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1 Introduction

Investigation of the thermoelectric transport in metallic systems is one of core topics in

modern condensed matter physics. In contrast to the weakly coupled metals whose dy-

namics are governed by long-lived quasi-particles, the transport properties of the strongly

correlated metals with no single particle excitations are described by the emergent hy-

drodynamic like degrees of freedom. Moreover, a wide class of such systems exhibit an

universal Planckian relaxation timescale, τp ∼ ~/(kBT ) (set ~ = kB = 1) [2, 3].

A well-known category of the strongly correlated metals are the so-called “bad metals”

or “incoherent metals”. In these systems, the resistivity increases linearly with temperature

and violates the Mott-Ioffe-Regel (MIR) bound, and there is no sharp Drude peak in

the AC conductivities at high temperatures due to rapid momentum relaxation. Because

of the breakdown of the single particle approximation and other perturbative methods,

these features still lack a deep understanding within the conventional QFT. Motivated

by the observation that in incoherent metals the momentum dissipation depends heavily

on the microscopic details of materials, which should not be the underlying reason of the

universal strange metal, S. Hartnoll proposed that strange metals could be explained by the

saturation of diffusion bounds Dc,Q & v2F /T where vF is the Fermi velocity [4].1 However,

the Fermi velocity is in general not sharply defined in the systems without quasi-particles.

1Notice that diffusion bound is similar to and is partly motivated by the famous Kovtun-Son-Starinets

(KSS) bound on the momentum diffusion that was found in the holographic studies of plasma [5].
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The holographic duality provides us an tractable approach to the physics with no

quasi-particles. It has been widely applied to studying the transport properties of strongly

correlated systems. In holography, the DC conductivities can be captured by fluid like

dynamics near the black hole horizon via the membrane paradigm [6, 7]. Based on the

Einstein-Maxwell-dilaton-axion (EMDA) theories, M. Blake proposed a connection between

the thermoelectric transport and quantum chaos in strongly coupled systems that [8, 9]

Dc,Q = Cc,Qv
2
BτL , (1.1)

where Cc,Q are constants only depending on the scaling properties of the IR fixed points,

vB is the butterfly velocity characterizing the speed of information spreading, τL is the

Lyapunov timescale characterizing the growth of the chaos which saturates its maximum
1

2πT ∼ τp in holographic systems and the Sachdev-Ye-Kitaev(SYK) models [10–12] but is

much longer in quasi-particle systems [13, 14]. Then this bound seems valid for arbitrary

chaotic systems with or without Fermi velocity. Whereas, it has been found that the

bound on the charge diffusion can be violated in striped systems [15] or theories with

higher derivative terms [16]. Recently, it was pointed out that v2BτL may bound only the

thermal diffusion instead of the charge diffusion with:

CQ =
z

2z − 2
at generic non-relativistic fixed points, (1.2)

where z is the dynamical exponent [1]. Then the ratio of DQ to v2BτL is quite universal, as

it only depends on the scaling property of the IR theory, regardless of the UV parameters of

the matter fields, say, the chemical potenial/charge density, magnitude of the lattice, etc.

However, it is still unclear wether (1.2) universally holds or not in holography. The

bottom-up approach allows us to touch this question in any (generalized) gravity theories

with self-consistency. The bound (1.2) has been checked in many cases, and seems to work

well in holography so far [15–20].2 Nevertheless, the condensed matter models studied

in [22] and [23] have already revealed two counter-examples. Then, it is worth exploring

to what extent (1.2) holds in holography. Suppose the proposed universal CQ is somehow

changed, it should be the two following situations:

a. CQ is still geometry-dependent only, but the relation (1.2) is modified due to certain

pure gravity corrections.

b. CQ may also depend on the details of matter fields due to other kinds of corrections,

which makes its expression totally non-universal.

Either case provides a necessary condition for the complete violation of the bound.

In this paper, we focus on the second one. A practicable way of modifying the holo-

graphic theory is to add the Weyl coupling terms, which couples the gauge field with the

Weyl tensor. Previously, the effects of this kind of terms have been studied in a variety of

2In a recent paper [21], it was reported that the diffusion bound can be violated in a higher derivative

gravity theory. However, in these kinds of theories, there are two distinct butterfly velocities even in

isotropic systems which seems quite odd from the angle of condensed matter physics.
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holographic models [3, 24–42]. Here, we consider an EMDA action coupled with a small

Weyl coupling term and investigate the Weyl corrections on the thermal diffusivity, the

butterfly velocity and the ratio CQ. The content of the paper is as follows: in section 2, we

introduce the holographic action and the black hole solutions. In section 3, we analyze the

thermal diffusion, butterfly velocity and their relation at low temperatures. In section 4,

we conclude. And the technical details are shown in the appendix.

Note added. As this work was being completed, [43] appeared which has some overlap

with our discussions.

2 Holographic action and black holes

We consider the four dimensional Einstein-Maxwell-dilaton theory coupled to two axionic

scalars χI associated with the translational symmetry breaking and a Weyl coupling term.

S = SEMDA + SWeyl ,

SEMDA =

∫

d4x
√−g

(

R− 1

2
(∂φ)2 − V (φ)− 1

2
W (φ)(∂χI)2 − 1

4
Z(φ)F 2

)

,

SWeyl = γ

∫

d4x
√−g (U(φ)CµνρσF

µνF ρσ) , (2.1)

with the indexes I = x, y and the Weyl coupling γ. In the action above we have taken

16πG = L = 1 and Einstein’s convention for convenience. By definition, the Weyl tensor

in four dimensions is given by

Cµνρσ = Rµνρσ +
1

2
(gµσRρν + gνρRµσ − gµρRσν − gνσRρµ)+

1

6
(gµρgνσ − gµσgνρ)R . (2.2)

Adding Weyl couplings will, in general, bring about higher order differential equations

which makes the problem mathematically difficult. So we will only consider the charged

case with a small γ coupling and expand the results up to the linear power in γ. The

generic ansatz for isotropic solutions should be

ds2 = −f(r)dt2 + h(r)dr2 + g(r)(dx2 + dy2) ,

Aµ = At(r), χI = kδIi x
i , i = x, y, (2.3)

whose IR geometry can be classified into several distinct cases, depending on the couplings

U , V , W and Z.

Lifshitz/hyperscaling violating geometries. In the EMDA theory without Weyl cor-

rections, the background solution can be Lifshitz/Hyperscaling violating geometry in the

IR at low temperatures. This have been analyzed and classified into several different cases

depending on the scaling properties in the IR [44] . So here we just review this briefly.

These solutions can be achieved by setting the following exponential potentials

V (φ) = −V0e
−δφ , W (φ) = eλφ, Z(φ) = eηφ , (2.4)
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which gives the near extremal IR solution

f(r) = rθ−2z

[

1−
(

r

rh

)2+z−θ
]

, h(r) = L2rθ−2

[

1−
(

r

rh

)2+z−θ
]−1

,

g(r) = L̃2rθ−2 , φ = ϕ0logr , At(r) = a0r
ζ−z

[

1−
(

r

rh

)2+z−θ
]

, (2.5)

where z and θ are dynamical and hyperscaling violating exponents respectively, ϕ0 depends

only on the scaling exponents z, θ and ζ, while L, L̃, a0 depend not only on the scaling

exponents but also V0 and the magnitude of the axionic lattice, k. In the extremal limit,

the black hole solution flows towards different IR fixed points with the following features:

(a) Current & axion are both marginally relevant; (b) Current is marginally relevant &

axion is irrelevant; (c) Current is irrelevant & axion is marginally relevant; (d) Current &

axion are both irrelevant.

On top of that, we add the Weyl coupling and set U(φ) = euφ. Turning on a Weyl

term may change the IR geometries/fixed points significantly. For simplicity, we can choose

such values of u that the Weyl corrections are at the same order in powers of the radial

coordinate as the terms from the original Maxwell term.3 Then one can show that the

small γ coupling just slightly changes the background geometry through modifying the

parameters a0, ϕ0 and L. (See the details in appendix B). Nevertheless, the IR property

should still be the Lifshitz/hyerscaling violating type.

AdS2×R2 geometries. The black hole solution (2.12) can also flow towards the AdS2×
R2 fixed points in the IR. In these cases, we have

f = R(r − re)
2, g = ge, φ = φe, (2.6)

where the constants R, ge and φe are constrained by

2R

(

1 +
2γq2U(φe)

3g2eZ(φe)2

)

≈ k2W (φe)

ge
+

q2

g2eZ(φe)
, (2.7)

0 ≈ 2V (φe) +
2k2W (φe)

ge
+

q2

g2eZ(φe)
+O(γ2), (2.8)

0 ≈ 2V ′(φe) +
2k2W ′(φe)

ge
− q2Z ′(φe)

g2eZ(φe)2
− 8γRq2(Z(φe)U

′(φe))− 2U(φe)Z
′(φe)

3g2eZ(φe)3
. (2.9)

with the location of the extremal horizon at r = re and R is a dimensionless constant that

depends on γ, the gauge field and axion at the horizon. Turning on a small temperature,

the black hole solution is slightly deformed as

f(r) = R
[

(r − re)
2 − r2ǫ

]

, (2.10)

3In this paper, we only consider this special case and study the impacts of such a Weyl term on the

thermal transport and chaos. A detailed analysis on how the general RF 2-like couplings affect the IR

geometry will be presented in future work [45].
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where rǫ is a small deviation from the extremal horizon and the external horizon is r =

rh = re + rǫ. Then rǫ =
2πT
R . For the trivial case

Z = W = U = 1, (2.11)

the full analytic solution has been found in [41]. It is

f(r) = f0(r) + γY (r), h(r) =
1

f(r)
,

g(r) = g0(r) + γG(r) = r2 + γG(r) ,

At(r) = At0(r) + γH(r) = µ− q

r
+ γH(r) , (2.12)

where f0 and g0 are the metric without the Weyl correction, µ is the chemical potential, q

is the charge density, G(r) = q2

9r2
, Y (r) and H(r) are complicated functions of q, k and r

whose forms are not important in our discussions. In the extremal limit, we have f ′(rh) = 0

with rh 6= 0 as long as the current or/and the axion is/are non-vanishing. Then, the IR

geometry should be AdS2 × R2.

In this paper, we will focus on the general AdS2 × R2 domain wall solution. The

detailed IR analysis has been shown in appendix B.2.

3 Thermal diffusion and butterfly velocity

For convenience, we introduce a new radial coordinate as in [1, 20]4

r̃ =

∣

∣

∣

∣

L

θ − z

∣

∣

∣

∣

rθ−z . (3.1)

Then, the background metric can be rewritten as

ds2 = −f(r̃)dt2 + f(r̃)−1dr̃2 + g(r̃)(dx2 + dy2),

f(r̃) = L−2
t r̃

2z−θ
z−θ

[

1−
(

r̃h
r̃

)
2+z−θ
z−θ

]

, g(r̃) = L̄−2
x r̃

2−θ
z−θ , φ = Φ0logr̃, At = A0r̃

ζ−z

θ−z , (3.2)

where

L2
t =

∣

∣

∣

∣

L

θ − z

∣

∣

∣

∣

2z−θ
z−θ

, L2
x =

1

L̃2

∣

∣

∣

∣

L

θ − z

∣

∣

∣

∣

θ−2
θ−z

, Φ0 =
ϕ0

z − θ
, A0 = a0

∣

∣

∣

∣

θ − z

L

∣

∣

∣

∣

ζ−z

θ−z

. (3.3)

Performing the Donos-Gauntlett strategy [7], we can express the DC conductivities just in

terms of the metric components and A′
t at the horizon. (See the details in appendix C.) Our

result implies that the time-reversal symmetry is violated at O(γ) when A′
t 6= 0 according

to the Onsager relation [46]. Moreover, it has been revealed in [15, 16, 47, 48] that the

conjectured bounds on the electric conductivity σ = 1 as well as that on the charge diffusion

Dc ∼ v2BτL can both be violated in general holographic models. Therefore, in this work,

we focus only on the thermal transport.

4As is found in [20] that z 6= θ. Therefore, the new coordinate is always well-defined.
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The open-circuit thermal conductivity at low temperatures is given by

κ = 4π

(

1− 2

3
γUA′

t
2
)

f ′

f ′′

∣

∣

∣

r̃=r̃h
+O(γf ′2|r̃=r̃h) . (3.4)

Now the prime refers to the derivative with respect to r̃. In contrast to that in Einstein

gravity, it can never be expressed merely in terms of the near horizon geometry.5 Then the

thermal diffusivity can be calculated via the following Einstein relation:

DQ =
κ

cq
, (3.5)

where cq is the heat capacity with fixed charge density which is defined as

cq ≡ T
ds

dT

∣

∣

∣

q
. (3.6)

Following [1], we will compute DQ and compare it with the results of the butterfly velocity

at the IR fixed points that we have discussed in the previous section.

Generic fixed points. The entropy density can be calculated by the Wald for-

mula [49–51], which gives

s = 4πg

(

1− 2γ

3
UA′2

t

)
∣

∣

∣

∣

r̃=r̃h

. (3.7)

Obviously, the factor U(r̃h)A
′
t(r̃h)

2, plays a crucial role of modifying the thermal diffusion

in (3.5) and the entropy density in (3.7), hence the heat capacity as well. In the small γ

expansions, we can just take the value of U(r̃h)A
′
t(r̃h)

2 in the EMDA theory.

When the current is marginally relevant, i.e, ζ = θ − 2 and Φ0u = 4
θ−z , one have

At(r) = A0r̃
2+z−θ
z−θ . Then we find that

U(r̃h)A
′
t(r̃h)

2 =

(

2 + z − θ

z − θ

)2

A2
0, (3.8)

which is temperature-independent. Then (3.4) and (3.6) can be rewritten as

κ ≡ Aκ0, cq ≡ Acq0,

A =

[

1− 2

3
γ

(

2 + z − θ

z − θ

)2

A2
0

]

(3.9)

where κ0 and cq0 represent the thermal conductivity and heat capacity obtained in the

EMDA theory. Applying (3.2) and (3.5), the thermal diffusion is obtained as

DQ ≈ z(z − θ)

2(2− θ)(z − 1)
L2
xr̃

z−2
z−θ

h (3.10)

5If one try to eliminate A′

t by using the Einstein equation, the final result will also depend on k2W , Z

and U .

– 6 –



J
H
E
P
0
4
(
2
0
1
8
)
1
1
5

which is not modified by the Weyl coupling. On the other hand, the butterfly velocity can

be obtained by performing the shockwave calculations. The details have been shown in

appendix D. It can also expressed in terms of the horizon data

v2BτL ≈ 1

g′
− 2γUgA′

t
2f ′′

3f ′g′2
+

2γUA′2
t

g′
+

4γgUA′
tA

′′
t (r)

3g′2

∣

∣

∣

r̃=r̃h
,

=
z − θ

2− θ

[

1− 2γ(2z + 3θ − 12)(2 + z − θ)2A2
0

3(z − θ)2(2− θ)

]

L2
xr̃

z−2
z−θ

h . (3.11)

This further requires that θ 6= 2. Finally, we obtain that the ratio of (3.10) to (3.11) is

CQ ≡ DQ

v2BτL
≈ z

2z − 2

[

1 +
2γ(2z + 3θ − 12)(2 + z − θ)2A2

0

3(z − θ)2(2− θ)

]

. (3.12)

at the generic fixed points when the current is marginally relevant in the IR. The inter-

esting thing is that there is always a non-universal correction that comes from the Weyl

corrections, as one can see from (3.3), (B.7) and (B.8) that the constant A0 highly depends

on the details of the matter fields in the IR region.

While if the current is irrelevant and the axion is marginally relevant in the IR, the

Weyl correction is vanishing in the extremal limit. Then, at this IR fixed point,

CQ =
z

2z − 2
. (3.13)

If the current and axion are both irrelevant, z = 1. In this case DQ is controlled by an

irrelevant deformation and CQ ≫ 1, which is not universal even in Einstein gravity [1].

AdS2 × R2 fixed points. For this class of geometries, g = ge is a constant. And, in

contrast to the Lifshitz/hyperscaling violating cases, cq and vB should be determined by

the leading irrelevant deformation of the fixed point solution. Expanding g(r) around its

extremal value, we obtain

g(r) = ge + δg1 + . . . = ge + c1(r − re)
1+αγ + . . . , (3.14)

where c1 is a constant that is fixed by the UV data and α is a parameter whose form has

been shown explicitly in appendix B.2. In general, δg1 contains two modes of dimensions

∆ = 2 + αγ and ∆φ. To have a well-defined small γ expansion, we should require that

∆φ > 2+α. The details can be seen in appendix B.2. Then, the expression (3.14) captures

the leading behavior of δg. As a result, we have g′(rh) = c1(1+αγ)rαγǫ = c1(1+αγ)
(

2πT
R

)αγ
.

The thermal conductivity and the entropy density can be written as

κ ≡ 4πB f ′(rh)

f ′′(rh)
, s ≡ Bs0 = 4πBg(rh),

B = 1− 2γU(φh)q
2

3Z(φh)2r
4
h

. (3.15)

Then the entropy density is

s = se + 4πBc1
(

2πT

R

)1+αγ

+ . . . , (3.16)

– 7 –
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where se is the extremal entropy. And the thermal diffusion is given by

DQ ≈ Rαγ

c1(1 + αγ)(2πT )αγ
. (3.17)

At low temperatures, we have f ′′(rh) ≫ f ′(rh) → 0. Then the second term in (D.21)

dominates over the other two Weyl correction terms. And the butterfly velocity can be

written as6

v2BτL =
1

g′
− 2γUf ′′gA′2

t

3f ′g′2

∣

∣

∣

r=rh
+ . . . ,

≈ Rαγ

c1(1 + αγ)(2πT )αγ

(

1− 2γR0U(φh)q
2

3c01πZ(φh)2geT

)

(3.18)

where R0 =
k2W (φe)

2ge
+ q2

2g2eZ(φe)
, c01 = c1(γ = 0) and ge = r2e . We thereby achieve that

CQ ≈ 1 +
2γR0U(φh)µ

2

3c01πZ(φh)2T
. (3.19)

for γ ≪ T
µ ≪ 1 while fixing the other quantities. Finally, we find that there is again a

non-universal correction for the finite density case.

4 Conclusion and discussion

In this paper, we have studied the thermal transport and butterfly effects by performing the

holographic calculations in the EMDA model coupled with a small Weyl coupling term. It

is found that the ratio of thermal diffusion DQ to the butterfly velocity times the Lyapunov

timescale vBτL contains a non-universal Weyl correction when the Weyl coupling terms are

marginally relevant in the IR.

When the IR geometry is Lifshitz or hyperscaling violating type, the form of DQ re-

mains unchanged while the butterfly velocity can get corrected. Then, the Weyl correction

in CQ depends not only on the scaling properties of the IR fixed point but also on the pa-

rameter of the gauge field A0 and the Weyl coupling γ. When the IR geometry is AdS2×R2,

both of the thermal diffusion and the butterfly velocity can be modified. And the non-

universal part in CQ can be explicitly expressed in terms of the γ and the UV paramters, µ,

k, etc. In both cases, the conjectured universal bound on CQ can be “slightly violated” due

to the Weyl corrections. While, in the “incoherent limit” [52, 53] which implies that T is

finite and the value of k is far bigger than T and any other parameters of the matter fields

in the IR, we can just simply neglect the effect of A0 or µ in the IR. The Weyl corrections

in CQ is thus vanishing. This suggests that the proposed diffusion bound in [1] could be

valid only in the incoherent limit.

6Through out our discussions, we always do the small γ expansion before taking the low temperature

limit.
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A Covariant form of the equations of motion

The equations of motion from the holographic action (2.1) are given by

∇µ (Z(φ)Fµν − 4γU(φ)CµνρσFρσ) = 0 , (A.1)

∇2φ− V ′(φ)− Z ′(φ)

4
F 2 + γU ′(φ)CµνρσF

µνF ρσ − W ′(φ)

2
(∂χI)2 = 0 , (A.2)

∇µ(W (φ)∇µχI) = 0 , (A.3)

Rµν −
1

2
Rgµν +

(∂φ)2

4
gµν +

V (φ)

2
gµν −

Z(φ)

2

(

FµρF
ρ

ν − 1

4
gµνFρσF

ρσ

)

− 1

2
∂µφ∂νφ

−W (φ)

2

(

∂µχ
I∂νχ

I − gµν
2

(∂χI)2
)

− γU(φ)
(

G1µν +G2µν +G3µν

)

= 0 , (A.4)

with the Weyl corrections:

G1µν =
1

2
gµνRαβρσF

αβF ρσ − 3R(µ|αβλ|F
α

ν) F
βλ − 2∇α∇β(F

α
(µF

β
ν)) ,

G2µν = −gµνRαβF
αλF β

λ + gµν∇α∇β(F
α
λF

βλ) +�(F λ
µ Fνλ)− 2∇α∇(µ(Fν)βF

αβ)

+2RναF
β

µ Fα
β + 2RαβF

α
µF

β
ν + 2RαµF

αβFνβ ,

G3µν =
1

6
gµνRF 2 − 1

3
RµνF

2 − 2

3
RFα

µFαν +
1

3
∇(µ∇ν)F

2 − 1

3
gµν�F 2 . (A.5)

where the Laplacian is defined by � = ∇µ∇µ.

B Analysis of the IR geometries

B.1 Hyperscaling violating geometries

In the extremal limit, the IR solution (2.5) reduces to

f(r) = rθ−2z, h(r) = L2rθ−2, g(r) = L̃2rθ−2, φ = ϕ0logr, At(r) = a0r
ζ−z. (B.1)
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Plugging this into the Einstein equation, dilaton equation as well as Maxwell equation, one

obtains that

6L4V0r
θ−δφ0 − 6k2L4r2+λφ0

L̃2
− 3L2

(

a20(z − ζ)2r2ζ+ηφ0−θ + (θ − 8)θ + φ2
0 + 12

)

(B.2)

+8a20γ(z − ζ)2 ((2ζ − θ − 3)(2ζ − θ − 2)− 2z(z − 1)) r2ζ−2θ+uφ0 = 0,

3L2r−θ−2
(

a20(z − ζ)2r2ζ+ηφ0 + rθ
(

(θ − 2)(3θ − 4z − 2)− φ2
0

)

)

(B.3)

+8γa20(z−1)(z−ζ)2(2(ζ+z−1)− θ)r2ζ−2θ+uφ0−2 + 6L4

(

k2rλφ0

L̃2
− V0r

−δφ0+θ−2

)

= 0,

3L2rδϕ0+θ
[

rθ
(

θ2 − 4θ + ϕ2
0 − 4θz + 4z(z + 1) + 4

)

− a20(z − ζ)2r2ζ+ϕ0η
]

(B.4)

+4γa20(z − ζ)2[(θ + 2− 2ζ)2 − 2z2 + z(−2ζ + θ + 4)]r2ζ+ϕ0(δ+u) − 6L4V0r
3θ = 0,

a20(z − ζ)2r2ζ−3θ
(

3ηL2rϕ0η+θ + 8γu(z − 1)zrϕ0u
)

6L4
(B.5)

+r−θ

[

ϕ0(θ − z − 2)

L2
− k2λrϕ0λ+2

L̃2
− V0δr

θ−δϕ0

]

= 0,

3L2(ζ + ϕ0η − 2)rϕ0η+θ + 8γ(z − 1)z(ζ − θ + ϕ0u− 2)rϕ0u = 0.

(B.6)

From now on, we assume that the Weyl corrections are at the same order in powers of the

radial coordinate as the original Maxwell term. With (B.2)–(B.6), following the analysis

in [44], we conclude that

(a) Current & axion are both Marginally relevant:

In this case, θ and z are not fixed, while ζ = θ− 2, ϕ0λ = −2, ϕ0δ = θ, η = −δ− 2λ,

ϕ0u = 4 and

L2 ≈ 2(1 + z − θ)(2 + z − θ)

2V0 − k2

+
2γ

(

288− θ3 + 18θ2 − 120θ + 4z3 + 8z2 +
(

θ2 − 48
)

z
) (

k2(θ − 2z) + 2V0(z − 1)
)

3 (2V0 − k2) (1 + z − θ)(2z + 4− θ)
,

L̃2 = 1,

ϕ2
0 ≈ θ2 − 2(θ − 2)z − 4

+
4γ

(

k2(θ−2z) + 2V0(z−1)
)[

−(θ−6)((θ−12)θ+40) + 2(θ−2)z2 + (θ−8)(θ−2)z
]

3(−θ + z + 1)(−θ + 2z + 4)
,

a20 ≈
2k2(2z − θ)− 4V0(z − 1)

(k2 − 2V0) (2 + z − θ)

+4γ
(

k2(θ − 2z) + 2V0(z − 1)
)

[V0

(

−3θ2 + θ(z + 38) + 6(z − 2)z − 120
)

3 (k2 − 2V0) (−θ + z + 1)(−θ + z + 2)2

+
2k2

(

−(θ − 6)((θ − 11)θ + 32)− 2z3 + (θ + 2)z2 + (θ − 4)(2θ − 15)z
)

3 (k2 − 2V0) (−θ + z + 1)(−θ + z + 2)2(−θ + 2z + 4)

]

. (B.7)

To obtain above expressions, we have used the small γ expansion.
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(b) Current is marginally relevant & axion is irrelevant:

In this case, θ, z and ϕ0λ are not fixed, while ζ = θ − 2, ϕ0η = 4 − θ, ϕ0δ = θ,

ϕ0u = 4 and

L2 ≈ (1 + z − θ)(2 + z − θ)

V0

+
2γ(z − 1)

(

−θ3 + 18θ2 − 120θ + 4z3 + 8z2 +
(

θ2 − 48
)

z + 288
)

3(1 + z − θ)(4 + 2z − θ)
,

L̃2 = 1,

ϕ2
0 ≈ θ2 − 2(θ − 2)z − 4

+
8γV0(z − 1)

[

−(θ − 6)((θ − 12)θ + 40) + 2(θ − 2)z2 + (θ − 8)(θ − 2)z
]

3(−θ + z + 1)(−θ + 2z + 4)
,

a20 ≈ 2(z − 1)

2 + z − θ
− 4γV0(z − 1)

[

−3θ2 + θ(z + 38) + 6(z − 2)z − 120
]

3(−θ + z + 1)(−θ + z + 2)2
. (B.8)

(c) Current is irrelevant & axion is marginally relevant:

In this case, θ, z, ζ, ϕ0η and ϕ0u are not fixed, but ϕ0λ = −2, ϕ0δ = θ and

L2 ≈ (1 + z − θ)(2 + z − θ)

V0
,

L̃2 =
k2(2z − θ)

2V0(z − 1)
,

ϕ2
0 ≈ θ2 − 2(θ − 2)z − 4. (B.9)

(d) Current & axion are both irrelevant:

In this case ζ, ϕ0λ, ϕ0η and ϕ0u are not fixed, while z = 1, ϕ0δ = θ and

L2 ≈ (2− θ)(3− θ)

V0
,

L̃2 = 1,

ϕ2
0 ≈ θ2 − 2θ. (B.10)

Obviously, only when the current is marginally relevant the Weyl coupling affects the

background through correcting the parameters L, ϕ0 and a0. Note that the poles

2z + 4 − θ = 0, 1 + z − θ = 0 and 2 + z − θ = 0 in the above equations should be

excluded.

Before closing this subsection, we present some comments on the stability of the Hy-

perscaling violating geometry with Weyl term. To implement the mode analysis on our

model. Specifically, we turned on the following mode expansion based on (B.1):

f(r) = rθ−2z
(

1 + c1r
β
)

, h(r) = L2rθ−2
(

1 + c2r
β
)

, g(r) = L̃2rθ−2
(

1 + c3r
β
)

,

φ(r) = ϕ0 log
(

r
(

1 + c4r
β
))

, At(r) = a0r
ζ−z

(

1 + c5r
β
)

. (B.11)
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By inserting the above expansions into the equations of motion and extracting the linear

part in ci, we obtain

Mijcj = 0 , (B.12)

where each element of the matrix M is a function of β and other parameters of the system.

In our model we find the matrix M is too complicated to obtain an analytical solution for

β so as to study the staiblity of our system. However, we explored the det (M) and found

that the solutions β from det (M) = 0 will only contain terms at 0-th and 1-st order of γ,

and hence the stability from mode analysis will not receive significant modification.

B.2 The AdS2 ×R2 domain wall solution

In this case, the background geometry near the extremal horizon re can be expressed as

f̄ = R(r − re)
2, ḡ = ge, φ̄ = φe, (B.13)

where the constants R, ge and φe are constrained by

2R

(

1 +
2γq2U(φe)

3g2eZ(φe)2

)

≈ k2W (φe)

ge
+

q2

g2eZ(φe)
, (B.14)

0 ≈ 2V (φe) +
2k2W (φe)

ge
+

q2

g2eZ(φe)
+O(γ2), (B.15)

0 ≈ 2V ′(φe) +
2k2W ′(φe)

ge
− q2Z ′(φe)

g2eZ(φe)2
− 8γRq2(Z(φe)U

′(φe))− 2U(φe)Z
′(φe)

3g2eZ(φe)3
. (B.16)

To have a small temperature, we can generalize the extremal solution by introducing a

small deviation rǫ as follows,

f̄ = R
[

(r − re)
2 − r2ǫ

]

, ḡ = ge, φ̄ = φe. (B.17)

For simplicity, one can choose the coordinates properly so that re = 0 and the location of

the horizon is located at rh = rǫ. Next, we need to add irrelevant modes that will connect

the IR geometry back to the UV AdS4 boundary. Perturb the black hole solution as

f = f̄ + δf, (B.18)

g = ḡ + δg, (B.19)

φ = φ̄+ δφ, (B.20)

where δf , δg and δφ represent the small fluctuations. To obtain the heat capacity, we need

to extract the leading behavior of δg in the low temperature limit. At the linearized order,
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the eoms of δg1 and δφ1 are given by

(f̄ δφ′
1)

′ −
(

V ′′(φe) +
k2W ′′(φe)

ge
− Z ′′(φe)q

2

2g2eZ(φe)2
+

Z ′(φe)
2q2

g2eZ(φe)3

)

δφ1

+

(

k2W ′(φe)

g2e
− Z ′(φe)q

2

g3eZ(φe)2

)

δg1

+
2γq2

3g3eZ(φe)4

[

2Rge

(

U ′′(φe)Z(φe)
2 − 2Z ′′(φe)U(φe)Z(φe)− 4U ′(φe)Z

′(φe)Z(φe)

+6Z ′(φe)
2U(φe)

)

δφ1 − 4RZ(φe)
(

U ′(φe)Z(φe)− 2Z ′(φe)U(φe)
)

δg1

+Z(φe)
(

2Z ′(φe)U(φe)− U ′(φe)Z(φe)
)

(

f̄ ′δg′1 − geδf
′′
1

)

]

= 0 , (B.21)

δg1
r

− δg′1 −
2γq2U ′(φe)δφ1

3gerZ(φe)2
− 4γq2Z ′(φe)U(φe)δφ

′
1

3geZ(φe)3

+
4γq2Z ′(φe)U(φe)δφ1

3gerZ(φe)3
− 2γq2U(φe)δg

′
1

3g2eZ(φe)2
+

2γq2U(φe)δg1
3g2erZ(φe)2

= 0 . (B.22)

These two equations are rather complicated. However, since γ is small, one can in principal

replace the δg′1 and δf ′′
1 in the Weyl correction terms with δg1 and φ1 through the zero

order relations. For the γ = 0 case, we have [18]

δg′1 =
δg1
r

, (B.23)

δf ′′
1 =

(

k2W ′(φe)

ge
− Z ′(φe)q

2

g2eZ(φe)2

)

δφ1 −
(

2R

ge
+

q2

g3eZ(φe)

)

δg1. (B.24)

We can thereby simplify (B.21) and (B.22) by inserting the above relations into the Weyl

terms. This gives

(f̄ δφ′
1)

′ −R∆0(∆0 − 1)δφ1 + Fδg1 = 0, (B.25)

δg1
r

− δg′1 + γG δφ1

r
− γHδφ′

1 = 0, (B.26)

where

R∆0(∆0−1) = V ′′(φe) +
k2W ′′(φe)

ge
− Z ′′(φe)q

2

2g2eZ(φe)2
+

Z ′(φe)
2q2

g2eZ(φe)3
+

2γq2

3g3eZ(φe)4
[

2Rge

(

U ′′(φe)Z(φe)
2 − 2Z ′′(φe)U(φe)Z(φe)− 4U ′(φe)Z

′(φe)Z(φe)

+6Z ′(φe)
2U(φe)

)

− Z(φe)
(

2Z ′(φe)U(φe)− U ′(φe)Z(φe)
)

(

k2W ′(φe)−
Z ′(φe)q

2

geZ(φe)2

)]

,
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F =
k2W ′(φe)

g2e
− Z ′(φe)q

2

g3eZ(φe)2
+

2γq2

3g3eZ(φe)4

[

Z(φe)
(

2Z ′(φe)U(φe)− U ′(φe)Z(φe)
)

(

4R+
q2

g2eZ(φe)

)

− 4RZ(φe)
(

U ′(φe)Z(φe)− 2Z ′(φe)U(φe)
)]

,

G =
4γq2Z ′(φe)U(φe)

3geZ(φe)3
− 2γq2U ′(φe)

3geZ(φe)2
,

H =
4γq2Z ′(φe)U(φe)

3geZ(φe)3
(B.27)

Then, the eoms become two coupled first order differential equations. Solving (B.25)

and (B.26) in the extremal limit, we obtain the following general solutions:

δg1 = c1r
1+αγ + c2γr

∆0−1+βγ , (B.28)

δφ1 =
Fc1

R(∆2
0 −∆0 − 2− 3αγ)

r1+αγ +
Fc2

Rβ(1− 2∆0)
r∆0−1+βγ , (B.29)

where α = F(G−H)
R(∆0−2)(∆0+1) , β = FH(∆0−1)−FG

R(2∆0−1)(∆0−2) , c1 and c2 are two integration constants

which can be fixed by the UV data of the domain wall. We find that there are two modes

of dimensions ∆ = 2 + αγ and ∆φ = ∆0 + βγ in both of (B.28) and (B.29).

To achieve the solution above, we have assumed β 6= 0. While for the β = 0 case, one

can easily check that the constant c2 should be vanishing so that the second mode in (B.29)

is regular. And there exist only one mode in δg1. Then, the solution is given by

δg1 = c1r
1+αγ , (B.30)

δφ1 =
Fc1

R(∆2
0 −∆0 − 2− 3αγ)

r1+αγ + c̃2r
∆0−1, (B.31)

For a general domain wall solution, g and φ should be taken the form

g =
∑

n1,n2≥0

Cg
n1,n2

r(1+αγ)n1+(∆φ−1)n2 , (B.32)

φ =
∑

n1,n2≥0

Cφ
n1,n2

r(1+αγ)n1+(∆φ−1)n2 , (B.33)

where n1 and n2 are integers.7 We are interested in the leading correction to the extremal

value of g when we take r = rh → 0 in (B.32).

When γ = 0, δg1 only contains an universal mode ∼ r with n1 = 1 and n2 = 0. Then,

it is easy to see that the term with n1 = 0 and n2 = 2 will dominate over this universal

mode if ∆φ < 3/2. Therefore, the second order piece δg2 gives the leading corrections in g.

However, with the Weyl corrections, the situation becomes subtle. When β = 0, since

δg1 only contains the r1+αγ mode, δg1 always gives the leading correction to the extremal

horizon if ∆φ > (3 + αγ)/2. When β 6= 0, δg1 has two modes as is shown in (B.28). Then,

its leading behavior depends on wether the value of ∆φ is greater than 2+αγ. Regardless

of the situation, one can check that the modes of δg2 can never dominate over δg1. As a

7This form should be modified a little bit for the near AdS2 case [18].
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result, δg1 always supports the leading contribution in δg. Nevertheless, we should require

∆φ > 2 + αγ. Otherwise, the second mode in (B.28) will dominate the behavior of δg1
near the horizon. This is incompatible with the small γ trick that we have used to simplify

the original eoms (B.21) and (B.22). In conclusion, we restrict ∆φ > 2 + αγ so that g can

always be expanded as in (3.14).

C Derivation of the DC conductivities

In order to calculate the DC conductivities, we introduce the following perturbations

around the background

δAx = (ζAt(r)− Ex)t+ ax(r),

δgtx = −ζf(r)t+ g(r)htx(r),

δgrx = g(r)hrx(r),

δχI = ψx(r). (C.1)

where f , g, At are the background fields in (3.2) and we have omitted the tilde symbol

for the radial coordinate r̃ for simplicity. All the linearized eoms can then be obtained by

applying the ansatz (C.1) to (A.1)–(A.5).

From the equation of motion of ax, we can define a conserved current along the radial

direction in the bulk:

JE = −fZa′x − gZA′
thtx −

2γUf2g′′a′x
3g

+
2γUf2g′2a′x

3g2
+

2

3
γUff ′′a′x −

2γUff ′g′a′x
3g

−4

3
γUf ′′gA′

thtx +
4

3
γUf ′g′htxA

′
t +

4

3
γUfg′′htxA

′
t −

4γUfg′2A′
thtx

3g
+ 2γUfg′A′

th
′
tx

+2γUfgA′
thtx + . . . , (C.2)

which one can check that it agrees with the U(1) current in the dual field theory.8

〈Jx〉 = δS

δAx

∣

∣

∣

r→rboundary
= −√−g (ZF rx − 4γUCrxµνFµν) |r→rboundary . (C.3)

To obtain the heat current, we need to find another radially conserved current. For general

gravity theories, this current has already been constructed in [54] which is similar as Wald’s

procedure:

JQ = 2
√−g

(

∂L

∂Rrxρσ
∇ρξσ + 2ξρ∇σ

∂L

∂Rrxρσ

)

− ξρAρJ
E , (C.4)

where ξ = ∂t is the time-like Killing vector. On the other hand, the Weyl correction can

also be re-expressed as

CµνρσF
µνF ρσ = RµνρσF

µνF ρσ − 2RµνF
µ
ρF

νρ +
1

3
RF 2 . (C.5)

8As in the EMDA theory, we assume that the couplings Z(φ) and U(φ) are both finite at the boundary,

so that the terms with the gauge field are always finite in the UV, and additional counter-terms are not

needed.
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Then we obtain that

JQ = fgh′tx − f ′ghtx −
2γUf2g′A′

ta
′
x

g
− 2γU ′f2A′

ta
′
x − 2γUf2A′′

t a
′
x − 2γUf2A′

ta
′′
x

+
2

3
γUf ′ghtxA

′2
t − 8

3
γUfg′htxA

′2
t − 2γU ′fgA′2

t htx − 4γUfgA′
tA

′′
t htx

−2

3
γUfgA′2

t h
′
tx + . . . , (C.6)

which one can check that the Weyl corrections are vanishing at the infinite boundary and

JQ equals the heat current in the dual field theory [7]. The radial conservation of JE and

JQ allow us to express them in terms of the horizon data. Near the horizon, the x−x and

r − x components of the Einstein equation reduce into respectively

1

4
fgφ′2 +

gV

2
− 1

3
γgUf ′′A′2

t +
2

3
γUf ′g′A′2

t +
2

3
γgUf ′A′

tA
′′
t −

1

4
gZA′2

t +
gf ′′

2
+

f ′g′

2
= 0 ,

(C.7)

−γExUA′
tf

′′

3f
− 2γExUA′

tf
′g′

3fg
+

ExZA′
t

2f
− 1

3
γghrxUA′2

t f
′′ +

2

3
γhrxUA′2

t f
′g′ (C.8)

−4γζUA′2
t f

′

3f
− 1

4
ghrxZA′2

t +
2

3
γghrxUA′

tA
′′
t f

′ +
1

4
fφ′2ghrx +

1

2
ghrxf

′′

+
1

2
hrxf

′g′ +
ζf ′

2f
+

1

2
ghrxV +

1

2
k2Whrx = 0 .

Using (C.7) to eliminate V and φ′ in (C.9), it turns out that hrx behaves like

hrx(r) =
Ex

f

(

− ZA′
t

k2W
+

2γUf ′′A′
t

3k2W
+

4γUf ′g′A′
t

3gk2W

)

+
ζ

f

(

− f ′

k2W
+

8γUf ′A′2
t

3k2W

)

r=rh

+ . . . . (C.9)

The regular conditions at the horizon should be chosen as follows

a′x = −Ex

f
+ . . . , (C.10)

htx = fhrx + . . . . (C.11)

Plugging this back to (C.2) and (C.6) and using the following horizon formulas

σ =
∂JE(rh)

∂Ex
, ᾱ =

1

T

∂JQ(rh)

∂Ex
, α =

1

T

∂JE(rh)

∂ζ
, κ̄ =

1

T

∂JQ(rh)

∂ζ
, (C.12)

the DC conductivities can be expressed in terms of the horizon data as follows

σ ≈
[

Z +
gZ2A′2

t

k2W
+ γU

(

2gf ′′ZA′2
t

3k2W
− 8f ′g′ZA′2

t

3k2W
− 2

3
f ′′ +

2f ′g′

3g

)]

r=rh

, (C.13)

ᾱ ≈
[

4πgZA′
t

k2W
− γU

(

8πgf ′′A′
t

3k2W
+

16πf ′g′A′
t

3k2W
+

8πgZA′3
t

3k2W
+ 8πA′

t

)]

r=rh

, (C.14)

α ≈
[

4πgZA′
t

k2W
+ γU

(

16πgf ′′A′
t

3k2W
− 16πf ′g′A′

t

3k2W
− 32πgZA′3

t

3k2W

)]

r=rh

, (C.15)

κ̄ ≈
[

4πgf ′

k2W
− γU

40πgf ′A′2
t

3k2W

]

r=rh

. (C.16)
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If we use the horizon relation:

k2W − gf ′′ + gZA′2
t + 2γUgf ′′A′2

t − 10

3
γUf ′g′A′2

t − 8

3
γUgf ′A′

tA
′′
t = 0 , (C.17)

to eliminate f ′′ and set γ = 0, they reduce to the results in the EMDA theory [7]. The

thermal conductivity in the open circuit condition is defined by

κ = κ̄− ᾱαT

σ
. (C.18)

Eliminating k2W by using (C.17), it is finally obtained as

κ ≈
(

4πf ′

f ′′
− 8πγUf ′A′2

t

3f ′′
− 32πγUf ′2A′

tA
′′
t

3f ′′2

)

r=rh

+O(γ2) . (C.19)

At low temperatures, the last term with f ′2|r=rh can be neglected. Then it agrees with (3.4)

in the main text.

Furthermore, from (C.14) and (C.15), we find that α − ᾱ = 16πγUA′
t 6= 0, which

implies that the time-reversal symmetry is broken according to the Onsager relation. This

feature should be attributed to the introduction of the Weyl term since the difference

between α and ᾱ is O(γ). We leave the detailed analysis for future investigation.

D Butterfly velocity with Weyl corrections

The butterfly velocity characterizes the propagation of information in a chaotic quantum

system and can be measured through the out-of-time correlator(OTOC):

〈[W (xi, tW ), V (0, 0)]〉β ∼ eλL(tW−t∗−|xi|/vB) , (D.1)

where W and V are two generic local Hermitian operators, λL is the Lyapunov exponent, t∗

is the scrambling time and vB is the butterfly velocity. In holography, the OTOC has been

widely calculated in many gravity theories by solving a shockwave solution in a two-sided

black hole [1, 8–11, 15–21, 43, 55–70].

For simplicity, we rewrite the Einstein equation (A.4) into

Gµν − γU
(

G1µν +G2µν +G3µν

)

= Tµν , (D.2)

where Tµν is the stress tensor. In Kruskal coordinates, the black hole solution (3.2) can be

re-expressed as

ds2 = 2A(uv) du dv + B(uv) dxi dxi,

Aµ = (−C(uv)v, C(uv)u, 0, 0), χI = kδIi x
i . (D.3)

The horizon location r = rh in the original coordinates now is uv = 0. And the Kruskal

coordinates are defined by:

u v = − ef
′(rh) r∗ , u/v = − e− f ′(rh) t, (D.4)
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where dr∗ = dr
f(r) . Moreover the functions appearing in the metric are related by the

following relations:

A(uv) =
2

uv

f(r)

f ′(rh)2
, B(uv) = g(r), C(uv) =

1

uv

At(r)

f ′(rh)
. (D.5)

where f(r), g(r) and At(r) are the metric components and gauge field in the original

coordionates. We perturb the spacetime with an operator at xi = 0,9 and tL = tW , i.e.

a localized shock-wave; the butterfly velocity corresponds to the rate of growth of this

perturbation.

The localized stress tensor of such a perturbation is given by:

T shock
uu = E0 e

2πT tW δ(u) a(x). (D.6)

Then for large distance |x| ≫ 1, one can replace a(x) with a delta function approximately.

The shockwave solution corresponds to the geometry where there is a shift v → v + h(x, tW )

once one crosses the horizon u = 0. The backreaction produces a perturbation in the

spacetime metric of the form:

ds2 = 2A(uv) du dv + B(uv) dxi dxi − 2A(uv)h(x, tW ) δ(u) du2 , (D.7)

and the stress tensor should get modified as [56, 71]:

δTuu = T shock
uu − 2h(x, tW ) δ(u)T 0

uv , (D.8)

where the second term is the leading contribution from the deformed geometry. Then the

first order Einstein equation becomes10

(

∂2
i −m2

)

h(xi, tw) =
3A(0)B(0)E0e

2πTtwδ(x)

3A(0)2 + 16γU(0)C(0)2
, (D.9)

where the effective mass reads:

m2=
3A(0)3B′(0)− 8γU(0)C(0) [A(0)B′(0)C(0) + 4A(0)B(0)C ′(0)− 2A′(0)B(0)C(0)]

3A(0)4 + 16γU(0)A(0)2C(0)2
,

(D.10)

Solving the equation, we find that at large distances the solution takes the form:

h(x, tW ) ∼ E0 e
2πT (tW − t∗)−m |x|

|x|1/2 , (D.11)

where t∗ ∼ 1
λL

Log 1
G is the scrambling time.

As is pointed in [72], the profile of the shockwave, h(x, tW ), corresponds to the OTOC

of two generic local operators inserted at different locations and times with the spatial

9Since the system is isotropic, we will omit the spatial index i from now on.
10Note that our results (D.9) and (D.10) disagree with that in [43]. We guess that the Weyl corrections

in the Einstein equation was missed in that paper.
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interval x and temporal interval tW . Then, the Lyapunov exponent and the butterfly

velocity can be extracted as

λL = 2πT =
1

τL
, vB =

2πT

m
. (D.12)

The final step is to re-express A(0), B(0), C(0) and their derivatives in the original (t, r)

coordinates. Near the horizon we expand the quantities as follows

uv = −κ0(r − rh) + . . . , (D.13)

f(r) = f ′(rh) (r − rh) +
f ′′(rh)

2
(r − rh)

2 . . . , (D.14)

g(r) = g(rh) + g′(rh)(r − rh) + . . . , (D.15)

At(r) = A′
t(rh)(r − rh) +

A′′
t (rh)

2
(r − rh)

2 + . . . , (D.16)

where κ0 is a positive constant whose value is not important. On top of this, we have

A(0) = − 2

κ0f ′(rh)
+ . . . , A′(0) =

f ′′(rh)

κ20f
′(rh)2

+ . . . , (D.17)

B(0) = g(rh), B′(0) = −g′(rh)

κ0
+ . . . , (D.18)

C(0) = − A′
t(rh)

κ0f ′(rh)
+ . . . , C ′(0) =

A′′
t (rh)

2κ20f
′(rh)

+ . . . . (D.19)

Then (D.10) can be re-expressed as

m2=
3f ′(rh)g

′(rh)−2γU(rh)A
′

t
(rh)

(

2f ′(rh)g(rh)A
′′

t
(rh)+f ′(rh)g

′(rh)A
′

t
(rh)−f ′′(rh)g(rh)A

′

t
(rh)

)

6 + 8γU(rh)A′

t
(rh)2

.

(D.20)

This is the result for general values of γ. In this work, we focus on the physics at both of

small γ and low temperature limits. However, the final result may depend on which limit

we take first. If we take the small γ limit first, we obtain that

v2B ≈ f ′(rh)

2g′(rh)
− γU(rh)g(rh)A

′
t(rh)

2f ′′(rh)

3g′(rh)
2 +

γU(rh)A
′
t(rh)

2f ′(rh)

g′(rh)

+
2γU(rh)g(rh)A

′
t(rh)A

′′
t (rh)f

′(rh)

3g′(rh)2
. (D.21)

At low temperatures, vB ∼ T β (β is a constant) plus some small Weyl corrections. While

in the AdS2 × R2 case, f ′′(rh) ≫ f ′(rh) at the low temperatures. Then, if we perform

T ∼ f ′(rh) → 0 before taking the small γ limit, the last term in (D.20) dominates, which

just gives

m2 =
2γU(rh)f

′′(rh)g(rh)A
′
t(rh)

2

6 + 8γU(rh)A
′
t(rh)

2
. (D.22)
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In this case, we have

v2B ≈ 3f ′(rh)
2

4γU(rh)f ′′(rh)g(rh)A
′
t(rh)

2
∼ T 2

γµ2
. (D.23)

which implies that vB is much slower than vB ∼
√
T for γ ≫ T

µ . Therefore, the result of

vB highly depends on the order of manipulating the two limits.

Open Access. This article is distributed under the terms of the Creative Commons
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