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1 Introduction

The holographic principle has established itself as a common instrument for the description

of strongly coupled systems. While originally applied to supersymmetric theories such as

N = 4 super-Yang-Mills theory [1–3], it was soon realized that the correspondence could be

used to model real-world systems as well, such as quantum chromodynamics and the quark-

gluon plasma [4, 5]. In addition, over the past decade holography has been extended to

include condensed-matter theory, which has led to the description of many strongly coupled

condensed-matter phenomena by means of weakly coupled gravitational theories [6–9].

These descriptions provide a great tool to compute thermodynamic and hydrodynamic
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properties, and besides this, also the spectra of bosonic or fermionic operators that are

present in the dual condensed-matter field theory.

Condensed-matter systems are usually described by nonrelativistic Dirac fermions. In

holography, a common approach to cope with nonrelativistic systems is to use a Lifshitz

background, which leads to a dynamical scaling exponent z in the boundary theory that

is different from its value in relativistic theories, i.e., z 6= 1 [10–13]. Alternatively, an

asymptotically anti-de Sitter gravity theory may have an emergent infrared (IR) Lifshitz

geometry with a scaling exponent z different from 1, so that the dynamics obtained from

such theories can be reminiscent of nonrelativistic physics when restricted to the long-

wavelength and low-frequency limit. However, Lifshitz backgrounds generally yield gapless

particle-hole symmetric spectra and in both of these approaches, a missing ingredient is a

Dirac mass in the spectrum. Such models are therefore great candidates for the description

of effectively massless systems, such as single- or bilayer graphene, or the more recently

discovered Dirac and Weyl semimetals [7, 14, 15]. For other purposes, it is desirable to

extend the holographic model to also be able to describe spectral functions of massive

fermionic operators that are ubiquitous in condensed matter. In this work we study the

fermionic spectral functions that are obtained from such an extension.

To see what such an extension entails, it is important to realize that the reason that

the fermionic spectra obtained from holography are in general gapless is twofold. Firstly,

by introducing a probe Dirac spinor in the gravitational bulk theory, the fermionic spectral

function on a boundary theory corresponds to a chiral fermion and is therefore massless [16–

20]. Secondly, introducing a mass in the boundary theory requires introducing a new

scale in the conformal field theory (CFT), which implies that it is necessary to add a

deformation to the bulk. The latter deformation was introduced in refs. [21, 22], which

focused on a model for the conductivity of a topological Weyl semimetal. In this paper,

the model used to obtain the fermionic spectral functions includes such a deformation, as

well as an additional Dirac spinor in the bulk, yielding the required amount of degrees of

freedom on the boundary to describe a Dirac fermion. A model with two Dirac fermions

in the bulk has already been used in ref. [23] to study Dirac semimetals. In this work

we additionally introduce a coupling of the two Dirac fermions in the bulk to provide a

coupling between the chiral fermions on the boundary, which is necessarily present for

massive fermions. A similar construction was very recently described in ref. [24], which

appeared while completing this paper, where the approach was used to study semimetals

with nodal lines. We would like to stress that our emphasis here is not on Weyl or nodal-line

semimetals, but more generally on the description of fermionic spectra in condensed-matter

systems which generally contain a Dirac mass. In these spectra, this mass can for instance

be interpreted as an effective mass or gap in a band structure, which is the viewpoint taken

here. However, an alternative viewpoint of the framework we present could be to interpret

this mass as a real particle mass. This could then serve as a starting point for a holographic

description for e.g. strongly coupled ultracold Fermi gases, which contain massive atoms.

In experiments we are usually interesed in single-particle spectral functions rather

than the correlation functions of a composite fermion that are typically obtained in holog-

raphy. Such single-particle spectral functions can be obtained from semiholography [25, 26].
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Therefore, this paper also covers the incorporation of the aformentioned extension to mas-

sive Dirac fermions in a semiholographic framework.

This paper is organized as follows. In section 2, we firstly present the procedure to

obtain the Dirac fermion dynamics from holography. This means that we first specify

a suitable gravitational background and then present the equations corresponding to the

probe fermions propagating on top of this background. Moreover, in this section we also

outline the procedure to obtain both the holographic and the semiholographic Green’s

functions. We present our results in section 3, where we compute the fermionic spectra

using numerical solutions to the equations presented in section 2. Concluding in section 4,

we discuss our results and comment on possible future directions.

2 Obtaining massive Dirac fermions from holography

In this section we outline the procedure that we follow to obtain the dynamics of a Dirac

fermion with a Dirac mass from holography. This procedure basically consists of solving

two sets of coupled differential equations. We start by describing the first set, which

gives us the gravitational bulk background that fixes quantities such as the temperature

and chemical potential in the boundary field theory. We then derive the second set of

differential equations, which describes the propagation of probe fermions in this bulk and

gives us the holographic Green’s function in the boundary theory. Finally, we derive an

expression for the semiholographic Green’s function of the Dirac fermion. To this end we

use a dynamical-source model which is very similar to the one described in [26], where the

semiholographic Green’s function for a chiral fermion is derived.

We refer to appendix A for conventions on the Dirac theory and the dimensionless

units. Moreover, we always work in d = 4 spatial dimensions in the bulk, implying that we

consider a three-dimensional system on the boundary.

2.1 Gravitational theory

We wish to study a boundary theory containing massive Dirac fermions at nonzero chemical

potential. As is well known, we can introduce the chemical potential by adding a U(1) gauge

field Aµ to the bulk [7]. As in ref. [21], we describe the mass deformation by adding a scalar

field φ to the bulk. The mass of φ is fixed to m2
φ = −3, such that the operator dual to

φ has dimension ∆ = 2 +
√

4 +m2
φ = 3. This agrees with the dimension of the operator〈

ψ̄ψ
〉

in a free boundary theory. Hence, the dimensions of the resulting deformation of the

boundary theory match the dimensions of a free fermionic mass deformation Mψψ̄ψ. We

discuss the choice of the mass m2
φ in more detail in section 2.2.3. The source of the scalar

field then acts as a Dirac mass Mψ on the boundary. The gravitational background we use

therefore follows from the action:

Sbackground =

∫
d5x
√
−g
(
R+ 12− 1

4
F 2 − 1

2

(
(∂φ)2 +m2

φφ
2
))

. (2.1)

Considering static solutions with planar symmetry, we write the Ansatz for the metric as

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2dx2 , (2.2)

– 3 –



J
H
E
P
0
4
(
2
0
1
8
)
1
2
3

where (t, r,x) denotes the spacetime position in the bulk. Moreover, we use a temporal

gauge field A = At(r)dt and φ = φ(r) due to planar symmetry. The coordinate r is such

that the black-brane horizon is at r = r+, where f(r+) = 0, and the boundary is at r =∞.

The Hawking temperature is then given by

T =
f ′(r+)e−χ(r+)/2

4π
(2.3)

and gives the temperature of the boundary theory. The equations of motion describing the

background theory are

φ′′ +

(
f ′

f
+

3

r
− χ′

2

)
φ′ +

3

f
φ = 0 , (2.4)

A′′t +

(
3

r
+
χ′

2

)
A′t = 0 , (2.5)

χ′ +
r

3
φ′2 = 0 , (2.6)

f ′ +

(
2

r
− χ′

2

)
f +

r

6
eχA′2t −

r

2
φ2 − 4r = 0 . (2.7)

Notice that this background is very similar to those used to describe the holographic

superconductor [27], with a fixed bulk scalar mass and an uncharged bulk scalar. Therefore,

following the arguments in ref. [27], a solution to these equations is again determined by

two initial conditions at the horizon r+, namely φ(r+) and A′t(r+), assuming At(r+) = 0.

Moreover, using the following symmetry of the equations of motion,

r → ar, (t,x)→ (t,x)/a, f → a2f, At → aAt, (2.8)

we can put r+ = 1. However, in contrast to the holographic superconductor, the solutions

we consider here will also have a fixed nonzero scalar source term φs, which is dual to the

Dirac mass on the boundary. This means that both initial conditions that determine the

background remain free, since we do not have to shoot for a solution without a source.

The background is then described by two parameters, which are any two dimensionless

ratios formed with the temperature T , the source φs and the chemical potential µ per unit

charge, which follows from the boundary value of At.

One may wonder what happens with the instability that causes the phase transition for

the holographic superconductor. A condition for this instability of the Reissner-Nordström

solution (with φ = 0) against the spontaneous formation of scalar hair is given by [28]

q2
φ >

m2
φ

2
+
d(d− 1)

8
. (2.9)

Since in our case d = 4, m2
φ = −3 and qφ = 0, we do not satisfy this condition. Hence we

do not expect this instability to occur, so that a solution with a nontrivial scalar profile

should always have a nonzero source term.
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2.2 Dirac fermions

We can calculate fermionic Green’s functions by having probe Dirac fermions propagate

on the fixed background described in the previous section. This is similar to the procedure

presented in refs. [18, 26]. However, the resulting fermionic Green’s functions on the

boundary correspond to a chiral fermion. The reason is that the Dirac equation in the

bulk imposes a relation between the two chiral components of the probe fermion on the

boundary. Let us quickly review this case. Denoting the probe fermion by ψ, we define the

components

ψR,L =
1

2
(1± Γr)ψ, ψL =

(
0

ψ−

)
, ψR =

(
ψ+

0

)
, (2.10)

where the plus (minus) sign corresponds to ψR (ψL). Note that ψ = ψR + ψL, whereas

ψ± are two-component spinors with definite chirality on the boundary. We then add the

following action to the bulk:

SWeyl = igf

∫
d5x
√
−gψ̄

(
/D −M

)
ψ + igf

∫
d4x
√
−hψ̄RψL. (2.11)

Here M is the bulk Dirac mass, gf is a coupling constant, Dµ = ∇µ − iqAµ with ∇µ the

spinor covariant derivative and q the fermion bulk charge, so that the chemical potential

of the spinor is µ = qAt(∞). The boundary action is included to make the variational

principle well defined, and is consistent with the Dirichlet boundary condition δψR = 0.

As shown in ref. [26], writing out the Dirac equation
(
/D −M

)
ψ = 0 in chiral components

reveals that the relation between them can be written in the form

ψ−(r, k) = −iξ(r, k)ψ+(r, k), (2.12)

where we Fourier transformed the spinors on slices of constant r. As a consequence, the

action (2.11) evaluated on shell can be written as

Son shell
Weyl = −igf

∫
r=r0

d4k

(2π)4
ψ†+ψ− = −gf

∫
r=r0

d4k

(2π)4
ψ†+ξψ+. (2.13)

Here r0 is a cut-off surface, which as we shall explain later is important when computing a

Green’s function. Ultimately, we take the limit of r0 going to infinity. From the above action

it is clear that ξ is proportional to the holographic Green’s function for the chiral boundary

operator that is sourced by the boundary value of the chiral spinor ψ+. In other words, the

chiral component ψR of ψ acts as a source for the chiral operator whose expectation value

is contained in ψL, so that after integrating out ψL we are left with the effective action

for a chiral fermion. As described in e.g. ref. [26], from the Dirac equation we can then

derive a differential equation for ξ. Solving this using infalling boundary conditions, the

holographic retarded Green’s function for the chiral operator O that couples to ψ+ then

follows from

GO(k) = lim
r0→∞

r2M
0 ξ(r0, k). (2.14)

– 5 –



J
H
E
P
0
4
(
2
0
1
8
)
1
2
3

In the procedure above we have seen that we have to integrate out half of the degrees

of freedom of the probe fermion. Therefore, in order to describe a Dirac fermion on the

boundary, we double the amount of degrees of freedom by introducing two bulk fermions

ψ(1) and ψ(2). Our goal is then to derive an effective action similar to equation (2.13), but

this time with four-component spinors. Using the Dirichlet boundary conditions δψ
(1)
R = 0

and δψ
(2)
L = 0, we can derive such an effective action that contains the two chiral fermions

ψ
(1)
+ and ψ

(2)
− . In order to describe a massive Dirac spinor, we also need to couple these chiral

components. We do this by introducing a Yukawa interaction in the bulk, that couples the

two fermions to the scalar field with coupling constant gY . The total action, including the

boundary terms consistent with the abovementioned Dirichlet boundary conditions, then

looks as follows:

SDirac = igf

∫
d5x
√
−g
(
ψ̄(1)

(
/D −M

)
ψ(1) + ψ̄(2)

(
/D +M

)
ψ(2)

)
+ igY

∫
d5x
√
−gφ

(
ψ̄(1)ψ(2) + ψ̄(2)ψ(1)

)
+ igf

∫
d4x
√
−h
(
ψ̄

(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
.

(2.15)

Note that we took the mass of ψ(2) to be −M so that the asymptotic behaviors of the

sources ψ
(1)
R and ψ

(2)
L are equal [23]. The equations of motion following from this action are(

/D −M
)
ψ(1) = −λφψ(2), (2.16)(

/D +M
)
ψ(2) = −λφψ(1), (2.17)

where λ = gY /gf . Notice that without the Yukawa term, we would just end up with

two copies of eq. (2.13) and therefore describe two uncoupled chiral fermions. The corre-

sponding Green’s function would then be ungapped, and could therefore not correspond

to the Green’s function of the fermions that appear in the Dirac mass deformation that

we introduced by adding the scalar field to the background. Hence a term such as the

Yukawa term is necessary if we want to describe the dynamics of the Dirac fermion at the

boundary. There may however be other possibilities to couple the two chiral components.

This Yukawa term has the additional advantage that it does not change scaling dimensions

of the operators dual to the bulk spinors.

Let us now define the two bulk Dirac spinors Ψ ≡ ψ(1)
R +ψ

(2)
L and η ≡ ψ(1)

L −ψ
(2)
R , i.e.,

Ψ =

(
ψ

(1)
+

ψ
(2)
−

)
, η =

(
−ψ(2)

+

ψ
(1)
−

)
. (2.18)

With our choice of the Dirichlet boundary conditions, Ψ contains the sources. Similarly to

the chiral case, we would then like to integrate out the other components that are contained

in η, and derive an effective action for Ψ. Evaluating the action (2.15) on shell, the bulk

terms vanish and we can write the boundary term as

Son shell
Dirac = igf

∫
d4x
√
−hΨ̄η. (2.19)
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Rescaling the spinors to get rid of the spin connection, see the discussion around eq. (A.19)

in appendix A.2 for details, the Dirac equation in momentum space can be written as

−
(
err∂r +M

)
η +

(
i/̃k + λφ

)
Ψ = 0, (2.20)(

err∂r −M
)

Ψ +
(
i/̃k − λφ

)
η = 0. (2.21)

Here k̃µ = (−(ω+ qAt),k) so that the slash operator has no r-component. As in the chiral

case, this imposes a relation between Ψ and η which can be written as

η(r, k) = −iΞ(r, k)Ψ(r, k). (2.22)

The on-shell action then becomes

Son shell
Dirac = gf

∫
r=r0

d4k

(2π)4
Ψ̄ΞΨ. (2.23)

Here we can see that the 4×4 matrix Ξ is related to the Green’s function for the fermionic

operator O that is sourced by the boundary value of the Dirac spinor Ψ. More precisely,

using infalling boundary conditions that we specify later, the holographic Green’s function

is given by

GO(k) = − lim
r0→∞

r2M
0 Γ0Ξ(r0, k). (2.24)

We will proceed by deriving a differential equation with which we can compute Ξ directly.

2.2.1 Computing the holographic Green’s function

Using the Dirac equations in (2.20) and (2.21), we can derive a differential equation which

we can solve for Ξ, thereby obtaining the holographic Green’s function through eq. (2.24).

Taking the derivative of (2.22) gives

Ξerr∂rΨ = ierr∂rη − err∂rΞΨ. (2.25)

Multiplying (2.21) by Ξ from the left and substituting the above then gives

ierr∂rη − err∂rΞΨ−MΞΨ + Ξ
(
i/̃k − λφ

)
η = 0. (2.26)

Eliminating ∂rη using (2.20) and η using (2.22) ultimately gives(
−(err∂r + 2M)Ξ + i

(
i/̃k + λφ

)
− iΞ

(
i/̃k − λφ

)
Ξ
)

Ψ = 0. (2.27)

This shows that we can compute Ξ by solving the first-order nonlinear differential 4 × 4

matrix equation between the brackets. However, we can greatly reduce the amount of

equations we need to solve by exploiting rotational symmetry to set kµ = (−ω, 0, 0, k3).

Using symmetry we can then write1

Ξ = Ξ0Γ0 + Ξ3Γ3 + ΞcI4 (2.28)

1This can also be shown by solving (2.21) for η and reading off the matrix structure of Ξ.
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where I4 is the 4 × 4 identity matrix. The Ansatz above in (2.28) shows that there are

only three degrees of freedom for which we have to solve. However, it is more insightful to

write the equations in eq. (2.27) in terms of Ξ± ≡ Ξ0 ± Ξ3. This yields

(err∂r + 2M)Ξ± =
(
ω̃e0

0 ∓ k3e
3
3

) (
1− Ξ2

c

)
+
(
ω̃e0

0 ± k3e
3
3

)
Ξ2
± + 2iλφΞcΞ±,

(err∂r + 2M)Ξc =
(
ω̃e0

0 + k3e
3
3

)
Ξ+Ξc +

(
ω̃e0

0 − k3e
3
3

)
Ξ−Ξc + iλφ

(
1 + Ξ2

c − Ξ+Ξ−
)
,

(2.29)

where ω̃ = ω + qAt. As a check, notice that for λ = ψ(2) = 0 the lower-left 2 × 2 block of

Ξ corresponds to the matrix defined in (2.12) for the chiral case. From (2.28) we see that

the eigenvalues of this block are exactly Ξ±. Setting λ = Ξc = 0 in (2.29) indeed recovers

the equation for the chiral case, see e.g. eq. (2.31) in ref. [26].

These equations can now be solved numerically to obtain the matrix Ξ. As they are

first-order ODE’s, we need to impose one initial condition for each component. Since only

e0
0 diverges at r+, we demand that in both equations the coefficient of this factor vanishes

at the horizon. The second equation then yields either Ξc(r+) = 0 or Ξ+(r+) = −Ξ−(r+).

However, the latter is not consistent with the infalling boundary conditions, for which we

know from the chiral case that the result is Ξ±(r+) = i. We conclude that we must impose

Ξc(r+) = 0. The first equation then gives that Ξ±(r+) = ±i, where the infalling boundary

conditions require that we choose +i for both cases.

2.2.2 Obtaining the semiholographic Green’s function

Next, we use semiholography to derive an expression for the single-particle Green’s function.

We note that our approach is slightly different from the work in ref. [25], where the authors

use semiholography to capture universal IR physics. In contrast, our objective is to use

semiholography to obtain the Green’s function of an elementary fermion that is for instance

measurable in ARPES experiments. To this end, we follow the approach outlined in ref. [26]

for the chiral case, which is constructed such that the obtained semiholographic Green’s

function GR satisfies the sum rule that in our case reads

1

4π

∫ ∞
−∞

dω Im TrGR(ω,k) = 1. (2.30)

This procedure implies that we interpret the ultraviolet (UV) cut-off surface at a fixed radial

coordinate r = r0 as the boundary on which the single fermions live and interact with the

CFT. In practice this means that the sources become dynamical and that the holographic

Green’s function derived above becomes the self-energy of the elementary fermion. In

particular we note that the semiholographic Green’s functions obtained in this manner are

not restricted to IR physics, as the sum rule above also implies.

Above we have calculated the holographic contribution to the effective action, which

is given by eq. (2.23). To this we add the free action on the UV brane for the source Ψ:

SUV = iZ

∫
r=r0

d4x
√
−hΨ̄

(
/D − M̃0

)
Ψ. (2.31)

– 8 –
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Note that we can add this action since we chose the Dirichlet boundary condition corre-

sponding to δΨ = 0. The total effective boundary action can then be written as

Seff =
Z
√
−h
r0

∫
r=r0

d4k

(2π)4
Ψ̄
(
−Γak̃a − iM̃0r0 +

gfr0

Z
Ξ
)

Ψ, (2.32)

where we Fourier transformed the fields and used that e0
0 ≈ 1/r0 for r0 near the boundary.

Notice that the kinetic term now becomes canonically normalized upon rescaling the fields

as Ψ→
√
r0/Z

√
−hΨ. We can then take the following limit:

r0 →∞, gf → 0, M̃0 → 0, g ≡
gfr

1−2M
0

Z
= const., M0 ≡ M̃0r0 = const. (2.33)

The effective action for the elementary Dirac fermion Ψ can then be written as

Seff =

∫
d4k

(2π)4
Ψ†G−1

R Ψ. (2.34)

Here the inverse Green’s function is given by

G−1
R (k) =

(
σ · k̃ iM0

−iM0 −σ̄ · k̃

)
+ Σ (2.35)

where σ = (I2, σi) and σ̄ = (−I2, σi) with σi the Pauli matrices, and where we defined the

self-energy

Σ(k) ≡ gΓ0 lim
r0→∞

r2M
0 Ξ(r0, k). (2.36)

Using again the rotational symmetry to choose the momentum as k̃µ = (−ω̃, 0, 0, k3) and

using the notation of (2.28), we can also write the Green’s function as

G−1
R (ω, k3) = Γ0

(
(ω̃ + gΞ0) Γ0 + (−k3 + gΞ3) Γ3 + (−iM0 + gΞc) I4

)
. (2.37)

This expression is evaluated at the boundary, so that ω̃ = ω + qµ. We absorbed a factor

r2M
0 in the components of Ξ, such that these are finite at the boundary r0 → ∞. The

above expression shows that Ξ0 is related to a wavefunction renormalization, whereas Ξc
acts like a mass renormalization.

When g becomes large, the inverse Green’s function will be dominated by the self-

energy in eq. (2.36). In this limit we recover the holographic Green’s function, albeit

rescaled by 1/g and in alternative quantization. The latter implies that this Green’s func-

tion corresponds to the Dirichlet boundary conditions δψ
(2)
R = δψ

(1)
L = 0, which gives the

inverse of the Green’s function in standard quantization.

2.2.3 Interpreting semiholography

Before continuing to our results, we briefly comment on the physical picture we have in

mind when applying the semiholographic procedure described above. On the one hand,

we introduce free single fermions Ψ living on a UV cut-off surface, located at r0. On the
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other hand, we have a (deformed) CFT, containing a composite fermionic operator O.2 In

essence, what happens in semiholography is that we linearly couple these two theories and

subsequently integrate out the CFT part in order to obtain the effective Green’s function

of the fermion. In other words, we describe single fermions Ψ interacting with a fermionic

operator O of the CFT.

Since we are doing bottom-up holography, it is not known what the exact physical

interpretation of O is. A possible interpretation is to describe single fermions interacting

with a completely unrelated composite fermionic operator. However, the physical picture

we have in mind is a fermionic condensed-matter system, which at long wavelengths is

described by a CFT with a number of collective variables of these fermions, e.g. electrons

or atoms. In this case, the composite operator O in the CFT ‘contains’ the single fermion

of interest, such as the electron or the atom. Such a ‘self-consistent’ interpretation imposes

additional restrictions on our model. One example is the choice of the parameter m2
φ in

the bulk, which we then should indeed choose such that it describes a free-fermion mass

deformation. This is because we know that the elementary fermion is described by a free

theory in the far UV. Hence, if the fermion is a building block of the CFT, such a mass

deformation should exist in the CFT. In contrast, if the CFT is unrelated to the fermion

Ψ, we might as well have chosen a different value for m2
φ, as it is not clear that a mass-like

deformation introduced by the dual field φ in the CFT should necessarily correspond to

that of a free fermion.3

In our model, both theories contain a mass scale. In the theory describing the ele-

mentary fermion, this mass is denoted by M0. In the CFT the mass scale is set by the

source φs of the scalar field φ. The self-consistency requirement mentioned above means

that also these two mass scales should be related, and enables us to fix the ratio M0/φs.

An argument for this is given in appendix C. Although we use the fixed value presented

there, i.e., M0/φs = 4
√
π2/3, we do not expect substantial qualitative differences in our

semiholographic spectra when choosing a slightly different value for this ratio or for m2
φ for

that matter.

3 Fermionic spectral functions

Given a Green’s function G(ω,k), we can compute the spectral function defined as

ρ(ω,k) =
1

π
Im TrG(ω,k). (3.1)

Here we can take the holographic Green’s function G = GO defined in eq. (2.24) to obtain

the spectral function of the fermionic operator O, or we can take G = G−1
O to obtain

the holographic spectral function in alternative quantization. Alternatively, we can use the

semiholographic Green’s function GR defined in eq. (2.35) to obtain the spectral function for

the elementary fermion Ψ. We can think of this as moving away from the limit g →∞ which

corresponds to the holographic Green’s function in alternative quantization. It is however

2In the description above, O is the operator sourced by Ψ.
3See ref. [29] for a holographic model where the value of m2

φ is varied.
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important to keep in mind that the holographic results can be obtained independently of

semiholography. An important property of the semiholographic Green’s function is that in

contrast to the holographic one, it obeys the sum rule in eq. (2.30), i.e.,∫ ∞
−∞

dωρ(ω,k) = 4. (3.2)

This implies that GR is indeed the Green’s function of an elementary Dirac fermion, which

is a measurable quantity that contains the information about the spectrum of the fermion

dynamics. Moreover, this property allows us to compute momentum distribution functions.

The spectral function is normalized such that the sum rule gives the number of degrees of

freedom, i.e., 4 for a Dirac fermion.

Before presenting our results, we take a moment to stress on which parameters the

spectral functions depend. For the holographic spectral function this means we should

state on which parameters the function Ξ(ω,k) depends. Firstly, this matrix depends on

the gravitational background, which is specified by the scales T , µ,4 and φs. Besides this,

the self-energy depends on the parameters λ, q and M , which all appear in eq. (2.27). Here,

λ describes the coupling strength between the chiral components of the fermion. Therefore,

it is necessarily nonzero for fermions with a mass term. Moreover, the bulk charge q and

bulk mass M of the probe fermions are dimensionless parameters that define the CFT in

which we calculate the two-point function.

For the semiholographic spectral function, M is restricted to the range |M | < 1/2.

This is necessary for the sum rule and the Kramers-Kronig relations to hold [26]. The

semiholographic spectral function depends on all the parameters above and in addition on

g and M0 through eq. (2.37). The parameter g is nonnegative and describes the strength

of the coupling between the fermions Ψ and the CFT, i.e., the strength of the self-energy.

Here the limit g →∞ recovers the holographic Green’s function in alternative quantization,

whereas g = 0 corresponds to a free massive Dirac fermion. The mass scale M0 is fixed by

φs as explained in section 2.2.3 and in appendix C. In this work we scale all dimensionful

quantities with M0. This means that from this point on all quantities we refer to are

implicitly scaled by the appropriate power of M0 to make them dimensionless.5 We fix

q = 1 and M = 1/4 unless stated otherwise. We expect that changing these values should

result mostly in quantitive rather than qualitative differences in the spectra. In this paper

we mainly focus on the low-temperature case T = 1/100, unless stated otherwise.

3.1 Undoped spectra

First of all, we concentrate on the undoped case, i.e., µ = 0. Of first importance is

to verify whether the procedure from section 2 gives us spectral functions of fermions

described by massive Dirac theory. It is important to note that both the holographic

and the semiholographic spectral functions must contain a gap. This is because using

the procedure we apply, the spectrum obtained in semiholography should correspond to

strongly coupled gapped Dirac fermions. The self-energy, i.e., the holographic Green’s

4Actually, µ = qAt(r =∞) which also depends on q, but this dependence is trivial.
5E.g. instead of T/M0 we say T .
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Figure 1. (a) The holographic spectral function. (b) The holographic spectral function in alter-

native quantization. In both (a) and (b), λ = 1. The legend on the right holds for both figures.

Here, and in all the following plots, all quantities are made (scale) dimensionless by dividing by the

appropriate power of M0, and we choose q = 1, M = 1/4, T = 1/100 unless stated otherwise.

function, then contains the effect of strong interactions between these fermions. If the gap

were caused by the parameter M0 only, the spectral function would instead correspond to

gapped fermions interacting with a strongly coupled gapless CFT, which is not what we

are after in this work. We therefore start this section by verifying the appearance of a gap

in the holographic spectral functions.

3.1.1 Holographic spectra

In figure 1 we show the holographic spectral functions for λ = 1, in both standard and al-

ternative quantization. These contain a gap as desired.6 To obtain this gap it is imperative

that λ is nonzero, since this parameter describes the coupling between chiral components.

As a consequence, when λ = 0 we expect no gap in the self-energy, and neither do we ex-

pect a peak at nonzero ω in alternative quantization. This is indeed the case, as is shown

in figure 2, where we study the dependence on λ of the peak appearing in the holographic

spectral function in alternative quantization. We observe that a peak at nonzero ω appears

for values of λ higher than a nonzero lower bound. Furthermore, for larger values of λ,

the position of the peak grows approximately linearly with λ, whereas the height remains

almost constant. We expect these results by noting that eq. (2.27) only depends on the

combination λφ, rather than λ and φ seperately. Therefore, asymptotically the relevant

scale is λM0 rather than M0.7 In the low-temperature regime, λM0 is then the only di-

mensionful scale left and we therefore expect the peak to be proportional to λM0. This

6Note that this is not a hard gap.
7In holography the relevant scale is actually the source φs rather than M0, but as stated before their

ratio is fixed in this work.
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Figure 2. (a) The holographic spectral function in alternative quantization at zero momentum.

The legend shows the used values of λ. (b) The dependence of the peak position ωP on λ.

also explains the discrepancy observed in figure 2b at low λ, since here the scale T/λM0

becomes large. We have indeed observed that a peak appears for smaller values of λ as well

when lowering the temperature further. However, the initial conditions corresponding to

eq. (2.29) depend on λ but not on M0. It is therefore not completely obvious to us that the

position of the peak should grow linearly with λ, but the numerics show that this is indeed

the case. Finally, notice that due to the width of the peak, a large enough value of λ is

needed before the gap appears. This spread is not solely due to the nonzero temperature,

which we have checked numerically by calculating the same spectral functions at lower

temperatures and not observing a decrease in the width. As a consequence the observed

peak cannot correspond to a long-lived quasiparticle, which we indeed would not expect

from a holographic spectral function describing unparticles in a mass-deformed conformal

field theory.

3.1.2 Conductivity

Having shown that a gap is introduced in the holographic spectral functions, it is interesting

to see if the CFT now indeed behaves as an insulator. We can check whether this is the case

by calculating the conductivity of the CFT. In order to do so, we introduce fluctuations

of the gauge field component δAx(xµ) = δax(r)e−iωt to the theory. These fluctuations are

not coupled to fluctuations of the other fields, even though the background has a nontrivial

scalar profile. In particular, in contrast to the holographic superconductor model, these

gauge fluctuations are not coupled to the scalar fluctuations δφ because the scalar field

is uncharged. Moreover, the metric fluctuations δgtx are not sourced because we are still

considering the undoped case. The fluctuations δax then satisfy the equation of motion8

δa′′x +

(
f ′

f
− χ′

2
+

1

r

)
δa′x +

eχω2

f2
δax = 0. (3.3)

8In eq. (3.3) and eq. (3.4), we have not scaled dimensionful quantities like ω and δax(1) by the mass M0.
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Figure 3. The (a) real and (b) imaginary part the conductivity σ of the CFT. The legend shows

the value of the temperature for both figures.

This equation has the asymptotic solution

δax = δax(0) + δax(1)r
−2 +

ω2

2
δax(0)r

−2 log(r) + · · · . (3.4)

By analyzing the action up to second order in the fluctuations, we can then find that the

conductivity is given by [30]

σ(ω) = 2
δax(1)

iωδax(0)
− ω

2i
, (3.5)

where the coefficients δax(0) and δax(1) are found by solving eq. (3.3) with infalling boundary

conditions at the horizon.

The results shown in figure 3 show that the conductivity does not behave as an insu-

lator. For high temperatures the DC conductivity σ(0) is linear in T , as we know from the

conductivity in a Schwarzschild background [31]. For low temperatures, where the mass

scale dominates, this linearity breaks down as expected. However, the mass scale does not

induce a gap in the CFT conductivity. A possible explanation for this is the presence of

other degrees of freedom in the CFT that are not gapped out by the mass deformation

introduced in the model. A similar result was found in refs. [21, 32]. We could have antic-

ipated this result as well from the fact that the calculation is independent of the coupling

λ, which as we saw in the previous section generates the gap in the spectral functions. We

expect however that the fermionic contribution to the conductivity, which can be calcu-

lated using the semiholographic fermionic Green’s function using the approach explained

in refs. [23, 33, 34], does contain a gap and describes an insulator.

3.1.3 Semiholographic spectra

The holographic spectra in section 3.1.1 show that the self-energy of the semiholographic

Green’s function contains a gap. Therefore, the gap in the semiholographic spectra is

caused by both the bare mass M0 and the gap in the self-energy. Note that here we are

assuming a nonzero coupling λ. Otherwise, the Dirac field Ψ would correspond to two

independent Weyl fermions. Another way of seeing this is by noting from eq. (2.29) that

Ξc = 0 when either λ = 0 or φ = 0.
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Figure 4. The undoped spectral function of the elementary fermion for λ = 1 and g = 1.

In figure 4 we show the semiholographic spectral function for λ = 1 and g = 1, which

also contains a gap. For the specific set of parameters chosen there, we see that the mass is

renormalized to a value smaller than the bare mass. From our previous analysis of figure 2b,

which gives the values of the renormalized mass for large g, we know that this is not always

the case. This is again evident in figure 5, where we study the dependence of the spectral

functions at zero momentum on the coupling constants g and λ. The values of λ in the

figures are large enough such that the self-energy has a gap. Clearly, for g = 0 the spectral

function resembles that of a free Dirac fermion with mass M0. Upon increasing g, for both

values of λ in the figures the mass first renormalizes to a smaller value, but ultimately

converges for large g to the value shown in figure 2b that is obtained in the holographic

spectral functions, which depending on the value of λ can be either smaller or bigger than

the bare mass. A remarkable feature in both the cases shown is that there exists a value of

g at which the mass renormalizes to zero. This can be understood from the general form

of the Green’s function in eq. (2.37), where we see that the mass is renormalized with a

value proportional to g. To be more precise, by studying the symmetries of the equations

in eq. (2.29), we can write the Green’s function for small values of ω and k3 as

G−1
R (k) =

(
Z0σ · k iMeff

−iMeff −Z0σ̄ · k

)
(3.6)

where Z0 and Meff are given by

Z0 = 1 + g∂ωΞ0(kµ = 0), (3.7)

Meff = M0 + igΞc(kµ = 0). (3.8)
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(c) λ = 2.
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Figure 5. The semiholographic spectral function at zero momentum for several values of g. The

legends show the value of g/gc. In (a) and (b), λ = 1 and gc = 0.56. In (c) and (d), λ = 2 and

gc = 0.39. These spectral functions are symmetric in ω due to particle-hole symmetry. In (c) the

peaks are all very sharp because they are at frequencies inside the gap of the self-energy for λ = 2.

Referring to appendix B for details, we note that Z0 and Meff are real constants and Z0 > 0.

From this expression it follows that the effective mass changes sign when g assumes the

critical value

gc =
iM0

Ξc(kµ = 0)
. (3.9)

This signals a topological quantum phase transition similar to the one obtained by changing

the sign of the mass in free Dirac theory9 [35–37]. This can for example be seen by defining

a winding number as in ref. [36], which changes when inverting the sign of the Dirac mass.10

We note that this transition is topological only when the symmetry protecting this winding

number is not broken during the transition. Due to the symmetry of the Dirac equation it

is not possible to determine which sign of the mass corresponds to a topologically trivial or

nontrivial state. However, regardless of the initial sign of the mass of a state, we can say

that to adiabatically transform this state into a state with a changed sign of the mass, i.e., a

changed winding number, requires going through a gapless state, given that the protecting

symmetry is respected during this transition. At the quantum critical point, Meff = 0 and

9Strictly speaking we cannot see the quantum phase transition, since the temperature in our numerical

computation is never exactly equal to zero.
10Alternatively, this can be done by studying the behavior of the eigenspinor components of the Dirac

Hamiltonian under a parity transformation.
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Figure 6. The spectral function at λ = 1 and g = gc = 0.56.
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Figure 7. The spectral function at λ = −1 for several values of g. The legend shows the value of

the dimensionless coupling g.

the spectrum looks like that of a massless quasiparticle, as shown in figure 6. Since the

dispersion of the peak now resides inside the gap, this time it does look like an infinitely

long-lived quasiparticle.

What we have thus shown is that the introduction of the additional scale g in semi-

holography induces a topological quantum phase transition. This scale is restricted to

nonnegative values. Therefore, having obtained a solution for Ξ, it is possible to find a

quantum critical solution by choosing g as in eq. (3.9), but only if Im[Ξc(kµ = 0)] > 0.

It turns out that for λ > 0 this is always the case, although λ should be large enough to

create a gap for eq. (3.9) to hold. Hence for positive λ, the Dirac fermion described by

the holographic limit g → ∞ will always be topologically distinct from the free fermion

described by g = 0. From the symmetry described in appendix B we can also immediately

see that for λ < 0 this is not the case, since then Im[Ξc(kµ = 0)] < 0. This can also

be seen in figures 7 and 8. Moreover, from the symmetry described in appendix B that

relates the self-energy corresponding to the bulk mass M to the one for −M , it follows that

this conclusion does not change when changing the sign of M . Specifically, this symmetry
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Figure 8. The spectral function at g = 0.5 and zero momentum as a function of λ. Here, the

quantum critical point is clearly visible for λ = 1.25, whereas there is no critical point for a negative

value of λ.

implies that when changing only the sign of M , the new value of gc is equal to the inverse

of the old one. In fact, numerical analysis shows that gc is proportional to λ−2M . Again,

we can partially understand this by noting that in eq. (2.29) the asymptotically relevant

scale is λM0 rather than M0, so that at low temperatures and kµ = 0 the asymptotic

equation yields that Ξc ∝ (λM0)2M . However, solving the equation asymptotically yields

an integration constant of which it is not entirely clear to us why its dependence on λ is

negligible.

All the spectral functions presented in this section satisfy the sum rule in eq. (3.2),

which we have verified numerically. However, in e.g. figures 6 and 4, we see that for nonzero

g there is also spectral weight at frequencies higher than the position of the peak. This

implies that due to interactions the spectral weight of the peak decreases. Numerically

integrating over frequency reveals that for the case presented in figure 4 the two red peaks

carry less than half of the total spectral weight, which shows the significant effect of the

interactions. The spread in the spectral weight continues to grow for higher g. In figure 8,

for large enough values of |λ| we can clearly distinguish the spectral weight of the peaks

due to the renormalized bare mass from the weight that originates from the self-energy.

This self-energy contains a continuum rather than a peak, as we can see from figure 1a.

Therefore, rather than an avoided crossing, we observe that the spectral weight merges

into one broad peak for small values of λ. Moreover, in this figure we also see once again

that a quantum phase transition occurs at a critical positive value of λ.

3.2 Doped spectra

We now turn to the case of nonzero chemical potential. Here we restrict ourselves to µ > 0,

as the solution for µ < 0 then easily follows from particle-hole symmetry as described in
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Figure 9. The holographic spectral function for µ = 2 and λ = 1 in (a) standard and (b) alternative

quantization. The Fermi surface is most clearly visible in alternative quantization, where kF = 1.58.

appendix B. One trivial effect of the chemical potential is that the spectrum will appear

shifted in frequency due to the use of grand-canonical energies. More interesting effects such

as the formation of Fermi surfaces occur for large enough values of µ. In this subsection

we firstly study holographic spectral functions containing such Fermi surfaces. We then

proceed with the semiholographic Green’s functions with which we can also compute the

corresponding momentum distribution functions. Finally, we study the dependence on the

couplings g and λ of the characteristics of the theory near the Fermi surfaces.

3.2.1 Formation of Fermi surfaces in the holographic spectra

The formation of Fermi surfaces in holographic models was studied before in e.g. refs. [15,

17–20]. Here we investigate how this formation depends on the parameters in our model,

in particular on the size of the gap, i.e., on λ. In the spectral functions, Fermi surfaces

appear as long-lived quasiparticle states at the chemical potential, i.e., at ω = 0. In other

words, they appear as poles in the low-temperature spectral function at ω = 0 and at a

nonzero Fermi momentum k = kF. Examples of such spectral functions containing a Fermi

surface are shown in figure 9 in both standard and alternative quantization. In this figure

we have set µ = 2 and λ = 1. The Fermi surface is most clearly visible in alternative

quantization. For a Fermi surface to appear in our model we need a sufficiently large

chemical potential. This is of course a consequence of the gaps in our spectra. Moreover,

we expect that since for larger values of λ the gap grows, the chemical potential required for

the formation of a Fermi surface will be higher. Conversely, for a fixed chemical potential

there exists a critical coupling λc at which the Fermi surface vanishes. This can indeed be

seen in figure 10, where we plot the Fermi momentum of the spectral function in alternative

quantization as a function of the coupling λ. From figure 10a it follows that when scaling

the Fermi momentum with its value at λ = 0, denoted by kF,0, the resulting curve is

given by
kF

kF,0
=

√
1− λ

λc
. (3.10)
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Figure 10. (a) The Fermi momentum kF corresponding to the holographic Green’s function in

alternative quantization as a function of the coupling λ. The Fermi momentum is scaled with its

value at λ = 0 and the coupling λ is scaled with the value λc at which the Fermi surface vanishes.

The black curve corresponds to eq. (3.10). (b) The Fermi momentum at λ = 0 and the critical

coupling λc, both scaled with the chemical potential µ.

Hence, this curve is independent of µ. Interestingly, this result is very reminiscent of a

second-order mean-field quantum phase transition between a state with a Fermi surface

and a state without one, if we think of the Fermi momentum as an order parameter. A

quantum phase transition between such states was also found in the semiholographic model

studied in ref. [15] and in ref. [24] in the context of nodal-line semimetals. Furthermore, the

result looks similar to the result in non-interacting Dirac theory where kF =
√
µ2 −m2,

with m the Dirac mass of that theory. This suggests that also here we can approximate the

band in figure 9b by ω+µ =
√
k2 +m2, up to some mass and wavefunction renormalization.

Identifying the mass in our model with λ,11 this seems to suggest that kF,0 ∝ µ and λc ∝ µ.

As shown in figure 10b, this is indeed what we obtain from our numerics when µ is large

enough. For smaller chemical potential the mass and wavefunction renormalization still

depend on µ. Notice that the intersection of the curves in 10b with the vertical axis occurs

at nonzero values, which indicates that also for small chemical potentials kF,0 and λc are

proportional to µ to leading order.

Another feature that is visible in the spectral function in figure 9b is a second band

that is close to the chemical potential, i.e., near ω = 0. Here the height of the peak is higher

for lower values of k. A similar feature was observed in the spectral functions in ref. [17],

where the band was interpreted as a so-called critical Fermi ball. Moreover, refs. [18, 19]

report the formation of multiple Fermi surfaces in their models. However, in our model,

the imaginary part of the Green’s function near the second band is nonzero, so this does

not cause additional Fermi surfaces. Since the band is situated at the chemical potential,

independent of the value of λ, it appears to indicate the existence of a many-body fermionic

bound state in the theory due to the presence of the Fermi surface that hybridizes with

the composite fermions described by the spectral function. We have found that the band

11This identification can be justified by figure 2b.

– 20 –



J
H
E
P
0
4
(
2
0
1
8
)
1
2
3

0

0.08

0.16

0.24

0.32

0.40

(a)

0.001 0.01 0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0

g

kF

-10

-1

1

100

1

2

2.355

10

(b)

Figure 11. (a) The spectral function for µ = 2, λ = 1 and g = 4. There is a Fermi surface at

kF = 1.72. (b) The Fermi momentum kF as a function of g. The legend shows the value of the

coupling λ.

is also present for nonzero values of µ that are small enough such that the band is inside

the gap. Therefore the binding energy of this bound state, as compared to the band gap,

can be positive or negative in our models.

3.2.2 Semiholographic spectra

Fermi surfaces in semiholographic models have been studied before in refs. [15, 25, 38].

Here, we investigate the influence of a finite semiholographic coupling g on our fermionic

spectra. The semiholographic spectral function is shown in figure 11a for g = 4 and other-

wise the same parameters as in figure 9. Qualitatively the spectrum bears resemblance to

the holographic spectrum in alternative quantization in figure 9b, but we observe quanti-

tative differences in the size of the gap and the location of the Fermi surface. Figure 11b

shows the dependence of the Fermi momentum on both the couplings λ and g. Here we have

taken µ = 2, such that at g = 0 there is a Fermi surface located at kF =
√
µ2 −M2

0 =
√

3,

independent of λ. Furthermore, in the limit of large g the Fermi momentum converges

to the holographic value shown in figure 10. Since this value is independent of the sign

of λ, the Fermi momenta for λ = ±1 converge to the same value. Moreover, as we have

seen in the holographic case, the Fermi surface disappears for large values of |λ|, but as

seen in the figure, the value at which it disappears increases as we move away from the

holographic limit. Finally, we note that for λ > 0 the Fermi momentum first increases as

we increase g, after which it decreases to ultimately converge to the large-g value. Since

the Fermi momentum is largest when the effective mass vanishes, the tops of these curves

correspond to the quantum critical points gc mentioned in section 3.1, where the spectrum

is gapless. The value of gc can however not be derived from an equation similar to (3.9),

since Ξc(kµ = 0) is not purely imaginary for nonzero chemical potential. In contrast, for

λ < 0 the Fermi momentum converges to the large-g value without passing through such a

quantum critical point, in accordance with the findings in section 3.1.

Above we considered a case where µ > 1. Here, we have seen that for g = 0 there is a

Fermi surface. In contrast, in the limit g → ∞, this is only true if |λ| < λc, where λc can
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be determined from the asymptotic value in figure 10b. For finite g, this generalizes to two

g-dependent critical values λc,+(g) > 0 and λc,−(g) < 0, so that the spectrum only contains

a Fermi surface when λc,− < λ < λc,+. From figure 11b we see that λc,+ increases as we

lower g, and diverges to ∞ as g → 0. Moreover, as we can see by comparing the curves

for λ = ±10, we in general have that λc,− 6= −λc,+. The case when µ ≤ 1 is slightly more

complicated. Here, there is no Fermi surface for the noninteracting case g = 0. However,

we know from figure 10b that there is a Fermi surface when g →∞ for |λ| sufficiently small,

i.e., |λ| < λc. This means that in this case there must be a critical coupling g above which

a Fermi surface forms. On the other hand, for larger |λ|, there is no Fermi surface when

g = 0 and neither when g →∞. In this case, depending on the value of λ, a Fermi surface

can form at an intermediate value of g, which disappears again for larger g. Alternatively,

there can also be values of λ for which there is no Fermi surface for any value of g.

Besides the critical points mentioned above, we can find critical couplings gc reminis-

cent of the ones mentioned section 3.1 at which the spectrum is gapless. However, due to

the nonzero imaginary part of the self-energy at nonzero doping, the spectrum will in this

case be gapless for a larger range of values for g. Although interesting, showing the entire

phase diagram with the all of the abovementioned critical couplings for all values of g, λ

and µ is beyond the scope of the present paper.

The semiholographic spectral functions computed in this section obey the sum rule.

This allows us to define and compute the momentum distribution function, which we shall

do next.

3.2.3 Momentum distribution functions

Since our numerical calculations are performed at a small but nonzero temperature, the

peaks at the Fermi surface have a small finite width. Therefore the previously obtained

values of kF, which is a quantity defined at zero temperature, are formally only approxi-

mately at the Fermi surface. Another indication of the Fermi surface is found by looking

for a discontinuity in the momentum distribution of the Dirac fermion, which is defined as

N(k) =

∫
dωρ(ω,k)nF(ω) (3.11)

where nF(ω) is the Fermi distribution function. In figures 12a, 12b and 12d we have

studied the dependence of this quantity on the parameters of our system. Here we have

fixed the chemical potential to µ = 2, as we expect that this will not have a large impact

on the qualitative behavior besides the location of the Fermi surface. As expected, these

momentum distribution functions contain a discontinuity at the Fermi surface, although

the discontinuity is smoothed out by the finite temperature. We have however checked that

the discontinuity becomes steeper as we decrease the temperature further, as is shown in

figure 12d.

For small momenta, the value of N(k) depends on the couplings g and λ, as shown in

figure 12a and 12b. The large deviation from 4 is indeed a signature of strong interactions.

It indicates that there is still nontrivial spectral weight above the upper band which can

for example be seen in figure 11a. For g = 100 the spread of spectral weight is so large
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Figure 12. The dependence of the momentum distribution function on (a) the coupling g, (b) the

coupling λ and (d) the temperature, and (c) the dependence of the quasiparticle residue on g and λ.

In all plots the chemical potential is fixed to µ = 2 and in all plots except for (d), the temperature

is fixed to T = 1/100. In (a) λ = 1, in (b) g = 1 and in (d) g = λ = 1. The dotted lines in (a) and

(b) denote the Fermi momenta of the corresponding curves of the same colors, as calculated from

the spectral functions. In (d), the gray line denotes the location of the Fermi surface, which does

not depend on temperature.

that the discontinuity is hardly visible in the figure. In contrast, for g = 1/100, nearly

all spectral weight is contained in the two peaks in the spectrum. Furthermore, for large

momenta, N(k) always approaches 2, independent of g and λ. This shows that even though

the spectrum contains a lot of nonzero spectral weight besides the peaks, the weight is still

evenly distributed between the region above and below the gap due to the particle-hole

symmetry of the undoped system. The discontinuity in the distributions is related to

the quasiparticle residue Z, which we study in more detail shortly. Since the momentum

distribution as defined in eq. (3.11) is the momentum distribution function for the entire

Dirac spinor, it contains both particle and hole degrees of freedom of both chiralities. In

the free theory, a discontinuity of 2 in the spectral weight corresponds to the spin degrees

of freedom only, which corresponds to Z = 1. More generally, the quasiparticle residue

is equal to one half times the discontinuity in the momentum distribution due to spin

degeneracy. Figure 12c shows that Z increases as λ increases, and decreases for increasing

g, in accordance with figures 12b and 12a. Moreover, the curves corresponding to λ = 4

and λ = 10 in figure 12c terminate at a finite value of g. This is because as explained in
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section 3.2.2, when λ is high enough there is a critical value of g above which there is no

Fermi surface.

The momentum distributions also slightly decrease at a momentum below kF. This

is for example clearly visible in figure 12a for the case g = 1/5. The reason is that the

spectral functions contain a second band above the gap, as was mentioned in the previous

section and can also be seen in figure 11a. Since this band is situated around ω = 0, it

yields a contribution to the momentum distribution for low momenta.

The quasiparticle residue displayed in figure 12c is calculated using the self-energy near

the Fermi surface. For this purpose, we linearize the theory around the Fermi momentum

kF and ω = 0. Starting with eq. (2.37) and defining the shorthand notation

ωr ≡ ω + µ+ gΞ0, (3.12)

kr ≡ k3 − gΞ3, (3.13)

Mr ≡M0 − igΞc, (3.14)

we see that we can write the trace of the Green’s function as

1

2
TrGR =

−1

ωr −
√
k2
r +M2

r

− 1

ωr +
√
k2
r +M2

r

. (3.15)

Notice that this differs from a trivial free fermionic Green’s function, since in general ωr,

kr and Mr are all complex functions of ω, k3 and all other parameters in our model. On

the other hand, we obtain an effective model by linearizing the theory near the Fermi

surface, i.e.,
1

2
TrGR =

−Z
ω − vF(k3 − kF)− iΣeff(ω, k3)

. (3.16)

This defines the quasiparticle residue Z, as well as the Fermi velocity vF, which are both real

and positive. Moreover, it defines the effective self-energy Σeff which is a real function of ω

and k3 that vanishes at the Fermi surface at zero frequency. We can compute expressions

for these quantities by comparing eq. (3.16) to eq. (3.15). To do so we first note that

the latter is dominated by the first term, since this contains a pole exactly at the Fermi

surface.12 Neglecting the second term then yields

Z ≈ −1

∂ω Re
[(

1
2TrGR(ω, kF)

)−1
]∣∣∣
ω=0

≈ 1

1 + ∂ω Re

[
gΞ0(ω, kF)−

√(
kF − gΞ3(ω, kF)

)2
+
(
M0 − igΞc(ω, kF)

)2]∣∣∣∣
ω=0

. (3.17)

This expression allows us to calculate the quasiparticle residue by calculating the self-energy

near the Fermi surface and was used to create figure 12c. Note that for M0 = Ξc = 0 this

reduces to the result in section 4.2.1 in ref. [15]. Moreover, note that the evaluation at kF

gives an additional implicit dependence on g and λ. However, since kF converges for large

12For µ < 0 the second term would dominate.
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g, we can still see from this expression that then Z ∝ 1/g, as we also observe in the figure.

Deriving a similar expression for the Fermi velocity yields

vF ≈ 2Z ∂k3 Re
[(

TrGR(0, k3)
)−1
]∣∣∣
k3=kF

≈ −Z ∂k3 Re

[
gΞ0(0, k3)−

√(
k3 − gΞ3(0, k3)

)2
+
(
M0 − igΞc(0, k3)

)2]∣∣∣∣
k3=kF

. (3.18)

Finally, we have that the effective self-energy is given by

Σeff ≈ 2Z Im
[
(TrGR)−1

]
≈ −Z Im

[
gΞ0 −

√(
k3 − gΞ3

)2
+
(
M0 − igΞc

)2]
. (3.19)

We have plotted this effective self-energy in figure 13a. As expected it vanishes at zero

frequency,13 which is related to the fact at the Fermi surface there is a peak with an

infinite lifetime τ = −2/Σeff. This is indeed visible in figure 11a. At nonzero ω, the width

associated with the peak increases and so the lifetime becomes shorter. Of interest is the

leading order frequency dependence of the self-energy Σeff. If the system behaves as a

Fermi liquid, Σeff should go to zero faster than ω. Figure 13b shows that this is indeed the

case, since the derivative of Σeff vanishes at ω = 0. Therefore the system indeed behaves

like a Fermi liquid. In figure 13c we have also plotted the second derivative of Σeff(ω, kF)

for low temperatures. At first sight, these all seem to converge to a finite value as ω → 0,

so that we could conclude that the self-energy follows Σeff ∝ ω2 for small ω. However,

upon closer inspection, the coefficient of ω2 does not appear to converge as we lower the

temperature. This convergence is necessary since we are studying the behavior near the

Fermi surface, which is defined at zero temperature. The problem is that by determining

the second derivative at zero frequency, we are inspecting a region where ω . T , which does

not correspond to the low-temperature physics. We do observe that the second derivative

converges to a finite value for ω ≈ 0.05. Here, T � ω, but ω is small compared to the

other scales of the system, i.e., the gap and the chemical potential. We also see such a

convergence for negative frequencies, but the convergence is to a different value. Although

it is numerically difficult to lower the temperature even further, we believe that in the

zero-temperature limit, the function in figure 13c converges to a finite value as ω → 0,

which is dependent on whether the limit is taken from above or below.

Although it appears difficult to extract the exact frequency dependence of the effective

self-energy at the Fermi surface, it is at least clear that it converges to zero faster than

linearly and the system is a Fermi liquid. Moreover, since the second derivative clearly

does not converge to 0, we can also conclude Σeff(ω, kF) does not converge exponentially.

We have checked that this does not change in the holographic limit of large g. This is

in contrast to what is found in the models in [15, 39, 40] where fermionic systems are

13In our numerics, it does not vanish exactly. We have however checked that this is due to nonzero

temperature. As we lower the temperature, the dependence Σeff(0, kF) ∝ T 3/2 seems to approximate our

results.
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Figure 13. (a) The effective self-energy Σeff at the Fermi momentum, and its (b) first and (c)

second derivatives. The legend on the right of (c) holds for all figures. In all graphs, µ = 2, g = 1

and λ = 1.

studied using backgrounds with a dynamical scaling exponent z that is emergent in the IR

geometry. There, the self-energy behaves as

Σeff ∝ exp

(
−
(
kzF
ω

) 1
z−1

)
. (3.20)

Apparently, our model does not contain such an exponential behavior, as can also be

checked by studying the IR geometry of our model in the zero-temperature limit, which is

similar to the one in section 5.2 in ref. [28].14

4 Conclusions and discussion

In this work we provided a framework to study the dynamics of massive Dirac fermions

using holographic and semiholographic models. We find that a gap is induced in the

fermionic spectra by coupling two probe fermions in the bulk theory through a Yukawa

coupling with the scalar field that provides the mass deformation. Moreover, by extending

to a semiholographic model we encounter a quantum critical point at which the effective

mass of the fermion vanishes. When turning on doping, we have seen that the Yukawa

coupling can be used as a parameter that triggers a quantum phase transition between a

state with a Fermi surface and a state without one. Studying the momentum distributions

near the Fermi surfaces using the semiholographic Green’s functions revealed that the

described systems show Fermi-liquid behavior. In particular, the effective self-energy at

the Fermi momentum converges to zero faster than linearly in frequency, as is expected

from Pauli blocking.

An aspect that requires further research is the conductivity in the model. In this

work, we have only seen that the CFT conductivity does not behave like an insulator

despite the introduced mass deformation. It would be interesting to study if the fermionic

contribution to the conductivity does behave like an insulator as expected. To this end we

should first use the dressed semiholographic fermionic Green’s functions to calculate the

current-current correlation function from the one-loop diagram as in refs. [23, 34]. The

next step would then be to also include the vertex corrections.

14Note however that this reference contains the geometry for d = 3.
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The principal result of this work is to provide a framework that allows us to compute

fermionic spectral functions that are relevant in the study of strongly coupled condensed

matter. In particular, using the method described here allows us to include the mass of the

fermions in condensed-matter systems. As mentioned in the introduction, this can either

be a real particle mass or an effective mass or gap in a Dirac material. The viewpoint

taken in this work is the latter, where the Dirac theory is used as an effective description.

Basically, this means that the speed c that is set to unity in this paper corresponds to

the Fermi velocity of the free massless Dirac theory. From the other point of view, we

use Dirac theory to describe actual fermionic particles, and the speed c corresponds to

the speed of light. In this case the newly introduced energy scale mc2, where m is the

mass of the fermion in the condensed-matter system under study, allows us to research

nonrelativistic physics by resorting to the appropriate regime in which the other scales

such as kBT , ~ω and µ are small compared to mc2. It would be interesting to see if we can

use this approach to for example study ultracold Fermi gases at unitarity. Besides this,

we can of course study a plethora of strongly coupled condensed-matter physics by adding

additional ingredients in the bulk theory, such as chiral-symmetry breaking terms as was

done in refs. [21, 22, 24].
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A Conventions

In this appendix we list our conventions. We firstly specify the dimensionless units used

throughout the paper, and subsequently give our conventions regarding the Dirac theory.

A.1 Units

The action for the gravitational background eq. (2.1) reads in SI units

S =

∫
d5x
√
−g

(
c3

16πG
(R− 2Λ)− 1

4µ0c
F 2 −

(
(∂φ)2 +

m2
φc

2

~2
φ2

))
. (A.1)

Here G and µ0 are Newton’s constant and the vacuum permeability respectively in 4 spatial

dimensions, and Λ < 0 is the cosmological constant. The components of the metric gµν are

dimensionless. Defining the anti-de Sitter radius as L2 = 6/(−Λ), the dimensionless units

in this paper are obtained by scaling length scales by L, so that Λ = −6. Moreover, we

put Boltzmann’s constant kB = 1. Consequently, all energy scales, such as kBT , mφc
2 and
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M0c
2, are in units of ~c/L. The dimensionless fields are obtained as follows:

Ãt̃ =

√
16πG

µ0c6
At, (A.2)

φ̃ =

√
16πG

c3
φ. (A.3)

Here the left-hand sides are the dimensionless fields used throughout the paper, where we

omitted the tildes.

The Dirac action in eq. (2.11) in SI units reads

S = igf

∫
d5x
√
−gψ̄

(
/D − Mc

~

)
ψ + igf

∫
d4x
√
−hψ̄RψL. (A.4)

Taking gf dimensionless, the Dirac field ψ has the dimension of
√
~/L2. The dimensionless

Dirac field can be defined by extracting this factor from the field. Alternatively, there

is always an undetermined dimensionless constant ~c3/16πGL3 which can be included

in the definition. However, this is equivalent to a redefinition of gf . Furthermore, the

dimensionless charge q̃ that resides in the covariant derivative is given by

q̃ =

√
µ0c6

16πG

L

~c
q. (A.5)

We remind the reader that the dimensionless quantities defined in this appendix are di-

mensionless in SI units, but can still have a nonzero scaling dimension.

A.2 Dirac theory

Firstly, we define Dirac’s gamma matrices in flat spacetime as follows:

Γµ = γµ =

(
0 σ̄µ

σµ 0

)
for µ 6= r, (A.6)

Γr = γ5 =

(
I2 0

0 −I2

)
= iγ0γ1γ2γ3. (A.7)

Here Γa are the gamma matrices defined in the 4 + 1 spacetime of the bulk, while γa are

the usual gamma matrices in 3 + 1 dimensions. Notice as well that these indices, such as

a, are underlined, meaning that these are tensors defined in flat spacetime, i.e., gab = ηab.

Moreover, σ = (I2, σi) and σ̄ = (−I2, σi) with σi the Pauli matrices.

Conjugate spinors are defined as

ψ̄ = ψ†Γ0. (A.8)

The gamma matrices in a curved background are defined using the vielbeins:

Γµ = eµaΓa. (A.9)
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The vielbeins satisfy gµν = e
a
µe
b
νηab and the inverse vielbeins eµae

a
ν = δµν and eµae

b
µ = δ

b
a.

Computing these for the metric in eq. (2.2) gives

e0
0 =

√
eχ(r)

f(r)
, (A.10)

err =
√
f(r), (A.11)

eii =
1

r
. (A.12)

The slash is defined by

/X = ΓµXµ. (A.13)

Finally, the Dirac action contains the covariant derivative /D = /∇− iq /A. Here the spinor

covariant derivative ∇µ is defined as

∇µψ = ∂µψ + Ωµψ (A.14)

where Ωµ is given by

Ωµ =
1

8
ωµab[Γ

a,Γb] (A.15)

with ωµab the spin connection

ω
a
µb = eaνe

λ
bΓνµλ − eλb ∂µe

a
λ. (A.16)

For the metric in eq. (2.2) the only nonvanishing components of the spin connection are

ωttr = −ωtrt and ωiir = −ωiri. Using this, one can show that the spinor covariant derivative

can be written as

/∇ψ = /∂ψ + ΓrF (r)ψ (A.17)

where F is a function depending on the radial coordinate only. Defining

p(r) = exp

(
−
∫ r

dr′F (r′)

)
, (A.18)

we have that

/∇ (pψ) = p/∂ψ. (A.19)

This demonstrates that rescaling both ψ(1) → pψ(1) and ψ(2) → pψ(2) in eqs. (2.16)

and (2.17) gets rid of the spin connection terms in the Dirac equations. Moreover, this

rescaling does not affect the matrix Ξ defined in eq. (2.22).

B Symmetries

In certain cases we can reduce the amount of equations we need to solve by using addi-

tional symmetries. From the equations in (2.29) and the imposed initial conditions we can
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derive that

Ξ±(ω̃, k3) = Ξ∓(ω̃,−k3), (B.1)

Ξc(ω̃, k3) = Ξc(ω̃,−k3), (B.2)

Ξ±(ω̃, k3) = −Ξ∗∓(−ω̃, k3), (B.3)

Ξc(ω̃, k3) = −Ξ∗c(−ω̃, k3). (B.4)

The first two symmetries correspond to parity symmetry, whereas the last two represent

time-reversal symmetry. From these symmetries it follows that we can solve the system for

k3 ≥ 0 and use eq. (B.1) and eq. (B.2) to obtain the results for k3 < 0. Moreover, when

µ = 0, we only need to solve for ω ≥ 0 according to eq. (B.3) and eq. (B.4), which then

represent particle-hole symmetry.

Also, the equations in (2.29) as well as the initial conditions are invariant under sending

both λ→ −λ and Ξc → −Ξc. This symmetry allows us to obtain solutions for λ < 0 from

solutions with λ > 0. Furthermore, multiplying the matrix equation between the brackets

in (2.27) from both the left and the right by Ξ−1 reveals that the equations are also invariant

under sending M → −M , λ → −λ and Ξ → Ξ−1. Consequently, solutions for M < 0 can

be obtained from solutions with M > 0. Finally, solutions for µ < 0 can be obtained from

solutions with µ > 0 by exploiting the symmetries in eq. (B.3) and eq. (B.4).

The symmetries in eqs. (B.1)–(B.4) show that for k3 = 0 we have Ξ3 = 0, and that for

k̃µ = 0, Ξ± is real and Ξc is imaginary. This demonstrates that the constants Z0 and Meff

defined in eq. (3.7) and eq. (3.8) respectively are real.

C RG equations

Throughout the paper, we have fixed the ratio of the scalar source φs and the bare mass

M0 originating from the UV action eq. (2.31) to α ≡ M0/φs = 4
√
π2/3. Here we present

an argument for choosing this specific value. It is important to realize that we could in

principle consider models in which this ratio is a free parameter, so that independent from

the argument made here, our semiholographic results can also be seen as a specific case of

such models. Moreover, this value is not relevant for our holographic results.

For a mass m2
φ = −3, the asymptotic equations of motion in eqs. (2.4), (2.5), (2.6)

and (2.7) give

φ = φsr
−1 + φvr

−3 − φ3
s

6
r−3 log r . . . . (C.1)

Under a rescaling r → λr we then get

φ→ φs(λ)λ−1r−1 + φv(λ)λ−3r−3 − φs(λ)3

6
λ−3r−3 (log r + log λ) . . . . (C.2)

As φ is invariant under this rescaling we get from comparing eq. (C.1) and eq. (C.2) that

φs(λ) = φsλ, (C.3)

φv(λ) = φvλ
3 +

φ3
s

6
λ3 log λ. (C.4)
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This yields the following RG equations for the coefficients φs,v:

λ
dφs(λ)

dλ
= φs(λ), (C.5)

λ
dφv(λ)

dλ
= 3φv(λ) +

φs(λ)3

6
. (C.6)

Note that the term with the logarithm generates the nontrivial part of the RG equation

in eq. (C.6).

On the other hand, the two-point function found from semiholography is

〈
iΨ̄Ψ

〉
= Tr

∫
d4kE

(2π)4

1

−i/kE +M0 − iΣ̃

= Tr

∫
d4kE

(2π)4

1

k2
E +M2

0 + Σ̃2 − {/kE, Σ̃}

(
i/kE +M0 − iΣ̃

)
, (C.7)

where we used the Euclidean momentum with k2
E = |k|2 + k2

4 and k4 = iω and where {., .}
denotes the anticommutator. Note that the self-energy Σ̃ here differs from the self-energy

Σ defined in eq. (2.36) by a factor of Γ0, since we are calculating
〈
Ψ̄Ψ
〉

rather than
〈
Ψ†Ψ

〉
.

However, for large momenta its components are also proportional to k2M .

Our goal is now to derive an RG equation for
〈
iΨ̄Ψ

〉
. To this end, we integrate over

a high-momentum shell for which |kE| ∈ {Λe−l,Λ} where Λ is a UV cut-off and l > 0.

We then look for the logarithmic UV divergence, which should yield the term in the RG

equation that can be compared to the nontrivial term in eq. (C.6). For the high momenta

in the shell, the integrand in eq. (C.6) can be expanded as

〈
iΨ̄Ψ

〉
Λ

= · · ·+ Tr

∫
Λ

d4kE

(2π)4

1

k2
E

(
1− M2

0 + Σ̃2 − {/kE, Σ̃}
k2

E

)(
i/kE +M0 − iΣ̃

)
, (C.8)

where the dots denote the integration over lower momenta and the second integral is over

the shell. Now it is clear that the logarithmic divergence resides in the term15 proportional

to M3
0 /k

4
E. To evaluate this term, we use d4kE = 2π2k3

EdkE to get

〈
iΨ̄Ψ

〉
Λ

= · · · − M3
0

2π2

∫ Λ

Λe−l

dkE

kE
= · · · − M3

0 l

2π2
, (C.9)

so that
d
〈
iΨ̄Ψ

〉
dl

= · · · − M3
0

2π2
. (C.10)

Expressing this in terms of α as defined in the beginning of this appendix, and identifying

φv = −
〈
iΨ̄Ψ

〉
/α,16 we obtain

dφv
dl

= · · ·+ α4φ3
s

2π2
. (C.11)

Comparing this with eq. (C.6) then yields α4 = π2/3.

15Here we neglect the subtle case M = 0.
16This follows from comparing the on-shell Klein-Gordon action to the mass deformation.
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