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1 Introduction

Among all 4-dimensional supersymmetric gauge theories, N = 4 super Yang-Mills (SYM)

is the most special and rigid model. Due to this rigidity, N = 4 SYM has remarkable

properties as a quantum field theory, such as conformal invariance and UV-finiteness [1, 2].

It arises in various contexts including compactification of 10-dimensional SYM on T 6, IIB

string theory on D3 branes, and the AdS/CFT correspondence [3]. Its amplitudes exhibit

a rich structure [4, 5], and powerful tools such as integrability provided many remarkable

insights [6].

On the other hand, the special structure of N = 4 SYM limits its applicability to real-

world physics. The SUSY vacua of N = 4 SYM with SU(N) gauge group have a simple
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structure, parametrized by the three commuting vacuum expectation values (VEVs) of

the N = 1 chiral superfields. However, deformed or softly broken versions of N = 4

SYM, for example via extra terms in the potential, may lead to more interesting vacua

and low-energy physics. For instance, it is well-known that certain mass-deformations to

the superpotential, which preserve N = 1, have a much richer vacuum structure [7–12],

including stacks of fuzzy spheres which partially or completely break the gauge symmetry.

The resulting low-energy effective theory around such vacua behaves like a 6-dimensional

theory with two fuzzy extra dimensions and a finite tower of KK modes, cf. [13–15]. Adding

suitable soft SUSY breaking terms to the potential can lead to vacua with even richer

geometries, including S2 × S2 [16–19], S4 [20], and others. This generation of fuzzy extra

dimensions is particularly interesting from the matrix model point of view. In fact, the

IKKT matrix model on noncommutative D3-brane solutions reduces to the U(N) N = 4

SYM [21], where space-time and fuzzy extra dimensions are treated on the samen footing.

Here, we focus, however, on the familiar gauge theory setting on R3,1.

The above examples lead to two obvious questions: (i) Which other, more interesting

fuzzy geometries can be realized as vacua of deformed or softly broken N = 4 SYM? (ii)

What is the low-energy physics around these vacua? In particular, is it possible to obtain

a gauge theory with chiral low-energy physics in some sense? More specifically, we have in

mind a gauge theory where fermions with different chirality couple differently to the gauge

fields, such as the Standard Model (SM) of particle physics.

The issue of chirality is particularly challenging, and one might be led to quickly dismiss

this possibility. In the aforementioned examples, the low-energy effective theory exhibits

the corresponding KK tower, but it typically results in a non-chiral theory [22]. On the

other hand, according to [23], chiral fermions do appear on intersecting non-commutative

brane solutions in the IKKT matrix model, if the intersecting branes span all six extra

dimensions. This works nicely for flat branes, which cannot be realized in SU(N) SYM,

though. In contrast, intersecting configurations of curved fuzzy branes tend to be unstable,

cf. [24].

Remarkably, intersecting compact brane solutions of softly broken N = 4 SYM without

instabilities were found in [25, 26], by projecting coadjoint orbits O[µ] of SU(3) along the

Cartan directions. This results in squashed orbits C[µ] of dimension 4 and 6, but both

types locally span all six internal directions at the intersections. Moreover, chiral fermionic

zero modes arise at the intersections of (the sheets of) the branes. While it was shown that

there are no negative modes around the vacua, there do exist numerous zero modes, which

lead to Yukawa couplings between the fermionic zero modes.

These zero modes arising on such intersecting fuzzy branes O[µ] are particularly inter-

esting. The bosonic ones are denoted as Higgs sector here, and will be the main focus of

the present paper. It had been argued in [26] that some of these Higgs modes may acquire

a VEV, which in turn may lead to a chiral low-energy theory on R1,3×C[µ] in suitable con-

figurations. More specifically, some of the fermionic zero modes (a mirror sector) should

become massive due to the Yukawa couplings, leaving a low-energy sector of fermions with

index zero, but chiral coupling to the low-energy gauge fields. However, the existence of

such non-trivial Higgs vacua had not been established up to now.
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In the present paper, we study this Higgs sector in detail, and show that there exist ex-

act solutions with non-vanishing Higgs VEV linking the C[µ] branes at their intersections,

leading to appropriate Yukawa couplings. We find a remarkably rich structure of such solu-

tions, with many similarities, but also some differences to the case of supersymmetric gauge

theories. In particular, the zero modes form a graded ring. We establish a class of exact

solutions with vanishing backreaction to the branes, which is discussed and illustrated in a

number of examples, including a brane with G2 structure. For the simplest 6-dimensional

(locally space-filling) branes, we find suitable Higgs solutions which link the 3+3 left and

right-handed sheets, as required for a chiral gauge theory with 3 generations. This suggests

that a low-energy behavior reminiscent of the Standard Model might be achieved for larger

branes; however for generic branes we can only provide evidence for the existence of such

Higgs solutions.

Summary. Due to the length of the article, we provide a brief summary of the key points

already at this stage. Our starting point is the N = 4 SYM Lagrangian for gauge group

SU(N) with the following cubic and quadratic soft SUSY breaking terms

Vsoft[X] = −4 tr
(
[X+

1 , X
+
2 ]X+

3 + h.c.
)

+ 4

3∑
i=1

M2
i tr

(
X−i X

+
i

)
(1.1)

with X−i := (X+
i )†, i = 1, 2, 3. We will focus on vacuum solutions X±i ∈ Mat(N,C). Our

first new insight is the following observation: the second order, i.e. double commutator,

equations of motion (eom) for X admit first integral equations

[
X+
i , X

+
j

]
=

3∑
k=1

εijkX
−
k , ∀i, j and

3∑
i=1

[
X+
i , X

−
i

]
= 0 . (1.2)

The full equations of motion with arbitrary mass term M ≡ Mi ∈ [0, 1
2 ] are solved by a

rescaling

X̃+
i = R(M) ·X+

i , (1.3)

with R(M) = 1
2(1+

√
1− 4M2) and any X+

i that satisfy (1.2). As demonstrated in [25], this

allows for vacua describing squashed fuzzy SU(3) coadjoint orbits C[µ]. The (bosonic and

fermionic) fluctuations around such a background X are governed by a matrix Laplacian

OXV and a Dirac operator /D
X

. For vanishing masses M , the operator OXV on C[µ] is positive

semi-definite, and the zero modes split into regular and exceptional modes. The regular

modes are fully classified by the representation theory origins of C[µ]. Moreover, regular

zero modes are characterized by the decoupling conditions[
X+
i , φ

+
j

]
= 0 , ∀i 6= j , and

[
X−i , φ

+
i

]
= 0 ∀i , (1.4)

between background X and fluctuations φ. Our second new insight concerns properties of

the regular zero modes: first, the set of regular zero modes, in the sense of (1.4), form a
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ring which is graded by the integral weights of su(3). Second, the decoupling conditions

between X and φ are sufficient for a decoupling of the potential

V [X + φ] = V [X] + V [φ] (1.5a)

and the full equations of motion also decouple,

eom(X + φ) = eom(X) + eom(φ) , (1.5b)

for arbitrary mass values.

Our third new insight lies in the following construction: starting from a background

X, we add regular zero modes φ which satisfy the equations of motion. Then X + φ is an

exact solution due to (1.5b). Examples include (i) zero modes φ with maximal rank that

reduce X+φ to the fuzzy 2-sphere, and (ii) zero modes φ with rank one such that X+φ is

interpreted as C[µ] brane plus string modes. The latter provide Yukawa couplings for the

analogous fermionic zero modes at the brane intersections.

While the spectra of OX+φ
V and /D

X+φ
are not understood analytically, numerical

studies show the existence of instabilities in the massless case. However, a surprising but

simple observation shows that the full potential can be expressed in complete squares,

such that it becomes positive semi-definite for M ≥
√

2
3 . While for M >

√
2

3 the solution

with V = 0 are trivial, for the particular mass M∗ =
√

2
3 the solutions with V = 0

are given precisely by (1.2), upon rescaling (1.3). Thus OX+φ
V has no instabilities, and

moreover numerical studies indicate that the number of zero modes is drastically reduced in

comparison to OXV , and independent of N . This implies that our non-trivial (brane+Higgs)

solutions are locally stable up to a compact moduli space, which is understood in several

interesting cases.

These results are remarkable, because they point to the possibility to obtain interesting

chiral low energy gauge theories from softly broken N = 4 SYM. The C[µ] solutions behave

as self-intersecting branes in extra dimensions, with chiral fermionic zero modes located at

the intersections. In [25, 26] it has been argued that some Higgs moduli on the C[µ] branes

need to acquire VEVs in order to stabilize the system and to give masses to undesired

fermions via Yukawa couplings. Here, we established the existence of such Higgs VEVs,

which give masses not only to fermions, but also to most of the bosonic moduli, as shown

by the spectrum of OX+φ
V .

There are two types of branes C[(N, 0)] and C[(N1, N2)] with different chirality proper-

ties. The space-filling 6-dimensional C[(N1, N2)] have a built-in separation of chiral modes,

as seen through a suitable gauge boson mode of χ (4.1). We focus on the simplest C[(1, 1)]

brane, for which we find an exact Higgs solution, and the more general rigged C[(N, 1)]

branes. These are the basis for our approach to the Standard Model. On the 4-dimensional

counterparts C[(N, 0)], a chiral gauge theory would require a configuration of Higgs modes

which is not supported by our results.

There is another interesting general message: the underlying models are gauge theories

with a gauge group of large rank N � 1. In the trivial vacuum, such large-N gauge theories

are governed by the t’Hooft coupling λ = g2N . In contrast, the C[(N1, N2)] vacua with
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large Ni behave as semi-classical, large fuzzy branes. The fluctuation spectrum on these

vacua consist of a tower of KK states with a finite mass gap (independent of N), as well

as the Higgs sector of zero modes. As discussed in section 2.5, this Higgs sector consists of

string-like modes, which link some sheets of these branes with coupling strength g, as well

as semi-classical modes, which are almost free. Moreover, most of the latter disappear as

the string-like modes acquire some VEV. Hence, the large number of massless fluctuations

in the original large-N theory is reduced to a small sector of string-like modes, which

acquire VEVs, and leave few remaining zero modes. This mean that the original large-N

gauge theory reduces to an effective low-energy theory with few modes and an interesting

geometric structure. This certainly provides strong motivation to study such scenarios in

more detail.

Outline. The paper is organized as follows: we start by recalling N = 4 SYM in sec-

tion 2, which is modified by cubic and quadratic soft breaking terms. The properties of

the squashed coadjoint SU(3) orbits and the classification of the bosonic zero modes are

reviewed, and the potential is organized accordingly. In section 3, we focus on the exact

(classical) C[µ] solutions of 4-dimensional type, and study their zero mode sector. We find

various exact solutions in the massless case, and show that all of these are free of insta-

bilities in the presence of certain mass parameters. Moving on to 6-dimensional squashed

orbits and their zero modes, we show in section 4 that chiral settings are simpler and more

naturally obtained here, and identify the chirality observable χ, see (4.1). We find again

exact solutions for the simplest 6-dimensional case C[(1, 1)], and comment on generaliza-

tions for larger branes and the issue of three generations. The fermionic zero modes and

their Yukawa couplings are discussed in section 5. In section 6, we give a qualitative dis-

cussion how low-energy theories resembling the Standard Model might be obtained using

the present framework. Finally, we conclude in section 7.

Two appendices complement this article, exemplifying solutions to the equations of

motion in appendix A, and spelling out details of the novel combined solutions and the

spectra of the vector Laplacian and the Dirac operator in appendix B.

2 Background, zero modes and Higgs potential

First we recall the setting from [25–27]. We start with the action of N = 4 SU(N)

SYM, which is organized most transparently in terms of 10-dimensional SYM reduced to

4 dimensions:

SYM =

∫
d4y

1

4g2
tr
(
− FµνFµν − 2DµφaDµφa + [φa, φb][φa, φb]

)
+ tr

(
Ψ̄γµiDµΨ + Ψ̄Γa[φa,Ψ]

)
.

(2.1)

Here Fµν is the field strength, Dµ = ∂µ − i[Aµ, ·] the gauge covariant derivative, φa,

a ∈ {1, 2, 4, 5, 6, 7} are 6 scalar fields, Ψ is a matrix-valued Majorana-Weyl (MW) spinor

of SO(9, 1) dimensionally reduced to 4-dimensions, and Γa arise from the 10-dimensional

gamma matrices. All fields transform take values in su(N) and transform in the adjoint of

the SU(N) gauge symmetry. The global SO(6)R symmetry is manifest.
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It will be useful to work with the following complex linear combinations of dimension-

less scalar fields

mX±1 =
1√
2

(φ4 ± iφ5) ,

mX±2 =
1√
2

(φ6 ∓ iφ7) ,

mX±3 =
1√
2

(φ1 ∓ iφ2)

(2.2)

with m having the dimension of a mass. For later, we also introduce the notation

X±j ≡ X±αj with a normalization such that

Xα = X−α ∀α ∈ I = {±αj , j = 1, 2, 3} . (2.3)

To introduce a scale and to allow non-trivial brane solutions, we add soft terms to the

potential,

V[φ] =
m4

g2

(
V4[X] + Vsoft[X]

)
≡ m4

g2
V [X] (2.4)

where

V4[X] = −1

4
tr
∑
α,β∈I

[Xα, Xβ ][Xα, Xβ ] (2.5)

= −1

2
tr
∑
i,j

[X+
i , X

+
j ][X−i , X

−
j ]− 1

2
tr
∑
i,j

[X+
i , X

−
j ][X−i , X

+
j ],

Vsoft[X] = 4 tr
(
− [X+

1 , X
+
2 ]X+

3 − [X−2 , X
−
1 ]X−3 +M2

i X
−
i X

+
i

)
≡ V3[X] + V2[X] , (2.6)

thereby fixing the scale m. The cubic potential can be written as

V3[X] = −4

3
tr

∑
i,j,k

εijkX
+
i X

+
j X

+
k + h.c.

 ≡ i

3
tr

∑
α,β,γ∈I

(gαβγX
αXβXγ), (2.7)

corresponding to a holomorphic 3-form on C3. Rewritten in a real basis, this is recognized

as the structure constants of su(3) projected to the root generators [25].

The cubic term breaks the global SU(4)R symmetry to SU(3)R, which is in a sense

the minimal breaking possible. The mass terms Mi may break this further: for equal

Mi ≡M ≥ 0, the SU(3)R is maintained. For M1 = M2 6= M3 (or permutations thereof) one

has a global (SU(2)×U(1))R, and if all masses are distinct there is only a (U(1)×U(1))R left.

2.1 Preliminaries

In this section we perform some algebraic manipulations of the full potential, which al-

low to derive first integral equations. Also, we introduce notation for the treatment of

perturbations.
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Rewriting the potential. We reconsider the full potential V [X] = V4[X] + V3[X] +

V2[X]. To begin with, we rewrite the quartic potential by using the Jacobi identity of the

commutator and cyclicity of the trace. This results in

V4 = −tr
∑
i,j

[X+
i , X

+
j ][X−i , X

−
j ] +

1

2
tr
∑
i

[X+
i , X

−
i ]
∑
j

[X+
j , X

−
j ] . (2.8a)

The cubic potential (2.7) can be expressed as

V3 = −2

3
tr

∑
i,j,k

εijk[X
+
i , X

+
j ]X+

k −
∑
i,j,k

εijk[X
−
i , X

−
j ]X−k

 . (2.8b)

By completing the square, we arrive at the following expression for the total potential

V [X] = tr

(∑
i,j

(
[X+

i , X
+
j ]− 2

3

∑
k

εijkX
−
k

)(
−[X−i , X

−
j ]− 2

3

∑
k

εijkX
+
k

)

+
1

2

∑
i

[X+
i , X

−
i ]
∑
j

[X+
j , X

−
j ] + 4

∑
i

(
M2
i −

2

9

)
X−i X

+
i

)
.

(2.9)

Next, we define the suggestive notation

Fl =
1

2

∑
i,j

εlijBij , Bij = [X+
i , X

+
j ]− 2

3

∑
k

εijkX
−
k , (2.10a)

D =
∑
i

[X+
i , X

−
i ] , (2.10b)

and arrive at

V [X] = 2tr(FlF
†
l ) +

1

2
tr(DD†) + 4

∑
i

(M2
i − 2

9)tr(X−i X
+
i ) (2.11)

It is apparent that tr(FlF
†
l ), tr(DD†), tr(X−i X

+
i ) ≥ 0. Therefore, we conclude the following:

(i) Solutions with V < 0 can only exist if 0 ≤M2
i <

2
9 holds at least for one index i.

(ii) If M2
i >

2
9 for all i, then the only solution with V = 0 is the trivial one X±i = 0 for

all i.

(iii) For the special case Mi =
√

2
3 for all i, the vacuum configurations with V = 0 are

characterized by the two simultaneous conditions

Fl = 0 ∀l ⇐⇒ [X+
i , X

+
j ]− 2

3

∑
k

εijkX
−
k = 0 ∀i, j

D = 0 ⇐⇒
∑
i

[X+
i , X

−
i ] = 0 .

(2.12)

Note that although the potential simplifies to V = 2tr(FlF
†
l ) + 1

2tr(DD†), the Fl are

not F-terms in the usual sense, because they cannot be integrated to a superpotential.

In other words, the would-be F-terms Fl contain both the holomorphic as well as

anti-holomorphic multiplets; therefore, they cannot originate from derivatives of a

holomorphic superpotential. Nonetheless, D behaves like the D-term for N = 4 SYM.
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Relation to N = 1∗ SUSY. Although SUSY is generically broken by the addition of

soft terms, there is a special case M1 = M2 = 0,M3 =
√

2 where the soft potential can be

expressed as a mass deformation of an N = 1 superpotential. Suppose the superpotential

is of the form

W = tr([X+
1 , X

+
2 ]X−3 −m1X

+
1 X

+
1 −m2X

+
2 X

+
2 −m3X

−
3 X

−
3 ) . (2.13)

Then the F-term contributions to the scalar potential are as follows:

VF = −tr

(
[X+

1 , X
+
2 ][X−1 , X

−
2 ] + [X+

1 , X
−
3 ][X−1 , X

+
3 ] + [X+

2 , X
−
3 ][X−2 , X

+
3 ]

+m1([X+
2 , X

−
3 ]X−1 − [X−2 , X

+
3 ]X+

1 )

+m2([X−3 , X
+
1 ]X−2 − [X+

3 , X
−
1 ]X−2 )

+m3([X+
1 , X

+
2 ]X+

3 − [X−1 , X
−
2 ]X−3 )

+m2
1X

+
1 X

−
1 +m2

2X
+
2 X

−
2 +m2

3X
+
3 X

−
3

)
(2.14)

to match the cubic potential (2.7), one is forced to set m1 = m2 = 0 and m3 =
√

2. Hence,

this has an unbroken N = 1 SUSY and is known as N = 1∗ SUSY, see for instance [7–10].

Perturbation of the background. Let us add a perturbation φα to a background Xα,

Y α = Xα + φα . (2.15)

As discussed in [26], the perturbations imply further symmetry breaking and lead to in-

teresting low-energy physics in the zero-mode sector of the background X. The complete

potential can be worked out,

V [X + φ] = V [X] + V [φ] + tr

(
φα�XXα +Xα�φφα +

1

2
φα
(
�X + 2 /Dad

)
φα −

1

2
f2

)
+ 4tr

(
−εijkφ+

i X
+
j X

+
k − εijkφ

+
i φ

+
j X

+
k +M2

i φ
−
i X

+
i + h.c.

)
. (2.16)

Here

f = i[φα, X
α] (2.17)

can be viewed as gauge-fixing function in extra dimensions, and, following [27], we define

following operators

�X =
∑
a∈I

[Xα, [X
α, ·]] =

3∑
j=1

[X+
j , [X

−
j , ·]] + [X−j , [X

+
j , ·]], (2.18)

( /Dadφ)α =
∑
β

[[Xα, X
β ], φβ ] = (( /Dmix + /Ddiag)φ)α

( /Dmixφ)α =
∑
β 6=α

[[Xα, X
β ], φβ ]

( /Ddiagφ)α = [[Xα, X−α], φα] (no sum) . (2.19)

– 8 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
6

Equations of motion. The equations of motion (eom) for the background X can be

written as

0 =
(
�4 +m2(�X + 4M2

i )
)
X+
i + 4m2εijkX

−
j X

−
k (2.20)

where �4 = −DµD
µ is the 4-dimensional covariant d’Alembertian. For classical vacua, i.e.

space-time independent X, the eom reduce and can be cast in the following form:

0 = 2
∑
j

[
B̃ij ,X

−
j

]
+
[
D,X+

i

]
+4M2

i X
+
i with B̃ij = [X+

i ,X
+
j ]−

∑
k

εijkX
−
k (2.21)

with D as in (2.10). We observe that Bij of (2.10) and B̃ij are equivalent upon rescaling X.

Homogeneity of potential. The full potential exhibits a certain homogeneity pattern,

which implies the relation 4V4 + 3V3 + 2V2 = 0 for solutions. Hence the potential value at

a solution X of the eom can be computed via

V [X]
∣∣
sol. eom

=
1

4
V3[X] +

1

2
V2[X] . (2.22)

2.2 Squashed SU(3) brane solutions

It is well-known that the potential (2.4) with (2.6) has fuzzy sphere solutions X±i ∼ R
±
i Ji

where Ji are generators of su(2) [7, 10, 13, 14, 28–31]. However as shown in [25], there

are also solutions with much richer structure corresponding to (stacks of) squashed fuzzy

coadjoint SU(3) orbits CN [µ], obtained by the following ansatz

X±i = Riπ(T±i ) . (2.23)

We denote these as (squashed) SU(3) branes, and they are the focus of this paper. Here

T±1 ≡ T±α1 , T±2 ≡ T±α2 , T±3 ≡ T±α3 (2.24)

are root generators of su(3)X ⊂ su(N), π is any representation on H ∼= CN , and α1, α2 are

the simple roots with α3 = −(α1 +α2). In these conventions,1 the Lie algebra relations are

[Tα, Tβ ] = ±Tα+β , 0 6= α+ β ∈ I
[Tαi , T−αi ] = Hi ≡ Hαi

[H,Tα] = α(H)Tα , (2.25)

and in particular

[T+
i , T

+
j ] = εijkT

−
k (2.26a)

1We use field theory conventions, while in [25] group-theory friendly conventions were used. In particular,

the αi are related to the standard basis α̃i of positive roots of su(3) used in group theory via α1 = α̃1,

α2 = α̃2, α3 = −α̃3, such that α1 + α2 + α3 = 0; this is more natural here.
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(a) (b)

Figure 1. (a) 3-dimensional section of squashed CP 2. (b) 3-dimensional section of squashed CP 2,

with zero mode connecting 2 sheets.

and αi(Hi) = (αi, αi) = 2 where (·, ·) denotes the Killing form of su(3). Note also that the

choice of labeling of α3 = −α1 − α2 implies that∑
j

[T+
j , T

−
j ] =

∑
j

Hj = 0 . (2.26b)

Using the Lie algebra relations, the equations of motion (2.20) become

0 = R1

(
2R2

1 +R2
2 +R2

3 − 4
R2R3

R1
+ 4M2

1

)
T+

1

0 = R2

(
R2

1 + 2R2
2 +R2

3 − 4
R1R3

R2
+ 4M2

2

)
T+

2

0 = R3

(
R2

1 +R2
2 + 2R2

3 − 4
R1R2

R3
+ 4M2

3

)
T+

3 . (2.27)

Assuming Mi = 0 for simplicity, these equations have the non-trivial solution

Ri = 1 ≡ R . (2.28)

This can be seen from (2.21), as for vanishing masses the eom are necessarily satisfied

for any configuration with B̃ij = 0 = D. Inspecting the relations (2.26) reveals that

the ansatz (2.23) solves the eom for (2.28). Based on investigations with Mathematica

presented in appendix A, we conclude that all Ri must be equal (up to an irrelevant sign)

if all M2
i are equal. In addition, we observe that there are no solution if one of the mass

parameters satisfies M2
i ≥ 4

3 , in agreement with earlier findings [26].

Let µ be the highest weight vector of an SU(3) irrep πµ, which enters the defini-

tion (2.23) of the squashed orbit C[µ]. The highest weight µ has associated Dynkin labels

ni = 2 (µ,αi)
(αi,αi)

∈ N (αi, i = 1, 2 are the simple roots), and we simply write µ = (n1, n2)

instead of µ = n1Λ1 + n2Λ2, with Λi the fundamental weights. Generically the CN [µ] are

6-dimensional (fuzzy) varieties, while for µ = (n, 0) and µ = (0, n) they are 4-dimensional

projections of (fuzzy) CP 2. Such a squashed CP 2 has a triple self-intersection at the origin,

as visualized in figure 1a.

The CN [µ] backgrounds X break SU(3)R to (U(1)×U(1))K generated by

Ki = 2τi − [Hαi , ·], i = 1, 2, 3 with K1 +K2 +K3 = 0 . (2.29)
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where τi denotes the Cartan generators of SU(3)R. This is a combination of the global

(U(1) × U(1))R ⊂ SU(3)R symmetry and the SU(3)X ⊂ SU(N) gauge symmetry. We

denote these U(1)Ki-charges by

K(φ) ∈ su(3)∗ (2.30)

for any2 scalar field φ, and similarly also for fermionic fields. They define a su(3) weight

lattice. The su(3)X ⊂ su(N) gauge charges will be denoted as usual by λ(φ) ∈ su(3)∗, so

that K = 2τ −λ. They all live in the same su(3) weight lattice. Furthermore, we will need

the τ -parity generator τ in U(3)R defined by

τφ±i = ±φ±i , (2.31)

which is broken by the cubic potential (2.7).

Minimal branes. The simplest solutions are the minimal branes, which arise for µ =

(1, 0) and µ = (0, 1). To see e.g. C[(1, 0)] explicitly, denote the 3 extremal weight vectors

of (1, 0) with {|1, µ〉, |2, µ〉, |3, µ〉}. Then the minimal squashed CP 2 brane is given by

X+
i := T+

i = |i, µ〉〈i− 1, µ| (2.32)

where T is the fundamental representation of su(3), and we dropped r for simplicity. The

energy for this minimal brane for Mi = 0 is obtained using (2.22) as

V4 + V3 =
1

4
V3 = −2tr(T+

1 [T+
2 , T

+
3 ] + h.c.) = −8 . (2.33)

2.3 Geometric significance: self-intersecting branes

The qualitative features of the above solutions, and in particular the chirality properties

of the fermionic zero modes discussed below, can be understood in terms of the semi-

classical geometry of the solutions, interpreted as self-intersecting branes in R6. As for

all quantized coadjoint orbits, the semi-classical geometry of CN [µ] can be extracted using

coherent states. These are precisely the SU(3) orbits {g · |x〉 , g ∈ SU(3)} of the extremal

weight states |x〉 of the irreps HΛ ∈ End(Hµ), where Hµ is the representation space for the

su(3) representation πµ. The set of coherent states |gx〉 := g · |x〉 forms a U(1) bundle over

the coadjoint orbit O[µ], and the semi-classical base manifold embedded in R6 (the brane)

is recovered from the expectation values of these coherent states

C = {〈gx|Xα|gx〉, g ∈ SU(3)} ⊂ R6. (2.34)

This would be the full coadjoint orbit O[µ] if the Xα were supplemented by the Cartan gen-

erators H3, H8, but here we obtain the projection C[µ] of O[µ] along the Cartan generators,

cf. [25–27].

The extremal weight states W|x〉, which lie on the discrete orbit of the Weyl group

W through |x〉, are projected to the origin of weight space. To see this, it is sufficient to

2In particular, K(Xα) = 0 expresses the invariance of the background.
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note that 〈x|Xα|x〉 = 0 as any X±j annihilates either |x〉 or 〈x|. The tangent space of the

sub-variety CN [µ] is obtained by acting with the three SU(2)α subgroups, which correspond

to the roots Xα of su(3), on the set of extremal weight states W|x〉. For µ = (N, 0) and

µ = (0, N), one of these actions vanishes, leading to the 4-dimensional self-intersecting

CP 2 branes depicted in figure 1b. For generic µ = (N1, N2), the CN [µ] are 6-dimensional

sub-varieties in R6, i.e. they are locally space-filling branes. Moreover, the non-degenerate

Poisson structure on CN [µ] is recovered from the commutators [Xα, Xβ ] ∼ i{xα, xβ}, whose

Pfaffian is measured by the operator χ, see (4.1). Therefore the generic 6-dimensional

branes, which carry a rank 6 flux due to the symplectic form, consist of 3+3 locally space-

filling sheets that cover the origin.

2.4 Fluctuations and zero modes

Consider the fluctuations of the scalar fields on a background brane C[µ] with representation

space H. To organize the degrees of freedom End(H), which denotes the algebra of all

possible functions, we note that the solutions (2.23) define an embedding SU(3)X ⊂ SU(N),

which acts via the adjoint on all the fields. Consequently, we decompose the su(N)-valued

fields into harmonics, i.e. irreps of this SU(3)X

su(N) ∼= End(H)
∣∣
SU(3)X

= ⊕ΛnΛHΛ (2.35)

where HΛ denotes the irreps with highest weight Λ appearing with multiplicity nΛ. For

the case of µ = (N, 0) or µ = (0, N), this decomposition is given by

End(H)
∣∣
SU(3)X

= ⊕Nn=0H(n,n) . (2.36)

While the SU(3)X gauge transformations do not act on the indices α of the scalar fields

φα, the (U(1)×U(1))Ki symmetry (2.29) does act, and the α realize 3+3 of the 8 states in

(1, 1) of the su(3) weight lattice due to the origin of C[µ] as a SU(3) coadjoint orbit. This

allows to organize the various harmonics, which will be very useful.

Assume first Mi = 0. Then the squashed brane backgrounds Xα admit a number of

bosonic zero modes φ
(0)
α , as shown in [25]. To see this, we note that the bilinear form

defined by /Dmix on a background (2.23) can be simplified, for example, as follows:

tr
(
φ−i ( /Dmixφ)+

i

)
=
∑
j 6=i

tr(φ−i [[X+
i , X

+
j ], φ−j ]) = −εikj

RiRj
Rk

tr(φ−i [X−k , φ
−
j ]) (2.37)

using (2.26a), where the φ±j are perturbations as in (2.15). For Ri ≡ R, this has the form

of the quadratic contribution from the cubic potential (2.16), and the quadratic terms in

the potential can be combined as follows:

V2[φ] =
1

2
trφαOXV φα , OXV

Ri=R= �X + 2 /Ddiag + 2

(
1− 2

R

)
/Dmix

Ri=1
= �X + 2 /Ddiag − 2 /Dmix . (2.38)

It has been proven in [25] that, under these conditions, OXV is positive semi-definite for

all representations π. The zero modes of OXV fall into two classes, denoted as regular and

exceptional zero modes. We will focus on the regular zero modes, and show that their

classification is based on a decoupling condition, as discussed in the next section.
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2.5 Regular zero modes and decoupling condition

Let φα and ψα, α ∈ I be two arbitrary matrix configurations, each consisting of three

complex matrices or equivalently six hermitian matrices. We will say that φα and ψα
satisfy the decoupling condition if

[ψα, φβ ] = 0 whenever α+ β ∈ I or α+ β = 0 (2.39)

This condition is symmetric under ψ ↔ φ, and equivalent to

[ψα, φ−β ] = 0 whenever α− β ∈ I or α− β = 0 . (2.40)

We define regular zero modes φα of OXV to be modes that satisfy the decoupling condition

w.r.t. Xα. As we will see momentarily, these modes are in fact zero modes of OXV for

Ri = R and Mi = 0, and this definition is then equivalent to the one given in [25, 27].

The conditions (2.39) or (2.40) amount to the requirement that φα is annihilated by three

ladder operators out of the six X±j . For example, the condition for φ+
i is

[X+
j , φ

+
i ] = 0 for j 6= i, and [X−i , φ

+
i ] = 0 (no sum). (2.41)

Before classifying them more explicitly, we state some important consequences. For Mi = 0,

the regular zero modes φα satisfy

( /D
X
mixφ)+

i = 0

OXV,Mi≡0φ
+
i = [HR, φ

+
i ]

Ri=R= 0
(2.42)

where

HR := R2
1H1 +R2

2H2 +R2
3H3

Ri=R= 0 . (2.43)

To prove the first statement of (2.42), consider

( /D
X
mixφ)+

i =
∑
j

[[X+
i ,X

+
j ],φ−j ]+

∑
j 6=i

[[X+
i ,X

+
j ],φ+

j ]

=
∑
j,k

RiRj
Rk

εijk [X−k ,φ
−
j ]︸ ︷︷ ︸

=0

−
∑
j 6=i

[[X−j ,φ
+
j ]︸ ︷︷ ︸

=0

,X+
i ]−

∑
j 6=i

[[φ+
j ,X

+
i ]︸ ︷︷ ︸

=0

,X−j ] = 0 (2.44)

where we have used the algebra relation (2.26a) and the Jacobi identity. All indicated

commutators vanish due to decoupling condition (2.41). For the second statement of (2.42),

consider

�Xφ
+
i =

∑
j

[X+
j , [X

−
j , φ

+
i ]] +

∑
j

[X−j , [X
+
j , φ

+
i ]] =

∑
j 6=i

[X+
j , [X

−
j , φ

+
i ]] + [X−i , [X

+
i , φ

+
i ]]

=
∑
j 6=i

[[X+
j , X

−
j ], φ+

i ]− [[X+
i , X

−
i ], φ+

i ] =
∑
j 6=i

R2
j [Hj , φ

+
i ]−R2

i [Hi, φ
+
i ] (2.45)

/Ddiagφ
+
i = R2

i [[Ti, T−i], φ
+
i ] = R2

i [Hi, φ
+
i ] (2.46)
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using (2.41). Therefore

OXV,Mi≡0φ
+
i = (�X + 2 /Ddiag)φ+

i = [HR, φ
+
i ]

Ri=R= 0 (2.47)

Consequently, the regular zero modes, as defined by the decoupling condition, are indeed

zero modes of the SU(3) branes if all Ri are equal and all mass parameters Mi vanish.

We shall keep this name also in the general case of non-vanishing masses and distinct Ri,

which is discussed in section 3.1.3.

Now we relate this to the group-theoretical classification of the regular zero modes on

a squashed SU(3) brane C[µ] given in [25, 26]. The decoupling conditions imply that any

regular zero mode φα for any fixed α ∈ I is an extremal weight vector with su(3)X weight

λ in some irrep HΛ ⊂ End(H) of the decomposition (2.35). In view of (2.41), the arrow λ

must be the extremal weight vector in the Weyl chamber opposite to the polarization α (or

possibly on its wall). Recalling the unbroken U(1)Ki of the background, this means that it

is one of the six extremal U(1)Ki weights3 Λ′ = α−λ of any φα ∈ HΛ, and we denote it by

φα,Λ′ ∈ HΛ, Λ′ = α− λ ≡ K(φα,Λ′) . (2.48)

Hence the regular zero modes φα,Λ′ have charge Λ′ = α − λ under the Ki, corresponding

to a point of the su(3) weight lattice in (the interior of) the Weyl chamber of α. The

eigenvalue τ = ±1 determined by the parity of the Weyl chamber of α = ±αi. Clearly

there is only one (extremal) state in HΛ for any such Λ′. Since /Dmix preserves Λ′ but

flips the τ -parity (recalling τ /Dmix = − /Dmixτ from [26]), it follows again that /D
X
mixφ = 0,

i.e. (2.42) holds. This provides another way to characterize the regular zero modes.

We now observe that the regular zero modes form a ring, in the following sense: for

each α, let Vα = {φα,Λ′} be the vector space of regular zero modes with polarization

α. According to (2.48), this vector space is graded by the integral weights in the Weyl

chamber corresponding to α. Moreover, the decoupling condition (2.39) — or equivalently

the extremal weight property — implies that if φα, φ′α are regular zero modes with the

same polarization α, then so is their (matrix) product φαφ
′
α. Hence, each Vα is a graded

ring. Moreover, the vector space V = ⊕αVα forms a ring graded by the (integral) weights

of su(3) (or rather of U(1)Ki), where we define the product of zero modes in different Weyl

chambers to vanish.4 This structure is respected by the Weyl group W, which relates the

different Vα. In particular, all ring elements are nilpotent, due to the cutoff in Λ.

The same analysis goes through for stacks of branes, where analogous zero modes arise

as strings connecting different branes. As aforementioned, we will denote the space of zero

modes as Higgs sector. Labeling the six-component vector φ = (φα) of zero modes by the

dominant U(1)Ki weight, we learn that the Higgs sector forms a nilpotent ring graded by

integral weights of su(3).

3These are the corners of the convex set of weights, or equivalently of the maximal su(3) irrep in

(1, 1)⊗HΛ+ .
4This does not mean that their matrix product vanishes. However, this concept helps to organize the

regular zero modes.
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Examples. Starting from the simplest solution to the decoupling condition

φα,α = T−α (2.49)

one can use the ring multiplication of the regular zero modes to construct modes of the form

φα,(n+1)α = (T−α)n, (2.50)

and any linear combinations of these. A possible background with such a zero mode would

then be

Yα = Xα + εα(T−α)n. (2.51)

On a single squashed CP 2
N brane C[(N, 0)], these exhausts all regular zero modes. The

ring structure is given by Vα = C[φα,α]/〈φN+1
α,α 〉. In particular, the regular zero modes with

maximal n = N on squashed CP 2
N link the 3 intersecting R4 sheets at the origin, with po-

larization along the common R2 [25]. These string-modes are given by |i−1, µ〉〈i, µ|, where

{|1, µ〉, |2, µ〉, |3, µ〉} denote the 3 extremal weight vectors of µ = (N, 0). These are coherent

states located at the origin on each of the three sheets. An artist’s rendering of such a

string mode underlying this solution is given in figure 1b. More generally, the regular zero

modes can be interpreted as strings linking these sheets, shifted along their intersection.

Exceptional zero modes. In addition to the regular zero modes, there are certain

exceptional zero modes which are described in [25, 26]. For the squashed CP 2
N solutions, the

only exceptional modes are the six Goldstone bosons corresponding to the spontaneously

broken SU(3)/(U(1) × U(1)). These are easily understood also in the deformed settings

considered below. For the more general branes, the explicit description of the exceptional

zero modes is not known. This is one reason why we focus mostly on the CP 2 branes in

this paper.

Z3 and generations. Note that the U(3)R label α for the scalar fields determines a

3-family structure, which reflects the Weyl group Z3 × Z2 = W. This coincides with the

family and the τ -parity as determined by the U(1)i charges of the zero modes. The Z3×Z2

structure is indicated by the field labels as in φi±. This will be useful for selection rules etc.

Stringy versus semi-classical modes. The above characterization of regular zero

modes hides the fact that they come with very different characteristics. We single out

two extreme types: (i) the maximal or stringy zero modes, and (ii) the semi-classical or

almost-commutative zero modes. The distinction corresponds to the separation of func-

tions on non-squashed SU(3) coadjoint orbits C[µ] into UV and IR sector, as discussed

in [32], but they are also distinguished by their coupling strength.

All Higgs modes couple to all other (scalar, gauge and fermionic) fields through com-

mutators [φα, ·]. To quantify this strength, we first need to proper normalize the Higgs

modes. This is dictated by the kinetic term5

−
∫
d4x

1

2g2
tr(DµφaDµφa) (2.52)

5the canonical form is obtained by absorbing g in the scalar field φa.
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i.e. all modes should be normalized w.r.t. the trace tr(). Now the maximal Higgs modes

φstring
α,Λ′ are the ones with extremal su(3)K weight Λ′; these modes are given by rank one

operators

φstring
α,Λ′ = |x〉〈x′| (2.53)

linking the extremal (i.e. coherent) weight states |x〉, |x′〉 of HΛ ⊂ End(H) whose weight

difference is maximal. From the brane point of view, these are the extreme UV modes with

the maximal momentum [32]. Since the expectation values vanish, 〈x|Xα|x〉 = 0, these

states are localized at the origin, and φstring should be interpreted as strings linking the

sheets of squashed C[µ] at the origin. For large N , there are other almost-maximal zero

modes, for example with rank 2 such as the modes considered in section 4. These almost-

maximal modes have a similar properties as the maximal modes; hence, this broader class

will be called stringy modes. The commutator of these zero modes is of order one,

[φstring
α , φstring

β ] = O(1) (2.54)

i.e. they are completely non-commutative functions on the branes. Putting back g (2.52),

we see that their interaction strength is characterized by g.

In contrast, the zero modes φlow
α,Λ′ with small weight Λ′ are matrices with high, typically

maximal rank. These modes correspond to slowly-varying, semi-classical functions φlow
α,Λ′(x)

on the C[µ] brane, given by polynomials of small degree in the Xα, the lowest mode being

φα =
1

cN
X−α ∼

1

cN
x−α . (2.55)

The normalization cN for the minimal zero mode on an irreducible C[µ] can be obtained

from the quadratic Casimir on Hµ,

1 = tr(φaφa) =
r2

c2
N

tr(TaTa) =
r2

c2
N

dim(Hµ)

4
(µ, µ+ 2ρ) (no sum) . (2.56)

Thus

c2
N =

r2 dim(Hµ)

4
(µ, µ+ 2ρ) = O(N2) , (2.57)

which means that the φa are almost-commutative functions on C[µ],

[φlow
α , φlow

β ] =
1

c2
N

caαβTa ∼ i{φlow
α , φlow

β } � 1 (2.58)

where {·, ·} denotes the Poisson bracket, as usual for low-energy functions on fuzzy spaces.

Hence their interaction strength is small, and they are become free fields as N →∞.

To summarize, the vast number of scalar modes for large N becomes gapped on an irre-

ducible C[µ] vacuum, and the zero modes consist of stringy modes with interaction strength

g, as well as weakly interacting semi-classical modes. We will see below that the stringy

modes form bound states which are stable at least for a special value of the mass parameter,

in which case the zero modes are further reduced to a small number independent of N .
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2.6 Aspects of the Higgs potential

Now consider the interacting potential for the Higgs sector, i.e. the zero modes φα on a

background solution X. The linear term in φ vanishes due to the eom for X, so that the

effective potential for φ obtained from (2.16) is

Veff [φ] := V [X + φ]− V [X]

= V [φ] + tr

(
1

2
φα
(
�X + 2 /Ddiag

)
φα +

(
Xα +

1

4
φα
)
�φφα −

1

2
f2

)
.

(2.59)

For the regular zero modes, the cubic interaction V31 arising from the quartic term drops

out. To see this, consider

V31 3 trXα�φφα = tr[Xα, φβ ][φα, φβ ] (no sum)

= −trφβ [[φα, φβ ], Xα] = trφβ

(
[[φβ , Xα], φα] + [[Xα, φ

α], φβ ]
)

= −trφβ [[φ−β , Xα], φα] (2.60)

using the Jacobi identity, φβ = φ−β , and the gauge-fixing condition f = [Xα, φ
α] = 0,

which follows from the decoupling condition (2.39). Since either α ± β ∈ I or α ± β = 0

for any pair of roots α, β of su(3), the V31 term (2.60) vanishes for the regular zero-modes,

again due to the decoupling condition. Therefore Veff [φ] reduces for the regular zero mode

sector to

Veff [φ] = V [φ] + tr

(
1

2
φα
(
�X + 2 /D

X
diag

)
φα

)
. (2.61)

The second term is nothing else than 1
2tr(φαOXV,Mi≡0φα) and vanishes since φα are regular

zero modes, see (2.42). Hence, the effective potential for the regular zero modes is given by

V[φ] =
m4

g2
V [φ] =

m4

g2
tr (V4[φ] + Vsoft[φ]) (2.62)

and we arrive at

V[X + φ] = V[X] + V[φ] . (2.63)

We emphasize that the argument remains valid for any element of the ring of regular zero

modes: suppose φ and φ′ are two six-component vectors of regular zero modes, then

V[X + (φ+ φ′)] = V[X] + V[φ+ φ′] and V[X + (φ · φ′)] = V[X] + V[φ · φ′] (2.64)

holds, with the component-wise multiplication defined in section 2.5. However, V[φ + φ′]

or V[φ ·φ′] do not necessarily decompose in any linear fashion. Similarly, one can extend to

discussion to Higgs modes connecting stacks of branes and the argument remains the same.

In particular, the potential for φ has the same structure as the original potential (2.6)

for the model. Thus the quadratic potential V2[φ] vanishes again in the absence of mass

terms, but the cubic term V3[φ] may entail some unstable directions. Some of the φα are
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then expected to take a non-trivial VEV, which is then stabilized by the quartic term.

We will indeed find such non-trivial minima for φα, which will be denoted as Higgs vacua.

Such a non-trivial Higgs linking different branes leads to a bound state of the branes.

As a further remark, we note that the mixed term quadratic in both X and φ can be

written equivalently as

tr
(
φα
(
�X + 2 /D

X
diag

)
φα

)
= tr

(
Xα
(
�φ + 2 /D

φ
diag

)
Xα

)
(2.65)

assuming the decoupling condition between φ and X.

The above argument for (2.60) to vanish does not apply to the exceptional zero modes.

For single branes of CP 2 type, these are precisely the SU(3)R Goldstone bosons, which

can be studied separately. However there exist other exceptional zero modes, e.g. Λ ∈
W(1, 0), Λ′ ∈ W(2, 0) (or conjugate) connecting C[(0, 1)] with C[(1, 0)] which need to be

studied separately.

We will see that in the presence of positive mass terms M2
i > 0, the above instability

can be stabilized. However if the M2
i are not all equal, some of the φα turn out to acquire

a negative mass. This will also lead to a non-trivial Higgs vacuum. Quantum corrections6

might also play an important role, however we will assume that these are subleading if the

branes are sufficiently large, so that the semi-classical description is valid.

Full equations of motion and decoupling. We have just seen that V(X + φ) =

V(X) + V(φ) for a sum of backgrounds X, φ satisfying the decoupling condition (2.39).

Now, we would like to know if such a composed background Y α = Xα+φα can be an exact

solution of the full action. To address this, we cannot rely on the above reduced action for

the Higgs sector, because we need δS = 0 for arbitrary fluctuations of Y α.

Consider combined (static) configurations of the form Xa + φa which satisfies the

equation of motion

0 = (�X+φ + 4M2
i )
)
(X + φ)+

i + 4εijk(X + φ)−j (X + φ)−k . (2.66)

To simplify this, consider the matrix Laplacian �X+φ acting on an arbitrary ψ ∈ End(H).

We obtain

�X+φψ = (�φ +�X)ψ + [Xβ , [φ
β , ψ]] + [φβ , [X

β , ψ]]

= (�φ +�X)ψ + 2[φβ , [X
β , ψ]]− [ψ, [Xβ , φ

β ]] . (2.67)

Applying this on X + φ leads to

�X+φ(Xα + φα) = (�φ +�X)(Xα + φα) + 2[φβ , [X
β , Xα]] + 2[Xβ , [φ

β , φα]]

− [φα, [φβ , X
β ]]− [Xα, [Xβ , φ

β ]]

= (�φ +�X)(Xα + φα) + 2( /D
X
adφ)α + 2( /D

φ
adX)α

− [φα, [φβ , X
β ]]− [Xα, [Xβ , φ

β ]] . (2.68)

6Another conceivable mechanism is a rotation of the branes, see [27].
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If Xα and φα satisfy the decoupling condition (2.39), we can replace /D
X
adφ = /D

X
diagφ etc.,

and also [Xβ , Y
β ] = 0 holds. This further simplifies the Laplacian to

�X+φ(Xα + φα) = (�φ +�X)(Xα + φα) + 2( /D
X
diagφ)α + 2( /D

φ
diagX)α . (2.69)

Furthermore, we note that the cubic term simplifies via (2.41) to

εijk(X + φ)−j (X + φ)−k = εijkX
−
j X

−
k + εijkφ

−
j φ
−
k + εijk[X

−
j , φ

−
k ]

= εijkX
−
j X

−
k + εijkφ

−
j φ
−
k . (2.70)

Collecting all the intermediate steps, the full eom reduces to

0 =
(
�φ + 2 /D

φ
diag

)
X+
i +

(
�X + 4M2

i

)
X+
i + 2εijk[X

−
j , X

−
k ]

+
(
�X + 2 /D

X
diag

)
φα +

(
�φ + 4M2

i

)
φ+
i + 2εijk[φ

−
j , φ

−
k ] (2.71)

provided X and φ satisfy the decoupling conditions (2.39). Now recall that(
�X + 2 /D

X
ad

)
φ+
i = OXV,Mi≡0φ

+
i = 0 and (�φ + 2 /D

φ
ad)X

+
i = OφV,Mi≡0X

+
i = 0 (2.72)

because the symmetry of the decoupling conditions implies that X and φ are regular zero

modes of OφV,Mi≡0 and OXV,Mi≡0, respectively. As a consequence, the full eom for X + φ

reduce to the sum of the individual eom for X and φ separately. Thus, X + φ is an exact

solution if both X and φ satisfy their individual equations of motion(
�φ + 4M2

i

)
φ+
i + 2εijk[φ

−
j , φ

−
k ] = 0 (2.73)

and similar for X, as well as the decoupling condition (2.41).

In fact, (2.71) are precisely the eom obtain using the above reduced potential, i.e.

dropping the mixed V31 terms such as φ�XX and the mixed terms in V3. We can therefore

use the reduced potential for backgrounds composed of decoupled solutions. However, note

that finding a minimum within the Higgs sector V (φ) in general implies (2.73) only up to

massive modes. This is the reason why we will find exact solutions only in special cases

within the maximal Higgs sector.

Furthermore, from the homogeneity of the full potential in either X or φ, we can infer

that 4V4 + 3V3 + 2V2 = 0 holds at a minimum within the Higgs sector, which implies as

in (2.22)

V [φ]
∣∣
sol. eom

=
1

4
V3[φ] +

1

2
V2[φ] . (2.74)

This is useful to compare the energy of different solutions.

2.7 Massless versus massive solutions, Higgs condensate, and stability at M∗

So far, we have restricted the attention mostly to the massless case, i.e. Mi = 0. This has

some immediate implications:

(i) The eom (2.21) can be solved immediately by the first integral relations B̃ij = 0 = D,

which are automatically satisfied on any SU(3) representation X±j = π(T±j ).
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(ii) The operator OXV governing the dynamics of the bosonic fluctuations is positive semi-

definite by virtue of representation theory [25]. This means that there are no insta-

bilities, and moreover there exists a classification of all regular zero modes.

(iii) The potential energy of the background can be computed by noting that B̃ij = 0

implies Bij = 1
3εijkX

−
k , so that

V [X] = −2

3

∑
i

tr(X−i X
+
i ) < 0 . (2.75)

Now we would like to perturb the background X with regular zero modes φ to obtain a

solution to the full eom for X + φ, keeping Mi = 0 for the moment. Unfortunately, this is

less accessible in general, because

(i) Since zero modes φ do not satisfy the su(3) Lie algebra, it is not easy to find exact

solutions. A notable exception are the maximal regular zero modes on C[(n, 0)].

(ii) The spectrum of the operator OX+φ
V is not analytically understood, but numerical

studies presented in sections 3–4, and appendix B show the existence of instabilities.

Moreover, we do not have a classification of appearing zero modes.

(iii) Assuming that both X and φ satisfy the first integral relations B̃ij = 0 = D, the

combined potential energy can be evaluate to read

V [X + φ] = −2

3

∑
i

tr(X−i X
+
i )− 2

3

∑
i

tr(φ−i φ
+
i ) < V [X] . (2.76)

Hence starting from a CN [µ] background, the extension to a combined background

definitely reduces the potential energy. This strongly suggests the existence of a Higgs

condensate.

Let us try to circumvent the appearance of instabilities by including uniform mass param-

eters Mi ≡M > 0 and adjusting the radii Ri ≡ R in (2.23) accordingly. Starting with X±i
satisfying B̃ij = 0 = D, the eom (2.21) for the ansatz Y ±i = RX±i reduce to

0 = R
(
R(R− 1) +M2

)
X+
i ∀i (2.77)

Thus there are three solutions

R = 0 , R =
1

2

(
1±

√
1− 4M2

)
(2.78)

for |M | ≤ 1
2 . For these choices of R, the eom are satisfied and we can compute the potential

from (2.11), which is

V [Y ] = 2R2

((
R− 2

3

)2

+ 2

(
M2 − 2

9

))∑
i

tr(X−i X
+
i ) . (2.79)
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As discussed in appendix A, for 0 < M ≤
√

2
3 the solution R(M) = 1

2(1 +
√

1− 4M2)

describes the minimal energy configuration. This establishes the following statement (as

stated in the introduction): any solution to B̃ij = 0 = D gives rise to a solution to the eom

with uniform mass parameter M , provided one rescales with R(M).

Now we make the following very important observation: for the special mass value

M∗ :=

√
2

3
(2.80)

the full potential (2.11) is positive semi-definite, and the potential vanishes if and only if

Bij = 0 = D . (2.81)

Upon rescaling, this is equivalent to B̃ij = 0 = D with a radius R = 2
3 . In particular,

the spectrum of OYV is guaranteed to be free of instabilities for any such solution. We will

indeed find a number of nontrivial brane plus Higgs solution of this type, which are thereby

local minima up to a compact moduli space. This statement is clearly reminiscent of the

situation in supersymmetry, even though SUSY is explicitly broken by the potential.

2.8 Gauge fields and mode decomposition

Now consider the gauge fields Aµ(y) ∈ End(H) on R4, which together with the gauginos

constitute the N = 1 vector superfield in N = 4 SYM. The gauge fields take values in

su(N), and accordingly decompose

Aµ = Aµ;Λm(y)YΛm (2.82)

into eigenmodes YΛm of the matrix Laplacian �X on squashed CN [µ] background. These

modes acquire a mass due to the Higgs effect, given by [25]

−tr[Xa, YΛm][Xa, YΛm] = tr(Y †Λm�XYΛm) = m2
Λ,m

m2
Λ,m = 2r2

(
(Λ,Λ + 2ρ)− (m,m)

)
(2.83)

assuming the normalization

tr(Y †Λ′m′YΛm) = δΛ′m′
Λm . (2.84)

In contrast to the scalar fields, there are no zero modes, and the gauge symmetry is broken

completely on an irreducible brane. The lowest of these modes are given by YΛm = 1
cN
Xα,

and the corresponding KK mass scale is of order

m2
KK ∼

r2

g2
m2 (2.85)

re-inserting the YM coupling constant g2 and the cubic coupling m2 in the potential (2.6).

Now consider the coupling of the above gauge modes to the Higgs modes or to the

fermions. We recall from section 2.5 that the Higgs modes arise in different types, in partic-

ular (i) maximal (stringy) modes φstring
α , and (ii) semi-classical modes φlow

α . A similar clas-

sification applies to the gauge modes and fermions. The effective coupling strength depends

– 21 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
6

strongly on the type of modes. For the semi-classical gauge modes (these will include W -like

bosons discussed in section 6), the coupling to a stringy Higgs mode φstring = rs|x〉〈x′| (2.53)

has the structure

[YΛm, φ
string] ≈ (YΛm(x)− YΛm(x′))φstring (2.86)

leading to the mass term

−tr[φstring,YΛm][φstring,YΛm]≈ |YΛm(x)−YΛm(x′)|2tr(φstringφstring) = |YΛm(x)−YΛm(x′)|2

(2.87)

Hence such stringy Higgs give a contribution to the mass of nontrivial gauge boson modes,

which is proportional to the difference of the wave function YΛm(x) at the two ends of the

string. However this contribution is suppressed7 by the localization (due to (2.84)), and

the main contribution to the mass of the gauge bosons arises from the background (2.83).

These observations will apply in particular for the chiral Aµ ∼ χ gauge mode (4.8) on

6-dimensional branes.

Nonabelian case. As usual, unbroken nonabelian gauge fields arise on stacks of coinci-

dent branes. E.g. on a stack of two coinciding branes, the gauge modes have the structure

Aµ = Aµ;Λm(x)YΛm ⊗ σi (2.88)

where σi ∈ su(2) act on the two branes. Using YΛm = 1√
dimH1 for the massless modes, the

corresponding su(2) coupling constant is found to be smaller than g by a factor

g̃ ∼ g√
dimH

. (2.89)

This reduction is somewhat related to (2.58).

3 4-dimensional branes

After the formal discussion of the algebraic properties of the regular zero modes, it is

now time to show the existence of exact solutions of the form brane background C[µ] plus

some non-trivial Higgs modes. We begin with the 4-dimensional fuzzy branes C[(N, 0)] in

combination with point branes.

3.1 Single squashed CP 2 brane & Higgs

Now we discuss some of these branes in more detail. We begin with a squashed brane C[µ]

with µ = (N, 0) and add some (regular) zero mode(s)

Yα = Xα + φα, (3.1)

where Xα = Rπµ(Tα). First we treat the massless case M2
i = 0.

7In contrast, the coupling of the φstring to the stringy fermions is not suppressed.
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3.1.1 Minimal brane and instability towards S2

For the minimal branes C[µ] with µ = (1, 0), the only non-trivial (regular) zero modes are

given by

φα = rαπµ(T−α) ∝ X−α (3.2)

Since the potential (2.61) for φα is the same as for Xα, there is a non-trivial minimum at

ri = ±1, see (2.28). Then the full matrix configuration is

Yα = Xα ±X−α = ±Y−α . (3.3)

This must be an exact solution according to the discussion in section 2.6, and indeed

[Y1, Y2] = [Xα1 +X−α1 , Xα2 +X−α2 ] = Xα3 +X−α3 = Y3 (3.4)

is nothing but a fuzzy sphere S2
n with n = 3, explaining related observations in [25]. Its

energy is

V [X + φ] = V [X] + V [φ] = −16 (3.5)

using (2.33) and (2.63). This appears to be the global minimum of the classical potential

for N = 3. We will see below that although squashed CP 2 is not the global minimum, it

can be (locally) stabilized by adding a small positive mass term M2
i > 0.

3.1.2 Non-minimal brane with maximal Higgs

The situation is similar, but more interesting for C[µ] with µ = (N, 0). Then the (regular)

zero modes are given by φ
(l)
α ∝ (X−α)l such that the full matrix configuration looks like

Yα = Xα + φ(l)
α . (3.6)

As before, the l = 1 mode leads to an exact solution given by an irreducible fuzzy 2-sphere

with (negative) energy equal twice that of C[µ]. This explains how the known fuzzy S2

solutions are related to squashed CP 2.

However, there are other, more interesting solutions corresponding to small perturba-

tions of the CP 2 branes localized at their intersections. For l � 1, the φ
(l)
α are string-like

modes connecting different sheets of C[µ], confined to the vicinity of the origin. The most

interesting ones are the maximal zero modes with l = N , denoted by

φα := −rα
1

N !
(X−α)N = rαπ̃(Tα),

K(φα) = (N + 1)α (3.7)

dropping the superscript N . Here π̃(Tα) is the fundamental representation8 of su(3) acting

on the 3 extremal weight states of (N, 0). In other words, the φα are connecting the 3

coherent states on CP 2 located at the origin on each of the 3 sheets of squashed CP 2,

8This fixes the normalization 1
N !

.
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•

•

•
φ+

1

φ+
2φ+

3

Figure 2. C[µ] for µ = (N, 0) with maximal Higgs φ+
i . The indicated dots • are the extremal

weights of (N, 0), which are connected by the maximal Higgs ∈ End(Hµ).

cf. [25]. More explicitly, denoting these states as {|1, µ〉, |2, µ〉, |3, µ〉}, the zero modes have

the form

φ+
i = ri|i− 1, µ〉〈i, µ|, i ∼ i+ 3 , (3.8)

which are depicted in figure 2. Since the potential V [φ] has the same form as that for the

full brane we obtain a new exact solution for ri = ±1, given by

Y α = Xα + φa (3.9)

with energy V [X + φ] = V [X] − 8 (assuming Mi = 0). This follows again from the full

equations of motion (2.71) and (2.33), noting that both Xα and φα satisfy the eom and the

decoupling condition.9 The signs of the ri are of course chosen such that the potential is a

minimum. This solution describes a Higgs condensate in the CP 2 background localized at

the intersections, as sketched in figure 2 and 1b. The general solutions for the combined

system of C[µ] brane background with maximal Higgs are discussed in appendix B.1.1.

Again, even though that this solution is not the global minimum, we will see in section 3.1.3

that it can be locally stabilized by adding a small mass term M > 0.

We note that for 1 < l < N , the zero modes φ
(l)
α do not satisfy the su(3) algebra, and

there is no obvious solutions of the form X + φ
(l)
α at the non-linear level.

Backreaction and exact solution. In general, one should worry about the backreaction

of the Higgs φ on the background brane Xα. First, it is important to note that the (almost-)

maximal Higgs φ with rα = ±1 are a small perturbation10 located at the origin of the CP 2

background, so that the backreaction is very small for branes C[µ] with large µ = (N, 0).

To see this, we compare the matrix elements of Xα and φα connecting the states |i, µ〉. For

rα = Rα = ±1, these are easily see to be

Xα||i,µ〉 = πµ(Tα)||i,µ〉 = O(
√
N) � φα||i,µ〉 = π̃µ(Tα)||i,µ〉 = O(1) . (3.10)

Hence, the background generators are larger by a factor of
√
N and the backreaction of the

background becomes negligible for large N . Moreover, the backreaction vanishes exactly

for the maximal Higgs modes, as discussed above.

9Note that the X can be viewed as regular zero modes w.r.t. the φ, linking the extremal weight states

of Hµ to the remaining weight states of Hµ (which are point branes w.r.t. φα), cf. section 3.2.
10This is in contrast to the minimal Higgs with l = 1.
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Remark. The combined solution Y α = Xα + φa is not only a solution of the potential

with cubic term, but also a solution of the basic N = 4 potential with a negative mass

term, since

�Y Y = 4Y (3.11)

cf. (2.71) and (2.69). The point is that (�X + 2 /D
X
ad)φα = 0 follows from the decoupling

condition for regular zero modes due to (2.38), and similarly (�φ+2 /D
φ
ad)Xα = 0 because X

is a regular zero mode w.r.t. φ. This is quite remarkable, and it means that these solutions

might arise even without the cubic terms in the action, if a negative mass term arises for

these modes by quantum fluctuations.

3.1.3 Mass terms, stabilization and mass-induced Higgs

Now consider a single CP 2 brane (N, 0) in the presence of a (sufficiently small) positive

mass terms M2
i > 0. Then the radii Ri change according to (2.27).

Equal masses M2
i = M2 < 1

4
. As a first observation, we note that the squashed brane

background is stabilized for sufficiently small equal masses M2
i = M2, with

R2
M = 1−M2 +O(M4) (3.12)

due to (A.8). The quadratic potential for such a background is

V2[φ] =
1

2
R2
M trφα

(
�X +

4

R2
M

M2 + 2 /Ddiag + 2 /Dmix −
4

RM
/Dmix

)
φα

=
1

2
R2
M trφα

(
�X +

4

R2
M

M2 + 2 /Ddiag − 2 /Dmix + 4

(
1− 1

RM

)
︸ ︷︷ ︸

O(M2)

/Dmix

)
φα (3.13)

using (2.37), where �X and /D... are the same operators as for M2 = 0. For sufficiently

small M2, the massive modes remain massive, because /Dmix is clearly bounded. For the

regular zero modes, we observe that the condition /Dmixφ
(0)
α = 0 of (2.42) is independent

of the Ri. It follows that regular zero modes acquire a positive mass from the explicit

M2 contribution. For the exceptional zero modes, the above argument does not apply; for

instance, on CP 2 the exceptional zero modes are the SU(3)/U(1)×U(1) Goldstone bosons,

which remain massless even in the presence of explicit (equal) mass terms M2
i = M2. As a

consequence, a single CP 2 brane is stable in the presence of small equal masses M2
i = M2,

up to the flat directions due to Goldstone bosons.

For further verification, we performed a numerical analysis of the spectrum of the

vector Laplacian OXV on a C[(N, 0)] background for N = 1, . . . , 10. For details, we refer to

appendix B.1, and only summarize the results here.

• In the massless case Mi = 0, we observe 6(N + 2) zero modes for the gauge-fixed

OXV . These correpond to 6 Goldstone bosons plus 6(N + 1) regular zero modes, due

to (2.36).

• In the massive case Mi ≡ M > 0, we observed 6 zero modes and precisely 6(N + 1)

massive modes with eigenvalue 4M2. See in particular figure 25a.
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This confirms that small masses are sufficient to stabilize CP 2 branes up to Goldstone

bosons.

Different (positive) masses M2
i 6= M2

j . If the M2
i are positive but distinct, the

situation is more interesting. The massive modes will stay massive for sufficiently small M2
i ,

such that we may focus on the Higgs sector. However, some of the (would-be) zero modes

now acquire a negative mass. Continuing the computation (2.47), the adjusted radii lead

to an induced mass originating from the vector Laplacian without explicit mass terms, i.e.

OV,Mi≡0φα,Λ′ = [HR, φα,Λ′ ] = −λ(HR)φα,Λ′ =: m2
αφα,Λ′ (3.14)

with λ as in (2.48). This has one or two negative eigenvalues mi if the Ri are different,

depending on the sign of λ(HR). In fact since λ1 + λ2 + λ3 = 0 (from the Z3 symmetry),

we obtain the following sum rule:

m2
1 +m2

2 +m2
3 = 0 . (3.15)

Note that mi depends on Ri resp. Mi through (2.27). Taking into account the bare

masses (2.16), the quadratic part of the potential for φ is

V2[φ] =
1

2

3∑
i=1

tr
(

(m2
i + 4M2

i )φ−α3,−Λ′φα3,Λ′ + h.c.
)
. (3.16)

If the brane and Λ are sufficiently large, the mi will dominate Mi such that one or two pairs

of zero modes acquire a negative mass whenever the Mi are different. This is independent of

the cubic term in the potential, and it works even positive bare masses M2
i > 0. Therefore

at least one pair will definitely get a VEV 〈φ±αi〉 6= 0, which should in turn lead to a partial

stabilization of the zero modes. Even though this scenario is interesting since it breaks the

Z3 generation symmetry, we will mostly focus on the case of equal masses in this paper.

For a CP 2
N brane, the weights of the zero modes are λi = kαi with k ≤ N , see (2.50).

Then switching on one M2
3 > 0 leads to two negative induced mass terms m2

1 = m2
2 =

−O(kM2
3 ) < 0, see for instance (A.29).

3.1.4 Stability of the brane-Higgs system

Now consider the non-trivial solutions X + φ(l) found in section 3.1.2 involving maximal

zero modes φ
(l)
α . An important question is whether these new solutions are stable, or if

there are further zero modes or instabilities. Consider the brane C[µ] for µ = (N, 0) with

maximal Higgs solution φα = c(X−a)
N as above, and add first some additional zero modes

φ
(l)
α which we assume not to be maximal. Thus

Xα + φα + φα, φα =
∑

cl,αφ
(l)
α , l ≤ N. (3.17)

According to (2.61), the effective potential for the combined perturbation is given by V (φ+

φ). Since φ has the structure of a squashed CP 2 brane, we know that the masses of φ

arising from this background are non-negative [25]. However, we have to admit the most

general fluctuations φα here, not only zero modes. Then the linear term in φ still vanishes
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identically, because X+φ is an exact solution of (2.71). The quadratic part of the potential

for φ is given by11

V X+φ
2 [φ] =

1

2
tr
(
φ
(
OXV +OφV + 2[Xβ , [φ

β , ·]] + 2 /D
Xφ
ad

)
φ
)

(3.18)

using [φβ , Xβ ] = 0. In general, it is not clear and, according to numerical studies, also not

true that this is a positive semi-definite bilinear form. However in the presence of suitable

masses Mi = M , and notably for M = M∗, it follows using the results in section 2.7 that

the (brane +Higgs) solution is indeed a local minimum up to a compact moduli space.

Numerical results. We investigated the stability of C[(N, 0)] branes with maximal Higgs

numerically by analyzing the spectrum of the vector Laplacian, see appendix B.1 for the

details. We considered the massless case Mi = 0 as well as the massive case Mi = M . To

summarize, we find the following for the fluctuations around (X + φ):

• For the C[(1, 0)] brane with maximal regular zero modes, there are no negative modes,

for both M = 0 and M > 0. This is clear because it is a fuzzy sphere. Moreover, for

M = 0 we find 11 zero modes, while for M > 0 there are 5 zero modes. This is the

expected number of Goldstone bosons for the fuzzy 2-sphere as an SU(2) symmetry

is manifest, leaving 8− 3 = 5 broken generators for SU(3)/SU(2).

• For the C[(2, 0)] brane with maximal regular zero modes, there are no negative modes.

This is very remarkable. In addition, there are 20 zero modes for M = 0 and 8 zero-

modes for M > 0.

• For the C[(N, 0)] brane with N ≥ 3 with maximal regular zero modes, there exist

3(N − 2) negative modes and 20 zero modes for M = 0. Although the number of

negative modes increases with N , the amplitude of the negative eigenvalues decreases,

and it appears that the mass M required to lift them approaches zero for large N .

This is exemplified in figure 25c for N = 3, . . . , 10. Adding a mass term with M & 0.2

lifts all negative modes for N ≥ 3.

Therefore, uniform mass terms Mi ≡ M are sufficient to stabilize the CP 2 brane plus

maximal Higgs system up to 8 = 6 + 2 zero modes. Remarkably, the properties such as

number of zero modes, seem to be independent of the brane size in the massive case M > 0.

Hence the (brane+Higgs) system has a well-behaved scaling limit N → ∞, and is stable

up to a compact moduli space (which could be lifted by lifting the degeneracy of the Mi).

This is clearly a very interesting result, which will be seen throughout this paper.

3.2 Single squashed CP 2 brane with a point brane

Now consider a C[µ] brane and add a point brane D ≡ C[0]. We will show that there

are non-trivial new vacua which involve a non-vanishing Higgs zero modes linking C[µ]

and D. We choose µ = (N, 0) to be specific; the discussion for µ = (0, N) would be

analogous. The Higgs modes given by the regular zero modes discussed above are illustrated

11We can assume that f2 is canceled by the gauge fixing term.
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Figure 3. Various regular zero modes for C[(N, 0)] brane + point brane D. The F represents D,

while • denote the extremal weights of (N, 0). The two shifted two points in the vicinity of each

extremal weight state indicate the polarization of the zero mode. The φ+
i are maximal regular

zero modes on C[(N, 0)], while ϕ+
i and ϕ̃−

i are regular zero modes connecting C[(N, 0)] and D.

Note that the conjugate modes, corresponding to arrows pointing the opposite directions, are not

depicted here.

in figure 3. The inter-brane regular zero modes, originating from Hom(Hµ,C), separate

into 3+3 independent Higgs ϕ+
i and mirror Higgs ϕ̃−i , given by

ϕ+
i = |i〉〈0| ∈ (N, 0) , τ = +1

ϕ̃−i = |i− 1〉〈0| ∈ (N, 0) , τ = −1 . (3.19)

distinguished by the τ -parity (2.31). Note that these determine their conjugate modes

(ϕ+
i )† ∼ |0〉〈i| etc. living in Hom(C,Hµ). Taking into account the maximal intra-brane

Higgs φ±i on C[µ] as discussed above, we find non-trivial solutions where such links ϕ+
i are

switched on with different strength, i.e. the point brane is connected to the C[µ] brane,

but the energy is the same. For example, we can switch on one triangle consisting of two

ϕi, ϕ̃i linking D with two corners of C[µ], connected by a maximal Higgs φi of C[µ] as in

figure 4. The existence of such solutions is explained by an SU(2) symmetry within the

zero mode sector, rotating the point brane and one corner. This leads to a moduli space

parametrized by some linking angles θ.

The binding energy for all these configuration is V [φ] = −8. Numerical investigations

indicate that these are indeed the global minima of this sub sector of the full zero mode

sector. In particular there seems to be no solution which respects the Z3 symmetry, except

for ϕ = 0. In other words, the generation symmetry Z3 is spontaneously broken.

This means that although the D brane is connected to C[µ] by some Higgs as in

figure 4c, the energy is nevertheless degenerate to the case where only the maximal intra-

brane Higgs on C[µ] are switched on, see figure 4a. This degeneracy is manifest in the
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Figure 4. One-parameter family of solutions interpolating between the maximal Higgs solution (a)

and the connected configuration (c) between D and C[µ]. The intermediate states (b) have different

magnitudes for the fields involved.

existence of the continuous family of solutions of figure 4b that interpolates between these

configurations. Hence there is no binding energy, rather there is a flat direction in moduli

space where the point brane may or may not be attached. The details of the exact solutions

to the equations of motions are presented in appendix B.2.1.

Numerical results. We studied numerically the stability of the combined solutions con-

sisting of C[(N, 0)] brane plus point brane D together with some Higgs modes, with respect

to arbitrary fluctuations. The details are provided in appendix B.2.2. It turns out that

for M = 0 there are typically a number of negative modes, i.e. they are unstable towards

some of the (originally massive) deformation modes. This is similar to the situation in

section 3.1.4. Again, these instabilities can be stabilized by adding a (small) mass term

M to the background, see in particular figure 26. Then the above solutions, comprising

the C[µ] brane plus point brane and several Higgs, are still exact solutions with adjusted

radii according to (2.27). Here, we observe different qualitative behavior between the

configurations of figure 4a and 4b, 4c.

• The triangle of maximal intra-brane Higgs of figure 4a can be stabilized with small

masses, consistent with the results in section 3.1.4. The number of zero modes be-

comes 14 in the massive case, independent of the brane size.

• The interpolating state of figure 4b can only be stabilized with masses almost satu-

rating the allowed values (and only for large enough branes N ≥ 5). In addition, the

number of zero-modes in the massive case becomes 9, independent of the brane size.

• The connected configuration of figure 4c can also be stabilized only with relatively

large mass values, but negativity of the eigenvalues is qualitatively different to the in-

terpolating case. Again, the number of zero modes stabilizes at 9 in the massive case.

Consistent with the general results in section 2.7, we observe that there are no insta-

bilities for the critical mass M∗. The number of zero modes exceeds the expected 6 zero

modes corresponding to the 6 Goldstone bosons of the broken SU(3)R. One may hope that

these remaining zero modes are lifted by introducing different masses Mi, but we did not

verify this explicitly.
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Figure 5. Parallel branes C[µR] and C[µL], with C[µL] being the outer brane. We only indicate

the polarization for the outermost brane by two additional • next to each extremal weight state.

The maximal intra-brane Higgs are denoted as φ+
i and φ+

i for C[µL] and C[µR], respectively. The

maximal regular inter-brane zero modes are labeled by ϕ+
i and ϕ̃−

i , and we only draw the ALR
sector here.

3.3 Two squashed CP 2 branes & Higgs

Now consider a system of two non-identical CP 2 branes, such as C[µL] and C[µR]. Then

End(HL ⊕HR) = ALL ⊕ARR ⊕ALR ⊕ARL ,
ALL = End(HµL) , ALR = Hom(HµL ,HµR) , etc.

(3.20)

contains various types of zero modes. Besides the intra-brane zero modes discussed above,

there are additional modes φLR ∈ ALR etc. connecting C[µL] with C[µR]; those are the

most interesting ones as we will see. We will explicitly find such solutions.

Consider the case of parallel branes C[µL] and C[µR] with µL = (N, 0) and µR = (l, 0),

possibly connected by some Higgs, as in figure 5. This set-up is interesting because we will

find maximal Higgs connecting different branes, which are exact solutions at the non-linear

level. These Higgs clearly breaks the U(1)×U(1) gauge symmetry on the two branes down to

the diagonal U(1), and lead to various Yukawa couplings of the fermionic zero modes. This

is the mechanism we are interested in, even though the present background may not yet be

very interesting physically. Note that n identical branes would lead to u(n)-valued fields.

Besides the algebras of functions ALL and ARR on C[µL] and C[µR], respectively, the

full algebra of functions contains the following intertwining part:

ALR = (N, l)⊕ (N − 1, l − 1)⊕ . . .⊕ (N − l, 0) (3.21)

and similarly ARL. There is again a special class of 3 + 3 maximal Higgs modes arising

from the extremal states of (N, l), denoted by

ϕ̃−i ∈ (N, l) ⊂ ALR mirror Higgs

ϕ+
i ∈ (N, l) ⊂ ALR chiral Higgs (3.22)
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which connect the corners of µL and µR. This is displayed in figure 5. Their conjugate

modes are given by

(ϕ̃−i )† = ϕ̃+
i ∈ ARL and (ϕ+

i )† = ϕ−i ∈ ARL . (3.23)

We will see below that each of these Higgs ϕ̃−i , ϕ+
i give rise to precisely one Yukawa coupling

between fermionic zero modes linking a point brane with either of the branes.

Additionally, there exist the maximal intra-brane Higgs φ±i ∈ ALL and φ±i ∈ ARR
along some edge of C[µL] and C[µR], respectively. As summarized in figure 5, altogether

we have the following maximal Higgs modes

ϕ̃−i = (ϕ̃+
i )†, ϕ+

i = (ϕ−i )†, φ+
i = (φ−i )†, φ+

i = (φ−i )† (3.24)

which connect the extremal weights and therefore form a closed algebra. Our aim is to find

stable non-trivial solutions on top of C[µL] and C[µR], where some of these are switched on.

Solutions. It is clear that there are non-trivial solutions within the maximal Higgs sector

involving one closed triangle and we have exemplified such cases in figure 6. There exist

several continuously parametrized solutions that interpolate between a maximal intra-brane

Higgs on one brane and a closed triangle between the two branes. We refer to figures 6a–6c

and figures 6a–6c for two representative cases.

In addition, as shown in figure 7a, there exists an exact solution of the form X +φ+φ

involving the full brane background plus maximal intra-brane Higgs on C[µL] and C[µR]

simultaneously. Moreover, one can non-trivially combine the triangular configurations of 6c

and 6f and obtains another continuous family, see figure 7, which always corresponds to a

configuration of two closed triangles.

The details of the numerical combinations of the several Higgs fields that give rise to

exact solutions to the equations of motions are presented in appendix B.3. As far as the

potential energy is concerned, the (degenerate) configurations of figure 6 count only as one

closed triangle, whereas the (degenerate) configurations of figure 7 have two independent

triangles, and consequently have lower potential energy. That being said and recalling the

Z3 symmetry, it is clear that the states of lowest energy, i.e. those equivalent to two closed

triangles in figure 7, are highly degenerate. These solutions should be interpreted as 2

branes linked by some Higgs, but the binding energy is again zero due to the degeneracy.

Spectrum. We have addressed questions about the spectrum of the vector Laplacian

around such new background in appendix B.3. Although the spectrum of OXV in the

background C[µL] + C[µL] is known to be free of negative modes, in the novel backgrounds

OX+φ
V has a number of negative modes, see for instance figure 28. Turning on uniform

masses Mi ≡ M has two effects on the spectrum: first, the number of negative modes

decreases and all of these modes can be lifted consistently for mass 0.47 .M ≤
√

2
3 , and in

particular for M∗. This exemplifies the general results of section 2.1. Second, the number

of zero modes stabilizes again to levels that are independent of the size of the system.
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Figure 6. C[µR] and C[µL] brane plus intra and inter-brane Higgs. Here, we display example

solutions involving only one triangular configuration. There exists a continuously parametrized

solution interpolating between (a) and (c), while all intermediate states can be thought of as in (b).

In addition, there exists another continuously parametrized solution interpolating between (d) and

(f), while all intermediate states look like (e). Legs depicted with the same color have the same

amplitude. In particular, the intermediate states have five legs with three different, but related

amplitudes.
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Figure 7. C[µR] and C[µL] brane plus intra and inter-brane Higgs. Here, we display example

solutions involving only two triangular configuration. There exists a continuously parametrized

solution interpolating between (a) and (c), while all intermediate states can be thought of as in (b).

As before legs depicted with the same color have the same amplitude.

3.4 Two squashed CP 2 branes with a point brane & Higgs

Now consider again two parallel branes C[µL] and C[µR] with µL = (N1, 0) and µR = (N2, 0),

and a point brane D ∼= C[0]. The full algebra of functions End(HµL ⊕ HµR ⊕ C)

contains (3.20), but also exhibits additional intra-brane zero modes originating from

AL0 = Hom(HµL ,C), AR0 = Hom(HµR ,C) and their conjugates. The corresponding regu-

lar zero modes are labeled ϕ+
i , ϕ̃

−
i ∈ AL0 and σ+

i , σ̃
−
i ∈ AR0, respectively. In addition, there
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Figure 8. The various Higgs fields for the background of C[µL] and C[µR] brane together with

a point brane D. Here, we picture C[µL] as the outer most brane and place the point brane in

the center.

exist Higgs modes H+
i , H̃−i linking C[µL] and C[µR]. The collection of maximal regular

zero modes (Higgs fields) is summarized in figure 8. As usual, the conjugate fields are

ϕ−i = (ϕ+
i )†, ϕ̃+

i = (ϕ̃−i )†, σ−i = (σ+
i )†, σ̃+

i = (σ̃−i )†, H−i = (H+
i )†, H̃+

i = (H̃−i )†

and correspond to arrows in the opposite directions.

Solutions. In this set-up, there is a novel type of Higgs solution which involve only

links between different branes as indicated in figure 9, due to cubic terms like σ+
i H

+
j ϕ̃

+
k

and ϕ+
i H̃

+
j σ̃

+
k . This leads to a potentially interesting structure of Yukawa couplings and

chiral fermions, as discussed in sections 5 and 6. The two different types of such triangles

have opposite “orientation“. As further elaborated in appendix B.4, one can find various

one-parameter solutions that interpolate between the configurations in figure 9 and other

solutions with one closed triangle. We summarize these in figure 10. Starting from 9a

there exist at least three continuous families of exact solutions which are displayed in 10a–

10c, 10d–10f, and 10g–10i. Due to our knowledge of the two parallel brane case, see figure 6,

it follows that configuration 10i can be deformed into to the maximal intra-brane Higgs

configuration φ+
i on C[µR]. Moreover, inspecting figure 4 reveals that configurations 10c

and 10f can be deformed to closed maximal intra-brane Higgs triangles on C[µL] and C[µR],

respectively. They all have the same energy.
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Figure 9. Higgs configuration with non-vanishing cubic potential.
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Figure 10. Continuous solutions that relate the closed H̃+
1 ϕ+

2 σ̃+
3 triangle with other known one

triangle solutions. The three figures in each row are related by an explicit one-parameter solution.
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Figure 11. Three two triangle configurations which are equivalent by continuous deformations

among each other.

Repeating the analogous analysis for 9b, one concludes that all closed one triangle

solutions are connected by continuous deformations, which all have the same energy.

As in previous cases, solutions with more than one closed triangle have a lower potential

energy, and we immediately recognize the solution with maximal intra-brane Higgs φ+
i and

φ+
i . Again, one can verify explicitly that solutions like the ones depicted in figure 11

exist, and we find continuous deformations that transform figure 11a into figure 11b as

well as figure 11b into figure 11c. By analogous considerations, one infers that all other

configurations involving two closed triangles are degenerate in their potential energy and

can be deformed into each other. However, they lead to distinct patterns of symmetry

breaking and Yukawa couplings.

Spectrum. Having established the existence of numerous novel solutions consisting of

brane backgrounds and maximal Higgs, we need to address the spectrum of the vector

Laplacian. We illustrate the typical behavior for the one-parameter family connecting

the configurations of figure 11b and 11a, and summarize the results in appendix B.4, in

particular figure 30.

As in the previous cases, the combined backgrounds X + φ suffer from the presence of

negative modes in the spectrum of OX+φ
V . Fortunately, one can lift all of these consistently

by inclusion of uniform masses Mi ≡M with the choice 0.47 .M ≤
√

2
3 , including M∗. As

before, these non-trivial masses eliminate a large fraction of the zero modes, and stabilize

their number to a level which is (roughly) independent of the system size.

3.5 Three squashed CP 2 branes & Higgs

Finally, consider the case where also D is not a point brane, but a CP 2 brane. Since the

sector of maximal regular zero modes is a straight forward generalization of the previous

cases, we refrain from depicting them in full detail.

Solutions. In this set-up, one can again find configurations with three closed Higgs trian-

gles connecting the different branes as in figures 12a–12c. The energy of these configurations

is conjectured to be minimal, and equal to the case where only the maximal intra-brane

Higgs on the branes are switched on. Continuous deformations interpolating between these

configurations are indicated in figure 12. As we have already seen in the previous cases, the
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Figure 12. Configurations of three closed triangles for three parallel CP 2 branes. All of the shown

configurations can be deformed into each other by a continuous family of solutions. Hence, all con-

figurations have identical potential energy, but the fluctuations around each background can differ.

all solutions with fixed number of closed triangles (here 1, 2, or 3) can be deformed into one

another. Moreover, we know that solutions with the maximal number of closed triangles

have the minimal potential energy. Hence these configurations are highly degenerate, but

they lead to distinct patterns of symmetry breaking and Yukawa couplings.

Spectrum. Again, we studied the spectrum of the vector Laplacian in these combined

background X+φ, and provide the details in appendix B.5, see in particular figure 32. We

illustrate for the configurations of figure 12a and 12e the existence of negative modes in

the massless case, and their uplifting via masses Mi ≡ M with 0.47 . M ≤
√

2
3 including

M∗. Then the increasingly large number of zero modes in the massless case is reduced and

stabilized to a level that appears to be independent of the systems size.

3.6 Coinciding branes with Higgs

Now consider a stack of n identical branes as above. Then the massless i.e. trivial gauge

modes constitute an unbroken U(n) (or SU(n)) gauge group. As in the case of distinct

branes, there are numerous exact Higgs solutions, which may or may not link the different

branes in various patterns. It is clear that this leads to various patterns of (partial or

complete) symmetry breaking, and it is straightforward in principle to work out the masses

of the broken gauge bosons from the Higgs effect, cf. (4.9).

Taking into account the fermionic zero modes, the question arises how these fermions

couple to the broken and unbroken gauge fields, which Yukawa couplings arise, and whether
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some kind of chiral gauge theory emerges. This is quite natural as we will see, and will be

discussed in section 5.

3.7 Flipped minimal branes plus point brane as G2 brane

Now consider the case of two branes C[µL,R] of conjugate type, i.e. with µL = (N, 0), µR =

(0, NR), together with a point brane D. Then the full set of inter-brane zero modes between

the two squashed CP 2 branes can be obtained from the mode decomposition

Hom(H(N,0),H(0,NR)) = H(N+NR,0) ⊕H(N+NR−2,1) ⊕ . . .⊕H(...,NR) (3.25)

assuming N ≥ NR. The maximal regular inter-brane modes transform as (N + NR, 0).

However, for these modes linking the extremal weights by the longest possible arrow, there

exists no configuration with a non-trivial cubic term. Therefore we have no reason to

assume that they acquire a VEV.

Specializing to the case of N = NR, the next most interesting regular zero modes

transform in (0, N). These modes connect the parallel edges of the irreps (N, 0) and

(0, N). For minimal branes, they form a closed algebra and lead to an exact solution. Let

us discuss this in more detail: let C[(1, 0)] +C[(1, 0)] +C[(0, 0)] be the background solution.

There are various regular zero modes to be taken into account. To begin with, the regular

intra-brane zero modes on C[(1, 0)] and C[(0, 1)] are depicted in figure 13a. From earlier

arguments, it is clear that the background plus the intra-brane triangular configuration

lead to exact solutions of the equations of motion. In addition, the maximal inter-brane

regular zero modes between C[(1, 0)] and C[(0, 1)] are shown in figure 13b–13d, while the

next-to-maximal intra-brane Higgs are displayed in figures 13e–13g. Lastly, there exists the

class of inter-brane regular zero modes between each squashed CP 2 brane and the point

brane. The regular zero modes between C[(1, 0)] and D are displayed in figure 14a–14c;

whereas the inter-brane Higgs between C[(0, 1)] and D are shown in figures 14d–14f.

Solutions. As a nice illustration, we can construct an exact solution which has the struc-

ture of the 7-dimensional irrep of G2. We accomplish this by combining the rank 2 inter-

brane zero modes between the minimal brane and its conjugate with the inter-brane modes

between the minimal branes and the point brane. Actually there exist two realizations of

such a solution, as shown in figure 15. Following appendix B.6, one realizes that the coef-

ficients of the involved zero modes are such that they realize the short roots of G2, while

the long roots are realized by the background Xα. Since G2 is a Lie algebra, this solution

suggests a vast generalization based on higher representations of G2. Indeed, the long and

the short roots of G2 satisfy the decoupling condition.12 This should be elaborated in more

detail elsewhere.

For non-minimal branes C[(N, 0)], it is difficult to find analogous exact solutions, be-

cause the regular zero modes no longer satisfy a closed algebra. Nevertheless, one would

expect that similar solutions might exist for flipped non-minimal branes with a point brane.

This construction is in a sense dual to the discussion of 6-dimensional branes in the next

section.
12HS, unpublished; useful discussions with G. Zoupanos are acknowledged.
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Figure 13. Set-up C[(1, 0)] + C[(0, 1)] + D. Extremal weights for (1, 0) are denoted by •, while

(0, 1) extremal weights are indicated by N, and D is represented by F. The regular intra-brane

Higgs modes φ on C[(1, 0)] and φ̃ on C[(0, 1)] are shown in (a). In (b)–(d) we display the maximal

regular inter-brane Higgs ϕ, ϕ̃ between C[(1, 0)] and C[(0, 1)], while the next-to-maximal regular

inter-brane Higgs ζ, ζ̃ between C[(1, 0)] and C[(0, 1)] are shown in (e)–(g).

Stability. The new combined solutions of G2-type have been obtained in the massless

case. However, we can transfer them to massive solutions as before. This turns out to be

necessary to obtain a instability-free spectrum of the vector Laplacian around this combined

backgrounds. As in previous cases, a uniform mass parameter of order 0.45 . M ≤
√

2
3 is

sufficient to achieve this, and details are provided in appendix B.6.

4 6-dimensional branes

Now consider the case of general C[(N,M)] branes. These are 6-dimensional quantized

coadjoint orbits embedded in R6, which decompose into 3L+3R chiral sheets with opposite

flux measured by the gauge mode χ (4.1). Because these branes have maximal dimension (in

contrast to the above CP 2 branes), this leads to 3L+3R zero modes between a point brane

and C[(N,M)], whose chirality is measured by χ. This is the basis for a chiral gauge theory.

Chirality generator and chiral sheets. For 6-dimensional (fuzzy) branes, the operator

χ :=
i

8
εαβ...γδ[Xα, Xβ ] . . . [Xγ , Xδ] ∼ Pf(θµν)

∈ (3, 0) + (0, 3) ⊂ (1, 1)⊗
3
sym (4.1)
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Figure 14. Set-up C[(1, 0)] + C[(0, 1)] +D. The inter-brane Higgs %, %̃ between C[(1, 0)] and point

brane D are displayed in (a)–(c), while the inter-brane Higgs σ, σ̃ between C[(0, 1)] and point brane

D are displayed in (d)–(f).
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Figure 15. Set-up C[(1, 0)] + C[(0, 1)] +D. By turning on various intra-brane zero modes, we can

construct an exact solution which realizes the 7 dimensional irrep of G2.

reduces to the Pfaffian of the Poisson tensor in the semi-classical limit, and therefore it

should be a good observable to define the chiral L and R sheets, cf. [25–27]. It is easy to

see [25] that on the six extremal weight states w|µ〉 of C[µ] located at the origin, χ takes

the values

χ = (−1)|w|(α1, µ)(α2, µ)(α3, µ) , (4.2)
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where |w| is the signature of the appropriate Weyl group element, and αi are the simple

roots. In the semi-classical limit, χ can be identified with a function on the brane (more

precisely a polynomial of degree 3), which takes positive or negative values corresponding

to the orientation of the 3+3 sheets of C[µ]. This function is odd under W. Thus on the

extremal weight states, χ has the simple structure

χ ∼ 1L − 1R (4.3)

because it has weight zero, it is invariant under Z3 and odd under Weyl reflections. More

precisely, since χ is a cubic totally symmetric function on C[µ], it lives in (1, 1)⊗
3
sym . On

the other hand, χ = χ38 is the weight 0 state in (1, 1)∧
2

= (3, 0)+(0, 3)+(1, 1) of the su(3)

intertwiner

χgh = εab...gh[Ta, Tb] . . . [T, T ] ∈ (1, 1)⊗
3
sym ∩ (1, 1)∧

2
= (3, 0) + (0, 3) + (1, 1) ,

χ = χ38 = −χ83 . (4.4)

The (1, 1) contribution can be excluded,13 so that χ is the hermitian weight 0 combination in

χ ∈ (0, 3) + (3, 0) . (4.5)

Chiral Higgs. We have seen that the extremal states of 6-dimensional branes decompose

into 3L + 3R sets of states with definite chirality. Now we consider the regular Higgs mode

on such a brane, and single out those Higgs φ̃α which respect the chirality, i.e.

[φ̃α, χ] ∼ 0. (4.6)

These are easy to identify for the (1, 1) brane in figure 16. While the maximal regular

zero modes depicted in figure 16a are not chiral, the next-to-maximal regular zero modes

φ̃α ∈ H(3,0) +H(0,3) ⊂ End(H) depicted in figures 16b–16d are in fact chiral, and have a

string-like structure

φ̃α ∼ |xiL〉〈x
j
L| ± |x

i
R〉〈x

j
R| (4.7)

relating extremal states with the same chirality; then (4.6) follows from (4.3).

For the simplest case C[(1, 1)], these chiral Higgs modes form a closed algebra and

will lead to an exact solution, as discussed in more detail in section 4.1. This justifies

the hypothesis that these φ̃α acquire a VEV. The implications for the fermions and their

Yukawa couplings will be discussed in section 5.

Chiral gauge field Aµ and its mass. Among all the gauge fields on the C[(N,M)]

brane, consider the χ-valued gauge field

Aµ = Aµ(x)χ . (4.8)

We call it chiral, because it measures the chirality of the L and R sheets according to (4.3),

and therefore couples accordingly to chiral fermions. We are going to argue that Aµ may

be the lightest non-trivial gauge mode in the presence of a chiral Higgs VEV as above, and

describes a gauge field in a spontaneously broken U(1)L ×U(1)R chiral gauge theory.

13It would have to be c38
e T

e where cabc are the structure constants, which vanishes.
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Figure 16. Regular zero modes of rank 1 or 2 for C[(1, 1)] brane. The maximal Higgs φ+
i of (a)

are not chiral, but the rank 2 Higgs ϕ+
i , σ+

i of (b)–(d) are chiral.

With this in mind, the mass of the gauge boson Aµ in the presence of some Higgs φα
arises as usual from

Dµ(Xa + φa)Dµ(Xa + φa) = ∂µφa∂
µφa +Aµ(x)Aµ(x)[χ,Xa + φa][χ,Xa + φa] + . . .

= ∂µφa∂
µφa +AµA

µ
(
m2

(3,0),0χχ+ [χ, φa][χ, φa]
)

(4.9)

assuming [Xa, φa] = 0 (see [13]). Since χ is a weight zero mode in H(3,0), the contribution

form the brane X is obtained from (2.83)

m2
(3,0),0 = 2(Λ,Λ + 2ρ) = 2(5, 2)TG(3, 0) = 2 · 27 . (4.10)

Assuming that a chiral Higgs φ̃ takes a VEV (as justified below), it is natural to expect

that Aµ ∼ χ will be the lightest gauge boson, because the mass contribution [χ, φ̃a][χ, φ̃a]

vanishes due to its defining property (4.6). All other non-chiral gauge modes A′µ ∼ ρ

acquire an extra mass tr[φ̃α, ρ]2.

Explicitly, the masses of the lightest gauge modes (with zero weight) due to the back-

ground are as follows:

m2
(3,0),0 = 2(5, 2)TG(3, 0) = 2 · 36,

m2
(1,1),0 = 2(3, 3)TG(1, 1) = 2 · 18,

m2
(2,2),0 = 2(4, 4)TG(2, 2) = 2 · 48, (4.11)

using ρ=(1, 1). Here G=
(

2 1

1 2

)
is the metric on su(3) weight space. We restrict ourselves to

gauge fields with weight zero here;14 note that e.g. Λ=(2, 0) contains no weight zero modes.

14The modes with nonzero weight acquire additional mass terms from φ̃ beyond the ones discussed here,

which are difficult to evaluate. Moreover for large branes, we expect that the currents of fermionic links

to a point brane have either large or zero weight, and therefore do not couple to light gauge modes with

nonzero weight.
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For the minimal C[(1, 1)] brane, we can also compute the mass contribution from

the chiral Higgs φ̃α solution, which lives on the chiral triangles of the (1, 1) branes as

in figure 17. To this end, we decompose the (1, 1) brane and its Hilbert space into the

two triangles consisting of the L and R states, which can be viewed as (1, 0) and (0, 1)

branes defined by the chiral Higgs φ̃α. Then all gauge modes with weight zero live in

End(1, 0) = (1, 1) + (0, 0) and End(0, 1) = (1, 1) + (0, 0) w.r.t. these triangles. Hence the

mass contribution for the chiral gauge field Aµ ∼ χ with Λ = (3, 0) vanishes (because

[χ, φ̃] = 0), while the mass contribution for the weight zero Λ = (1, 1) mode is

m2
(1,1),0 = 2(3, 3)TG(1, 1) = 2 · 18. (4.12)

Adding this to (4.11), we see that indeed the chiral boson Aµ ∼ χ as well as the two

Λ = (1, 1) gauge bosons are the lightest, degenerate gauge bosons (within weight zero),

with mass m2 = 2 · 36. Note that the contribution from the chiral Higgs to the non-chiral

gauge bosons such as m2
(1,1),0 should be larger on larger branes, while (4.11) is universal.

It is then plausible that the chiral gauge mode Aµ (4.8) becomes the lightest mode, which

would entail a chiral gauge theory with a spontaneously broken U(1)L×U(1)R gauge field

and 3 generations.

On larger branes, the details are more complicated, because there are many chiral

Higgs which may contribute to the mass. However, the underlying geometrical mechanism

is very clear: the 3L+3R sheets at the origin lead a priori to a U(3)L×U(3)R gauge theory,

which is broken not only by the global connectedness of the brane leading to (4.11), but

also by the chiral Higgs modes which link the L and R sheets among themselves. These

in turn break the symmetry to U(1)L ×U(1)R with 3 generations, and hopefully leave the

chiral gauge field Aµ as lightest non-trivial gauge boson. Note also that in general, non-

trivial Higgs configurations may lead to some back-reaction on the brane (cf. the discussion

in section 4.2), which may lead to a relative shift between the L and R branes in target

space, thus amplifying the effects on the symmetry breaking. This should be kept in mind

in the discussion about approaching the Standard Model in section 6.

4.1 C[(1, 1)] brane with chiral Higgs solution

On the C[(1, 1)] brane, we have indeed an exact brane plus chiral Higgs solution. The

underlying rank two regular zero modes have already been presented in figures 16b–16d.

Because they form a closed algebra, we can combine these to form new exact solutions of

the form X +ϕ and X + σ, which are depicted in figure 17. The details of how to arrange

this to get an exact solution to the equations of motion are delegated to appendix B.7.

Having found two such equivalent solutions, we analyzed the spectrum of the vector

Laplacian around these exact solutions. As it turns out, there are a number of negative

modes, indicating potential instabilities. However by including a mass terms Mi ≡M , one

can again eliminate all instabilities for 0.47 .M ≤
√

2
3 , see for instance figure 33b. In this

massive case there remain 8 zero modes of OX+ϕ
V or OX+σ

V , which are again understood in

terms of a compact moduli space, which could presumably be lifted by introducing different

masses.
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Figure 17. C[(1, 1)] brane with non-maximal regular zero modes. (a) Brane background together

with a configuration involving ϕ±
i . (b) Brane background together with a configuration consisting

of σ±
i .
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Figure 18. Rigged (N, 1) brane as two chiral branes, stabilized by chiral Higgs (red & blue).

4.2 Rigged CP 2 branes

Now consider (N, 1) branes. These can be viewed as a stack of two CP 2 branes linked

by a minimal fuzzy sphere S2
2 , see for instance [33]. We illustrate this set-up in figure 18.

The minimal fuzzy 2-sphere plays the role of a Higgs linking the two CP 2 branes. This

can be understood noting that the extra S2 fiber is embedded transversal to the CP 2,

leading to a 6-dimensional geometry. This is also similar to the flipped branes connected

by Higgs in section 3.7, which is now realized as an exact solution with non-trivial intrinsic

topology. A decomposition into (N, 0) branes can be obtained explicitly in a suitable basis,

see [33]. This also leads to Yukawa couplings which remove certain fermions from the

massless sector, resulting in the typical structure found on 6-dimensional branes.

Equations of motion. For these (N, 1) branes, the next-to maximal Higgs modes play

again the role of chiral stringy Higgs modes. In view of figure 19b–19d, these modes have

the structure

ϕ+
i = ϕ̃+

i +H+
i (4.13)

where

ϕ̃+
i = αN |xiL〉〈x

j
L|, H+

i = hN |xiR〉〈x′
j |, hN ∼

1√
N
αN (4.14)

because

0 = [X+
i , ϕ

−
j ] = X+

i ϕ̃
−
j − ϕ̃

−
j X

+
i ∼ (αN − hN

√
N)φ−j . (4.15)

– 43 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
6

•◦•

••

◦◦

••φ+
1

φ+
2

φ+
3

(a)

•◦•

••

◦◦

••

ϕ+
1

σ+
1

(b)

•◦•

••

◦◦

••

ϕ+
2

σ+
2

(c)

•◦•

••

◦◦

••

ϕ+
3

σ+
3

(d)

Figure 19. The rank 1 and 2 regular zero modes for the C[(2, 1)] brane, exemplifying the (N, 1)

case. The maximal Higgs φ+
i of (a) connect extremal weight states, while the next-to-maximal

Higgs ϕ+
i , σ+

i of (b)–(d) also relate extremal and non-extremal weight states. Only the latter are

(approximately) chiral.

Note that ϕi relates again extremal states with the same chirality, but they no longer form

a closed algebra because of the sub-leading H contribution. Hence the ϕi do not yield an

exact solution within the Higgs sector. Nevertheless they lower the energy of the brane, and

we expect that there exist slightly deformed solutions with similar properties. Presumably,

such solutions would involve small admixtures of other zero modes (and possibly massive

modes). For large N , this deformation should be negligible. The argument for the σj
modes is completely analogous.

4.3 C[(N,N)] branes

Finally, we briefly consider C[(N,N)] branes as sketched in figure 20. Among the Higgs

modes we mention the maximal zero modes φ+
i in (2N, 2N), and the (3N, 0) modes ϕ̃+

i , σ̃+
i

(and similarly (0, 3N) modes) connecting the opposite edges of (N,N). These are again

approximately chiral Higgs modes (similar to the (1, 1) case), which do not quite form a

closed algebra, but clearly lower the energy of the brane. Hence we expect that there are

nearby deformed solutions.

4.4 Nonabelian case: stacks of 6-dimensional branes and point-branes

Now consider a stack of two identical 6-dimensional branes as above, each with chiral

Higgs φ̃ switched on, and add also an extra point brane D to make it more interesting.

This clearly leads to an unbroken U(2) gauge group. However, the results of the last

sections lead to a more refined statement: the two branes lead to a U(2)L × U(2)R gauge

theory which is spontaneously broken to U(2)diag, and massive chiral gauge bosons Aµ
taking values in u(2)L − u(2)R. We will see in section 5 that there are also fermionic zero

modes linking D with the 3L + 3R sheets on each brane, leading to 3 generations of chiral

fermions transforming in the fundamental of U(2)L and U(2)R, respectively, which have

opposite charges under Aµ according to their chirality. This is a chiral gauge theory in

a broken phase, reminiscent of the SU(2)L × SU(2)R Pati-Salam-type electroweak model.

Further suitable (maximal, non-chiral) Higgs between the two 6-dimensional branes may
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Figure 20. The rank one, two, and three regular zero modes for the C[(2, 2)] brane, exemplifying

the (N,N) case. The maximal Higgs φ+
i of (a) connect extremal weight states. The next-to-maximal

Higgs ϕ+
i , σ+

i of (b)–(d) also relate extremal and non-extremal weight states. Neither the rank one

nor the rank two zero modes are chiral. Only the rank three zero modes of (e)–(g) are chiral modes.

break the symmetry to U(1) and lead to patterns quite close to the Standard Model, which

will be discussed in section 6.

5 Fermions on branes with Higgs

The Dirac operator on a squashed background C[µ] is given by

/D
X

=
√

2

3∑
j=1

(
∆−j [X+

j , ·] + ∆+
j [X−j , ·]

)
(5.1)

acting on End(H) ⊗ S, where S ∼= C8 accommodates the spinors. The ∆±j are fermionic

ladder operators which satisfy {∆−j ,∆
+
k } = δj,k. For the squashed background C[µ], the

X±j act as ladder operators for the preserved U(1)Ki charges. With this input, it was

shown in [25–27] that the fermionic zero modes Ψα,Λ′ on C[µ] correspond to the extremal

weight states of each irrep HΛ appearing in End(H) = ⊕ΛHΛ, and are in one-to-one

correspondence to the regular zero modes φα,Λ′ of the scalar fields discussed in section 2.5.

The proof in [25] is based on the extremal weight properties, while a proof in the spirit of

index theory was given in [26]. Consequently, the zero modes are again labeled by their

U(1)Ki quantum numbers Λ′, and their chirality is determined by the parity τ = ±1 of (the

Weyl chamber of) Λ′. In addition, there exist two trivial gaugino zero modes on each brane.
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The results can be summarized by stating that a quiver gauge theory arises on stacks

of squashed branes ⊕niC[µi], with gauge group U(ni) on each node µi and arrows corre-

sponding to chiral superfields φα,Λ′ labeled by the extremal weights Λ′ corresponding to

the multiplets HΛ ⊂ Hom(Hµi ,Hµj ). The trivial modes Λ = 0 on each node lead to N = 4

supermultiplets.

More specifically, on a given stack of squashed C[µi] branes, fermionic zero modes

arise in two ways: first, as intra-brane fermions Ψ ∈ End(Hµi) ⊗ S on some given brane

C[µi]. The intra-brane fermions are uncharged under the gauge groups arising on the

(stacks of) different branes, but they are chiral and charged under U(1)Ki . The latter two

features protect them from acquiring any mass terms on the C[µi] background, because

opposite charges have opposite chirality. Nevertheless, these modes may acquire masses

in the presence of non-vanishing Higgs modes due to Yukawa couplings discussed below.

In contrast, the two trivial gaugino modes with Λ = 0 are unprotected, and are therefore

expected to acquire a large mass due to the soft SUSY breaking, either at tree level or

through loop corrections.

Second and more interestingly, fermionic zero modes also arise as inter-brane fermions

Ψ ∈ Hom(Hµi ,Hµj )⊗ S linking two different (stacks of) branes. These are charged under

the gauge groups arising on the (stacks of) different branes, chiral, and protected by their

U(1)Ki charges. Hence they can acquire a mass only through Yukawa couplings in the

presence of Higgs modes linking different branes. Note that due to the 9+1-dimensional

Majorana-Weyl condition, the Ψ ∈ Hom(Hµi ,Hµj )⊗ S are related via charge conjugation

to the Ψ ∈ Hom(Hµj ,Hµi)⊗S. This is important to avoid over-counting e.g. in (6.6), and

to obtain a chiral gauge theory.

Yukawa couplings. Assume that C[µL] and C[µR] are connected with some Higgs φα.

Then Yukawa couplings of two such fermionic zero modes arise from the N = 4 action (2.1),

with structure

tr
(
Ψγ5∆α[φα,Ψ]

)
. (5.2)

This respects the U(3)R symmetry and the U(1)Ki symmetry. Consequently, the non-

vanishing Yukawa couplings in the zero-mode sector have the same structure as the cubic

term Vsoft in the potential,

tr
(
Ψ−αiγ5∆αj [φαj ,Ψαk ]

)
∼ εijk (5.3)

and its conjugate. These Yukawa couplings are (non-)vanishing if and only if the corre-

sponding cubic term tr(φαi [φαj , φαk ]) (with the same U(1)Ki quantum numbers) is (non-

)vanishing. This requires in particular that the U(1)Ki charges Λ′ of φαj and Ψαk add up

to that of Ψαi . In particular, the τ -parities of αi, αj , αk must be equal.

Fermionic zero modes on branes with Higgs. For a combined brane plus Higgs

background Y = X+φ, the above classification of fermionic (and bosonic) zero modes does

not apply any more. The reason is that the Y ±j are typically no longer ladder operators and

do not satisfy any Lie algebra relations. As illustrated in various settings in appendix B,
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Figure 21. Chiral inter-brane fermions Ψα,Λ′ and Ψ̃α,Λ′ linking C[(N, 0)] with a point-brane D,

which is represented by F. Their chirality is indicated by the sign ±, which is inherited from the

Weyl chamber. Red arrows correspond to maximal Higgs φ+
j .

the spectrum of OYV and /D
Y

may behave utterly different compared to their spectrum on

the squashed backgrounds.

Nevertheless, one can understand in many cases the fate of the fermionic zero modes,

and obtain a qualitative understanding of the remaining low-energy sector. We will argue

that some of the chiral fermionic zero modes of /D
X

are coupled by the Yukawa couplings

induced by φ and acquire a mass. Hence, they disappear from the low-energy spectrum

on the combined background X + φ. On the other hand, some other fermionic zero modes

are protected and remain massless. Adding a point brane D to the combined background

solution, the inter-brane fermionic zero modes may lead to a very interesting low-energy

physics, reproducing ingredients of the Standard Model.

Due to the complicated setting, most of these arguments are only qualitative at this

point, and we do not have a complete understanding in all cases. The detailed numerical

results are given in appendix B.

5.1 Fermions on C[(N, 0)] branes with maximal Higgs

For a single C[(N, 0)] background, there are 6(N + 1) + 2 fermionic zero modes. These

consist of 6(N+1) modes from the decomposition End(H(N,0)) = ⊕Nl=0H(l,l), plus two trivial

gaugino modes. Turning on the maximal regular bosonic zero modes φ, the spectrum of

/D
X+φ

contains only 14 zero modes independent of N , see figure 25f. This reduction clearly

arises from the Yukawa couplings due to the maximal Higgs φ, which leaves the 6 + 2 zero

modes from H(0,0), plus 6 extra zero modes whose origin is obscure.

Adding a point brane D to this X + φ, the number of fermionic zero modes is 22

according to figure 27b, which differs by 8 from the 14 modes on C[(N, 0)] with maximal

Higgs. We can understand this as follows: a priori, there are 2 · 6 fermionic inter-brane

zero modes between C[(N, 0)] and D, which arise from Hom(H(N,0),C) ∼= H(N,0). However,

upon switching on the maximal Higgs, Yukawa couplings tr(Ψ̃+
3 [φ+

2 ,Ψ
+
1 ]) arise as depicted

in figure 21, which couple these zero modes and give them a mass. This leaves only the 6+2

intra-brane fermions on D, which remain massless. This explains the numerical findings.
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5.2 Fermions on C[(1, 1)] brane with chiral Higgs, and point brane

Now we come to our most interesting solution: start with one of the two exact solutions

X+ϕ or X+σ of figure 17, corresponding to a C[(1, 1)] brane with chiral Higgs. As shown

in figure 33b, the number of fermionic zero modes is reduced to 20, in comparison to the

38 zero modes of the C[(1, 1)] brane without Higgs.

Now, add a point brane D to the above C[(1, 1)] with chiral Higgs. Then on top of

the above 20 fermionic zero modes from C[(1, 1)] with chiral Higgs, the numerical analysis

reveals 20 additional fermionic zero modes. These are understood as follows: 2 · 6 zero-

modes arise from inter-brane zero modes ΨC,D corresponding to Hom(H(1,1),C) and its

conjugate. In addition, there are 8 trivial intra-brane fermions on D, which consist of 6

modes in End(H(0,0)) ∼= C and 2 gaugino modes.

The interesting point is that these 2 · 6 inter-brane zero modes do not acquire a mass,

even in the presence of the chiral Higgs on C[(1, 1)]. The key word here is chiral Higgs,

which by definition link the extremal weight states of C[(1, 1)] with the same chirality, see

figure 17 and (4.7). Since the ΨC,D linking D with these states have the same chirality,

they cannot form a mass term, and remain massless. We view them as (toy-versions of)

left-and right-handed leptons, since they couple with opposite charges to the chiral gauge

field Aµ of (4.8),

Aµ ∼ χ ∼ 1L − 1R ∼ γ5 (5.4)

and come in 3 generations. If some extra Higgs mode is switched on which links the states

with opposite chirality, e.g. the maximal Higgs mode, then these left-and right-handed

leptons would acquire a mass, as in the Standard Model. Such scenarios will be discussed

further in section 6.

5.3 Fermions on rigged CP 2 brane

The story for the C[(N, 1)] branes from section 4.2 is very similar to the (1, 1) case, but

should be even more interesting as far as physics and the scales are concerned. As before,

we are mostly interested in a point brane D added to a C[(N, 1)] brane with Higgs. The

drawback for this rigged CP 2 scenario is that we lack an exact solution which would reflect

the configuration of figure 18. Nonetheless, some qualitative statements can be made.

There are again the 3 + 3 fundamental chiral zero modes linking D to C[(N, 1)], which are

attached to the 3L+ 3R extremal weight (coherent) states, and are viewed as 3 generations

of leptons. These leptons will survive in the presence of the chiral Higgs as before, and

couple to the chiral gauge field Aµ ∼ χ ∼ γ5 of (5.4). Due to the large N , one may

hope that this chiral Aµ is now indeed the lightest non-trivial gauge boson on C[(N, 1)], as

discussed in section 4.2. The resulting physics is that of 3 generations of leptons coupled

to Aµ ∼ γ5. This demonstrates how a chiral gauge theory can arise from softly broken

N = 4 SYM in a suitable vacuum corresponding to space-filling branes with fluxes.

5.4 Fermions on flipped minimal branes plus point brane — the G2 brane

Let us consider the fermionic zero modes around the combined G2-type backgrounds of

figure 15. The analysis presented in appendix B.6 shows that from the original 84 fermionic

– 48 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
6

zero modes on C[(1, 0)]+C[(0, 1)]+D (without any Higgs), only 14 remain on the combined

background.

Adding an extra point brane D to the G2-type solution, one might expect (i) inter-

brane fermions between D and the G2-type solution, and (ii) intra-brane fermions on D.

The numerical analysis of the Dirac spectrum, however, shows that the combined system

has only 22 fermion zero modes, which is only 8 more than on the G2 solution. This means

that among the 2 · 6 inter-brane fermions and the 6 + 2 trivial fermionic modes from D,

only 8 remain massless, while the remaining ones pair up and form massive states. The

reason is that the G2 orbits have higher dimension, and the chirality properties of the 6-

dimensional solutions no longer apply. Therefore the present G2 solution is less interesting

for the application in section 6, but it may give hints how to find non-trivial Higgs solutions

on several SU(3) branes.

5.5 Fermions on two squashed CP 2 branes with a point brane & Higgs

Finally consider two parallel branes C[µL] and C[µR] with µL = (NL, 0) and µR = (NR, 0)

and a point brane D. In section 3.4, we found various Higgs solutions, linking the extremal

weight states of the various branes, which break the U(1)×U(1) gauge fields AL,Rµ arising

from the C[µL,R]. There are again fermionic zero modes ΨDCL and ΨDCR linking D to

the two branes, and we want to see if the Yukawa couplings to the Higgs may lead to an

interesting chiral low-energy gauge theory, where fermions with different chiralities have

different couplings to the gauge fields AL,Rµ as in sections 5.2 and 5.3.

The task is trickier here, because ΨDCL , for instance, provides two fermions connecting

to the same corner of H((NL,0), whose chirality is given by their τ -parity. They will be

paired up by the intra-brane Higgs connecting these corners. However, by inspection, all

solutions found in section 3.4 break the Z3 symmetry, and they also typically involve intra-

brane Higgs (except for the solutions in section 3.5). Hence, even though the surviving

massless fermions are chiral and have different couplings to ALµ and ARµ , the generation

symmetry Z3 is not respected. This leads to a somewhat strange low-energy theory far

from the Standard Model. Nevertheless, it is conceivable — and even reasonable — that

the inter-brane Higgs acquire by some other mechanism a VEV which does respect Z3,

as indicated in figure 22. Then it is possible to have a situation similar as in sections 5.2

and 5.3, where e.g. all ΨDCL are left-handed and all ΨDCR are right-handed.

Since we do not have a dynamical justification for such a Z3-invariant Higgs configura-

tion, we will focus on the configurations in sections 5.2 and 5.3 in the following discussion

towards the Standard Model.

6 Approaching the Standard Model

At first sight, it may seem impossible to get anything resembling the Standard Model from

deformed N = 4 SYM. After all the Standard Model is chiral, while N = 4 SYM is not.

In fact, any low-energy gauge theory arising in some vacuum of a deformation of N = 4,

as considered here, will have index zero, cf. [34]. However, the Standard Model extended

by right-handed neutrinos νR does have index zero, and this is what we aim to approach

with sterile νR, which are uncharged under the gauge group of the SM. The scenario to be
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Figure 22. Set-up C[µL] + C[µR] + D with a Z3-invariant Higgs configuration, where the point

brane D is depicted in the center and C[µL] corresponds to the outermost brane. We sketch the

chiral intra-brane fermions Ψ, Ψ̃ between C[µL] and D as well as ψ, ψ̃ between C[µR] and D. The

fermions Ψ and ψ̃ can be linked by maximal inter-brane Higgs H, H̃ between C[µL,R]. The chirality

of the fermionic zero modes is indicated by the sign ±, which is inherited from the Weyl chamber.

••
••

••

L

L

L

R

R

R

Du ≡ C[(N, 1)]φu

••
••

••

L

L

L

R

R

R

Dd ≡ C[(N, 1)]φd

F
Dl

F
FF

3×Dc

SU(2)L

φs

Figure 23. Brane configuration towards the Standard Model. Both Du and Dd can be realized

e.g. by rigged (N, 1) brane solutions, which decompose into L and R sheets with 3 generations.

discussed will be reminiscent of (a supersymmetric extension of) the Pati-Salam model [35]

in the broken phase. This is a refinement of the brane configuration proposed in [26], using

the results of the previous sections.

Consider the brane configuration of figure 23, which is constructed in terms of our

squashed brane solutions as follows: the Dd brane is realized by a rigged brane C[(N, 1)],

which decomposes into two chiral DLd + DRd branes, with chiral Higgs φ̃ switched on

as in section 4.2. The Du has the same structure15 as Dd, which decomposes into two

chiral DLu + DRu branes, again with chiral Higgs φ̃. Finally add 4 point branes, denoted

as 3 × Dc + Dl for reasons which will become clear soon. The overall brane configuration

Dl+3×Dc+(Du+Dd) in the SU(N) SYM model leads to a SU(4)×SU(2)×U(1) gauge group.

15This is motivated e.g. by the structure of the traceless electric charge generator Q (6.3).
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Next, we assume that there exists a non-vanishing “Pati-Salam” Higgs16 φS linking

DRu with Dl, which breaks the gauge group to

SU(3)c ×U(1)Q ×U(1)B′ . (6.1)

This breaking might also be achieved or accompanied by a displacement of the two R

branes, while the L branes remain coincident. Here Q is the electric charge, L is the lepton

number, B the baryon number, and

Q :=
1

2

(
1u − 1d + L −B

)
, (6.2)

B =
1

3
1c , B′ = B − c1

L = 1l , (6.3)

such that B′ is traceless. Note that Q is traceless provided dimHu = dimHd, which

strongly suggests that the Du and Dd have the same structure. We also introduce the weak

hypercharge

Y := 1Ru − 1Rd + L −B . (6.4)

Q and Y will reproduce the correct charge assignments of the Standard Model, and we

recover the Gell-Mann-Nishjima formula

Q− 1

2
Y =

1

2
(1Lu − 1Ld) =: T 3

L . (6.5)

Fermions. Now consider the off-diagonal fermions linking these branes, which arise as

zero modes Ψij ∈ End(Hi,Hj) linking the extremal weight states of the branes C[µi] and

C[µj ]. Consider first the fermions between the point branes Dl,Dc and Du,Dd. Since

the former are point branes and Du as well as Dd have the structure of C[(N, 1)] branes

(by assumption), we can simply apply the results of sections 5.2 and 5.3. Recalling that

the extremal weight states of Du separate into 3L + 3R chiral extremal weight states

|µiLu〉, |µiRu〉 and similarly for Dd, we obtain 3 generations of chiral leptons linking Dl
with Du,Dd, and 3 generations of chiral quarks linking Dl with Du,Dd. In the basis

(|µiLu〉, |µiLd〉, |µiRu〉, |µiRd〉, |0〉l, |0j〉c), we denote the inter-brane fermions as

Ψ =


∗2 H̃u H̃d lL QL
∗ e′ νR uR
∗ eR dR
∗ u′

∗3

 . (6.6)

16Note that φS corresponds to the (4, 1, 2) Higgs in the Pati-Salam model [35]. While there are indeed

suitable regular zero modes which link Dl with the 3 extremal R states of Du, we did not find an exact

solution of this type, because they do not form closed triangles. It might be possible to find such solutions

in conjunction with the Higgs Hu,d (6.12), or along the lines of the G2 solutions in section 3.7.
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Here the left-handed quarks and leptons

QL =

(
uL
dL

)
, lL =

(
νL
eL

)
, (6.7)

arise as SU(2) doublet acting on the Du,Dd branes. This SU(2) is broken by φS , which

will be discussed in more detail below. Similarly, the right-handed quarks and leptons also

arise as SU(2) doublets

QR =

(
uR
dR

)
, lR =

(
νR
eR

)
. (6.8)

Note that the entries below the diagonal are not independent but related to the upper

entries by charge conjugation, see section 5. The charge generators (6.3), (6.4) are given

explicitly by

Q =
1

2
diag

(
1,−1, 1,−1, 1,−1

3

)
,

Y = diag

(
0, 0, 1,−1, 1,−1

3

) (6.9)

which results in the following quantum numbers for the off-diagonal modes

(Q,Y )|Ψ =



∗

(
(0,−1)

(−1,−1)

) (
(1, 1)

(0, 1)

) (
(0,−1)

(−1,−1)

) (
(2

3 ,
1
3)

(−1
3 ,

1
3)

)
∗ (−1,−2) (0, 0) (2

3 ,
4
3)

∗ (−1,−2) (−1
3 ,−

2
3)

∗ (2
3 ,

4
3)

∗


(6.10)

dropping the obvious SU(3)c assignment. All quantum numbers of the Standard Model

are correctly reproduced, and three families arise automatically due to the Z3 symmetry.17

There are also some extra modes, including Higgsinos H̃u,d (as in the MSSM), the νR
which is uncharged under the SM gauge group, gauginos, Winos, and some sterile diagonal

fermionic modes. Furthermore, there are also extra modes e′ with the same quantum

numbers as eR, and u′ with the same quantum numbers as uR. Their fate depends on the

detailed structure of e.g. φS and will not be discussed here. This way of obtaining the

correct SM charges is familiar from the context of matrix models [23, 26, 36, 37] and from

intersecting brane constructions in string theory [38–40].

Higgs sector. In the present background, all the above fermions are exactly massless,

even though the unbroken symmetry is only (6.1). The reason is that the U(2)L × U(2)R
symmetry of the two L and R sheets of the 6-dimensional branes Du and Dd is broken

because the sheets are connected (see section 4). This can be viewed as breaking via some

17The Z3 symmetry may of course be broken e.g. by the Yukawa couplings induced by different Higgs

VEVs, or by a deformation of the background.
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background ”Higgs“, which however does not couple to the above fermions. On the other

hand, recall that all the above fermionic zero modes have scalar superpartners, as discussed

in the first part of the paper. In particular, this includes the electroweak Higgs doublets

Hu, Hd with Y (Hd) = 1 (as in the SM) and Y (Hu) = −1 (as in the MSSM), which fit into

the above matrix structure as

φa =


02 Hu Hd 0 0

0 0 0 0

0 ϕS 0

0 0

0

 . (6.11)

It is reasonable to assume that these are intra-brane Higgs modes within Du and within

Dd, realized by bosonic zero modes ϕu and ϕd as discussed in section 4.2. This means that

they take the following VEVs

Hd =

(
ϕd
0

)
, Hu =

(
0

ϕu

)
(6.12)

with Q = 0. More explicitly, these Higgs modes have the structure

Hd ∼
∑(

0 · |µL〉u + ϕd · |µL〉d
)
〈µRd|d ∼=

(
0

ϕd

)
〈µRd|d

Hu ∼
∑(

ϕu · |µL〉u + 0 · |µL〉d
)
〈µRu|u ∼=

(
ϕu
0

)
〈µRu|u . (6.13)

Since they are intra-brane modes, they do not induce any further symmetry breaking;

nonetheless, they do induce the desired Yukawa couplings between the left-and right-handed

leptons and quarks, as in sections 5.2, 5.3. Then the low-energy phenomenology should be

fairly close to that of the Standard Model, extended by the various extra fields as above.

These Hu,d should be viewed as part of the combined background, which gives mass

in particular to the W± bosons discussed below, as explained in section 4. The lowest

fluctuations of this vacuum will involve all the constituents and may behave similar to a

SM Higgs, while the detailed composition of the background will enter only via the various

gauge and Yukawa couplings. We note that this is somewhat similar to a Pati-Salam

model in the broken phase [35]. Whether or not such a scenario may be realistic is another

issue, and perhaps there is a better background. The main point here is to show that

one may come surprisingly close to SM-like low-energy physics, with only few reasonable

assumptions on the VEVs of the zero modes.

Now consider the νR in more detail. Its fate is clearly affected by the presence of the

Higgs link φS between Dl and the R states of Du, which leads to extra Yukawa couplings

of the ν and some intra-brane fermions. This would entail a mixture of fermionic states,

which is too complicated to be fully analyzed here.
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Gauge bosons. It is well-known that a background consisting of stacks of branes leads

to massless U(ni) gauge bosons within stacks of ni coinciding identical branes. This

yields (6.1) in the present background.

The story becomes more interesting if we account for the lightest massive gauge bosons.

Assume for the moment that there is no φS . Then the Du +Dd would define a U(2) gauge

symmetry which enhances to U(2)L × U(2)R by taking the chiral Aµ ∼ χ ∼ γ5 of (5.4)

on the C[(N, 1)] branes into account. Together with the SU(4) from the Dl + 3×Dc, this

is reminiscent of a Pati-Salam model in the broken phase. Clearly the SU(2)L along with

the Y contributes the W± and Z gauge bosons of the electroweak sector, and the U(2)R
is broken in the presence of φS , leading to (6.1). This provides the basic structure of an

extended Standard Model. One may hope that the various extra fields acquire a sufficiently

high mass to be negligible at low energies, but this is beyond the scope of this paper.

Discussion. Let us briefly address some of the numerous open questions. One concern

is that we had to assume that the φS and the Hu,d acquire the appropriate VEVs, without

having an exact solution. However, if the Hu,d are realized as links along the edges of

C[(N, 1)], then there are in fact non-vanishing cubic terms involving e.g. tr(HuφSφ
′
S), which

lower the energy. It is, therefore, plausible that there is such a solution, but it would

presumably have a non-vanishing back-reaction on the brane, which we cannot compute.

This is a non-trivial problem, and quantum effects might play an important role.

Another question is whether a suitable hierarchy could arise between the 3 gener-

ations. Even though the background under consideration has an exact Z3 symmetry,

this could easily be broken in the Higgs sector, or possibly by introducing different mass

parameters Mi.

A further issue is the extra massless U(1)B′ gauge field, which amounts to baryon num-

ber. Even though this protects from proton decay, there should not be any such massless

gauge field, and it is not clear how to remove this in the present field-theoretic setting.

However, it might disappear via a Stückelberg-type mechanism in an analogous matrix

model setting with an axion, cf. [41–44] and the discussion in [26]. In fact, all results of the

present paper carry over immediately to the IKKT matrix model, where noncommutative

U(N) N = 4 SYM arises on a stack of N (3 + 1)-dimensional noncommutative brane solu-

tions, while the internal structure of the present paper are unchanged. Thus, the present

paper can also be seen as a possible way to obtain interesting particle physics from the

IKKT model, cf. [37, 45].

Finally, we note that instead of realizing, for instance, the Du branes via C[(N, 1)],

we could alternatively use separate L and R branes C[(NL, 0)] and C[(NR, 0)], linked by

suitable Higgs as in section 5.5. These links would give mass to the mirror fermions, which

disappear from the low-energy theory. The remaining discussion follows the logic employed

above. We recall, that this has been the setup proposed in [26]. The links are essentially

an integral part of the C[(N, 1)] branes linking their chiral sheets, realized in an exact

solution.
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7 Discussion and conclusion

Building on previous work [25, 26], we studied vacua corresponding to squashed fuzzy

coadjoint SU(3) branes in N = 4 SYM, softly broken by a SU(3)-invariant cubic potential

and masses. We found a rich class of novel vacua that include non-trivial condensates of

the zero modes. The condensates are interpreted as string-like Higgs modes linking the

self-intersecting branes.

Summary. On a formal level, we showed that the potential can be rewritten in terms of

complete squares (2.11), so that the equations of motion follow from a set of first integral

equations (1.2). These observations allow to extend solutions from the massless to the

massive case, and to establish the absence of any instabilities for a preferred mass parameter

M∗, at the classical level. Furthermore, we give a useful new characterization of the regular

zero modes (the Higgs modes) on the SU(3) branes in terms of a decoupling condition (2.41).

As a consequence, the full potential and equations of motion decouple completely for a

combination X +φ of brane plus Higgs mode. This is the basis for establishing a rich class

of new exact solutions of this type, which lead to a spontaneously broken gauge theory

with non-trivial Higgs VEVs and corresponding Yukawa couplings, realizing the ideas put

forward in [26].

The decoupling conditions and the related rewriting of the potential in terms of com-

plete squares are in many ways reminiscent of supersymmetry. It provides non-trivial

moduli spaces of vacua, and establishes their stability. However there is no underlying

symmetry, so that at present we cannot extend these structures to the quantum level.

At a more technical level, the first integral equations are somewhat weaker than su(3)

Lie algebra relations (2.25). Nonetheless, su(3) representations provide a valuable starting

point, and most — but not all — of our solutions are based on su(3) in some way. Clearly

the basic branes C[µ] arise directly from su(3). Using the decoupling properties of the zero

modes, we constructed numerous novel combined brane plus Higgs solutions including the

following:

(i) The fuzzy 2-sphere S2
N arises from the minimal regular zero mode φ+

i = −X−i on any

C[µ] brane background. However, these are large perturbations, which completely

change the geometry of the brane.

(ii) The maximal regular zero modes φ+
i = − 1

N !(X
−
i )N on C[(N, 0)] furnish the funda-

mental representation (1, 0) of su(3) and correspond the string-like operators. We

have discussed these solutions at length in section 3.

(iii) The next-to-maximal regular zero modes on C[(1, 1)] furnish interesting chiral Higgs

solutions which stabilize the chiral sheets, as shown in section 4.1. A generalization

to C[(N, 1)] is conjectured.

(iv) As an elaborate example, various zero modes on C[(1, 0)] + C[(0, 1)] + D are used to

form the 7-dimensional fundamental representation of g2 ⊃ su(3), as discussed in

section 3.7.
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The discussion of the fermion sector in section 5 is mostly qualitative. In the presence

of several Yukawa couplings the situation is complicated, and a full treatment is beyond

our scope. However in many cases we are able to explain the fermionic zero modes of

/D
X+φ

, notably for the C[(1, 1)] brane with chiral Higgs and point brane, which is used

in our approach to the Standard Model. This is based on the detailed computations of

appendix B.

Discussion. On a more physical level, two of the most interesting features of the new

brane plus Higgs vacua are the following: (i) they have a mass gap, and (ii) typically only

a small number of zero modes exists. The number of zero modes is independent of the rank

N � 1 of the underlying SU(N) gauge theory and of the size dimHΛ of the brane C[Λ].

This observation is remarkable, since the starting point is a gauge theory with large N ,

which is typically organized in terms of a t’Hooft 1
N genus expansion with effective coupling

λ = g2N . In contrast, the C[(N1, N2)] vacua with large Ni behave as semi-classical, large

branes. The fluctuation spectrum on these vacua consists of a small number of zero modes

with typical coupling strength g, and a large tower of typically weakly interacting KK

modes with a finite mass gap independent of N . Hence, the original large N gauge theory

reduces to an effective low-energy theory with few modes and an interesting geometric

structure. This should provide sufficient motivation to study them in more detail.

The most interesting aspect of these vacua is that they can lead to a chiral gauge

theory at low energies, with interesting properties not far from the Standard Model. The

point is that the underlying branes are locally space-filling in the 6 extra dimensions and

carry a flux, so that bi-fundamental fermions are charged and expected to have chiral

zero modes. This is precisely what happens, although the overall index is bound to be

zero. Elaborating on a previous proposal by using our new solutions, we discussed in

section 6 a brane configuration which comes fairly close to the Standard Model. The set-

up is reminiscent of the Pati-Salam model in the broken phase and of intersecting brane

constructions in string theory. Even though we do not claim that this is realistic, it certainly

provides strong motivation for further work.

Future directions. There are many open issues which should be addressed in future

work. One task is to understand better the chiral Higgs solution (4.13) on the (N, 1)

branes and the associated chiral gauge bosons, which seem to be particularly interesting

for physics. Another is to justify a non-vanishing “Pati-Salam“ φS in our Standard Model

approach, and to see how close to real physics one may come in this way. More generally,

it would be desirable to have a more systematic understanding and perhaps a classification

of the solutions of the first-order equations of motion (2.12).

At some point of course, these classical considerations will no longer suffice. We have

argued that a classical treatment should be justifiable to some extent on large branes,

due to the existence of a gap with few remaining low-energy modes, and the mild UV

behavior of the softly broken N = 4 model. Nevertheless, quantum effects need to be

taken into account at some point. Due to the global SU(3) symmetry, the relevant terms

in the effective potential must preserve the form (2.6). Moreover, the critical mass M∗

of (2.80) marks the transition between trivial and non-trivial stable vacua; hence, it should
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play a special place in the full quantum theory, possibly as an RG fixed point. A direct

loop computation by summing over all higher KK modes seems far too complicated. For

a deformed N = 4 model, one strategy might be to invoke holography; however, this is

questionable since (i) the model is not conformal and (ii) the vacuum is highly non-trivial.

Fortunately, a suitable alternative technique was recently proposed in [32], which is based

on string-like states on the fuzzy brane backgrounds. This geometric approach has been

applied successfully in the purely fuzzy context of [32, 46], but not yet in the present field-

theoretic setting with fuzzy extra dimensions. Hence, this needs to be developed elsewhere.

The take-home message it that a simple deformation of N = 4 SYM with large N can

reduce at low energy to an effective gauge theory with few string-like Higgs modes coupled

to chiral fermions, interpreted in terms of a gauge theory on intersecting branes in 6 extra

dimensions. Moreover, the possible quantum numbers include those of the Standard Model.

This should provide sufficient motivation to study such scenarios in more detail and at the

quantum level, and it will be interesting to see how far these solutions can reach.
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A Solutions to equations of motion

A.1 Preliminaries

Potential. The full potential for an ansatz like (2.23) reads

V (Ri) = cN

(
16
∑
i

M2
i R

2
i + 4

∑
i

R4
i + 4

(
R2

1R
2
2 +R2

1R
2
3 +R2

2R
2
3

)
− 32R1R2R3

)
. (A.1)

Following [25, section 9], the constant cN = cN [µ] for irreducible branes C[µ] reads as

follows:

cN [µ] =
dim(Hµ)

12

(
m2

1 +m2
2 +m1m2 + 3m1 + 3m2

)
, µ = (m1,m2) . (A.2)

Phase degeneracy. For any configuration (R1, R2, R3) which solves (2.27), we can freely

change two of the three phases Ri → Rie
iϑi , due to the U(1) × U(1) symmetry of the

potential. The third phase is then fixed by the equations of motion, and it is easy to see

that if two Ri are real then so is the third. We will not spell out this trivial degeneracy

in the solutions below. Note that an overall sign flip Ri 7→ −Ri does in general not map

solutions into solutions.
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A.2 Solutions Mi = 0

The only solutions are

S0 : R1 = R2 = R3 = 0 , (A.3)

S1 : R1 = R2 = R3 = 1 (A.4)

up to phases. Observe that V (S1) = −8 < V (S0) = 0.

A.3 Solutions Mi = M

For uniform masses Mi ≡M , there are three cases to be considered, cf. figure 24.

M > 1
2
. The only solution is the trivial one Ri = 0.

M = 1
2
. The only solutions are

S0 : R1 = R2 = R3 = 0 , (A.5)

S1 : R1 = R2 = R3 = M (A.6)

up to phases. In this case, we observe that V (S1) = 1
2 > V (S0) = 0. Hence, S0 is the

minimum.

M < 1
2
. There are nine three types of solutions, given by

S0 : R1 = R2 = R3 = 0 (A.7)

S1 : R1 = R2 = R3 =
1

2

(
1 +

√
1− 4M2

)
= 1−M2 +O(M4), (A.8)

S2 : R1 = R2 = R3 =
1

2

(
1−

√
1− 4M2

)
= M2 +O(M4) (A.9)

up to phases. We can compute the potential and find

V (S0) = 0 (A.10)

V (S1) = 4
(
−6M4 +

(
4
√

1− 4M2 + 6
)
M2 −

√
1− 4M2 − 1

)
(A.11)

V (S2) = −4
(

6M4 +
(

4
√

1− 4M2 − 6
)
M2 −

√
1− 4M2 + 1

)
. (A.12)

One can verify that V (S1) < V (S2) for 0 < M < 1
2 , but V (S1) < V (S0) = 0 only for

0 < M <

√
2

3
=: M∗ . (A.13)

Also, observe that S1 = S2 for M = 1
2 . Hence S1 is a (relative) minimum for 0 < M < 1

2

and the absolute minimum for 0 < M < M∗, see also figure 24. Note that within each

solution Si the radii are equal, |R1| = |R2| = |R3| =: R(Si). We also observe

R(S1) > R(S2) > R(S0) . (A.14)

Hence the radius with the lowest energy in this regime is given by

R(M) :=
1

2

(
1 +

√
1− 4M2

)
. (A.15)

Note that the critical mass M∗ (2.80) marks the transition between trivial and non-trivial

stable vacua.
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Figure 24. Potential for equal masses M = Mi and equal radii R = Ri.

A.4 Solutions M1 = M2 = 0 and M3 > 0

For 0 < M3 < M∗, we find the following solutions:

S0 : R1 = R2 = R3 = 0 , (A.16)

S1 : R1 = R2 =

√
−29

6
+M2

3 +
7

6

√
25− 12M2

3 = 1− M2
3

5
+O(M4

3 ) , (A.17)

R3 =
1

2

(√
25− 12M2

3 − 3

)
= 1− 3M2

3

5
+O(M4

3 ) , (A.18)

up to phases. Moreover, |R3| < |R1| = |R2| for S1. Computing the potential, we find

V (S0) = 0 , (A.19)

V (S1) = −4

3

(
18M4

3 − 102M2
3 + 131 + (12M2

3 − 25)
√

25− 12M2
3

)
, (A.20)

V (S1) < V (S0) for 0 < M3 < M∗ . (A.21)

A.5 Induced Higgs mass terms

Starting from section A.4 we compute the mass of the regular zero modes in C[(N, 0)],

which are given by φ
(l)
α ∝ (X−α)l with SU(3) weights λ(φ

(l)
α ) = −lα. These masses (3.14)

are given by

m2(φα,λ) =

(
λ,
∑
i

R2
iαi

)
(A.22)

For the solution in section A.4 we can simplify this to

m2(φ
(l)
α,λ) = −l(R2

1 −R2
3)(α, α1 + α2) (A.23)

such that

m2(φ
(l)
α1,λ

) ≡ m2
1 = −l(R2

1 −R2
3) < 0 (A.24)

m2(φ
(l)
α2,λ

) ≡ m2
2 = −l(R2

1 −R2
3) < 0 (A.25)

m2(φ
(l)
α3,λ

) ≡ m2
3 = 2l(R2

1 −R2
3) > 0 (A.26)

– 59 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
6

which satisfy
∑

im
2
i = 0. Note that

R2
1 −R2

3 ≡ ∆R2 =
4

3

(
3M2

3 + 2
√

25− 12M2
3 − 10

)
=

4M2
3

5
+O(M4

3 ) > 0 (A.27)

so that

m2
1 = m2

2 = −4l
M2

3

5
+O(M4

3 ) < 0 , (A.28)

m2
3 = 8l

M2
3

5
+O(M4

3 ) > 0 . (A.29)

In particular, the maximal Higgs φα = rαπ̃(Tα) ∝ (X−α)N in C[(N, 0)] provide a solution

of the form

Y +
i = m

(
Riπ(T+

i ) + riπ̃(T+
i )
)
. (A.30)

Taking into account the cubic terms arising from the soft potential, the ri have to satisfy

the following eom

−N∆R2r1 + r1

(
2r2

1 + r2
2 + r2

3

)
− 4r2r3 = 0 ,

−N∆R2r2 + r2

(
r2

1 + 2r2
2 + r2

3

)
− 4r1r3 = 0 ,

(4M2
3 + 2N∆R2)r3 + r3

(
r2

1 + r2
2 + 2r2

3

)
− 4r1r2 = 0 .

(A.31)

One can check numerically that solutions to (A.31) do exist, and the radii have different

magnitude.

B Combined backgrounds: solutions & spectrum

In this section, we provide details on various solutions of the eom as discussed in sections 3

and 4, and the spectra of the vector Laplacian and the Dirac operator on these solution.

Let us briefly describe the set-up for the numerical work. Calculations are performed with

Mathematica, and the su(3) representation matrices λa for an irrep (N,K) are obtained

from the package BProbe.18 For a fixed (N,K) we obtain 8 representation matrices λa and

define the generators via

T±1 = λ4 ± iλ5 , T±2 = λ6 ∓ iλ7 , T±3 = λ1 ∓ iλ2 , (B.1)

which satisfy the Lie algebra relations (2.25), with all required normalizations.

Single brane. For a single brane, we define the background as in (2.23), where we only

consider equal radii Ri ≡ R(M) = 1
2

(
1 +
√

1− 4M2
)

for 0 < M < 1
2 . The 6 hermitian

matrices Xa are then obtained by inverting (2.2). The definition of the (gauge-fixed) vector

Laplacian as

OXV = �Xδab + 4M2 + 2 [([Xa, Xb]− 2igabcXc) , ·]− [Xa, [Xb, ·]] (B.2a)

OXV,fix = �Xδab + 4M2 + 2 [([Xa, Xb]− 2igabcXc) , ·] (B.2b)

18Lukas Schneiderbauer, BProbe: a Wolfram Mathematica package, Zenodo, 20 January 2016,

http://doi.org/10.5281/zenodo.45045.
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is implemented, with structure constants (2.7) determined by

gabc = −i
tr(Ta[Tb, Tc])

tr(T1T1)
. (B.2c)

Multiple branes. Multiple branes (Nl,Kl) for l = 1, . . . , d are realized as a straightfor-

ward extension of the previous paragraph, described by

Xa ≡ ⊕dl=1X
(Nl,Kl)
a

∼= diag
(
X(N1,K1)
a , . . . , X(Nd,KD)

a

)
. (B.3)

B.1 (N, 0) brane

B.1.1 Solution to eom

With the notation shown in figure 2 we use the following ansatz:

Y +
j = X+

j + fj φ
+
j . (B.4)

Here and in the following, the radius R = R(M) (A.15) is always fixed by solving the eom

for equal masses Mi = M . Then we find the following family of solutions to the eom:

f1 = eiϑ1 , f2 = eiϑ2 , f3 = f̄2f̄1 , (B.5)

This exhibits the above-mentioned flat direction corresponding to two U(1) phases within

the Higgs sector, due to (2.63).

B.1.2 Fluctuation spectrum

CP 2 brane. For a single C[(N, 0)] brane, OXV has a positive semi-definite spectrum,

but the number of zero modes (in the gauge fixed case) increases with the brane size as

6(N + 2). As shown in [25–27], there are six regular zero modes for each irrep appearing

in the endomorphism space. Here, End(H(N,0)) ∼= ⊕Nl=0H(l,l) and we expect 6(N + 1)

regular zero modes. Additionally, there are six Goldstone bosons coming from SU(3)/

U(1)2, as the background only preserves the U(1)Ki symmetries. Numerically, we find

indeed 6(N + 2) zero modes in the massless case. As depicted in figure 25a, turning on

uniform masses Mi ≡ M < 1
2 allows to lift all zero modes except the 6 modes associated

to the Goldstone bosons.

Similarly, the zero modes of the Dirac operator /D
X

are shown in 25b and were classified

in [25–27]. We observe indeed 6(N + 1) + 2 fermionic zero modes, among which 6(N + 1)

originate from the one-to-one correspondence with regular bosonic zero modes, and the

remaining two are trivial gaugino modes. The spectrum of /D
X

is independent of the

bosonic mass.

CP 2 brane with maximal Higgs. Analyzing the spectrum of OX+φ
V for a single

C[(N, 0)] brane with maximal Higgs as combined background shows a number of nega-

tive modes in the massless case, as displayed in figure 25c. We observe that the number

of negative modes is 3(N − 2) (valid for N ≥ 2), but the magnitude of their eigenvalues

decreases with N . Turning on equal masses Mi ≡ M ≤ M∗ allows to lift all negative
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Figure 25. C[(N, 0)] brane with or without maximal Higgs. For pure C[(N, 0)] background, the

number of zero modes of OXV are shown in (a), whereas the number of zero modes for /D
X

is shown

in (b). For combined background C[(N, 0)] plus maximal Higgs, the negative modes of OXV (identical

to OXV,fix) with their corresponding eigenvalue are shown in (c). For this set-up with uniform mass

parameter M , we display the number of negative modes of OX+φ in (d) and zero modes in (e),

whereas the zero modes of /D
X+φ

are show in (f). The red dashed vertical line in (d) indicates the

critical mass value M∗ =
√

2/3 where the potential vanishes for all these solutions, see figure 24.

modes for N > 3 by choosing M appropriately, as shown in figure 25d. Note that N = 2 is

entirely free of negative modes. Moreover, we observe from figure 25e that the number of

zero modes of OX+φ
V is reduced to 8 in the presence of M > 0, independently of the brane

size. We can understand these as 6 Goldstone bosons plus the two phases in (B.5).

Similarly, the spectrum of /D
X+φ

shows that the number of fermionic zero modes is 14

for N ≥ 2 and 8 for the minimal brane. We emphasize again that the number of bosonic

and fermionic zero modes for C[(N, 0)] plus maximal Higgs is independent of the size N .
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Minimal brane. The combination of minimal brane C[(1, 0)] together with its maximal

Higgs reduces to the fuzzy 2-sphere. We find that OXV is positive semi-definite and OXV,fix

has 11 zero modes. Including masses partially lifts them and one finds 5 remaining zero

modes. These are the Goldstone bosons of SU(3)/(U(1)×SU(2)), because the fuzzy 2-

sphere preserves a full SU(2). In addition, the Dirac operator has 8 zero modes.

B.2 (N, 0) brane + point brane

B.2.1 Solution to eom

We use the notation of figure 3 and the following ansatz:

Y +
j = X+

j + fj φ
+
j + rj ϕ

+
j + sj (ϕ̃−j )† (B.6)

for fj , rj , sj ∈ C and Y j,− = (Y j,+)†. The setup necessarily contains the above solu-

tions including the trivial solution, solutions with maximal intra-brane Higgs i.e. fj only,

and triangular solutions formed out of (f1, r2, s3), (f2, r3, s1), or (f3, r1, s2). The question

is whether there are more general solutions or whether two or more triangles can exist

simultaneously.

Triangular solutions. Consider for instance the triangular system comprised of f1, r2,

s3 ∈ C, where all remaining coefficients vanish. Then we find the following solutions:

f1 = eiϑ1 , r2 = eiϑ2 , s3 = f̄1r̄2 (B.7)

Maximal Higgs + triangular system. in addition to the above triangular solutions,

we also find new four-parameter solutions that involve combinations of maximal Higgs

and inter-brane Higgs. In detail, we solved the system for f1, f2, f3, r2, s3 ∈ C and all

remaining coefficients vanish. Then for f3 ∈ C, z, y ∈ R with the constraints 1 ≥ |f3|2 + y2

and |f3|2 − z2 ≥ 0, we find the following four solutions:

f1 =
f̄2

f3
, f2 = z − i

√
|f3|2 − z2 , r2 = y − i

√
1− |f3|2 − y2 , s3 =

r̄2f2

f̄3
, (B.8a)

f1 =
f̄2

f3
, f2 = z − i

√
|f3|2 − z2 , r2 = y + i

√
1− |f3|2 − y2 , s3 =

r̄2f2

f̄3
, (B.8b)

f1 =
f̄2

f3
, f2 = z + i

√
|f3|2 − z2 , r2 = y − i

√
1− |f3|2 − y2 , s3 = − r̄2f2

f̄3
, (B.8c)

f1 =
f̄2

f3
, f2 = z + i

√
|f3|2 − z2 , r2 = y + i

√
1− |f3|2 − y2 , s3 = − r̄2f2

f̄3
. (B.8d)

For these configurations we can verify that |f2| = |f3|, |f1| = 1 and |r2| = |s3| =
√

1− |f3|2.

Analogous solutions exist for f1, f2, f3, r1, s2 ∈ C and f1, f2, f3, r3, s1 ∈ C.

They can be understood as generalized triangles where one extremal weight state |µi〉 of

(N, 0) is replaced by a superposition α|µi〉+β|0〉 with the point brane. Such superpositions

give again regular zero modes because the latter form a vector space.
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B.2.2 Spectrum

As special case of (B.8), for f3 = z =
√

1− x2 and y = x, consider the following 1-parameter

family of solutions

f1 = 1 , f2 = f3 =
√

1− x2 , r2 = s3 = x , r1 = r3 = s1 = s2 = 0 , (B.9)

with x ∈ R, |x| ≤ 1. We computed the spectrum of the vector Laplacian and found that

a number of negative modes exist in the massless case, see figure 26. There are several

observations:

• In the massless case, the number of negative modes for x = 0 increases like 3(N − 2),

for x = 1 as (N − 2) + 6, and for 0 < x < 1 as 3(N − 2) + 6. Hence the number of

negative modes is smallest for x = 1 for large N .

• However, the eigenvalues of the negative modes behave peculiar for x > 0. We observe

from figures 26b, 26c that a small number of negative modes acquire relatively large

negative eigenvalues that can only be lifted by mass parameters Mi ≡M approaching

the limiting value M∗ =
√

2/3. Nonetheless, for all these configurations one can lift

all negative modes.

• As shown in figure 26a, the negative modes for x = 0 can be lifted by relatively

small masses. This is to be expected as the x = 0 configuration is the direct sum

of C[(N, 0)] plus maximal intra-brane Higgs with a independent point brane D. In

other words, we can compare to figure 25d.

Turning our attention to the number of zero modes of OX+φ in this combined background,

we summarize our numerical findings in figures 27a and 27c. As before for the single CP 2

brane, with or without Higgs modes, the number of zero modes of OXV stabilizes upon

inclusion of mass parameters Mi ≡M .

• For the C[(N, 0)] plus maximal intra brane Higgs configuration x = 0, there are 14

zero modes in the gauge fixed case. Comparing this to the 8 zero modes of figure 25e,

we explain the extra 6 modes by the Goldstone modes on D. Likewise, the number of

zero modes in the massless case is 32, wherein 20 stem from C[(N, 0)] with maximal

Higgs, as in figure 25e, and 12 originate from D. These 12 are 6 regular zero modes

on D and 6 Goldstone bosons.

• For the C[(N, 0)] plus maximal intra and inter brane Higgs configuration x > 0, there

are 9 zero modes in the gauge fixed case.

Again, these numbers are then independent of the size of the system, i.e. the value of N .

Considering the zero modes of /D
X+φ

, we observe the following:

• For x = 0 as in figure 27b, there exist 22 fermion zero modes, which we can explain

by 14 fermion zero modes from C[(N, 0)] with maximal Higgs plus 8 zero modes from

the point brane D. From these 8 modes, 6 correspond to the regular bosonic zero

modes on D and 2 are trivial gaugino modes.
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Figure 26. C[(N, 0)]+D plus Higgs. For the configuration (B.9), the number of negative modes in

the spectrum of OXV,fix for three representative x-values is shown in (a)–(c) against a varying mass

parameter M . The red dashed vertical line indicates the critical mass value M∗.

• For x ∈ (0, 1), the situation remains qualitatively the same. The properties remain

independent of the brane size N .

• For x = 1 as in figure 27d, the behavior changes drastically on the fermionic side, as

the number of zero modes equals 4(N + 2).

B.3 (N1, 0) brane + (N2, 0) brane

Consider the set-up of figure 5, with the parametrization

Y j,+ = X+
j + fj φ

+
j + hj φ

+
j + rj ϕ

j,+ + sj (ϕ̃−j )† (B.10)

for fj , hj , rj , sj ∈ C and Y j,− = (Y j,+)†. Due to the considerable number of free complex

parameters and their nonlinear appearance in the full eom, we can only probe a subset of

solutions. Motivated by the solutions found in section B.1 and B.2, we assume that we can

restrict to solutions with real coefficients.

B.3.1 Solution to eom

There are the following types of solutions:

Maximal Higgs. Solve for fj , hj ∈ C, all others coefficients vanish. Then (fj) and (hj)

can be any solution of (B.5) and any combination thereof is an exact solution for the two

brane case.
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Figure 27. C[(N, 0)] + D with Higgs configuration (B.9). We provide the number of zero modes

of OX+φ
V in (a) and (c), while the number of zero modes of /D

X+φ
are displayed in (b) and (d).

Triangular system type I. Solving for h1, r3, s2 ∈ R with all other coefficients vanish-

ing, we find

(h1, r3, s2) = (1, 1, 1) (B.11)

up to phases, which is shown in figure 6c. Similarly, there are solutions for h2, r1, s3 ∈ R

and h3, r2, s1 ∈ R.

Triangular system type I + maximal Higgs on C[(N2, 0)]. Solving for hj , r3, s2 ∈ R

and all other coefficients vanishing, we find for |h3| ≤ 1

h1 = 1, h2 = h3, r3 =
√

1− h2
3, s2 =

√
1− h2

3 , (B.12a)

h1 = 1, h2 = h3, r3 = −
√

1− h2
3, s2 = −

√
1− h2

3 , (B.12b)

h1 = −1, h2 = −h3, r3 =
√

1− h2
3, s2 = −

√
1− h2

3 , (B.12c)

h1 = −1, h2 = −h3, r3 = −
√

1− h2
3, s2 =

√
1− h2

3 . (B.12d)

This is depicted in figure 6a–6c.

Triangular system type II. Solving for f1, r2, s3 ∈ R with all other coefficients van-

ishing, we find

(f1, r2, s3) = (1, 1, 1) (B.13)
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Sol. type I Sol. type II combined Sol. type I Sol. type II combined

(B.12a) (B.14a) h3 = −f3 (B.12c) (B.14a) h3 = f3

(B.12a) (B.14b) h3 = f3 (B.12c) (B.14b) h3 = −f3

(B.12a) (B.14c) h3 = −f3 (B.12c) (B.14c) h3 = f3

(B.12a) (B.14d) h3 = f3 (B.12c) (B.14d) h3 = −f3

(B.12b) (B.14a) h3 = f3 (B.12d) (B.14a) h3 = −f3

(B.12b) (B.14b) h3 = −f3 (B.12d) (B.14b) h3 = f3

(B.12b) (B.14c) h3 = f3 (B.12d) (B.14c) h3 = −f3

(B.12b) (B.14d) h3 = −f3 (B.12d) (B.14d) h3 = f3

Table 1. Combination of the one-parameter families (B.12) and (B.14) to a exact solution describ-

ing two non-trivial triangles. Note that the end points f3 = ±1 correspond the maximal intra-brane

Higgs solutions.

up to phases, which is shown in figure 6f. Likewise, there exist solutions for f2, r3, s1 ∈ R

and f3, r1, s2 ∈ R.

Triangular system type II + maximal Higgs on C[(N1, 0)]. Solving for f1, f2, f3, r2,

s3 ∈ R with all other coefficients vanishing, we find for |f3| ≤ 1

f1 = 1, f2 = f3, r2 =
√

1− f2
3 , s3 =

√
1− f2

3 , (B.14a)

f1 = 1, f2 = f3, r2 = −
√

1− f2
3 , s3 = −

√
1− f2

3 , (B.14b)

f1 = −1, f2 = −f3, r2 =
√

1− f2
3 , s3 = −

√
1− f2

3 , (B.14c)

f1 = −1, f2 = −f3, r2 = −
√

1− f2
3 , s3 =

√
1− f2

3 . (B.14d)

This is depicted in figure 6d–6f.

Triangular system of type I and II combined. Solving for f1, h1, r2, r3, s2, s3 ∈ R

with the remaining coefficients vanishing, we find that any combination of (B.11) and (B.13)

is a non-trivial solution, which is depicted on figure 7c.

Triangular systems type I and II combined with maximal Higgs. Imposing only

r1 = s1 = 0, we can combine all solutions (B.12) and (B.14) as show in table 1. Note that

these describe continuous solutions with constant potential energy. The entire configuration

is sketched in figure 7.

B.3.2 Spectrum

As before, we can analyze the spectrum of the vector Laplacian and of the Dirac operator in

one of these new backgrounds. For concreteness, we consider the following one-parameter
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Figure 28. C[(N1, 0)] + C[(N2, 0)] with Higgs configuration (B.15). We display the number of

negative modes in the spectrum of OX+φ in (a)–(c). The red dashed vertical lines indicates the

mass value M∗ =
√

2/3.

family of solution describing a configuration with two closed triangles:

f1 = h1 = 1 , f2 = f3 = −h2 = −h3 = x ,

r1 = s1 = 0 , r2 = r3 = s2 = s3 =
√

1− x2 ,
with x ∈ R, |x| ≤ 1 . (B.15)

The configuration for x = 1 describes figure 7a, whereas x = 0 corresponds to figure 7c, and

intermediate values can be thought of as in figure 7b. As in previous cases, the spectrum

of OX+φ
V has negative modes on the combined background X + φ, but one can lift these

by inclusion of mass terms Mi ≡ M as shown in figure 28. It is quite apparent that only

masses near the critical value M∗ =
√

2/3 allow to lift all negative modes.

The number of bosonic zero modes in the combined background including masses

stabilizes to a constant value of 13 for x < 1, independent of the size of the system, as

shown in figures 29a, 29c. For x = 1, however, which is the configuration of maximal intra

brane Higgs, the number of zero modes for C[(N, 0)] +C[(1, 0)] for N ≥ 3 is found to be 17,

while for C[(2, 0)] + C[(1, 0)] there are 19 and for all other cases we observe 20 zero modes.

For details see figure 29e. Since the maximal intra-brane configuration can be thought of

as (roughly independent) tensor products of a C[(N, 0)] plus maximal Higgs configuration,

it is tempting to interpret the smaller number of zero modes for branes involving (1, 0) in

terms of a fuzzy 2-sphere developing on the minimal brane with maximal Higgs.

The fermionic zero modes for the configuration x = 1 can be understood from the

previous case of C[(N, 0)] brane plus maximal intra-brane Higgs. As shown in figure 29f,

combinations involving the minimal brane have 22 zero modes, which are 14 modes for
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Figure 29. C[(N1, 0)] + C[(N2, 0)] with Higgs configuration (B.15). The number of zero modes in

the spectrum of OX+φ
V is shown in (a), (c), and (e), while the number of zero modes of /D

X+φ
are

displayed in (b), (d), and (f).

C[(N, 0)] and 8 modes from the minimal brane, as in figure 25f. For two non-minimal CP 2

brane, the number is 28, which comes from the 14 modes on each brane.

The other x configurations behave similarly for x > 0, in the sense that the properties

are largely N independent, cf. figure 29d. For the choice x = 0, we observe a marked N

dependence in the fermionic zero mode spectrum, see figure 29b.

B.4 (N1, 0) brane + (N2, 0) brane + point brane

B.4.1 Solution to eom

Consider the set-up of figure 8 and let us choose the parametrization

Y +
j = X+

j + fj φ
+
j + hj φ

+
j + pj H

+
j + qj (H̃−j )†

+ rj σ
+
j + sj (σ̃−j )† + uj ϕ

+
j + vj (ϕ̃−j )†

(B.16)
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for fj , hj , pj , qj , rj , sj , uj , vj ∈ C and Y −j = (Y +
j )†. Due to the considerable number of free

complex parameters and their nonlinear appearance in the full eom, we can only probe

a subset of solutions. As before, we assume that we can restrict to solutions with real

coefficients.

Maximal Higgs. As in the previous cases, one finds solutions to the eom which contain

only the maximal Higgs, i.e. non-trivial values for fj , hj .

Triangle of type I. Solving the eom for q1, u2, s3 ∈ R and all other coefficients vanishing,

one finds the solutions (B.5). We exemplified this in figure 9a. One finds analogous solutions

for q2, u3, s1 or q3, u1, s2.

Triangle of type II. Solving the eom for p1, r2, v3 ∈ R and all other coefficients vanish-

ing, one finds the usual solutions of (B.5). We exemplified this in figure 9b.

Two triangular subsystems combined. One can show that the following two one-

parameter families

f1 = f2 f3 = 1 p1 =
√

1− f2
2 q2 =

√
1− f2

2 , (B.17a)

f1 = f2 f3 = 1 p1 = −
√

1− f2
2 q2 = −

√
1− f2

2 , (B.17b)

f1 = −f2 f3 = −1 p1 =
√

1− f2
2 q2 = −

√
1− f2

2 , (B.17c)

f1 = −f2 f3 = −1 p1 = −
√

1− f2
2 q2 =

√
1− f2

2 , (B.17d)

with f2 ∈ R, |f2| ≤ 1 and, for u2 ∈ R, |u2| ≤ 1,

q1 = −u2 s3 = 1 h1 =
√

1− u2
2 r2 =

√
1− u2

2 , (B.18a)

q1 = −u2 s3 = 1 h1 = −
√

1− u2
2 r2 = −

√
1− u2

2 , (B.18b)

q1 = u2 s3 = −1 h1 =
√

1− u2
2 r2 = −

√
1− u2

2 , (B.18c)

q1 = u2 s3 = −1 h1 = −
√

1− u2
2 r2 =

√
1− u2

2 , (B.18d)

can be combined non-trivially. The possible solutions are summarized in table 2.

B.4.2 Spectrum

We exemplify the spectrum of the vector Laplacian and the Dirac operator around a back-

ground involving several Higgs fields by means of the following one-parameter family of

exact solutions (see table 2):

f1 = f2 = h1 = r2 = x , f3 = s3 = 1 , p1 = −q1 = q2 = u2 =
√

1− x2 ,

h2 = h3 = p2 = p3 = q3 = s1 = s2 = u1 = u3 = r1 = r3 = vj = 0 ,
(B.19)

where x ∈ [0, 1]. The configuration for x = 0 is depicted in figure 11a, and figure 11b

corresponds to x = 1. The bosonic spectrum then behaves similarly to the case of two
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type I type II combined u2=κF [f2] type I type II combined u2=κF [f2]

f2 ∈ [0, 1] f2 ∈ [−1, 0] f2 ∈ [0, 1] f2 ∈ [−1, 0]

(B.17a) (B.18a) κ= + 1 κ=− 1 (B.17c) (B.18a) κ=− 1 κ= + 1

(B.17a) (B.18b) κ=− 1 κ= + 1 (B.17c) (B.18b) κ= + 1 κ=− 1

(B.17a) (B.18c) κ=− 1 κ= + 1 (B.17c) (B.18c) κ= + 1 κ=− 1

(B.17a) (B.18d) κ= + 1 κ=− 1 (B.17c) (B.18d) κ=− 1 κ= + 1

(B.17b) (B.18a) κ=− 1 κ= + 1 (B.17d) (B.18a) κ= + 1 κ=− 1

(B.17b) (B.18b) κ= + 1 κ=− 1 (B.17d) (B.18b) κ=− 1 κ= + 1

(B.17b) (B.18c) κ= + 1 κ=− 1 (B.17d) (B.18c) κ=− 1 κ= + 1

(B.17b) (B.18d) κ=− 1 κ= + 1 (B.17d) (B.18d) κ= + 1 κ=− 1

Table 2. The combination of the two one-parameter triangular solutions (B.17) and (B.18)

is consistent for a few choices, resulting in one-parameter families of exact solutions. Here

F [f2] =
√

1− f2
2 .
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Figure 30. C[(N1, 0)] + C[(N2, 0)] + D with Higgs configuration (B.19). The number of negative

modes for OX+φ
V , for each choice of mass value M , are depicted in (a)–(c). The red dashed vertical

lines indicates the mass value M =
√

2/3.

parallel branes of section B.3. The appearing negative modes of OX+φ
V can be lifted by

sufficiently large mass values 0.47 .M ≤
√

2
3 , which we exemplify in figure 30.

The configuration for x = 1 can be understood as direct sum of C[(N1, 0)] with max-

imal intra-brane Higgs plus a bound version of C[(N2, 0)] + D with some Higgs. As in

appendix B.2, the bound state of CP 2 brane with a point brane leads to an N dependent
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Figure 31. C[(N1, 0)] + C[(N2, 0)] + D with Higgs configuration (B.19). The number of bosonic

zero modes is shown in (a), (c), and (e), while the number of zero modes of DX+φ are provided in

(b), (d), and (f).

number of fermionic zero modes. Nonetheless, the fermionic zero modes, see figure 31f,

can be understood as linear combination of the two cases. The bosonic zero modes, cf.

figure 31e do not follow this simple nature.

The more involved the connection of the two CP 2 branes to the point brane becomes,

i.e. 0 ≤ x < 1, the more does the fermionic zero modes spectrum exhibit a pronounced

dependence on the system size Ni. The bosonic zero modes exhibit this only in the massless

case, and the massive case seems less Ni dependent.

B.5 (N1, 0) brane + (N2, 0) brane + (N3, 0) brane

B.5.1 Solution to eom

Consider the following parametrization

Y +
j = X+

j + fj φ
+
j,3 + gj φ

+
j,2 + hj φ

+
j,1 + pj ϕ

+
j,3,2 + qj (ϕ−j,3,2)†

+ rj ϕ
+
j,3,1 + sj (ϕ−j,3,1)† + uj ϕ

+
j,2,1 + vj (ϕ−j,2,1)†

(B.20)
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with fj , gj , hj , pj , qj , rj , sj , uj , vj ∈ C. The subscript in φj,1 means maximal intra-brane

Higgs on C[(N1, 0)], while ϕ+
j,3,2 means maximal inter-brane Higgs from C[(N3, 0)] to

C[(N2, 0)] and so forth.

Maximal Higgs. Consider the configuration with only maximal Higgs, i.e. solve

fj , gj , hj ∈ C and all other coefficients vanish. Then we find that all possible combina-

tions of (fj), (gj), (hj) independently taking the form of (B.5) are in fact solutions in the

three brane case. Note that the potential energy for the case fj , gj , and hj simultaneously

non-zero is the smallest.

Single triangles. We solve the eom for p1, u2, s3 ∈ R and all other coefficients vanish.

We find the following solutions:

(p1, u2, s3) ∈ {(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1), (0, 0, 0)} (B.21)

Note that this is not the usual family obtained from 2 phases. Similarly, there are analogous

solutions for p2, u3, s1 ∈ R or p3, u1, s2 ∈ R. Additionally, one can consider the triangles

going the other way around, i.e. q1, v3, r2 ∈ R, q2, v1, r3 ∈ R, or q3, v2, r1 ∈ R.

Multiple triangular subsystem of type I. Consider the configuration in figure 12a

such that we solve the eom for pj , uj , sj ∈ R and all other coefficients vanish. As solutions

we find all possible combinations of (B.21), i.e. we find 53 = 125 real solutions. Note that

these configurations have the same potential energy as the configuration with all maximal

Higgs non-vanishing.

Multiple triangular subsystem of type II. Consider the configuration in figure 12b;

i.e. we solve the eom for g2, h3, p1, p3, q3, r2, s1, s2, u1 ∈ R and all other coefficients vanish.

Since the solutions is comprised of three independent triangles, we find 53 = 125 cases,

again. Note that the configurations with all triangles non-trivial have the same potential

energy as the configuration with three non-vanishing maximal Higgs configurations.

B.5.2 Spectrum

Analogous to the other set-ups, we can evaluate the spectrum of the vector Laplacian

and the Dirac operator around a combined background. We restrict ourselves to two

configurations: (i) the solution of figure 12a, and (ii) the maximal intra-brane solution of

figure 12e. The number of negative modes is shown in figure 32a and 32b, respectively.

Again, we observe that for large enough mass values 0.47 . M ≤ M∗ all negative modes

can be lifted consistently.

For configuration 12e, we observe from figure 32d that a large number of zero modes

disappears after inclusion of uniform mass values and the resulting number depends slightly

on the system size. The fermionic zero modes exhibit that the system roughly corresponds

to three independent copies of C[(Ni, 0)] plus maximal intra-brane Higgs. In detail, we

observe from figure 32f that for the system C[(N1, 0)] + C[(N2, 0)] + C[(1, 0)] there are 36

zero modes, which matches 2 · 14 modes from C[(N1, 0)] and C[(N2, 0)] (each with maximal

Higgs) and 8 modes from the minimal brane plus maximal Higgs. Similarly, C[(N1, 0)] +
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Figure 32. C[(N1, 0)] + C[(N2, 0)] + C[(N3, 0)] with Higgs configuration as in figure 12a or 12e,

respectively. The number of negative modes of OX+φ
V , for each choice of mass value M , are depicted

in (a) and (b). The red dashed vertical lines indicates the mass value M∗. In addition, we provide

the number of bosonic zero modes in (c), (d) and the number of fermionic zero modes in (e), (f).

C[(N2, 0)] + C[(N3, 0)] with Ni > 1 shows 42 zero modes, which are 3 · 14 originating from

independent copies of C[(Ni, 0)] plus maximal Higgs.

The more intricate configuration 12a shows a qualitatively similar behavior. Note,

however, that the number of bosonic and fermionic zero modes, see figure 32c and 32e

respectively, is much lower compared to the other configuration.

B.6 (1, 0) brane + (0, 1) brane + point brane

B.6.1 Solution to eom

With the notation introduced in figures 13–14 we employ the following ansatz

Y +
j = X+

j + fjφ
+
j + hjφ̃

+
j + pjϕ

+
j + qj(ϕ̃

−
j )† + xjζ

+
j + yj(ζ̃

−
j )†

+ rj%
+
j + sj(%̃j

−)† + ujσ
+
j + vj(σ̃

−
j )†

(B.22)

for fj , hj , pj , qj , rj , sj , uj , vj , xj , yj ∈ C. Inspecting the various Higgs modes there are vari-

ous exact solutions.
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Maximal intra-brane Higgs. As seen in previous cases, the brane background together

with the maximal regular zero modes φj and / or φ̃j leads to an exact solution of the

equations of motion.

G2 solution, type I. Setting fj = hj = pj = qj = xj = sj = uj = 0 and solving for the

remaining variables we find various exact solutions corresponding to figure 15a.

r1 = −r2 = −r3 = −v1 = v2 = −v3 = ± 1√
2
, −y1 = −y2 = −y3 =

1

2
, (B.23a)

r1 = r2 = −r3 = v1 = v2 = v3 = ± 1√
2
, −y1 = y2 = −y3 =

1

2
, (B.23b)

r1 = r2 = r3 = v1 = v2 = −v3 = ± 1√
2
, y1 = −y2 = −y3 =

1

2
, (B.23c)

r1 = −r2 = r3 = −v1 = v2 = v3 = ± 1√
2
, y1 = y2 = −y3 =

1

2
, (B.23d)

r1 = −r2 = r3 = v1 = −v2 = −v3 = ± 1√
2
, −y1 = −y2 = y3 =

1

2
, (B.23e)

r1 = r2 = r3 = −v1 = −v2 = v3 = ± 1√
2
, −y1 = y2 = y3 =

1

2
, (B.23f)

r1 = r2 = −r3 = −v1 = −v2 = −v3 = ± 1√
2
, y1 = −y2 = y3 =

1

2
, (B.23g)

r1 = −r2 = −r3 = v1 = −v2 = v3 = ± 1√
2
, y1 = y2 = y3 =

1

2
. (B.23h)

Besides these solutions containing all rj , vj , yj non-trivial, there are also solutions like

− r2 = r3 = v2 = v3 = y1 = 1 , r1 = v1 = y2 = y3 = 0 . (B.24)

Again, there are various different sign assignments possible. This type of solution corre-

sponds to a subset of the full G2-type solution.

G2 solution, type II. Setting fj = hj = pj = qj = yj = rj = vj = 0 and solving for the

remaining variables we find various exact solutions corresponding to figure 15b. These are

as in the previous case, and we refrain from repeating them here.

B.6.2 Spectrum

Around the combined solution X + φ we check the spectrum of the vector Laplacian and

the Dirac operator. As in the other cases discussed so far, we can lift negative modes by

inclusion of uniform mass terms Mi ≡ M . We summarize the behavior of negative and

zero modes in figure 33a.

B.7 (1, 1)-brane

Considering the (1, 1) brane we are faced with the maximal Higgs as displayed in figure 16a;

unfortunately, those three fields cannot be arranged to form a triangular subsystem. How-

ever, by considering the non-maximal Higgs of figure 16b, 16c and 16d, we can set up

configurations that form triangles and give rise to exact solutions for the eom.
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Figure 33. (a) The number of negative and zero modes of OXV for the C[(1, 0)] + C[(0, 1)] + D
branes with several Higgs modes as background. (b) The number of negative and zero modes of

OXV for the C[(1, 1)] brane with rank 2 Higgs modes as background. The red dashed vertical lines

indicates M∗.

B.7.1 Solution to eom

Following the conventions of figure 16, we employ the ansatz:

Y +
j = X+

j + gj ϕ
+
j + hj σ

+
j , (B.25)

with gj , hj ∈ C and Y −j = (Y +
j )†. There are two classes of solutions (restricting to real

coefficient does not exclude any non-trivial solution) which are

(g1, g2, g3) = (1, 1, 1) and hj = 0 (B.26a)

up to phases, and

(h1, h2, h3) = (−1,−1,−1) and gj = 0 (B.26b)

up to phases. These correspond to the configurations in 17a and 17b, respectively.

B.7.2 Spectrum

For the configurations 17a and 17b we have computed the spectrum of the vector Laplacian,

both gauge fixed and not, and of the Dirac operator. We find the number of negative modes

of OX+φ to be 7, and their eigenvalues are all −0.33548. Including equal masses Mi ≡M

is sufficient to lift the negative modes for 0.47 . M < M∗. The numerical results are

depicted in figure 33b.

Moreover, and similar to all previous cases, the number of bosonic zero modes is

reduced by non-trivial mass values and is found to be 8. We can understand these as 6

Goldstone bosons plus the two phases in the gj resp. hj , as in section B.1.2. In addition,

there are 20 fermionic zero modes.
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