17), (6.27) and (7.2), we find that there exist six algebraic constraints on zero

modes (because we assume that zero modes are complex numbers)

S

4π
= Ĵ+

0 Ĵ
−
0 , − i

2
J = Ĵ+

0 K̂
+
0 , +

i

2
J = Ĵ−0 K̂

−
0 , (7.5)

where eq.(3.5) was used. The expression for the angular momentum, introduced in eq.(7.5),

could be a linear combination as ∓ i
2J =

∑
p Ĵ
±
−pK̂

±
p . However, we assume that just the
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zero modes of K̂±m are non-zero, i.e. K̂±m are proportional to kronecker delta δm,0, which is

in agreement with eq.(6.27). In order to determine zero modes uniquely, we need two other

constraints. Two constrains were presented in [14]. The authors in [14] have claimed that

we should not see the angular momentum in chirally symmetric sum of zero modes. Also,

they demand that chirally symmetric sum of zero modes to be equal to two times black

hole mass. But it seems that this constrain is no longer held in presence of cosmological

constant and/or when black hole has electric charge. One of the choices that can be made is

Ĵ±0 =
1

2Ξ
1
2

(r+ ∓ ia), K̂±0 =
Ma

Ξ
3
2 (r2

+ + a2)
(a∓ ir+), (7.6)

which will reduce to the ones proposed in [14] when we set Λ = 0 and Q = 0. One can

show that K̂+
0 K̂

−
0 is given by

K̂+
0 K̂

−
0 =

M2a2

Ξ3(r2
+ + a2)

, (7.7)

and it does not provide inner horizon entropy of the Kerr-Newman (A)dS black hole (how-

ever, for Kerr black hole it does). This result is independent of the choice (7.6). The

chirally symmetric sum of zero modes is

Ĵ+
0 + Ĵ−0 + K̂+

0 + K̂−0 =
2Ξ

1
2(

1− Λ
3 r

2
+

) [M− 1

2
QΦE

]
, (7.8)

where

ΦE =
Q

4π

r+

(r2
+ + a2)

, (7.9)

is the horizon electric potential. Thus, we have shown that the Kerr-Newman (A)dS

black hole entropy is bilinear in the zero modes and it satisfy the new entropy formula

S = 4πĴ+
0 Ĵ
−
0 proposed in [14]. It is also clear from eq.(7.5) that the angular momentum

is given by J = i(Ĵ+
0 K̂

+
0 − Ĵ

−
0 K̂

−
0 ).

8 Conclusion

We have briefly reviewed the approach of the covariant phase space method of obtaining

conserved charges in Einstein-Maxwell theory. According to [20], we introduced combined

symmetry generator χ = (ξ, λ), which consists of diffeomorphism and U(1) gauge transfor-

mation. The covariant phase space method presented in section 2, is not only applicable to

the asymptotic symmetries at spatial infinity but also it is applicable to the near horizon

asymptotic symmetries. In section 3, we have briefly reviewed the Kerr-Newman (A)dS

black hole geometry and then we found the near horizon behavior of this black hole in the

Gaussian null coordinate system. We showed that the induced metric on the horizon is

conformally related to the Riemann sphere. Therefore the Kerr-Newman (A)dS black hole

horizon admits conformal symmetry. The explicit form of conformal factor Ω = Ω(z, z̄)

depends on the sign of cosmological constant (see eq.(3.24) and eq.(3.26)). Therefore, we

expect that fall-off conditions near the isolated horizon in the Einstein-Maxwell theory are
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given by eq.(4.1) and Eq (4.2), where κ and ϕv are constants (imposed by field equations).

These fall-off conditions are preserved by the action of asymptotic symmetry generators

χ (components of χ are given by eq.(5.1) and eq.(5.2)). Equations (5.6)–(5.9) give the

algebra among these asymptotic symmetry generators. Because the algebra among the

conserved charges and the asymptotic symmetry generators must be isomorphic, the ad-

ditional commutation relation (5.9) was introduced. The asymptotic symmetry generator

modes, satisfy an algebra contains of a set of supertranslations current T(m,n), two sets

of the Witt algebra currents, given by Ym and Ȳm, and a set of multiple-charges current

λ̂(m,n). Two sets of the Witt currents are in semi-direct sum with the supertranslations

and multiple-charges current. In section 6, we found conserved charges conjugate to these

modes. The supertranslation double-zero-mode charge T(0,0) gives the Kerr-Newman (A)dS

black hole entropy multiplied by Hawking temperature. Also, the multiple-charge double-

zero-mode gives the electric charge of the Kerr-Newman (A)dS black hole. One expect that

the zero-mode charges associated to superrotations give angular momentum of black holes.

But it is not true when black hole have electric charge (See equations (6.19) and (6.20)).

Due to the presence of second terms in the right hand sides of eq.(6.19) and (6.20), this

problem occurs when one considers just diffeomorphism generated by Y A. To cure this

problem, we must consider both diffeomorphism and U(1) gauge transformation together.

To do this, we introduced a transformation generated by χ(Y ) = χ(0, Y A, λ̂(Y )) → Y ,

where λ̂ is a function of Y A and it does not generate an independent symmetry. We de-

fined corresponding zero modes as Y
(new)
m and Ȳ

(new)
m . By a gauge fixing as λ̂ = Y AϕA,

we have found charges conjugate to these modes. The zero mode charges give the angular

momentum of the Kerr-Newman (A)dS black hole (see eq.(6.27)). A question remains still

open: it remains to be understood the physical meaning of such a modification of charges

associated to supperrotations. We showed that the algebra among charge modes are given

by (7.1). We used the Sugawara deconstruction to show that the new entropy formula

proposed in [14] is held for the Kerr-Newman (A)dS black hole.
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