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Abstract: We recently used Virasoro symmetry considerations to propose an exact for-

mula for a bulk proto-field φ in AdS3. In this paper we study the propagator 〈φφ〉. We show

that many techniques from the study of conformal blocks can be generalized to compute

it, including the semiclassical monodromy method and both forms of the Zamolodchikov

recursion relations. When the results from recursion are expanded at large central charge,

they match gravitational perturbation theory for a free scalar field coupled to gravity in

our chosen gauge.

We find that although the propagator is finite and well-defined at long distances, its

perturbative expansion in GN = 3
2c exhibits UV/IR mixing effects. If we nevertheless

interpret 〈φφ〉 as a probe of bulk locality, then when GNmφ � 1 locality breaks down

at the new short-distance scale σ∗ ∼ 4

√
GNR3

AdS. For φ with very large bulk mass, or

at small central charge, bulk locality fails at the AdS length scale. In all cases, locality

‘breakdown’ manifests as singularities or branch cuts at spacelike separation arising from

non-perturbative quantum gravitational effects.
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1 Introduction and summary

General Relativity does not seem, at first glance, so very different from other effective

quantum field theories. When we study GR in a perturbative expansion about a semiclas-

sical background, it is tempting to interpret localized gravitational and matter fluctuations

as the degrees of freedom that define the space of states. But the area-law entropy of black

hole thermodynamics [1] starkly conflicts with this picture, which was already suspect

due to considerations of diffeomorphism gauge redundancy [2]. So we must ask, to what

extent can the conflicting viewpoints of local bulk effective field theory and holography

be reconciled?

Our goal is to understand the limitations of bulk locality in a concrete, quantitative

way in the context of AdS3/CFT2. This is a necessary step towards the resolution of the

black hole information paradox in AdS/CFT [3–5], because the most striking form of the

paradox is a disagreement between unitarity and effective field theory in the bulk that

depends on the approximate existence of local bulk observables.

We recently proposed an exact definition [6] of a local bulk proto-field φ associated

with a specific CFT2 primary operator O. Physically, one can think of φ as the nearest

one can get to defining a free scalar field coupled to AdS3 gravity in a specific coordinate

system, neglecting loops of φ itself. This bulk field operator automatically ‘knows’ about

the dynamical gravitational background, or in other words it is ‘gravitationally dressed’.

A simple algebraic definition [6] for φ exists because, roughly speaking, quantum gravity

matrix elements in AdS3 are determined by Virasoro symmetry.

In this work we will study the simplest local bulk observable, the vacuum propagator

K = 〈φφ〉. We will compare perturbation theory in GN = 3
2c , semiclassical methods, and

exact numerical results. The computations we will present are possible because φ has a very

natural definition in CFT2, which means that many techniques for the efficient calculation

of conformal blocks can be generalized to the study of φ correlators. In particular, both the

semiclassical ‘monodromy method’ [7–11] and the Zamolodchikov recursion relations [12–

14] can be adapted and recruited to our cause.

In the remainder of this section we will separately summarize the technical machinery

we have developed and the physical results we have obtained.

Notation. Throughout this paper we use h to refer to the conformal dimension of the

primary operator O dual to the bulk proto-field φ with mass m2R2
AdS = 4h(h − 1). The

CFT2 central charge is c = 3RAdS
2GN

. When discussing the propagator K ≡ 〈φ(X1)φ(X2)〉
(we use K and 〈φφ〉 to denote the propagator interchangeably) we often use the kinematic
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variable ρ = e−2σ, where σ(X1, X2) is the geodesic distance between the bulk points in the

vacuum. In our coordinate system, the metric of empty AdS3 is

ds2 =
dy2 + dzdz̄

y2
. (1.1)

We compute the propagator in the AdS3 vacuum throughout. Explicitly, we have X1 =

(y1, z1, z̄1), X2 = (y2, z2, z̄2) and ρ ≡ ξ2(
1+
√

1−ξ2
)2 with ξ ≡ 2y1y2

y2
1+y2

2+z12z̄12
, where ρ = ξ = 1

corresponds to vanishing separation in the bulk. In this coordinate system, the free field

propagator, which we’ll denote as Kglobal ≡ 〈φφ〉global is given by1

Kglobal = 〈φφ〉global =
ρh

1− ρ. (1.2)

Kglobal is the large c limit of K, ie Kglobal = limc→∞K. We also study the ‘holomorphic

part’ of K due to purely holomorphic gravitons, which we denote as Kholo = 〈φφ〉holo and

define in section 2.2.2.

1.1 Summary of technical developments

In section 2 we briefly review φ [6], and then discuss the properties of its correlators. We

introduce the technically useful notion of the ‘holomorphic part’ φholo, which corresponds

in perturbation theory to computing φ correlators while only incorporating holomorphic

gravitons. We show that knowledge of the φholo propagator Kholo can be combined with

purely global-conformal information to determine the complete φ propagator. We also

emphasize that at two-loops and beyond the full propagator is not spherically symmetric

as a consequence of our gauge choice. The full propagator depends on both ρ and an angle

of inclination with respect to the z-z̄ plane.

Conformal blocks in CFT2 exponentiate in the semiclassical approximation of large

central charge where ratios of conformal dimensions to the central charge, h/c, are held

fixed. This is dual to the semiclassical limit GN → 0 with GNm fixed in AdS3. In section 3

we show that the propagator also has a semiclassical limit, and we derive a generalization

of the monodromy method [7–11] that computes the semiclassical Kholo. We then use

this method to obtain the semiclassical propagator to order h2

c in equation (3.18) and at

large2 h in equation (3.36). At infinite h, we are able to go beyond the semiclassical limit

and derive an exact expression for the block in (3.38). Finally, while we cannot obtain

an analytic expression for the semiclassical part of the correlator at general h/c, it is

straightforward to use the monodromy method to determine it numerically. We apply this

technique to determine the critical value of the geodesic distance where the semiclassical

part first develops an imaginary piece; the result is summarized in figure 1.

1The subscript “global” here means that Kglobal is the 2-pt function of φglobal, which is the reconstruction

of a bulk field using only global conformal symmetry.
2At large h it is natural to define a variable q, as in equation (3.37); the variables ξ, ρ, q play a similar

role here as the variables z, ρ, q used in the study of Virasoro blocks, though here we gain no advantage in

convergence by using q in place of ρ.
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In section 4 we derive recursion relations that compute the propagator exactly as an

expansion in small ρ and q (these are long-distance expansions). We find generalizations

of both the c and h Zamolodchikov recursion relations [12–14], though we mostly use h-

recursion as it is more efficient algorithmically. It is summarized by equation (4.10). The

large h limit of equation (3.38) is a crucial ingredient needed for h-recursion.

We discuss the perturbative expansion of the propagator in section 5. The full one-loop

result is equation (5.2). We show in section 5.1 and appendix A that our result agrees with

the bulk one-loop Witten diagram. We also provide an explicit unitarity-based argument in

the appendix, which ultimately relates the one-loop correction to the tree-level correlator

〈φOT 〉 computed previously [6].

1.2 UV/IR mixing in perturbation theory

Before we analyze the interesting features of non-perturbative gravity, we must discuss a

surprising result that is already visible at one-loop in gravitational perturbation theory!

As discussed in detail in section 5.1, we find that in the short-distance limit σ � RAdS,

the one-loop corrected bulk propagator takes the form

〈φφ〉 ≈ 1

σ

(
1 +

3GNR
3
AdS

2σ4
− GNRAdS(10 +m2R2

AdS)

4σ2
+ · · ·

)
. (1.3)

Notice that the one-loop correction is very singular at short-distances, so that it competes

with the free field propagator at σ∗ ∼ 4

√
GNR3

AdS. In contrast, we might have expected a

one-loop correction that scaled like GN
σ , so that it only became important for separations

of order the Planck length. Instead we have discovered an intermediate scale that mixes

the UV Planck scale with the IR scale of RAdS. This UV/IR mixing is not what one

would expect for a local observable3 in a local theory, and it would lead to power-law IR

divergences if we were to take the flat space limit of AdS.

One could interpret this result as an indication that we should modify the definition of

φ or K to eliminate this UV/IR mixing. For a variety of reasons discussed in section 5.1,

it would seem that the required modifications would have to be rather consequential. In

particular, since our results agree with bulk Witten diagrams at large c, the same modifi-

cations also apply to these Witten diagram calculations in AdS3. Nevertheless, we believe

this is an interesting avenue for future exploration. For the rest of this summary (and

most of the paper) we will just study the naive vacuum φ propagator and assume that

its correlators provide a meaningful probe of bulk locality, but one should keep in mind

the caveat that the results could be different if we were to identify an observable free from

UV/IR mixing.

1.3 Physics of the exact propagator and the breakdown of locality

By construction, φ is a real scalar field and its propagator should be a real-valued function.

Both the propagator K and the holomorphic part Kholo should not develop imaginary

3Of course our φ must be accompanied by ‘gravitational Wilson lines’, in the same way that the physical

electron field must be attached to a Wilson line. So φ correlators are not truly local.
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parts, because there are no states for φ quanta to decay into.4 So if we find that the

exact K or Kholo develop imaginary parts at spacelike separation, then we may interpret

this as a violation of bulk unitarity, even though the CFT itself remains perfectly healthy;

potentially, the proto-field φ may be indicating the presence of an instability that arises

when two φs are brought close together in the full bulk gravitational theory, where a

complete bulk field would include not only O and its descendants but other states as well.

In order to develop an imaginary part at a distance σ∗, K must exhibit a singularity at

spacelike separation, which also represents a direct violation of bulk locality.

In the global or c = ∞ limit we have Kglobal = limc→∞K = ρh

1−ρ , which is real and

finite for all spacelike geodesic separations σ = −1
2 log ρ. Furthermore, to all orders in

perturbation theory, the propagator remains real and finite. However, we find that in

various limits the exact propagator develops new singularities (branch cuts) indicating

violations of bulk locality. Specifically:

• When studying light bulk fields with h � c, we can resum the full 1/c expansion

in the short-distance limit (section 5.2). The result is ambiguous, but generically

includes an imaginary piece associated with the length scale σ∗ ∝ c−1/4. We obtain

substantial numeric evidence (section 6.1) that the light-field propagator develops a

singularity at a finite separation that scales as σ∗ ∝ c−1/4. In figure 7 we display

evidence that the full and holomorphic propagators show the same scaling of σ∗ and c.

• Semiclassical results at c→∞ with h
c � 1 fixed indicate an apparent breakdown of

locality at σ∗ ∝
(
h
c

) 1
3 (section 3.2). This is corroborated by semiclassical numerics

(section 3.4) and by exact numerics (figure 6), which also demonstrate that our

semiclassical results are reliable at large c and spacelike separation.

• In the heavy bulk field limit h � c, we find the exact propagator analytically (sec-

tion 3.3) and demonstrate that it develops a branch cut at σ∗ = RAdS log(2 +
√

3) ≈
1.32RAdS. Thus for heavy bulk fields, locality breaks down at the AdS scale. We find

numerically that in the limit of large c and fixed h/c, our results smoothly interpolate

(figure 6) between large h and the fixed h� c scaling c−1/4. Moreover, we show that

the behavior at large h and at very small c appear to be identical (figure 5), with

locality breaking down at the same numerical multiple of the AdS scale in both cases.

Aside from the surprising UV/IR mixing effect and associated emergent scale σ∗ discussed

above, this is roughly what one might have expected. Bulk locality makes approximate

sense in gravitational perturbation theory, but breaks down due to non-perturbative grav-

itational effects in an explicitly quantifiable way. Light fields in theories with a large

separation of scales between GN and RAdS can be local to a high degree of precision, but

outside this regime bulk locality breaks down at the AdS length.

4One can formalize these expectations for a local φ using the Kallen-Lehmann representation. Readers

may wonder if φ can decay into gravitons, but this is forbidden for the proto-field. Specifically, all correlators

〈φT · · ·T T̄ · · · T̄ 〉 vanish because φ is a linear combination of descendants of the Virasoro primary O. In

order for these correlators to be turned on, one would have to also include dressing of φ by operators that

are not Virasoro descendants of O.
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2 Structure of φ correlators

In recent work [6] we provided an exact definition for the bulk scalar proto-field φ(y, z, z̄)

as a linear combination of a primary CFT2 scalar O and its Virasoro descendants.5 We

refer to φ as (merely) a proto-field because its existence follows entirely from symmetry

considerations in AdS3/CFT2. One might expect that full scalar fields6 can be represented

as infinite sums of proto-fields [19–21, 28]. We can also think of the proto-field as a

free scalar field in AdS3 coupled to pure quantum gravity, where loops of φ itself have

been neglected.

The proto-field is interesting because it encodes an infinite sum of quantum gravita-

tional effects, which involve Virasoro (CFT stress tensor) matrix elements. For example,

we will see that the propagator 〈φ(X1)φ(X2)〉 includes graviton loops to all-orders. The

proto-field is labeled by a bulk point (y, z, z̄) associated with a specific coordinate system

(or gauge choice) where AdS3 vacuum metrics take the form [35, 36]

ds2 =
dy2 + dzdz̄

y2
− 6T (z)

c
dz2 − 6T̄ (z̄)

c
dz̄2 + y2 36T (z)T̄ (z̄)

c2
dzd̄z (2.1)

for holomorphic functions T (z), T̄ (z̄). We emphasize that the proto-field operator depends

in an essential way on this gauge choice; were we to choose a different gauge, we would

obtain a different bulk operator. The dependence on the gauge will appear explicitly

later on, where we will see that in our gauge, the full propagator 〈φ(X)φ(Y )〉 is not

spherically symmetric.

We will briefly review the definition of φ in section 2.1; for detailed explanations and

derivations we refer the reader to [6]. The operator φ and its correlators do not factorize

into a product of holomorphic and anti-holomorphic parts. However, it is possible to

define a ‘holomorphic’ part φholo, by which we mean that we only include the effects of

holomorphic gravitons on φ. We explain these facts and define φholo in section 2.2. This

notion is useful because full φ correlators can be determined from φholo correlators using

additional data that only depends on global conformal information. Throughout this paper

we will primarily be studying φholo correlators.

2.1 Brief review of the AdS3 proto-field φ

We define the operator φ(y, z, z̄) using a Boundary Operator Expansion (BOE)

φ (y, z, z̄) =
∞∑

N=0

y2h+2NφN (z, z̄). (2.2)

5There have been many approaches to reconstruction, for an incomplete sample see [15–34]. Our pre-

scription matches perturbation theory when expanded in GN ∝ 1/c (see appendix D.4 of [6] and section 5.1

of this work), but this property does not seem to hold for some other approaches [34] that attempt to

leverage Virasoro symmetry.
6Full bulk scalar fields may not exist, and to the extent that they do exist, their definition may be

ambiguous. These are interesting issues but we will not be addressing them here, as we will only be

studying proto-fields and their correlators.
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Each operator φN (z, z̄) can be defined by first translating z → 0 and then applying the

operator/state correspondence to study the state |φ〉N = φN (0, 0)|0〉. These states are then

defined by the bulk primary conditions

Lm |φ〉N = 0, Lm |φ〉N = 0, for m ≥ 2. (2.3)

along with a normalization condition

LN1 L
N
1 |φ〉N = (−1)N N ! (2h)N |O〉 . (2.4)

The bulk primary condition can be given the simple, physical interpretation that the line

(y, 0, 0) is fixed by Lm≥2 in our gauge. The normalization condition simply guarantees that

we recover the global conformal bulk reconstruction when c = ∞. These conditions have

a unique solution [6], which can be conveniently written

φ(y, 0, 0) =

∞∑

N=0

y2h+2NλNLN L̄NO(0), (2.5)

where λN ≡ (−1)N

(2h)NN ! and the LN are a certain linear combination of holomorphic Virasoro

generators7 at level N , and similarly for the anti-holomorphic L̄N . When c → ∞ with

other parameters held fixed, our prescription reduces to the global conformal bulk recon-

struction of φ that can be obtained from the ‘HKLL kernel’ [15, 17, 25], and we have the

simplification LN → LN−1.

This prescription for φ can be motivated in a number of ways; for details see [6]. When

Virasoro transformations are realized as bulk diffeomorphisms preserving the gauge choice

of equation (2.1), our definition emerges by demanding that φ(y, z, z̄) transforms as a bulk

scalar field. Alternatively, one can arrive at our prescription by studying correlators of φ

with O(x) and any number of stress tensors T (zi) and T̄ (z̄i). After gauge fixing, Virasoro

symmetry appears to determine these correlators exactly [6, 37], and their specification is

equivalent to our definition of φ. In more conventional terms, our definition of φ should

agree with bulk gravitational perturbation theory to all orders in GN = 3
2c , and this has

been verified explicitly to order 1/c3 for some observables. In section 5.1 we will verify the

agreement between one-loop gravitational perturbation theory and our prescription for the

propagator 〈φφ〉.

Solution for φ using quasi-primaries. For various purposes it is useful to solve for

φN explicitly in terms of quasi-primary states, which are annihilated by L1 but not Lm
with m ≥ 2. Importantly, we will take the quasi-primaries to be orthogonal, and we fix

their overall normalization by demanding that a level M quasi-primary includes the term

7For example, the explicit solution at level 2 is

L−2 =
(2h+ 1)(c+ 8h)

(2h+ 1) c+ 2h(8h− 5)

(
L2
−1 −

12h

c+ 8h
L−2

)
(2.6)

with L̄−2 only differing by L−n → L̄−n.
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LM−1 with overall coefficient 1. In this basis, we showed8 that [6]

φN = (−1)N
∣∣LN−1O

∣∣2



LN−1∣∣LN−1O
∣∣2 +

Lquasi
−N∣∣∣Lquasi
−N O

∣∣∣
2 +

L−1Lquasi
−(N−1)∣∣∣L−1Lquasi
−(N−1)O

∣∣∣
2 + · · ·




×




L̄N−1∣∣L̄N−1O
∣∣2 +

L̄quasi
−N∣∣∣L̄quasi
−N O

∣∣∣
2 +

L̄−1L̄quasi
−(N−1)∣∣∣L̄−1L̄quasi
−(N−1)O

∣∣∣
2 + · · ·


O, (2.8)

where the notation is slightly schematic, as each term represents a sum over all quasi-

primaries at the indicated level.

Once we establish the overall coefficient of the quasi-primary contributions at level

(N, N̄), the contributions of all global conformal descendants of these quasi-primaries are

fixed. Thus much of the non-trivial information required to define correlators of φ(X) is

encoded in sums over inverse normalization factors

CN ≡
p(N)−p(N−1)∑

i=1

1∣∣∣Lquasi,i
−N O

∣∣∣
2 , (2.9)

where the sum includes all quasi-primaries at level N (p(N) denotes the number of integer

partitions, and the super-script i denotes the i-th quasi-primary at level N). We can take

advantage of this fact by finding efficient methods for isolating and determining the CN [38],

and then recombining them to compute φ correlators.

2.2 ‘Holomorphic’ parts determine full correlators

In CFT2, many observables can be decomposed into holomorphic and anti-holomorphic

parts. For example, the conformal partial waves or conformal blocks involve sums over

all states related by conformal symmetry. Since the symmetry algebra is a product of

holomorphic and anti-holomorphic Virasoro algebras, conformal blocks can thus be writ-

ten as products V × V̄. This feature leads to many convenient simplifications. Due to

the y-dependence of φ(y, z, z̄), this property does not hold for φ correlators, but we can

still take advantage of something almost as useful, which can be summarized by equa-

tions (2.13), (2.14), and (2.21).

2.2.1 The full correlator 〈φφ〉

Computing 〈φφ〉 using the quasi-primary decomposition in equation (2.8) is useful because

distinct quasi-primaries (and their global descendants) have vanishing two-point correla-

tors. So we can write 〈φφ〉 as a sum over contributions from different quasi-primaries,

8For clarity, by Lquasi
−N we mean Lquasi

−N acting on O creates a level N quasi-primary, while LN defined in

equation (2.5) is the sum of all level N contributions to φ and it’s given by

LN = LN−1 +

∣∣LN−1O
∣∣2∣∣∣LN−2

−1 L
quasi
−2 O

∣∣∣2LN−2
−1 L

quasi
−2 +

∣∣LN−1O
∣∣2∣∣∣LN−3

−1 L
quasi
−3 O

∣∣∣2LN−3
−1 L

quasi
−3 + · · · (2.7)

and
∣∣LN−1O

∣∣2 =
∣∣∣LN−1O

∣∣∣2 = (2h)N N ! = 1
|λN |

.
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that is,

〈φ(y1, z1, z̄1)φ(y2, z2, z̄2)〉 =
∑

n,n

∑

i,j

〈
φn,ni,j (y1, z1, z̄1)φn,ni,j (y2, z2, z̄2)

〉
, (2.10)

where the sum (n, n) is over different levels for the quasi-primaries, and the sum (i, j) is

over all of the different quasi-primaries at level (n, n). By φn,ni,j we denote the contribution

to φ from the quasi-primary Lquasi,i
−n Lquasi,j

−n O and all its global descendants

φn,ni,j (y, z, z̄) ≡ y2h+2n
∞∑

m=0

(−1)n+m y2m
∣∣Ln+m
−1 O

∣∣2

× Lm−1Lquasi,i
−n∣∣∣Lm−1Lquasi,i
−n O

∣∣∣
2

L
m+n−n
−1 Lquasi,j

−n∣∣∣Lm+n−n
−1 Lquasi,j

−n O
∣∣∣
2O(z, z̄), (2.11)

where without loss of generality, we assume n ≥ n. The above equation can be read off from

equation (2.5) and equation (2.8). As we’ll show in appendix B,
〈
φn,ni,j φ

n,n
i,j

〉
is given by

〈
φn,ni,j φ

n,n
i,j

〉
=

1∣∣∣Lquasi,i
−n Lquasi,j

−n O
∣∣∣
2Fn,n (h) , (2.12)

where Fn,n (h) only depends on the level of the quasi-primary (n, n) and it’s symmetric

under exchange of n and n̄. So we can write 〈φφ〉 as

〈φφ〉 =
∑

n,n



∑

i,j

1∣∣∣Lquasi,i
−n Lquasi,j

−n O
∣∣∣
2


Fn,n (h) ≡

∞∑

n,n=0

Cn,nFn,n, (2.13)

where we define Cn,n to be the sum over the inverse of all quasi-primaries at level (n, n),

and it factorizes as

Cn,n = CnCn =



p(n)−p(n−1)∑

i=1

1∣∣∣Lquasi,i
−n O

∣∣∣
2






p(n)−p(n−1)∑

j=1

1∣∣∣Lquasi,j
−n O

∣∣∣
2


 . (2.14)

So we only need to compute Cn to determine Cn,n. In section 4, we’ll show that Cn can

be obtained by modifying Zamolochikov’s recursion relations for Virasoro blocks. In the

semiclassical limit, the Cn can also be determined by the monodromy method of section 3.

To get 〈φφ〉, we also need to compute Fn,n. We will show in appendix B that Fn,n is

given by the Kampe de Feriet (KdF)9 series F 2,2
0,3 :

Fn,n ≡
(
y1y2

z12z12

)2hn

(2hn)2l

[
n! (2h)n
l! (2hn)l

]2

(2.16)

× F 2,2
0,3

(
2hn, 2hn : 2hn − n, 2hn − n;n+ 1, n+ 1;

− : 2hn, 2hn; 2hn − l, 2hn − l; l + 1, l + 1;
,− y2

1

z12z12
,− y2

2

z12z12

)
,

9The general form of a KdF series is given by

F p:qr:s

(
a1, · · · , ap : b1, b

′
1; · · · ; bq, b

′
q;

c1, · · · , cr : d1, d
′
1; · · · ; ds, d

′
s;
, x, y

)
=
∑∞
m=0

∑∞
n=0

(a1)m+n···(ap)
m+n

(c1)m+n···(cr)m+n

(b1)m

(
b
′
1

)
n
···(bq)

m

(
b
′
q

)
n

(d1)m(d′1)
n
···(ds)m(d′s)

n

xmyn

m!n!

(2.15)

so these can be viewed as a generalization of hypergeometric functions. We only need some of the simplest

examples of these functions.
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with

hn ≡ h+ n, hn ≡ h+ n, l ≡ n− n. (2.17)

As far as we know, there is no closed form expression10 for the general KdF series F 2,2
0,3 .

But in the case that n = 0 (or n = 0), the above KdF series is given by an Appell F4

function, which in our case greatly simplifies to

Fn,0 = (2h)2n

ρh+n

1− ρ. (2.18)

where ρ = e−2σ with σ = log
1+
√

1−ξ2

ξ and ξ = 2y1y2

y2
1+y2

2+z12z12
. Here, σ is the geodesic

separation between the two bulk operators in pure AdS3. Note that the global (or free

field) bulk-bulk propagator 〈φφ〉global is given by F0,0:

〈φφ〉global = F0,0 =
ρh

1− ρ.

This means that the general Fn,0 is just proportional to the global bulk-bulk propagator

with a shifted bulk mass h→ h+ n. We’ll see that these Fn,0 can be summed to give the

holomorphic correlator 〈φφ〉holo, which we define next.

2.2.2 The holomorphic correlator 〈φφ〉holo

The definition of φ involves a sum over products of Virasoro generators LN and LN , which

are related by Ln ↔ Ln. We can define the non-trivial holomorphic part of φ as

φholo (y, z, z) =

∞∑

N=0

y2h+2NλNLN
(
L−1

)N O (z, z) . (2.19)

by replacing LN with its c→∞ limit L
N
−1. This simplified operator φholo is useful because,

roughly speaking, it encodes all of the non-trivial quantum gravity information in φ. As

we will show, its two-point function

〈φφ〉holo ≡ 〈φholo (y1, z1, z1)φholo (y2, z2, z2)〉 (2.20)

involves all the Cn coefficients. In large c perturbation theory, the holomorphic part φholo

can be understood as the result of including only holomorphic gravitons hzz while neglecting

hz̄z̄. Thus φholo will have valid correlators of the form 〈φholoOT · · ·T 〉, but it will not

have valid correlators with the anti-holomorphic stress tensor T . This means that the

holomorphic propagator 〈φφ〉holo includes holomorphic graviton loops, but not mixed or

anti-holomorphic loops.

As one can easily see, 〈φφ〉holo defined in equation (2.20) can be written as

〈φφ〉holo =

∞∑

n=0

CnFn,0, (2.21)

10In appendix B we present an integral expression for F 2,2
0,3 in terms of hypergeometric functions.
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since we defined φholo in equation (2.19) such that it contains no information about anti-

holomorphic Virasoro generators (thus n̄ = 0 and C0 = 1). So just as with 〈φφ〉global,

the holomorphic propagator 〈φφ〉holo will only depend on ρ, which means that in our

Fefferman-Graham gauge, 〈φφ〉holo is spherically symmetric. This is not true for 〈φφ〉,
which will depend on another variable besides ρ, specifically an angle with respect to the

z-z̄ plane, captured for example by the ratio y1/y2.

Since the contribution to 〈φφ〉 from F0,n is the same as Fn,0, we can write 〈φφ〉 as

〈φφ〉 = 2 〈φφ〉holo − 〈φφ〉global + 〈φφ〉mixed , (2.22)

where 〈φφ〉mixed is the contribution from Fn,n with n, n > 0 and the substraction of

〈φφ〉global = F0,0 is necessary because we count it twice in the first term.

In this paper, we will focus mostly on 〈φφ〉holo. In section 3, we will use monodromy

method to obtain the semiclassical limit of 〈φφ〉holo, and in section 4, we will provide

two recursion relations for computing 〈φφ〉holo exactly. We provide some discussion of the

mixed and holomorphic terms in section 4.2, and we provide one important and physically

relevant comparison, restricted to the z-z̄ plane, in figure 7.

3 Semiclassical limit

When studying quantum gravity, it is always important to make contact with the semiclas-

sical limit of general relativity, where GN → 0 with products like GNM fixed. This limit

of GR appears directly at the kinematical level in CFT2 [7–11]. Conformal blocks in CFT2

(which are determined by Virasoro symmetry) have a semi-classical limit of the form ecf

as we take c → ∞ with the ratios of scaling dimensions to the central charge, h/c, held

fixed. This has a beautiful connection with AdS3 gravity via GN = 3
2c in AdS units, with

scaling dimensions playing the role of AdS3 masses.

Correlators of φ also behave nicely in this semiclassical limit. The bulk propagator

can be approximated by

〈φ(y1, z1, z̄1)φ(y2, z2, z̄2)〉 ≈ ec g(hc ,ξ,r) (3.1)

for some function g at large c. In this section we will show how to compute the semiclassical

gholo using a generalization of the ‘monodromy method’ [7–9, 39] that has been used to

compute conformal blocks. Then we will apply our method to calculate gholo perturbatively

in small h
c , and more importantly, to obtain gholo in the limit h → ∞ in section 3.3. In

fact, we will be able to determine the large h limit of 〈φφ〉holo exactly, and this will be an

important seed for very efficient recursion relations discussed in section 4. As one might

expect for the trans-Planckian h� c regime, the large h limit of the propagator exhibits a

breakdown of bulk locality. In section 3.2 we also obtain some explicit analytic results to

all-orders in h/c in the short-distance limit.

3.1 Generalizing the monodromy method to 〈φφ〉

The monodromy method for Virasoro conformal blocks was developed by Zamolodchikov

in [12, 13]; for some recent reviews see [9, 39]. The basic idea is that the O(c) piece “g”
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in the exponent of 3.1 is unaffected by adding extra ‘light’ operators with O(1) conformal

weights inside the correlator. Therefore, one can add a degenerate operator

ψ̂2,1(z) (3.2)

that has a null Virasoro descendant at level 2. Correlators of this degenerate operator must

obey a second order differential equation. In the case of φ, let us define the “wavefunction”

ψ to be the three-point function

ψ ≡ 〈ψ̂2,1(z)φ(X1)φ(X2)〉. (3.3)

Because of ψ̂2,1’s null descendant, ψ obeys the following differential equation

∂2
zψ(z,X1, X2) +

6

c
T (z,X1, X2)ψ(z,X1, X2) = 0, (3.4)

where T (z,X1, X2) is the stress tensor evaluated in the presence of the two φs:

T (z,X1, X2) =
〈T (z)φ(X1)φ(X2)〉
〈φ(X1)φ(X2)〉 . (3.5)

In (3.4), T (z,X1, X2) acts like a Schrodinger potential for ψ. It is fixed in terms of the 〈φφ〉
correlator by recursion relations that follow from the Tφ OPE. Unlike boundary primary

operators, φ has a third-order pole in its OPE with T , due to the fact that it transforms non-

trivially under special conformal transformations L1 at the origin. When both holomorphic

and anti-holomorphic stress tensors contribute, the action of L1 is somewhat complicated:

L1φ(y, 0, 0) = −y2 ∂̄ + y2 6
c T̄ (0)∂

1− y4 36
c2
T (0)T̄ (0)

φ(y, 0, 0). (3.6)

We will just develop the monodromy method for the “holomorphic” 〈φφ〉 correlator, where

T̄ contributions are absent (it would be interesting to study the full case, which is more

complicated, in the future). Then, L1 acts much more simply, and the singular terms in

the OPE of T and φ are the following:

T (z)φ(y, w, w̄) ∼ −y
2∂w̄φ(y, w, w̄)

(z − w)3
+

1

2

y∂yφ(y, w, w̄)

(z − w)2
+
∂wφ(y, w, w̄)

z − w . (3.7)

Another significant simplification of the holomorphic correlator is that it depends only on

ρ or equivalently ξ = 2y1y2

y2
1+y2

2+z12z̄12
; in other words, the holomorphic correlators are still

invariant under the AdS isometries, despite the gauge fixing.

We can evaluate T (z,X1, X2) by summing over its poles at z1 and z2, and the residues

are given by derivatives of the exponent g,11 in (3.1):

T

c
= − y2

1∂z̄1g

(z − z1)3
+

1

2

y1∂y1g

(z − z1)2
+

∂z1g

z − z1
− y2

2∂z̄2g

(z − z2)3
+

1

2

y2∂y2g

(z − z2)2
+

∂z2g

z − z2
. (3.8)

11Since we will be focusing on gholo from this point on, we will denote it using g to reduce clutter.
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Finally, without loss of generality we can take z1 = 0, y1 = 1, and z2, y2 → ∞ with

z2/y2 = 1 fixed.12 In this limit, using the fact that g depends on the coordinates Xi only

through the invariant combination ξ, T (z,X1, X2) simplifies to

T

c
= ξg′(ξ)

(
z − ξ(z2 + 1)

2z3

)
. (3.10)

The solutions for ψ are given by the differential equation (3.4) with this potential.

The final input into the monodromy method is that the solutions for ψ have fixed

monodromy when z is taken along closed paths that encircle other operators in the corre-

lator. This follows from the fact that when ψ̂2,1 fuses with an operator, only two possible

operator dimensions are allowed in its OPE. In our case, when ψ̂2,1 fuses with one of the

φs, it can only produce operators Oβ that have weight hβ satisfying13

hβ − hφ − hψ =
1

2

(
1±

√
1− 24hφ

c

)
. (3.11)

The l.h.s. above is the power of the leading singularity of Oβ in the ψ×φ OPE, so when z cir-

cles one of the φs, the monodromy matrix of the two solutions to (3.4) must have eigenvalues

M± = −e±iπΛh , Λh ≡
√

1− 24hφ
c

. (3.12)

In summary, the monodromy method for 〈φφ〉holo is that one solves (3.4) for ψ(z, ξ) with

T given by (3.10), and then fixes g(ξ) by demanding that the monodromy matrix for the

two solutions have eigenvalues given by (3.12) as z encircles the origin.

3.2 Perturbation theory in h
c

and an all-orders resummation

Let us see how to apply the monodromy method in the limit of small h/c. To first order,

g ∼ O(hc ), and since cg ∼ h is independent of c at this order we should just rederive the

h-dependence of the free scalar propagator in AdS3.

12Any non-zero value of z2/y2 is allowed without loss of generality. Taking different positions for the

two φs in the correlator leads to different forms of the potential T , and consequently different solutions

for the wavefunction ψ. However, as long as the geodesic distance between the positions is the same, the

monodromy of the solutions does not depend on the specific values of the coordinates. Another, slightly

more complicated limit we could take is z1 = z̄1 = 0, z2 = 1 and y1 = y2 = 1, in which case the potential

takes the form

T (z) =
ξ(ξ + (2ξ + 1)(z − 1)z)g′(ξ)

2(z − 1)3z3
. (3.9)

And in appendix C, we also show that we can use the bulk-bulk OPE to obtain the leading term of the

above equation.
13One may ask how is it possible for the three-point function 〈ψ̂2,1φφ〉 to be non-zero at all if ψ̂2,1 can

only fuse with φ to produce operators of weight hβ . To make sense of this puzzle, one should remember

that we are just computing the semiclassical piece of 〈φφ〉, which is insensitive to additional light operators

in the correlator. So, one can think of the correlator as really being 〈ψ̂2,1φφO′〉, where O′ is another light

operator whose OPE with φ contains Oβ .

– 12 –



J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

At zero-th order in h/c, T
c vanishes, so the solutions for ψ are just

ψ(1) = 1, ψ(2) = z. (3.13)

Both of these have trivial monodromy, consistent with −eiπΛh = 1 + O(h/c) at leading

order. At next order, we demand monodromies of −e±iπΛh = 1 ± 12iπh
c . We will use the

method of separation of variables. The Wronskian of the zero-th order solutions is trivial

W = ψ(1)ψ(2)′ − ψ(1)′ψ(2) = 1. (3.14)

The monodromy matrix Mij of the first-order solutions as z goes around the origin are

given by the following residue formula:

Mij = δij − 2πiresz=0

[
6
cT (z)

W (z)
ψ̃(i)ψ(j)

]
, ψ̃ ≡

(
−ψ(2)

ψ(1)

)
. (3.15)

The eigenvalues of M are

evals(M) = 1± 6iπξ
√

1− ξ2g′(ξ). (3.16)

Equating evals(M) = 1± 12iπ hc , we obtain

ecg(ξ) =

(
ξ

1 +
√

1− ξ2

)2h

= ρh. (3.17)

which is indeed the right answer.

We can continue to higher orders in h/c as well. It becomes somewhat nicer to write

expressions in terms of the variable ρ rather than ξ. At higher orders, rather than writing

Mij in terms of residues of a matrix, one must solve order-by-order for the solutions ψ(1)

and ψ(2); the non-trivial monodromies arise from logarithms in ψ(i), and these are fairly

easy to deal with by hand. At O(h2/c), we find

cg = h log ρ+
12h2

c

(
ρ

(1− ρ)2
+ log(1− ρ)

)
+O

(
h3

c2

)
. (3.18)

in the semiclassical limit. This agrees with bulk gravitational perturbation theory (see

section 5.1 and appendix A) and the methods of section 4.

After working to sufficiently high order using the recursion relation of section 4, a

pattern emerges and one can conjecture the following ansatz for the all-orders result:

log
〈φφ〉holo

〈φφ〉global

=

∞∑

n=1

hn+1

cn

(
2× 12n(2n− 1)!!

(n+ 1)!
log (1− ρ) +

24n(3n− 3)!!

(n+ 1)!(n− 1)!!

gn (ρ)

(1− ρ)3n−1

)
,

(3.19)

with the first three gn(ρ) taking the form

g1 (ρ) = ρ,

g2 (ρ) =
1

12
ρ
(
7ρ4 − 41ρ3 + 73ρ2 − 33ρ+ 6

)
, (3.20)

g3 (ρ) =
1

192
ρ
(
−42ρ7 + 366ρ6 − 1205ρ5 + 1758ρ4 − 1112ρ3 + 606ρ2 − 209ρ+ 30

)
,
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and where we have normalized gn (ρ) so that gn (1) = 1. The leading term involving g1

matches equation (3.18).

The second term in equation (3.19) can be summed if we work to leading order in the

short-distance limit ρ→ 1, i.e. by setting gn (ρ) = 1.14 We find

∞∑

n=1

24n(3n− 3)!!

(n+ 1)!(n− 1)!!

hn+1

cn (1− ρ)3n−1 =
c(1− ρ)4

576

(
2F1

(
−2

3
,−1

3
;

1

2
;

15552h2

c2(1− ρ)6

)
− 1

)

+ h (1− ρ)

(
1− 2F1

(
−1

6
,

1

6
;

3

2
;

15552h2

c2(1− ρ)6

))

(3.22)

for the function that appears in the exponent of the semiclassical propagator in the short-

distance limit.

Both hypergeometric functions in equation (3.22) can be expanded as ρ→ 1 with fixed

h/c, and both develop complex parts in this limit. More generally, the hypergeometric

functions both have branch cuts running from the point where (1− ρ)6 = 15552h2

c2
to ρ = 1.

This indicates an apparent breakdown of bulk locality in the semiclassical part of the

propagator. Note that in terms of the geodesic length σ, this breakdown occurs at the

critical value

σ∗ ≈
(

9
√

3
h

c

)1/3

RAdS (3.23)

at large c and small h/c. This formula only applies in the regime where σ∗ � RAdS,

because we were only able to compute the semiclassical result analytically to leading order

as ρ→ 1.

3.3 Exact large h limit and the breakdown of locality

We can also solve the monodromy method in an expansion about large h. This limit is

interesting for two very different reasons. The first is that large h corresponds with a

large bulk mass for φ. So in this case we expect φ to have a very large effect on the local

geometry, potentially leading to the breakdown of bulk locality at macroscopic distances.15

Our second motivation is more technical: as we will demonstrate in section 4, the infinite

h limit of the correlator is the necessary “seed” for a very efficient recursion relation that

can be used to numerically compute the correlator exactly and at any h.

14The logarithmic terms in equation (3.19) can also be summed to give

∞∑
n=1

2hn+1

cn
12n(2n− 1)!!

(n+ 1)!
log (1− ρ) =

c

6

(
1− 12h

c
−
√

1− 24h

c

)
log (1− ρ) . (3.21)

Note that for h > c
24

, i.e. above the BTZ black hole threshold, equation (3.21) develops an imaginary piece.

Unfortunately, we cannot conclude anything from this fact alone, since that result is subdominant to the

other terms in equation (3.19).
15One might have expected to see indications of black hole physics, since we are studying the limit h� c

where φ would have to be interpreted as a sort of ‘black hole field’. We do not see any direct indications

of the Hawking temperature or Schwarzschild radius in the φ propagator, though these parameters must

appear in higher-point semiclassical correlators.
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At large h, the potential T should become large and therefore one can solve the

Schrodinger equation for ψ using a WKB approximation. This approach (used for the

blocks in [13]), is easiest to implement if we change variables according to

ψ = (y′(z))−1/2Ψ(y), (3.24)

bringing the Schrodinger equation into the form

Ψ′′(y) + U(y)Ψ(y) = ξg′(ξ)Ψ(y). (3.25)

The coordinate y(z) that achieves this is

y(z) =
√

3

∫ z

dt

√
−t+ ξ(1 + t2)

t3/2

= −
2
√

6

(
(1−z)
√
s(z+1)2−4z

2
√
z(z+1)

+ E(ϕ|s)
)

√
2− s , (3.26)

where E is an elliptic integral, sinϕ ≡ 2z1/2

(1+z)s1/2
, and we have introduced the new coordi-

nate s:

s ≡ 4ξ

1 + 2ξ
. (3.27)

The new potential U(y) is

U(y) =
3y′′(z)2 − 2y(3)(z)y′(z)

4y′(z)4
. (3.28)

Now, the advantage is that y is a periodic variable - under a monodromy cycle in z, y shifts

because of a corresponding shift in the elliptic integral:

E(ϕ+ nπ, s) = E(ϕ, s) + 2nE(s). (3.29)

Consequently, the y variable lives in a box of size R given by

R = 4
√

6
E(s)√
2− s. (3.30)

The new form (3.25) of the Schrodinger equation is for a particle in a box, having energy

ξg′(ξ); the monodromy condition is that the particle should have quasimomentum Λh.

Therefore, in the limit Λh →∞, we have

cξg′(ξ) = −c(πΛh)2

R2
= π2 (2− s)(h− c

24)

4E2(s)
. (3.31)

Equivalently,

cg′(s) =
π2(h− c

24)

2sE2(s)
+O(c). (3.32)
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The subleading in 1/h correction is an O(c) correction, as indicated above. We can ob-

tain this correction as follows. Because ξg′(ξ) is the eigenvalue in the Schrodinger equa-

tion (3.25), in the WKB approximation its subleading correction enters as

log Ψ(y) ≈
∫
dy
√
ξ(g′(ξ) + δg′(ξ))− U(y))

≈
√
ξg′(ξ)y +

1

2
√
ξg′(ξ)

∫
dy(ξδg′(ξ)− U(y)). (3.33)

The monodromy of our leading order solution above is already the correct value, Λh.

Demanding that the correction to the monodromy vanish, one therefore obtains16

ξδg′(ξ) =
1

R

∫ R

0
U(y)dy =

2− s
144

(
7K(s)

E(s)
− 2− s

2(1− s)

)
. (3.34)

Putting this correction together with the leading piece, we obtain the full semiclassical part

of the exponent cg at h =∞:

cg =
(
h− c

24

)∫ ds

2s

π2

E2(s)
+

c

144

[
log

(
16(1− s)

s2

)
+ 14

∫
ds

s

K(s)

E(s)

]
. (3.35)

The integrals over s can all be done in closed form.17 We fix the integration constants by

matching to the known, small ξ behavior. The result is that the semiclassical part of the

correlator at large h is given by

ecg
h�c
= qh−

c
24

(s
8

) c
12

(1− s) c
144

(
2E(s)

π

)−7c
36

, (3.36)

where we have defined the new variable q:

q ≡ 4e
2π

E(1−s)−K(1−s)
E(s)

−4
. (3.37)

In addition to the semiclassical part above, the full holomorphic correlator 〈φφ〉holo at

infinite h has a residual piece that is independent of h and c. We have not been able to

derive this residual piece from first principles, but we believe we were able to obtain the

correct formula as follows. The corresponding residual piece in the conformal blocks simply

results in a shift c→ c− 1 in the formula as compared to the semiclassical result. We tried

an ansatz of the form of (3.36) where in each of the four places c appears, we allow a

separate shift in c. Comparing to an exact calculation of the leading small ξ expansion,

we fixed these four new parameters and checked that the Ansatz reproduced the correct

result to high order in ξ. The final result is

lim
h→∞
〈φφ〉holo = qh−

c−1
24

(s
8

) c−1
12

(1− s) c−13
144

(
2E(s)

π

) 19−7c
36

. (3.38)

We emphasize that this is not merely a semiclassical result, but the exact answer at large h.

16We performed the dy integral in (3.34) by changing variables to dz and doing the indefinite integral to

get a result involving elliptic integrals. The definite integral
∫ R

0
dy then corresponds to the shift in the

∫
dz

integral under a z monodromy cycle, which is easy to read off using (3.29) together with F (ϕ + nπ, s) =

F (ϕ, s) + 2nK(s).
17For reference,

∫
πds

sE2(s)
= 4E(1−s)−K(1−s)

E(s)
and

∫ dsK(s)
sE(s)

= log
(

s
E2(s)

)
.
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Figure 1. Left: the trace of the monodromy matrix M computed numerically as a function of

ρ and ρg′(ρ), for three values of ρ: ρ = 0.4 (black, solid), ρ = 0.5, (red, dashed), and ρ = 0.6,

(blue, dotted). Right: the critical value of σc (black, solid) where the semiclassical part of the 〈φφ〉
correlator first develops an imaginary piece, as a function of h/c. For comparison, we show (red,

dashed) the analytic small h/c behavior, σc ≈ (9
√

3h/c)1/3 from (3.23), and (blue, dot-dashed) the

large h behavior σc ≈ log(2 +
√

3), from (3.39).

The large h limit of the holomorphic correlator has an important feature. As is evident

in equation (3.37), the q variable becomes complex when s > 1, which corresponds to

ρc = 7− 4
√

3 ≈ 0.072, or a physical geodesic separation

σc
RAdS

≈ log(2 +
√

3) = 1.32 (3.39)

in the bulk (for emphasis, we have written the AdS radius explicitly). This represents a

breakdown of bulk locality at the AdS scale. Note that this is not merely a relic of the

semiclassical approximation, since it applies to the exact holomorphic propagator in the

large h limit.

Physically, this failure of bulk locality is not very surprising. We certainly would not

have expected to have healthy bulk correlators for a field φ with extremely large (trans-

Planckian!) bulk mass. But it is nevertheless reassuring that we can identify the breakdown

of bulk locality in a precise, quantitative way.

3.4 Numeric monodromy results

Away from the limits of large and small h/c, we have not been able to solve the monodromy

method for the semiclassical piece g(ρ) of the 〈φφ〉holo correlator in closed form. However,

it is straightforward to compute g numerically. Converting to ρ coordinates,

T

c
= Cρ

(
(ρ+ 1)z − 2

√
ρ
(
z2 + 1

)

(1− ρ)z3

)
, (3.40)

where numerically we fix the parameters ρ and Cρ ≡ ρg′(ρ), and numerically integrate

the wavefunction ψ along a cycle around the origin and match in order to compute the

monodromy matrix M . Once Cρ is known for all ρ, it can be integrated to obtain g(ρ).

In the left plot of figure 1, we show Tr(M) computed in this way as a function of Cρ
for a few values of ρ, and for real Cρ. One can invert the relation to find Cρ as a function

– 17 –
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of h/c and ρ by looking at the point where

Tr(Mh) ≡ −2 cos(πΛh)

(
Λh ≡

√
1− 24h

c

)
(3.41)

intersects the curve for any specific ρ. For small enough ρ, the curve will cross Tr(Mh) at

multiple values of Cρ, but by continuity with the small ρ limit, one should take the smallest

value for Cρ in these plots.

The most physically important feature of these numeric results is that each curve has

a minimum at some value of Cρ:

[
Tr(M)

]
min

(ρ) ≡ minCρTr(M). (3.42)

Therefore, if Tr(Mh) is below this minimum value [Tr(M)]min (ρ), then Cρ must become

complex. Note also that the minimum value is an increasing function of ρ, so for fixed

Tr(Mh), there is a critical value of ρ where [Tr(M)]min (ρ) = Tr(Mh); for larger ρ, Cρ
develops an imaginary piece. The right plot of figure 1 shows the resulting critical value for

σc = −1
2 log ρc in figure 1. We obtain a satisfying agreement with the results of section 3.2

in the limit of small h/c. We compare these results with the exact methods of section 4 in

figure 6.

4 Computing the propagator exactly

In this section we will develop a generalization of the Zamolodchikov recursion relations

that make it possible to compute the bulk propagator exactly. The relations produce the

exact coefficients for a series expansion of Kholo in the variable ρ (and q). This means

that we obtain a long-distance expansion for the propagator, since ρ = 0 corresponds to

geodesic separation σ →∞.

4.1 Generalizing the Zamolodchikov recursion relations to 〈φφ〉

The recursion relations that we will develop for computing 〈φφ〉holo are very similar to

Zamolodchikov’s recursion relations for computing Virasoro blocks [12, 13]. They are based

on the large c limit and large h limit of the 〈φφ〉holo, as well as the pole structure of 〈φφ〉holo

as a function of c or h, respectively. In the following, we’ll denote them as the c-recursion

and h-recursion.

Let us first write the central charge c in terms of a variable b as c = 13 + 6
(
b2 + b−2

)

and define an function Acm,n given by

Acm,n =
1

2

m∏

k=1−m

n∏

l=1−n

1

kb+ l
b

, (k, l) 6= (0, 0) , (m,n) (4.1)

– 18 –



J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

which will be an ingredient of both c-recursion and h-recursion. It was determined in [40]

that Acm,n is equal to18

Acm,n = lim
h→hm,n(c)




〈
Lquasi
−mnOh|Lquasi

−mnOh
〉

h− hm,n (c)



−1

, (4.2)

where hm,n is the degenerate-state dimensions (which will be given below) and we put a

superscript h on O to emphasize that if we send h → hm,n (c) then Lquasi
−mnOh becomes a

level mn null-state.

4.1.1 c-recursion relation

To obtain the c-recursion, we need to know the large c limit of 〈φφ〉holo, which is simply

lim
c→∞

〈φφ〉holo = 〈φφ〉global =
ρh

1− ρ.

As in the Virasoro block case, as a function of c the correlator 〈φφ〉holo has simple poles

at c = cm,n (h). The residue of the pole at c = cm,n (h) must be proportional to the two-

point function of φholo with dimension h + mn and central charge cm,n (h). As shown in

section 2.2, 〈φφ〉holo can be written as

〈φφ〉holo =

∞∑

N=0

CN (2h)2N

ρh+N

1− ρ =
ρh

1− ρ
∞∑

N=0



p(N)−p(N−1)∑

i=0

1∣∣∣Lquasi,i
−N O

∣∣∣
2


 (2h)2N ρ

N ,

(4.3)

where we have written 〈φφ〉holo explicitly as a sum over contributions from different quasi-

primaries and their global descendants. So if we write 〈φφ〉holo as

〈φφ〉holo =
ρh

1− ρF (h, c) , (4.4)

then in F (h, c), the residues at c = cm,n (h) will include a factor ρmnF (h+mn, cm,n (h)).

At the poles, the residues should also includes a factor that will give CN . But this is

precisely given by −∂cm,n(h)
∂h A

cm,n
m,n , where

∂cm,n(h)
∂h is the Jacobian factor, because we are

considering the poles at c = cm,n (h) while equation (4.2) is at the poles of h = hm,n (c). So

combining all these facts, we find that F (h, c) is given by the following c-recursion relation:

F (h, c) = 1 +
∑

m≥2,n≥1

−∂cm,n (h)

∂h

A
cm,n
m,n (2h)2mn

c− cm,n (h)
ρmnF (h+mn, cm,n (h)) , (4.5)

where poles cm,n (h) are given by

cm,n (h) = 13 + 6
[
(bm,n (h))2 + (bm,n (h))−2

]
, (4.6)

18The coefficient of (L−1)mn in Lquasi
−mnOh in [40] is also normalized to 1, which is the same as the convention

of this paper.
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with

(bm,n (h))2 =
2h+mn−1+

√
(m−n)2 + 4 (mn− 1)h+ 4h2

1−m2
,m = 2, 3, · · · , n = 1, 2 · · · .

(4.7)

The super-script in A
cm,n
m,n means that the b in Acm,n (equation (4.2)) should be substituted

by bm,n (h). The factor (2h)N in equation (4.3) is accounted for by the (2h)2mn in the

residues of this c-recursion (4.5).

Compared to the c-recursion relation for Virasoro block, we see that besides adding

the factor (2h)2mn, we simply get rid of the factor in the residues that encodes the in-

formation about the three point function between the intermediate state and the external

operators. The existence of this c-recursion relation can be traced back to the similarity

of our definition of φ and a projection operator to project the four-point function into

Virasoro blocks. We’ve checked this recursion relation by directly computing the 〈φφ〉holo

up to level19 N = 5. We also used this recursion relation to obtain the semiclassical limit of

〈φφ〉holo, and the results agree with those obtained from monodromy method of section 3.2.

4.1.2 h-recursion relation

The h-recursion relation is obtained by considering 〈φφ〉holo as a function of h with simple

poles at h = hm,n (c). In section 3.3, we already obtained the large h limit of 〈φφ〉holo by

the monodromy method and a bit of guesswork; we found

lim
h→∞

〈φφ〉holo = qh−
c−1
24

(s
8

) c−1
12

(1− s) c−13
144

(
2E (s)

π

) 19−7c
36

. (4.9)

So if we write 〈φφ〉holo as

〈φφ〉holo = qh−
c−1
24

(s
8

) c−1
12

(1− s) c−13
144

(
2E (s)

π

) 19−7c
36

H (h, c) ,

then H (h, c) is given by the following recursion relation:

H (h, c) = 1 +

∞∑

m,n≥1

qmn (2hm,n)2mnA
c
m,n

h− hm,n (c)
H (hm,n +mn, c) , (4.10)

where the poles are given by hm,n = 1
4

(
b+ 1

b

)2 − 1
4

(
mb+ n

b

)2
, with c = 13 + 6

(
b2 + b−2

)
.

The residues of the h-recursion are just those of the c-recursion but now evaluated at the

poles hm,n (c).

The c-recursion and h-recursion can be solved numerically, in the sense that we can

obtain higher order coefficients from lower order coefficients, analogously to the blocks [41,

19For example, at level 2 the c-recursion gives

C2 = −∂c1,2 (h)

∂h

A
c1,2
1,2

c− c1,2 (h)
=

9

2(2h+ 1)(2ch+ c+ 2h(8h− 5))
(4.8)

which is exactly equal to 1

|Lquasi
−2 O|2

with Lquasi
−2 = L2

−1 − 2(2h+1)
3

L−2.
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42]. We discuss the algorithm for implementing these recursions in appendix D and we

have also attached our Mathematica code.

In each iteration of the c-recursion, we need to change both h → h + mn and c →
cm,n (h), whereas in the h-recursion, we only need to change h → hm,n + mn. Thus, the

implementation of the h-recursion is faster than the c-recursion by roughly a factor of N .

Although obtaining CN from the c-recursion is straightforward, one can also use the h-

recursion to obtain 〈φφ〉holo and then expand the result in terms of ρ to obtain CN , which

is faster for higher order coefficients.

4.2 Comparison of full and holomorphic propagators

In this section, we exhibit a numerical result comparing the full and holomorphic propa-

gators. First we recall a convenient definition from equation (2.22)

〈φφ〉 = 2 〈φφ〉holo − 〈φφ〉global + 〈φφ〉mixed , (4.11)

where 〈φφ〉global is given in (1.2). Most of the analytic tools we have developed in this

paper apply directly to 〈φφ〉holo. But we can use the recursion relations to numerically

compute both 〈φφ〉holo and 〈φφ〉mixed to high order, as explained in section 2.2.1.

The coordinate system we specified in equation (2.1) is not invariant under the isome-

tries of vacuum AdS3. Therefore 〈φ(y1, z1, z̄1)φ(y2, z2, z̄2)〉 can depend on both the geodesic

separation between two points and an angular variable with respect to the z-z̄ plane, such

as the ratio y1/y2. However, the holomorphic propagator 〈φφ〉holo is invariant under the

isometries of vacuum AdS3. Specifically, we found20

〈φ(y1, z1, z̄1)φ(y2, z2, z̄2)〉holo = ρh
∞∑

n=0

anρ
n. (4.12)

where ρ = e−2σ with σ the geodesic separation. This nice property does not hold for

〈φφ〉mixed. We will leave detailed discussion of the dependence of 〈φφ〉 on y1/y2 to the

future.21 In this section, we focus on computing 〈φφ〉mixed when the two points are in the

same z-z̄ plane, ie when y1 = y2, so that

〈φ(y, z1, z̄1)φ(y, z2, z̄2)〉mixed = ρh
∞∑

n=0

bnρ
n
2 . (4.13)

The coefficients bn can be computed exactly using the method outlined in section 2.2. No-

tice that the coefficients an in equation (4.12) (which are related to Cn in equation (4.3))

are always positive, but the coefficients bn in equation (4.13) can be negative. We have

displayed the ratios of the growth rates of the coefficients an and bn in figure 2. These

coefficients grow exponentially at large n, indicating that 〈φφ〉 has a finite radius of conver-

gence in ρ. In other words, there is a singularity in 〈φφ〉 when the two point are separated

by a finite distance, signally a break-down of locality. We will discuss this phenomenon in

great detail in section 6.

20Compared to equation (4.3), we see that
∑∞
n=0 anρ

n = 1
1−ρ

∑∞
n=0 Cn(2h)2nρ

n, but the effect of the

factor 1
1−ρ is negligible in the following discussion.

21In appendix B we discuss the properties of the KdF series in general configurations, giving some further

information on the angular dependence of the propagator.

– 21 –



J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

� �� ��� ��� ��� ��� ���

-�

-�

�

�

�

�

Figure 2. This plot compares the ratios of successive coefficients in the holomorphic and mixed

terms contributing the full propagator. We see that at large c, the coefficients of ρn grow at the

same rate, meaning that the holomorphic propagator provides a good estimate for the behavior of

the full propagator.

Comparing these coefficients, we see numerically that for sufficiently large c and n, the

two types of coefficients seem to satisfy a rough empirical relation b2n ∼ an. Since an and

bn are approximated by exponentials at large n, this relation would indicate that, roughly,

b2n ∼ an. This is the condition for the holomorphic and full correlators to have similar

radii of convergence. Therefore we believe that although many of our analytical results are

explicitly obtained by studying 〈φφ〉holo, our conclusions about the physics should also hold

approximately for 〈φφ〉. In figure 7 we compare the convergence rates of the holomorphic

and full propagators (in the z-z̄ plane) explicitly.

5 Perturbation theory in 1
c

We are using CFT2 to learn about AdS3 quantum gravity, so it is very natural to study the

expansion of observables in GN = 3
2c . In this section we will present the first 1/c correction

to the propagator, and then a conjectured all-orders formula for light bulk proto-fields in

the short-distance limit.

However, we find a surprising and potentially disturbing result, which appears already

at one-loop: there are ‘UV/IR mixing’ effects, by which we mean that singular, short-

distance terms in 〈φφ〉 are enhanced by powers of the AdS scale RAdS. Specifically, at

one-loop and at short distances σ � RAdS, we find

〈φφ〉 ≈ 1

σ

(
3GNR

3
AdS

4σ4
− GNRAdS(10 +m2R2

AdS)

8σ2
+ · · ·

)
. (5.1)

Although this is a finite result in AdS3, it does not have a good flat space limit as RAdS →
∞. We believe there are two plausible responses to this state of affairs:

1. One can interpret this UV/IR mixing effect as a signal that 〈φφ〉 is too non-local

in perturbation theory, and thus requires modification in order to obtain an IR safe

quantity. Likely this would involve summing over external graviton states in place of
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X1 X2Y1 Y2

AdS3

Figure 3. This figure displays the scalar-graviton one-loop diagram that contributes to

〈φ(X1)φ(X2)〉 at order 1/c. There is also a contact interaction, but the associated diagram vanishes.

The computation is performed in appendix A.1.

the vacuum. We will not pursue this avenue of investigation here, but we believe it

is interesting and important to consider, and we plan to return to it in the future.

2. One can ‘bite the bullet’ and simply study 〈φ(X1)φ(X2)〉, the exact vacuum propa-

gator. In AdS3 this observable is finite and well-defined in perturbation theory, since

AdS3 acts as an IR regulator, and our results for it accord with naive gravitational

perturbation theory in our gauge. We will take this approach for the remainder of

this work, with the caveat that conclusions about 〈φφ〉 could change if we instead

found a modified observable with an IR safe flat limit.

In section 5.1 we will discuss the results of a one-loop gravity calculation, with the

technical details relegated to appendix A. Then in section 5.2 we will present analytic results

for the holomorphic propagator with fixed h � c, to all orders in 1
c , but in the leading

short-distance limit. Our one-loop results exactly match those of the recursion relation

of section 4, and our all-orders results were obtained by extrapolating from the recursion

relations. If one takes the vacuum propagator 〈φφ〉 seriously as an observable, then our

all-orders results suggest that bulk locality breaks down due to non-perturbative effects

at a length scale σ∗ ∼ c−1/4. We will obtain corroborating evidence for this conclusion

numerically in section 6.

5.1 One-loop bulk gravity and UV/IR mixing

We find that bulk perturbation theory matches the recursion relations developed in sec-

tion 4, and to leading non-trivial order in 1/c, both give22

〈φφ〉 =
ρn

1− ρ

[
1 +

12

c

(
ρ
(
2h2(ρ− 1)2 + h(ρ(3ρ− 11) + 2)(ρ− 1) + ρ2((ρ− 5)ρ+ 10)

)

(1− ρ)4

+ 2hρ2Φ(ρ, 1, 2h+ 1) + hρ1−2hBρ(2h+ 1,−1) + 2(h− 1)h log(1− ρ)

)]
, (5.2)

22Note that the 1/c correction to 〈φφ〉 is just twice the 1/c correction to 〈φφ〉holo, because the full

propagator gets corrections from both holomorphic and anti-holomorphic gravitons, but no mixed terms,

at this order.
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where Bρ is the incomplete beta function and Φ is the Hurwitz Lurch function. In ap-

pendix A we explicitly perform the bulk loop calculation, and we also show how a part of

this result can be obtained directly from unitarity.

The formula above is complicated, but it simplifies in the short distance limit of σ � 1

with ρ = e−2σ. The most singular terms are

〈φφ〉 ≈ 1

σ

(
3GNR

3
AdS

2σ4
− GNRAdS(10 +m2R2

AdS)

4σ2
+ · · ·

)
. (5.3)

where we have used GN = 3
2c and m2 = 2h(2h − 2), and we have also included factors of

the AdS scale. This result suggests a new length scale

σ∗ ∼ 4

√
GNR3

AdS. (5.4)

Although this follows straightforwardly from perturbative gravitational field theory, the

emergence of this new scale is quite surprising. It is indicative of UV/IR mixing and the

presence of IR divergences in the flat space limit RAdS →∞. We do not expect a result like

equation (5.3) from a well-defined local observable in a local theory. At a computational

level, the scale σ∗ arises from the σ−5 short distance singularity in equation (5.3), which

can itself be traced to the fact that the bulk ‘graviton’ propagator [43] is proportional to
1

(z1−z2)4 and independent of anti-holomorphic coordinate z̄ and the radial direction y. This

AdS3 graviton propagator has been used successfully in other calculations; for example

the results of [37] can be re-interpreted [6] as geodesic Witten diagrams [44] that use this

graviton propagator to compute conformal blocks. But we would expect a quite different

graviton propagator in higher dimensions [45].

Note that the less singular terms in equation (5.3) also display UV/IR mixing. There is

both a semiclassical effect ∼ GNm
2R3

AdS
σ2 and a quantum effect ∼ GNRAdS

σ2 which are enhanced

byRAdS. The former has also been obtained from the monodromy method of section 3. This

suggests that it may be quite non-trivial to define a fully IR safe modification of 〈φφ〉. We

should also emphasize that because equation (5.3) has been obtained directly from unitarity

in appendix A, modifying it may require a different choice for the 〈φOT 〉 correlator, which

itself follows [6] from a simple tree-level calculation. Modifying 〈φOT 〉might also jeopardize

the ability of φ to ‘know its location’ [6] in general semiclassical geometries.

Finally, it is natural to ask whether the one-loop corrected propagator can be used

as an ingredient in a complete and gauge-invariant calculation of a CFT correlator. In

this way one might approach the short-distance behavior of the propagator indirectly. For

example, we could attach 〈φ(X)φ(Y )〉 to a pair of bulk-boundary scalar propagators at

X and another pair at Y , and then integrate over X and Y to obtain a complete Witten

diagram for a CFT 4-pt correlator, though it is not clear exactly what CFT quantity

such a diagram should correspond to when the fully dressed φ propagator is used. When

computing Virasoro conformal blocks using Wilsons lines [37], bulk diagrams like figure 3

were not included. The connection between the recursion relations of section 4 and the

Zamolodchikov relations for conformal blocks might also provide further clues. It would

be interesting to study these issues further.
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5.2 All-orders in 1
c

in the short distance limit

Now let us study 1/c perturbation theory to all orders. We are interested in light fields

with h� c. In fact, the correlator 〈φφ〉 remains very non-trivial even when h→ 0, so for

definiteness and simplicity we will focus23 on this case, which we have found (numerically)

to be representative of the light field regime. Using the recursion relations of section 4, we

find that the holomorphic part Kholo(ρ) = 〈φφ〉holo of the bulk propagator takes the form24

Kholo =
1

1− ρ

(
1 +

∞∑

n=1

ρ3fn(ρ)
(4n− 1)!!

n!

(
12

c(1− ρ)4

)n)
, (5.5)

where fn(ρ) are polynomials of order 4n− 2 in ρ. For definiteness, the first three are

f1(ρ) =
1

6

(
ρ2 − 5ρ+ 10

)
, (5.6)

f2(ρ) =
1

1260

(
13ρ6 − 117ρ5 + 468ρ4 − 1112ρ3 + 1833ρ2 + 195ρ− 20

)
,

f3(ρ) =
1

99786

(
41ρ10 − 533ρ9 + 3198ρ8 − 11718ρ7 + 29226ρ6 − 56454ρ5 + 105078ρ4

+34722ρ3 − 3687ρ2 − 89ρ+ 8
)
,

and we have computed f1(ρ) perturbatively in appendix A. We have chosen the normal-

izations so that fn(ρ → 1) = 1 in order to ensure that the fn become trivial in the

short-distance limit. This means that to leading order in that limit, Kholo takes the very

simple form

Kholo(ρ→ 1) ≈ 1

1− ρ

(
1 +

∞∑

n=1

(4n− 1)!!

n!

(
12

c(1− ρ)4

)n)
. (5.7)

So we see that the quantity c(1−ρ)4 ∝ cσ4 indicative of the new bulk length scale σ∗ ∼ c−1/4

appears in every term.

The series expansion in 1/c has zero radius of convergence because the coefficients

grow factorially. But this series is not very exotic, and in fact it can be obtained from the

1/c expansion of the well-studied quartic integral

Z =
1√
2π

∫ ∞

−∞
dz e

− 1
2
z2+ 12

c(1−ρ)4
z4

. (5.8)

This integral can be re-summed either via a Borel transform or by noting that it obeys

a second order differential equation.25 The correspondence between the quartic integral

23This does not imply that the identity operator/vacuum has a bulk dual, as infinitesimal h differs from

h = 0 identically. Even in the c =∞ limit the propagator is the non-trivial 1
1−ρ as h→ 0.

24These results are really conjectural, as they were discovered by computing the ρ expansion to high

orders using the recursion relations of section 4 and then identifying a pattern in the result.
25If we define x = 72

c(1−ρ)4 then the integral obeys the differential equation

16x2Z′′ + (32x− 6)Z′ + 3Z = 0 (5.9)

which can be solved in terms of incomplete Bessel functions.
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and the combinatorics of the series is easy to explain by considering the computation of

〈φφ〉 in gravitational perturbation theory. The leading terms at short-distances come from

summing all diagrams generated by a bulk cubic coupling of schematic form 1√
c
(∂z̄φ)2hzz

and ignoring graviton self-interactions. We can count the diagrams in this theory by

integrating out the graviton, which leads to a pure quartic interaction for φ and explains

the combinatorics of our result.

One might expect that one could take this leading order diagrammatic argument fur-

ther, working to all orders in the effective action after integrating out the graviton. Since

we are dealing with 〈φφ〉holo, one should include only the holomorphic modes of the gravi-

ton. We can obtain additional evidence that such an effective action for φ is possible by

computing finite-distance corrections to the correlator. More precisely, we look at small

σ corrections to the limit with cσ4 fixed at large c (equivalently, these are 1/c corrections

to the large c, fixed cσ4 limit). In terms of the representation (5.5), these corrections are

the subleading series coefficients in the fn(ρ)s in an expansion around ρ = 1. We find em-

pirically that these subleading terms are correctly reproduced up to the fourth derivative

f
(4)
n (1) by the following integral expression:

(1− ρ)Kholo ∼ e−(σ−σ
2

2
+σ4

12
)

[
−1 +

√
cσ4

π

∫ ∞

−∞
e−cσ

4(z2+a4(σ)z4+a6(σ)z6+a8(σ)z8)dz

]
,

(5.10)

where we have determined the first few an coefficients to be

a4(σ) = −3 + 6σ2 − 151

15
σ4,

a6(σ) = −27σ2 +
617

5
σ4,

a8(σ) = =
3519

10
σ4, (5.11)

up to higher order corrections in σ. What is notable about this expression is that, by fitting

only a few numbers in the an(σ) coefficients, we correctly reproduce the first several terms

in the fn(ρ) expansion around ρ = 1 for all n. It would be very interesting if these an
coefficients could be determined directly by integrating out the graviton modes in AdS3.26

Coming back to the leading order expression (5.7), we can attempt to transform the

asymptotic series into an exact function. Either by solving the differential equation (5.9)

or by Borel resumming, we obtain a one-parameter family of possible results, which are

linear combinations of modified Bessel27 functions,

lim
[
(1− ρ)Kholo(ρ)

]
= e−X

√
2πX

(
(1 + κ) I 1

4
(X)− κI− 1

4
(X)

)
, (5.12)

where X ≡ c(1−ρ)4

384 and the limit is c → ∞ and ρ → 1 with X fixed. One can verify that

this function reproduces equation (5.7) when expanded in large c.

26The effective actions in [46] may be a useful tool for such a derivation.
27They have series expansions Iν(x) =

∑∞
k=0

1
Γ(k+ν+1)k!

(
x
2

)2k+ν
and are real for ν = ± 1

4
and x > 0.
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The parameter κ in equation (5.12) is arbitrary, as Kholo has the correct perturbative

expansion around c = ∞ for any value of this parameter. Thus κ represents a non-

perturbative ambiguity in the definition of the correlator; it arises because there is a branch

cut on the positive real axis in the Borel plane.

If κ is real, then equation (5.12) will be real for positive X, i.e. for positive c and real

ρ. On the other hand, if the correct choice is not κ ∈ R, then Kholo will be complex. If

the propagator has a Kallen-Lehmann representation, then it would seem that its spectral

function must develop an imaginary part in this case. A complex value for a scalar propa-

gator usually signals the presence of an instability where φ quanta decay into other states.

However, it is less clear what the precise interpretation is in our case since our φ is a linear

combination of descendants of the scalar primary O. In CFT2 such operators cannot mix

with the vacuum sector (i.e. with ‘gravitons’), as correlators like 〈φT · · ·T 〉 vanish, and

the only interactions we have included are those of φ with gravity. Thus any Im[κ] 6= 0

suggests a non-perturbative violation of unitarity at short distances.

We cannot determine the value of κ with the methods of this section. However, in

section 6 we will take a numeric approach, and argue that the 〈φφ〉 correlator develops a

singularity and likely an imaginary piece at short distances.

6 Numerics and locality

Arguments based on black hole thermodynamics and the gauge redundancies of general

relativity suggest that local observables do not exist in quantum gravity. However, we

have introduced an exact bulk proto-field operator φ(X) and provided various techniques

for computing its correlation functions. While φ(X) is in some sense a non-local operator,28

one may nevertheless wonder if its correlation functions exhibit pathologies associated with

the failure of bulk locality in quantum gravity.

The propagator depends on the central charge c, on the kinematic configuration, and on

the conformal dimension h of the CFT2 scalar primary O dual to φ. As we have explained

in sections 2.2, the full K depends on two independent kinematic variables, although most

of the non-trivial information in the full K can be obtained from the holomorphic part

Kholo. This part only depends on the variable ρ = e−2σ, where σ(X,Y ) is the geodesic

separation between X and Y in the vacuum. Throughout this section we will mostly focus

on Kholo, as it is easier to obtain high-orders numerical results for this object, though in

figure 7 we provide evidence that our conclusions concerning Kholo should also apply to

the full K.

Recall that in section 3.3 we already observed a sharp conflict between bulk locality

when in the limit of large h. The conflict arose because Kholo developed an imaginary part

at the geodesic separation σ∗ = RAdS log(2 +
√

3) ≈ 1.32RAdS. Of course we would not

28In part φ is non-local simply because it includes gravitational dressing; this is analogous to the way

that the electron operator is non-local because it must be attached to a Wilson line. But we should also

recall the caveat (discussed in section 5) that even in bulk gravitational perturbation theory 〈φφ〉 exhibits a

surprising UV/IR mixing, so perhaps σ∗ can be modified or eliminated by identifying a different observable

with better IR behavior.
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have expected correlators of fields with trans-Planckian masses to be local, so this result

was not too surprising. In this section we mostly focus on light bulk fields, though the

form of the pathologies we uncover will be very similar.

We have studied short-distance locality in three ways. First, in section 5 we discussed

the 1/c expansion of Kholo, and observed that the 1/cn corrections can be determined

exactly in the short distance limit ρ → 1. However, the 1/c expansion was asymptotic (it

has zero radius of convergence), and Borel resumming the series led to a non-perturbative

ambiguity. Generically, this means that 〈φφ〉 develops an instability or unitarity-violating

imaginary piece, though there does exist a reality-preserving resolution of the ambiguity.

Second, in section 3, we developed methods that allow us to compute the semiclassi-

cal part of the correlator numerically and, in some cases, analytically. In particular, we

numerically computed the critical value σc where the semiclassical part develops an imag-

inary piece. At infinite h, where we know the exact (not just semiclassical) correlator, this

critical value for the semiclassical part matches that of the exact result. At smaller h, the

exact correlator could in principle develop additional singularities or imaginary pieces at

even larger values of σ, but it seems very unlikely that quantum effects could cancel the

imaginary part of the semiclassical propagator.29

Third, in the next section, 6.1, we will obtain additional numeric evidence that is

complementary to the first and second methods, by evaluating Kholo to high orders in

the ρ expansion. This numeric high-order behavior provides abundant evidence that the

ρ-series has a finite radius of convergence, breaking down when σ ∝ − log ρ ∝ c−1/4 when

h ∼ O(c0), and at σ ∝ (h/c)1/3 when h/c is fixed but small in the large c limit. Assuming

our numerical extrapolations are correct, this implies that 〈φφ〉 becomes singular at a

finite separation, which is a harbinger of the failure of bulk locality. It may be possible

to analytically continue the propagator to shorter distances, but one would expect it to

develop an imaginary part. In section 6.2 we discuss the interpretation of these results.

6.1 Numerical results for the exact ρ expansion

In this section we will study the AdS3 proto-field propagator numerically to high orders in

the ρ expansion. Since ρ = e−2σ and σ is the geodesic separation between the points, this

is an expansion around the long-distance limit. So on physical grounds, we should expect

the propagator to be well-behaved as ρ→ 0. If bulk locality did not break down, then we

would expect the radius of convergence of the ρ-series to be 1, as is the case for the free

field propagator ρh

1−ρ . Instead we will present evidence that:

• The radius of convergence in ρ is strictly less than 1 at finite c, which means that

Kholo develops a singularity30 at some finite critical distance σ∗(c) > 0.

29We cannot prove this does not happen. However, the semiclassical piece scales differently (O(c) in the

exponent) from the residual piece (O(1)), so a potential cancellation cannot be as simple as the residual

piece contributing an exactly opposite phase.
30Padé approximants to the ρ series expansion display a ‘condensation’ of poles that suggest that at

distances shorter than σc, the correlator will develop a branch cut.
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Figure 4. This figure displays fits to logarithms of ratios of successive coefficients in the ρ expansion

of equation (6.1) up to the 400th order. In all cases we have set h = 0 identically, and the value of

c increases from the top to the bottom of the plot, ranging from 1.5 to 105. Each line corresponds

to one of the points on figure 5, but for legibility we have only included every fifth point.

� �� ��� ���� ��� ���
���

���

���

���

���
���
���

�

σ*

����

log
⇣
2 +

p
3
⌘

�
⇤R
A
d
S ⇡

11
c �
0
.2
7

Figure 5. In this plot we used the fits of figure 4 to extract an approximate asymptotic ratio an+1

an
,

which was then used to identify σ∗, the scale at which bulk locality appears to break down, for

each value of c. For very small values of c we find σ∗ of order the AdS scale, so that at c → 1 we

smoothly match the large h results of section 3.3, as indicated by the red line. At large c we enter

the flat space regime of small σ∗, where we extract the fit σ∗ ∝ c−0.27. Varying the details of the

fitting shifts the exponent, but we consistently find that it lies between 0.25 and 0.28.

• The failure of convergence occurs at a physical separation in AdS3 that scales as

σ∗(c) ∝ c−p at large c. We find 0.25 < p < 0.28, which approximates the expected

p ≈ 1
4 from section 5 but appears slightly larger, as shown in figure 5. This behavior

holds throughout the h� c regime.

• When h ∼ c� 1, convergence fails at a physical separation of order the AdS3 length.

The behavior as h � c connects smoothly with the results of section 3.3, as shown
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Figure 6. This figure displays the scale at which the propagator breaks down as we approach the

semiclassical limit; for each value of c, we’ve taken a range of values for the ratio h
c . The data was

extracted in the same way as in figure 5. We see that at large h we approach the convergence bound

σ∗ = RAdS log(2 +
√

3) from the exact result of section 3.3. We have also shown (blue, dashed) the

result from the numeric semiclassical computation in section 3.4, and find that it agrees with the

radius of convergence analysis for the large c (= 20,000) points shown above.

in figure 6. We also find that for any h, when c ≈ 1 the propagator breaks down at

roughly the same distance scale as in the large h; this is indicated with the red line

in figure 6.

Since these results only follow from a numerical analysis, they are not theorems. Readers

are encouraged to conduct their own investigations with the attached code implementing

the recursion relations of section 4.

The radius of convergence in ρ can be analyzed by studying the growth of the coeffi-

cients an in the expansion

Kholo = ρh
∞∑

n=0

anρ
n, (6.1)

where the an depend implicitly on h and c. If the radius of convergence in ρ is less than 1,

then the an must grow exponentially, which means that as n→∞ we must have an+1

an
→ r

for some r > 1. However, there will likely be a subleading power-law behavior as well, so

that an ≈ nvrn for some v. We display a fit to this behavior for 30 values of c, ranging

from 1.5 to 105 in figure 4.

The convergence radius in ρ and thus the value of r will correspond with a physical

geodesic distance scale in the bulk σ = −RAdS
2 log r. Since r depends implicitly on c, if the

physical separation is proportional to c−1/4, then we should find log[r(c)] ∝ c−1/4 at large

c. We can test this hypothesis by identifying r(c) for a large range of values of c, and then

fitting a line to log[log r(c)] vs log c, as the slope of this line measures the exponent −1
4 .

We have provided such a fit in figure 5. Varying the details of the fit changes the exponent
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Figure 7. This plot shows the same data as figure 5 for the radius of convergence σ∗ as a function of

c, except here we compare the radii of convergence of the holomorphic and the mixed contributions

to the full correlator. Due to numerical limitations we only include the coefficients an and bn up

to n = 300, which means that these data are not as reliable as those of figure 5. Nevertheless, this

plot provides clear evidence that the parametric scaling of σ∗ with c is the same for the full and

holomorphic propagators when we restrict to the z-z̄ plane.

p of c−p, but in all cases we find that p ranges between about 0.25 and 0.28. Thus the

exponent appears systematically slightly larger than would be expected from the analysis

of section 5. This may be due to the fact that for large values of c, we simply do not have

enough coefficients an to get to the asymptotic regime of very large n necessary to correctly

identify the exponent. But this discrepancy may be worthy of further consideration.

We can also study the radius of convergence in the case of general h. At large enough c,

we expect to enter the semiclassical regime where the radius of convergence should depend

only on the ratio h/c, and indeed this is what we see in figure 6. In fact, we find the radius

of convergence in this limit exactly matches the results of section 3.3, for the critical value

for σ where an imaginary piece develops. One might have expected a distinctive feature

at the BTZ black hole threshold, h = c
24 , i.e. the value where the corresponding primary

state develops a horizon in AdS, but we do not see any such feature, and it is not until

h/c ∼ 1 that the curve starts to flatten out towards its asymptotic large h value.

Interestingly, at small c, regardless of h/c, the radius of convergence also approaches

the large h value RAdS log(2 +
√

3). So it appears that this is a fairly generic “strong

coupling” result, valid either at small c or at large h/c. It would be very interesting to

understand a more physical origin of this scale.

Finally, in figure 7 we compare the radius of convergence of the holomorphic propagator

to that of the mixed terms (recall that the full propagator K = 2Kholo +Kmixed −Kglobal)

in the z-z̄ plane, following up on the preliminary analysis in section 4.2. We only used

the coefficients an and bn up to n = 300, and so the precise σ∗(c) from this plot is not as

reliable as that of figure 5. However, we can see from the scaling of σ∗ with c at large c

that the radius of convergence of the full correlator seems to scale in the same way as that

– 31 –



J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

of Kholo. At small c the behavior also appears similar insofar as both correlators break

down at the AdS scale, though the precise radius of convergence differs by an order one

factor. This result largely justifies our focus in this paper on the simpler Kholo, but it

would still be interesting to study the full propagator in more detail in future work. We

have not studied the full propagator away from the z-z̄ plane in detail, so it would be very

interesting to explore that regime.

6.2 Interpreting the c−1/4 length scale

In the previous section, we found evidence that the 〈φφ〉 correlator develops a singularity

or branch cut at a scale ∼ O(c−1/4) when h is fixed as we take the large c limit.31 This

scale is truly quantum, invisible in the semiclassical limit, and in some sense represents an

irreducible distance below which locality breaks down. It is natural to ask if this length

appears as a fundamental scale in the AdS3 gravity theory itself, and not just in the

〈φφ〉 correlator.

From an effective theory viewpoint, such a fundamental scale would be extremely sur-

prising,32 since it involves both the Planck length `pl and the AdS radius RAdS. Restoring

dimensionful quantities,

σ∗ ∼ c−1/4 ∼ R3/4
AdS`

1/4
pl . (6.2)

One possibility is certainly that this length scale is not fundamental, but rather is an

artifact of our definition of the proto-field φ. As we have mentioned, perhaps the correct

lesson is that one should attempt to define an improved bulk field that has a good flat

space limit.

However, it may be that this scale is truly indicative of the underlying physics of

quantum gravity in AdS3. From this point of view, it is interesting to note that the

scale c−1/4 also arises as the smallest string length `s in known stable, controlled string

compactifications in perturbative string theory. The basic reason that c−1/4 appears in this

context is straightforward to understand. In compactifications of the form AdS3×S3×M4

where M4 is a 4d compact manifold, the radius of the S3 is the same as the AdS3 length

scale RAdS, and the size of the M4 cannot be taken smaller than `s. So, the 3d Planck

length `pl is related to the 10d Planck length `10 by

`plR
3
AdS`

4
s . `810 . `8s, (6.3)

where we have used the fact that the M4 volume is greater than `4s, and the 10d Planck

scale must be smaller than the string scale. Therefore,

`s & R
3/4
AdS`

1/4
pl ∼ σ∗. (6.4)

31We showed results for vanishing h, but have found the same behavior for fixed small h.
32For instance, an analogous result in de Sitter in d = 4 would imply that quantum gravity effects become

relevant at some geometric average length scale between the Planck length and the Hubble radius, long

before they would be expected to be important. However, we do not expect UV/IR mixing in higher

dimensional theories, so we do not believe this phenomenon can occur.
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As far as we know, no stable AdS3 string compactifications violate this inequality. This

may just be a “lamp-post” effect, i.e. stable string compactifications with smaller compact

dimensions may exist but simply be much more difficult to find. And the inequality relating

`s and σ∗ may be coincidental. On the other hand, a tantalizing explanation is that

spacetime itself breaks down at the scale σ∗, creating an obstacle to the existence of weakly

coupled strings with a smaller string length.33

7 Discussion

If a theory’s dynamics are fully non-local, then the underlying spacetime picture loses its

meaning, becoming a mere book-keeping device — and the values of fields at different

spacetime points become arbitrary independent variables. What makes spacetime more

than just a label is some notion of locality, which can be diagnosed using correlations. In a

physical spacetime, nearby observables should be highly correlated, whereas correlators of

distant fields should be small. In a theory of quantum gravity, however, spacetime may play

a role intermediate between these two extremes, with observables becoming more highly

correlated as they approach each other, up to a point, beyond which local spacetime is

revealed as a mere approximation.

While the two-point function of fields in a complete theory of quantum gravity is be-

yond the scope of presently available techniques, in this paper we have settled for something

simpler that contains much of the same physics. We have computed the two-point function

〈φ(X1)φ(X2)〉 of an exact ‘proto-field’ φ that is reconstructed in the bulk of AdS3 in terms

of a boundary primary operator O and all of its Virasoro descendants. Equivalently, in

perturbation theory φ correlators are fully dressed by all graviton loops, but without any

quantum corrections from matter fields. The proto-field is a quantity defined in the spirit of

the conformal bootstrap, in that it leverages the non-perturbative power of the conformal

symmetry in the CFT2 by resumming all contributions in an irreducible representation of

the Virasoro algebra.

In this paper we have developed techniques to compute the correlator 〈φ(X1)φ(X2)〉
and characterized some of its most striking features. We have analyzed the distance

scale where it develops singularities and imaginary pieces, and we have interpreted these

phenomena as an indication of the breakdown of bulk locality, as summarized in sec-

tion 1.3. For light bulk fields at large c, quantum effects produce the most imporant

non-perturbative pathologies. But in the semiclassical limit of fixed h/c (or GNmφ) and

large central charge, branch cuts and imaginary pieces were already visible. We have found

that these semiclassical pathologies are not misleading, as they appear to persist in the

exact quantum propagator.

It should be possible to derive our semiclassical results, including the imaginary parts,

from a bulk gravity calculation. Such a derivation may shed light on the nature of any

physical instabilities associated with these imaginary pieces. Moreover, while the full gen-

33It would be interesting to study the interplay in compactified theories between the AdS3 gravitational

contributions we have included and the contributions from Kaluza Klein modes of the large compact direc-

tions. Since the KK modes encode the fact that the theory really involves higher-dimensional gravity, they

may soften or remove the UV/IR mixing, similarly to what occurs in computations of the free energy [47].
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eralization of our approach to higher dimensions is probably impossible (since in higher

dimensions graviton interactions are not fixed by symmetry), semiclassical gravity compu-

tations are likely to be tractable. It would also be interesting to connect our results with

other work [48–51] on the breakdown of locality in quantum gravity.

Our results tentatively suggest a more general lesson — when we attempt to define

an exact bulk observable, we may induce small violations of unitarity, even if the under-

lying CFT is healthy. To test this idea we will need to better understand more general

bulk correlators, their dependence on CFT data, and their implications for physical bulk

measurements.

We have studied the φ propagator at spacelike separations, as is most natural when we

take a Euclidean CFT2 as our starting point. The Lorentzian correlators of any number of

local CFT operators can be precisely determined via the analytic continuation of Euclidean

correlators [52, 53]. It is much less clear whether Lorentzian φ correlators can be determined

in the same way, because φ arises from an infinite sum of local operators in the CFT and

carries an emergent bulk coordinate label. This question may be connected with the gauge-

dependence of φ, since any analytic continuation in a bulk coordinate will clearly depend

on our choice of the coordinate system! At a pragmatic level, the most obvious next step

would be to analytically continue (z, z̄) to Lorentzian signature, as these coordinates have

a natural correspondence with the locations of operators in the boundary CFT2. This

simply leads to the continuation from σ > 0 to σ < 0. There are several formulas that

hint at a simple analytic relation between the correlator at σ and −σ. For example, the

semiclassical potential T (3.10) is g′(σ) times an anti-symmetric function of σ.34 In any

case, it will be very interesting to understand how the non-perturbative non-localities that

we have discovered manifest in Lorentzian signature.

We have focused on the propagator of φ because it is the most tractable non-trivial

φ correlator. But another quantity that would be extremely interesting to compute is the

heavy-light correlator

〈OHOHφLOL〉, (7.1)

where OH is a heavy operator and φL is the bulk proto-field made from OL. This correlator

computes the bulk-to-boundary propagator for φL in the background of a heavy state

such as a BTZ black hole, and therefore could be used to probe what happens when

φL approaches a black hole horizon. Many of the methods used in this paper to study

〈φφ〉 should be applicable to this heavy-light correlator as well, though the calculations

will be more complicated because of the extra operator insertions. Roughly speaking, each

invariant contribution to the heavy-light bulk-boundary correlator will have the complexity

of a 5-pt conformal block, since φ involves a sum over an infinite set of Virasoro descendants.

By computing equation (7.1), we may begin to study the properties of black hole

microstates without relying on bulk perturbation theory. Major technical and conceptual

challenges remain, but it appears that a direct investigation of the horizon may be possible.

34Interestingly, the infinite h result for 〈φφ〉 is formally invariant under σ → −σ, though the path from

positive to negative σ passes around a branch cut that can break the symmetry and introduce dependence

on the operator ordering.
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As a first step, it will be interesting to explore features that emerge at the Euclidean horizon

(the tip of the ‘cigar’) as a consequence of the failure of the KMS condition [41, 54–57] in

black hole microstate backgrounds.

A distinct line of inquiry will be to search for an improved observable that is free of

the UV/IR mixing we observe in 〈φφ〉. Along these lines, it would be rewarding to obtain a

definition of bulk fields in other gauges. Another possibility is that rather than evaluating

the propagator in the vacuum, one ought to introduce a sum over boundary graviton

configurations, along the lines of the way soft photons resolve IR divergences in 4d QED.

That is, it may be that the non-IR-safety of φ is similar to the physics of Sudakov factors,

and when one attempts to produce and detect φ particles, one unavoidably produces some

gravitons in the process. It would be interesting to try to construct an IR-safe observable,

directly related to local measurements in the bulk, and to see to what extent the behavior

of 〈φφ〉 is modified.

The UV/IR mixing behavior of the propagator might have a gauge invariant footprint

in CFT observables. For example, at the level of diagrammatics one would expect 〈φφ〉
to contribute as an intermediate propagator in CFT correlators computed using Witten

diagrams. Thus it would be interesting to examine the one-loop gravitational correc-

tions [58, 59] to a 4-pt CFT2 correlator including a scalar exchange. At a deeper level,

there is a simple relationship between the Zamolodchikov recursion relations that compute

the exact bulk propagator and the relations that compute Virasoro blocks for 4-pt correla-

tors. Along with the idea of geodesic Witten diagrams [44] for conformal blocks, this may

provide a direct avenue for further exploration.
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A Perturbative computations of the propagator

In this section we will show that our first order result for the full propagator

〈φφ〉 =
ρh

1−ρ

(
1+

12

c

(
ρ
(
2h2(ρ−1)2 + h(ρ(3ρ−11)+2)(ρ−1) + ρ2((ρ−5)ρ+10)

)

(ρ− 1)4
(A.1)

+2hρ2Φ(ρ, 1, 2h+1)+hρ1−2hBρ(2h+1,−1)+2(h−1)h log(1−ρ)

)
+O

(
1

c2

))
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follows directly from perturbation theory. Note that this is the full propagator, which

receives equal contributions from T and T̄ , and so its 1/c correction is enhanced by a factor

of 2 compared to the purely holomorphic propagator. Primarily, we will be showing how

this result matches an AdS3 gravitational loop calculation (similar calculations in higher

dimensions were recently studied in [60], but as far as we know this calculation has not been

carried out previously in AdS3). However, we will also demonstrate how the important h-

independent 1
c terms arise directly from our definition of φ using a unitarity-based argument

(an explicit sum over intermediate states). We also provide a comparison with U(1) Chern-

Simons theory at short-distances, which does not display power-law UV/IR mixing.

A.1 AdS3 gravity at one-loop

The only non-vanishing contribution to 〈φ(X1)φ(X2)〉 from bulk perturbation theory at

order 1/c comes from the diagram of figure 3, as our regulator sets contact diagrams to

zero. In position space in AdS3, this contributes

〈φ(X1)φ(X2)〉 =

∫
d3Xd3Y G(X1, Y1)G(Y1, Y2)H(Y1, Y2)G(Y2, X2)V1V2 (A.2)

where G is a scalar propagator, H is a graviton propagator, and V1 and V2 are vertex

factors associated with vertices and index contractions at Y1 and Y2, which we will specify

below.

We can greatly simplify the computation by acting on the correlator with (∇2 +m2),

the Klein-Gordon operator associated with both X1 and X2 [61]. This collapses both of

the external propagators to delta functions, giving
(
∇2

1 +m2
) (
∇2

2 +m2
)
〈φ(X1)φ(X2)〉 = V1H(X1, X2)G(X1, X2)V2 (A.3)

so now there are no integrals to do. The tree-level scalar propagator is simply

G(X1, X2) =
ρh

1− ρ (A.4)

as usual. The graviton propagator in our gauge is identical to the stress tensor correlator

〈T (z1)T (z2)〉, so it is simply

H(X1, X2) =
1

2c(z1 − z2)4
→ 1

2c

ρ2

(√
ρ− 1

)8 (A.5)

where we have re-written z12 in terms of ρ = e−2σ(X1,X2) by fixing all of the parameters

other than z12. Here we are only computing the holomorphic part, but of course the anti-

holomorphic part makes an equal anti-holomorphic contribution. The vertex factors arise

entirely from differentiating G(X1, X2) by ∂2
z̄1 and ∂2

z̄2 , and this leads to

V1G(X1, X2)V2 = −16h4
(√
ρ− 1

)3
ρh

(√
ρ+ 1

)5 +
16h3

(√
ρ− 1

)2
(7ρ+ 3)ρh

(√
ρ+ 1

)6

−4h2
(√
ρ− 1

)
(ρ(71ρ+ 98) + 11)ρh
(√
ρ+ 1

)7 − 120(ρ+ 1)(ρ(ρ+ 5) + 1)ρh+1

(√
ρ− 1

) (√
ρ+ 1

)9

+
4h(ρ(ρ(77ρ+ 239) + 101) + 3)ρh

(√
ρ+ 1

)8 (A.6)
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when written in terms of ρ. Altogether, this means that we should expect

V1H12G12V2 = −16h4ρh+2

(ρ− 1)5
+

16h3(7ρ+ 3)ρh+2

(ρ− 1)6
− 4h2

(
71ρ2 + 98ρ+ 11

)
ρh+2

(ρ− 1)7
(A.7)

+
4h
(
77ρ3 + 239ρ2 + 101ρ+ 3

)
ρh+2

(ρ− 1)8
− 120

(
ρ3 + 6ρ2 + 6ρ+ 1

)
ρh+3

(ρ− 1)9

This should be equal to
(
∇2

1 +m2
) (
∇2

2 +m2
)
〈φφ〉. This quantity can also be re-written

in terms of ρ; writing K(ρ) for the propagator, we find

(
∇2

1 +m2
) (
∇2

2 +m2
)
〈φφ〉 = 16(h− 1)2h2K(ρ) +

64
(
−h2 + h+ 1

)
ρ2K ′(ρ)

ρ− 1

−32ρ2((h− 1)h(ρ− 1)− 7ρ+ 1)K ′′(ρ)

ρ− 1

+
64ρ3(2ρ− 1)K(3)(ρ)

ρ− 1
+ 16ρ4K(4)(ρ) (A.8)

Apparently we are faced with the daunting task of solving a 4th order ODE with a com-

plicated source. Fortunately, we already know part of the answer from semiclassical cal-

culations (keeping the h2/c terms) and also from computations as h→ 0 in appendix A.2.

After inputing these terms and then leaving the remaining terms in K(ρ) as an unknown

function, we were able to solve. And given a proposed K(ρ), it is very easy to verify that

it is in fact valid by inputting it into the differential equation.

Using this method, we find that the full 1/c correction due to the holomorphic gravi-

tons is

6ρh

1− ρ

(
ρ
(
2h2(ρ− 1)2 + h(ρ(3ρ− 11) + 2)(ρ− 1) + ρ2((ρ− 5)ρ+ 10)

)

(ρ− 1)4
(A.9)

+2hρ2Φ(ρ, 1, 2h+ 1) + hρ1−2hBρ(2h+ 1,−1) + 2(h− 1)h log(1− ρ)

)

where Φ is a Lurch and B is the Beta function. The anti-holomorphic gravitons make an

equal contribution at order 1/c, so we simply need to double this result. Intriguingly, if we

expand as ρ = e−2σ then the singular terms are

9

8cσ5
− 3(5 + 2(−1 + h)h)

8cσ3
+

12(−1 + h)h log(σ)

cσ
(A.10)

So we see that the AdS mass 2h(2h−2) appears prominently, and we only have odd powers

of 1/σ appearing (we have dropped some terms that are simply 1/σ, as these are no more

singular than the free field theory result). Restoring the AdS scale, we have

〈φφ〉 ≈ 1

σ

(
3GNR

3

4σ4
− GNR(10 +m2R2)

8σ2
+ 2GNm

2R log
( σ
R

))
(A.11)

to leading order at short distances. This makes it clear that the scale σ ∼ 4
√
GNR3 has

made an explicit appearance.
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Comparison with U(1) Chern-Simons. The one-loop AdS3 gravity result displays a

surprising UV/IR mixing. To better understand this result, we will briefly compare it with

a U(1) Chern-Simons theory.

The double application of the Klein-Gordon equation in (A.8) applies to loop compu-

tations of the AdS3 propagator in other theories. If we re-write this equation in terms of

σ, and only keep the terms that dominate at short distances, we find

(
∇2

1 +m2
) (
∇2

2 +m2
)
f(σ) ≈ f (4)(σ) +

4f (3)(σ)

σ
(A.12)

where f(σ) is the propagator at short distances. In a U(1) Chern-Simons theory, the

propagator and vertices will be closely related to those that we found for gravity. We

expect 〈Az(X1)Az(X2)〉 ∝ 1
z2
12

and the vertices can be obtained from ∂z̄1∂z̄2 applied to the

scalar field propagator. In the short-distance limit, this leads to the differential equation

F
(4)
CS(σ) +

4F
(3)
CS(σ)

σ
∝ 1

σ5
+ · · · (A.13)

with the solution

〈φφ〉CS ∝ −
log(σ)

6σ
+
κ

σ
+ · · · (A.14)

to leading order at short distances, where κ is a free parameter (which would be fixed in the

full solution by boundary conditions) and the ellipsis denotes less singular terms. Thus we

see that unlike AdS3 gravity, in perturbation theory the bulk U(1) Chern-Simons theory

does not exhibit power-law UV/IR mixing at short-distances.

A.2 Unitarity-based calculation from the definition of φ

In this section we will use the large c expansion of the L−N that define the level N con-

tribution to φ in order to directly compute the 1/c correction to the propagator as h→ 0.

One can interpret this as a unitarity-based version of the calculation of the previous sec-

tion, as we are decomposing each φ in 〈φφ〉 into a sum over the ‘double-trace’ states in the

T (z)O(0) OPE. We previously computed [6] the first 1/c corrections to L−N , which are

the coefficients ηN,k of

L−N = LN−1 +
1

c

N∑

k=2

ηN,kL−kL
N−k
−1 + · · · (A.15)

and found that (see appendix D.5.3 of [6])

ηN,k = −12(h(k + 1) +N − k)

k(k2 − 1)

N !

(N − k)!
(A.16)

We can use this result to directly compute the 1/c terms in 〈φφ〉. In the rest of this section,

we will only keep the effects that survive in the limit h→ 0, which means that we can drop

the term above proportional to h.
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We will also need the matrix element

MN,M
k,p = 〈L−kLN−k−1 O(z)L−pL

M−p
−1 O(w)〉

≈ hc

6

(−1)M+N (k + p− 1)!(M +N − k − p− 1)!

(k − 2)!(p− 2)!(z − w)2h+N+M
(A.17)

where we have only kept the leading term at small h. We need to multiply by ηN,k factors

and sum over k and p, giving (setting w = 0)

M,N∑

p,k=2

ηN,kηM,pMN,M
k,p =

6h(N − 2)(N − 1)(M − 2)(M − 1)(M +N − 3)!

czN+M
(A.18)

To see how to use this result, let us recall the computation to leading order and compare

it to the 1/c correction we wish to calculate. The global correlator can be computed from

the sums

〈φφ〉global =
∑

N,M

(−1)N+My2M
1 y2N

2

N !M !(2h)N (2h)M
〈LM−1L̄

M
−1OLN−1L̄

N
−1O〉 (A.19)

where we have

〈LM−1L̄
M
−1OLN−1L̄

N
−1O〉 =

(2h)M+N (2h)M+N

(zz̄)M+N

≈ 4h2[(M +N − 1)!]2

(zz̄)M+N
(A.20)

One can easily verify directly that these formula agree with 〈φφ〉global = ρh

1−ρ when h→ 0.

To obtain the 1/c correction, we must make the replacement

〈LM−1L̄
M
−1OLN−1L̄

N
−1O〉 → 〈L̄M−1OL̄N−1O〉

M,N∑

p,k=2

ηN,kηM,pMN,M
k,p (A.21)

Similarly, we find exact agreement between

〈φφ〉 1
c

=
∑

N,M

(−1)N+My2M
1 y2N

2

N !M !(2h)N (2h)M

12h2(N − 2)2(M − 2)2(M +N − 3)!(M +N − 1)!

c(zz̄)M+N

in the limit h→ 0 and our result

6ρ3 (ρ2 − 5ρ+ 10)

c(1− ρ)5
(A.22)

for the holomorphic part of the correction to 〈φφ〉.
To perform the relevant sums, it is useful to write s = M + N and first sum over M

with fixed s. Setting yi = 1 WLOG and working with the variable zz̄, this leads to

〈φφ〉 1
c

=
∞∑

s=4

3(−1)s4s−3(s− 5)(s− 4)(s− 3)(s− 2)(s− 1)Γ
(
s− 5

2

)
√
πcΓ(s+ 1)(zz̄)s

(A.23)
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The sum over s can now be performed exactly, and in the small zz̄ limit it gives

〈φφ〉 1
c
≈ 9

8c(zz̄)
5
2

+ · · · (A.24)

as expected. However, note that the sums defining 〈φφ〉 provide a long-distance (or near-

boundary) expansion, whereas the interesting physics occurs at short distances in the bulk.

Thus connecting the two regimes requires an analytic continuation, meaning that we need

to perform the full sum to observe the short-distance singularity. Each term in the sums

over M,N is more singular than the total.

B Details of the computation of Fn,n̄

In this section, we provide the details for computing
〈
φn,ni,j φ

n,n
i,j

〉
. In section 2.2, we defined

φn,ni,j to be (WLOG, assuming n ≥ n̄)

φn,ni,j (y, z, z) ≡ y2h+2n
∞∑

m=0

(−1)n+m y2m
∣∣Ln+m
−1 O

∣∣2

× Lm−1Lquasi,i
−n∣∣∣Lm−1Lquasi,i
−n O

∣∣∣
2

L
m+n−n
−1 Lquasi,j

−n∣∣∣Lm+n−n
−1 Lquasi,j

−n O
∣∣∣
2O (z, z) , (B.1)

and Fn,n (h) to be

Fn,n (h) ≡
〈
φn,ni,j (y1, z1, z1)φn,ni,j (y2, z2, z2)

〉 ∣∣∣Lquasi,i
−n Lquasi,j

−n O
∣∣∣
2

(B.2)

Since eventually we’ll show that Fn,n (h) only depends on the level of the quasi-primary

(n, n), we’ll suppress the indexes (i, j). Defining

On,n = Lquasi
−n L

quasi
−n O (B.3)

and using the following identities,

∣∣On,n
∣∣2 =

∣∣∣Lquasi
−n O

∣∣∣
2 ∣∣∣Lquasi

−n O
∣∣∣
2

∣∣Ln+m
−1 O

∣∣2 = (2h)n+m (n+m)! (B.4)
∣∣∣Lm−1Lquasi

−n O
∣∣∣
2

= (2h+ 2n)mm!
∣∣∣Lquasi
−n O

∣∣∣
2

we find

φn,n (y, z, z) =
(−1)n y2h+2n

|On,n|2
∞∑

m=0

(−1)m y2m (2h)n+m (n+m)!

(2h+ 2n)mm! (2h+ 2n)n−n+m (n− n+m)!
.

× Lm−1L
m
−1

(
L
n−n
−1 On,n (z, z)

)
(B.5)

For simplicity, we’ll define

hn ≡ h+ n,

hn ≡ h+ n, (B.6)

l ≡ n− n.
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Then
〈
φn,n(y1, z1, z̄1)φn,n(y2, z2, z̄2

〉
is given by

〈
φn,nφn,n

〉
=

(y1y2)2hn

|On,n|4
∞∑

m,m′=0

(−1)m+m′ y2m
1 y2m′

2 (2h)n+m (n+m)!

(2hn)m (2hn)l+mm! (l +m)!

× (2h)n+m′ (n+m′)!

(2hn)m′ (2hn)l+m′m
′! (l +m′)!

×
〈
Lm−1L

m
−1

[
L
l
−1On,n

]
Lm

′
−1L

m′

−1

[
L
l
−1On,n

]〉
. (B.7)

The last line of above equation is given by

〈
Lm−1L

m
−1

[
L
l
−1On,n

]
Lm

′
−1L

m′

−1

[
L
l
−1On,n

]〉
= ∂mz1∂

m+l
z1

∂m
′

z2 ∂
m′+l
z2

(−1)n+n
∣∣On,n

∣∣2

(z1 − z2)2hn (z1 − z2)2hn

=
∣∣On,n

∣∣2 (2hn)m+m′ (2hn)2l+m+m′

z2hn+m+m′
12 z2hn+2l+m+m′

12

, (B.8)

where in the second line, we’ve used the fact that the two-point function of the quasi-

primaries is given by

〈
On,n (z1, z1)On,n (z2, z2)

〉
=

(−1)n+n
∣∣On,n

∣∣2

(z1 − z2)2hn (z1 − z2)2hn
. (B.9)

and the (−1)n+n is canceled by the derivatives acting on z1 and z1 in the third line of equa-

tion (B.8). For later convenience, the factor (2hn)m+m′+2l in the last line of equation (B.8)

can be written as

(2hn)2l+m+m′ = (2hn)2l (2hn)m+m′ . (B.10)

Now let’s simplify the first line of equation (B.7):

(2h)n+m (n+m)!

(2hn)m (2hn)l+mm! (l +m)!

(2h)n+m′ (n+m′)!

(2hn)m′ (2hn)l+m′m
′! (l +m′)!

(B.11)

=

[
n! (2h)n
l! (2hn)l

]2 (2h+ n)m (2h+ n)m′ (n+ 1)m (n+ 1)m′

(2hn)m (2hn + l)m (2hn)m′ (2hn + l)m′ (l + 1)m (l + 1)m′

1

m!m′!
.

Putting everything together, we have

Fn,n (h) ≡
〈
φn,nφn,n

〉 ∣∣On,n
∣∣2 (B.12)

=

(
y1y2

z12z12

)2hn

(2hn)2l

[
n! (2h)n
l! (2hn)l

]2 ∞∑

m,m′=0

(
− y2

1
z12z12

)m (
− y2

2
z12z12

)m′

m′!m!

× (2hn)m+m′ (2hn)m+m′ (2h+ n)m (2h+ n)m′ (n+ 1)m′ (n+ 1)m
(2hn)m (2hn)m′ (2hn + l)m (2hn + l)m′ (l + 1)m (l + 1)m′

= (Y1Y2)hn (2hn)2l

[
n! (2h)n
l! (2hn)l

]2

× F 2,2
0,3

(
2hn, 2hn : 2h+ n, 2h+ n;n+ 1, n+ 1;

− : 2hn, 2hn; 2hn − l, 2hn − l; l + 1, l + 1;
,−Y1,−Y2

)
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where F 2,2
0,3 is a Kampe de Feriet series and we’ve defined

Y1 ≡
y2

1

z12z12
, Y2 ≡

y2
2

z12z12
. (B.13)

Now we will discuss several properties of the function Fn,n. First, it is not just a

function of the geodesic separation between the two points. In addition, it depends on

a parameter encoding the angle between the two points and the z-z̄ plane. Most of the

results presented in section 4.2 are computed when the two points lie on the same constant

y-plane. We note that if we take the other limit, where the separation is purely in the y

direction, the small
−y2

i
z12z̄12

expansion presented above is not useful. To explore the behavior

of Fn,n in this configuration, we need to re-sum the series. We are not aware of existing

results that fully solve this problem. However, we can partially re-sum the series using a

Borel style procedure, yielding the following integral representation:

Fn,n = 2Rh,n,n̄η
h+n

∫ ∞

0
daK0

(
2

√
a

Y1

)
a2(h+n)−1W (h, n, n̄; a)W (h, n, n̄; ηa) (B.14)

where K0 is the modified Bessel function and we’ve defined η = Y2
Y1

,

W (h, n, n̄; a) = 2F3 (n+ 1, 2h+ n; 2h+ 2n, n− n̄+ 1, 2h+ n+ n̄;−a) , (B.15)

and

Rh,n,n̄ = (2hn̄)2(n−n̄)

(
n!(2h)n

Γ (2hn) (n− n̄)!(2hn̄)n−n̄

)2

. (B.16)

This integral is typically convergent at large values of Y1, making it useful for computing

Fn,n when the two points are only separated on the y-direction.

In the case the n = 0 (or n = 0) we have l = n, and the expression for Fn,0 is simplified

to be

Fn,0 (h) = (2h)2n (Y1Y2)2hn
∞∑

m,m′=0

(2hn)m+m′ (2hn)m+m′

(2hn)m (2hn)m′

(−1)m+m′

m!m′!
Y m

1 Y m′
2

= (2h)2n (Y1Y2)2hn F4 (2hn, 2hn, 2hn, 2hn,−Y1,−Y2) (B.17)

= (2h)2n

ρh+n

1− ρ

with ρ = ξ2(
1+
√

1−ξ2
)2 , ξ = 2

√
Y1Y2

1+Y1+Y2
and F4 is the Appell hypergeometric function.

C Correlators of stress tensors with φφ

In [6], we used the OPE blocks of φO to compute correlation functions of the form〈
φOT · · ·TT · · ·T

〉
. Similarly, we can derive the OPE block for two bulk operators φφ,

and use it to compute the correlation functions of the form
〈
φφT · · ·TT · · ·T

〉
with the

regulator proposed in appendix B of [6]. Notice that this method will only give the first
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several terms of the large c limit of
〈
φφT · · ·TT · · ·T

〉
, up to order O(c0), in contrast to the

cases in [6], where the correlation functions
〈
φOT · · ·TT · · ·T

〉
computed in that paper are

exact. This is because this bulk-bulk OPE block does include the gravitational dressing of

the φ operators.

In the vacuum AdS3 metric

ds2 =
du2 + dwdw

u2
, (C.1)

the bulk-bulk propagator is given by

〈φ (u0, w0, w0)φ (u1, w1, w1)〉 =
e−2hΣ

1− e−2Σ
(C.2)

where the geodesic length Σ between the two bulk operators is given by

Σ = log
1 +
√

1− Ξ2

Ξ
, Ξ =

2u0u1

u2
0 + u2

1 + (w0 − w1) (w0 − w1)
(C.3)

Now, we can view the coordinates (u,w,w) as the result of an operator valued diffeomor-

phism from a general vacuum metric of the form

ds2 =
dy2 + dzdz

y2
− 6T (z)

c
dz2 − 6T (z)

c
dz2 + y2 36T (z)T (z)

c2
dzdz. (C.4)

The diffeomorphism [36] is given by

w → f (z)− 2y2 (f ′ (z))2 f
′′

(z)

4f ′ (z) f
′
(z) + y2f ′′ (z) f

′′
(z)

,

w → f (z)−
2y2

(
f
′
(z)
)2
f ′′ (z)

4f ′ (z) f
′
(z) + y2f ′′ (z) f

′′
(z)

, (C.5)

u→ y
4
(
f ′ (z) f

′
(z)
) 3

2

4f ′ (z) f
′
(z) + y2f ′′ (z) f

′′
(z)

.

And T (z) (and similary for T (z)) satisfies

12T (z)

c
=
f ′′′ (z) f ′ (z)− 3

2 (f ′′ (z))2

(f ′ (z))2 , (C.6)

which can be solve order by order in 1
c and the first two terms are

f (z) = z +
f1 (z)

c
+O

(
1

c2

)
(C.7)

with

f1 (z) = −6

∫ z

0
dz′
(
z − z′

)2
T
(
z′
)
. (C.8)
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Suppose that the positions of the two operators in the general vacuum background

are at (y, 0, 0) and (y, z, z),35 that is, u0 = u (y, 0, 0) and u1 = u (y, z, z), and similarly

for w0, w0, w1 and w1, then as in the bulk-boundary case, we can expand the geodesic

separation in terms of large c as follows

log
Ξ

1 +
√

1− Ξ2
= log

ξ

1 +
√

1− ξ2
+Kb

T +Kb
T

+O
(

1

c2

)
(C.9)

where ξ = 2y2

2y2+zz
and

Kb
T =

zz̄f ′1(z)− 2z̄f1(z) + y2zf ′′1 (z)

2c
√
zz (zz̄ + 4y2)

. (C.10)

Here, we use superscribe b in Kb to denote that these are the OPE blocks for two bulk

operators, in contract to the case in [6], where one of the operators is on the boundary. So

plugging in the expression of f1, we get

Kb
T =

1

c

∫ z

0
dz′

6
(
z̄ (z − z′) z′ + y2z

)
√
zz (zz̄ + 4y2)

T
(
z′
)

(C.11)

When sending y to 0, Kb
T reduces to the OPE block of the two operators on the boundary [6].

Now, expanding the r.h.s. of equation (C.2) in terms of large c using equation (C.9),

we get the OPE block of two bulk operators

φ (y, 0, 0)φ (y, z, z) ∼ ρh

1− ρ

[
1 + 2

(
h+

ρ

1− ρ

)(
Kb
T +Kb

T

)
+O

(
1

c2

)]

with ρ = ξ2

(1+
√

1−ξ2)2
. So using 〈φ (y, 0, 0)φ (y, z, z)〉global = ρh

1−ρ , we find

〈φ (y, 0, 0)φ (y, z, z)T (z1)〉
〈φ (y, 0, 0)φ (y, z, z)〉global

=2

(
h+

ρ

1− ρ

)〈
Kb
TT (z1)

〉
(C.12)

= 2

(
h+

ρ

1− ρ

)
12

∫ z

0
dz′

z̄ (z − z′) z′ + zy2

2c
√
zz̄
√
zz̄ + 4y2

〈
T
(
z′
)
T (z1)

〉

= 2

(
h+

ρ

1− ρ

)
z2
[(

6y2 + zz̄
)
z1 (z1 − z) + 2y2z2

]

2z3
1 (z1 − z)3

√
zz (zz̄ + 4y2)

In section 3.1, we shown that (equation (3.9))

〈φ (1, 0, 0)φ (1, 1, 1)T (z1)〉
〈φ (1, 0, 0)φ (1, 1, 1)〉 =

ξ (ξ + (2ξ + 1) (z1 − 1) z1) g′ (ξ)

2 (z1 − 1)3 z3
1

. (C.13)

This is actually equivalent to equation (C.12) if we replace g(ξ) with its leading large c

limit, that is

lim
c→∞

g (ξ) = log 〈φφ〉global = log

(
ρh

1− ρ

)
. (C.14)

35Here, we consider the case that the two bulk operators are at the same bulk depth y for simplicity.
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To see this, notice that d
dξ log

(
ρh

1−ρ

)
= 2

(
h+ ρ

1−ρ

)
1

ξ
√

1−ξ , so that equation (C.12) can be

writen as

〈φ (y, 0, 0)φ (y, z, z)T (z1)〉
〈φ (y, 0, 0)φ (y, z, z)〉global

=

[
d

dξ
log

(
ρh

1− ρ

)]
ξ
√

1− ξ2
z2
((

6y2 + zz̄
)
z1 (z1 − z) + 2y2z2

)

2z3
1 (z1 − z)3

√
zz (zz̄ + 4y2)

= ξ

[
d

dξ
log

(
ρh

1− ρ

)]
z2
(
ξz2 + (2ξ + 1) (z1 − z) z1

)

2 (z1 − z)3 z3
1

. (C.15)

Setting z = 1, we get exactly equation (C.13).

One can continue this procedure to compute correlators with more T (z) (and T̄ (z))

insertions. But the result will not capture the O(1
c ) terms of the exact correlator〈

φφT · · ·TT · · ·T
〉

because it does not include the gravitational dressing of φ.

D Algorithms for implementing the recursion relations

D.1 c-recursion algorithm

The c-recursion relation is

F (h, c) = 1 +
∑

m≥1,n≥2

−∂cm,n (h)

∂h

A
cm,n
m,n (2h)2mn

c− cm,n (h)
ρmnF (h+mn, cm,n (h)) (D.1)

We know that the above recursion will give F (h, c) as the following expansion

F (h, c) =

∞∑

N=0

CN (2h)N ρ
N . (D.2)

The factor (2h)2mn in the resiude will eventually give (2h)N , so for now let’s consider

how the coefficients CN are contructed from the above recursion. Let’s denote the residue

without the factor (2h)2mn as Rm,n (h) = −∂cm,n(h)
∂h A

cm,n
m,n .

The recursion (D.1) is actually saying that every time we can write N as a sum of

products of intergers, i.e.

N = m1n1 +m2n2 · · ·+mini, (D.3)

then we get a contribution to CN from the recursion. In the above decomposition, each

term represents one iteration of the recursion. Denote the contribution to CN from the

decompsition whose last term is mini as CN,mi,ni , then we can write CN as the following sum

CN =
∑

2≤mini≤N
CN,mi,ni . (D.4)

Then CN,mi,ni will satisfy the following equation

CN,mi,ni =
Rmi,ni (h)

c− cmi,ni (h)
δN,mini +

∑

2≤mjnj≤N−mini

CN−mini,mj ,nj (D.5)

× Rmi,ni (h+N −mini)

cmj ,nj (h+N −mini −mjnj)− cmi,ni (h+N −mini)
.
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The first term can be thought of as the boundary condition, which is just the case that

there is only one term in the decomposition (D.3). The second term36 sums over all the

contributions from the cases where there are more than one term in (D.3) and supposes

that the second last term is mjnj : N = m1n1 · · ·+mjnj +mini.

To actually implement the above algorithm to compute the coefficients Cn with n ≤ N
, we can first comput all the boundary terms Cmini,mi,ni =

Rmi,ni (h)

c−cmi,ni (h) . Then we increase

n from n = mini + 2 to N . For each n, we compute all the Cn,mi,ni via equation (D.5).

We are able to do this because all the information (i.e. Cn−mini,mj ,nj ) needed to compute

Cn,mi,ni has already been computed. The complexity for this algorithm will be roughly

N4(logN)2.

D.2 h-recursion algorithm

The algorithm for implementing h-recursion will be faster than the c-recursion. The reason

is that in the h-recursion

H (h, c) = 1 +
∞∑

m,n

qmn (2hm,n)2mnA
c
m,n

h− hm,n (c)
H (hm,n +mn, c) , (D.6)

each time each time we only change h → hm,n + mn, whereas in the c-recursion, we

change both h → h + mn and c → cm,n (h). Denoting the coefficients of qN in H as HN ,

i.e. H = 1 +
∑∞

N=2HNq
N , then we can write the solution of HN as in equations (D.4)

and (D.5). But here, we’ll think of the problem in another way. In equation (D.4) and (D.5),

we were working backward from the last step to arrive at N from N − mini. But since

in the h-recursion, H (hm,n +mn, c) only depends on m,n and c,37 it’s actually easier to

consider the problem here forward from the first step, that is, we can write HN as the

following sum (define R̃m,n ≡ (2hm,n)2mnA
c
m,n)

HN =
∑

2≤mn≤N

R̃m,n
h− hm,n (c)

H(N−mn)
m,n (D.7)

where H
(N−mn)
m,n is the coefficient of qN−mn in H (hm,n +mn, c). Then it’s easy to see that

H
(N−mn)
m,n is given by

H(N−mn)
m,n =

∑

2≤mini≤N−mn

R̃mi,ni
hm,n +mn− hmi,ni

H(N−mn−mini)
mi,ni (D.8)

The complexity for the h-recursion will be roughly N3 (logN)2. We’ve described the al-

gorithm for implementing the h-recursion for Virasoro blocks in detail in [41], and the

h-recursion for 〈φφ〉holo is almost the same (except that the residues are different, which

doesn’t affect the algorithm), so we refer the reader to appendix A of that paper.

36The terms in the parentheses are the arguments of the functions Rmi,ni and cm,n, not to be confused

as a factor times Rmi,ni and cm,n.
37In fact, F (h+mn, cm,n (h)) depends on the value of h+mn, so it actually depends on the “history” of

the recursion. For example, in the decomposition (D.3), the first term will involve F (h+m1n1, cm1,n1(h)),

but the second term will involve F (h+m1n1 +m2n2, cm2,n2(h+m1n1)).

– 46 –



J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[2] B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory, Phys. Rev. 160 (1967)

1113 [INSPIRE].

[3] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[4] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[5] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[6] N. Anand, H. Chen, A.L. Fitzpatrick, J. Kaplan and D. Li, An exact operator that knows its

location, JHEP 02 (2018) 012 [arXiv:1708.04246] [INSPIRE].

[7] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[8] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[9] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics

from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[10] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Virasoro conformal blocks and thermality

from classical background fields, JHEP 11 (2015) 200 [arXiv:1501.05315] [INSPIRE].

[11] T. Anous, T. Hartman, A. Rovai and J. Sonner, Black hole collapse in the 1/c expansion,

JHEP 07 (2016) 123 [arXiv:1603.04856] [INSPIRE].

[12] A. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula

for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419.

[13] A. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation

of the conformal block, Teor. Mat. Fiz. 73 (1987) 103.

[14] A.B. Zamolodchikov and V.A. Fateev, Disorder fields in two-dimensional conformal quantum

field theory and N = 2 extended supersymmetry, Sov. Phys. JETP 63 (1986) 913 [INSPIRE].

[15] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal

field theory, hep-th/9808016 [INSPIRE].

[16] I. Bena, On the construction of local fields in the bulk of AdS5 and other spaces, Phys. Rev.

D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

[17] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a

boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]

[INSPIRE].

[18] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local

bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

– 47 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevD.7.2333
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D7,2333%22
https://doi.org/10.1103/PhysRev.160.1113
https://doi.org/10.1103/PhysRev.160.1113
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,160,1113%22
https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://doi.org/10.1007/JHEP02(2018)012
https://arxiv.org/abs/1708.04246
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.04246
https://doi.org/10.1016/0550-3213(84)90052-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
https://arxiv.org/abs/1303.6955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
https://doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6829
https://doi.org/10.1007/JHEP11(2015)200
https://arxiv.org/abs/1501.05315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05315
https://doi.org/10.1007/JHEP07(2016)123
https://arxiv.org/abs/1603.04856
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04856
http://dx.doi.org/10.1007/BF01214585
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,63,913%22
https://arxiv.org/abs/hep-th/9808016
https://inspirehep.net/search?p=find+EPRINT+hep-th/9808016
https://doi.org/10.1103/PhysRevD.62.066007
https://doi.org/10.1103/PhysRevD.62.066007
https://arxiv.org/abs/hep-th/9905186
https://inspirehep.net/search?p=find+EPRINT+hep-th/9905186
https://doi.org/10.1103/PhysRevD.73.086003
https://arxiv.org/abs/hep-th/0506118
https://inspirehep.net/search?p=find+EPRINT+hep-th/0506118
https://doi.org/10.1103/PhysRevD.74.066009
https://arxiv.org/abs/hep-th/0606141
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606141


J
H
E
P
0
4
(
2
0
1
8
)
0
7
5

[19] D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting

AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

[20] D. Kabat and G. Lifschytz, CFT representation of interacting bulk gauge fields in AdS, Phys.

Rev. D 87 (2013) 086004 [arXiv:1212.3788] [INSPIRE].

[21] D. Kabat and G. Lifschytz, Decoding the hologram: scalar fields interacting with gravity,

Phys. Rev. D 89 (2014) 066010 [arXiv:1311.3020] [INSPIRE].

[22] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in

AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

[23] K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212

[arXiv:1211.6767] [INSPIRE].

[24] D. Kabat and G. Lifschytz, Bulk equations of motion from CFT correlators, JHEP 09 (2015)

059 [arXiv:1505.03755] [INSPIRE].

[25] Y. Nakayama and H. Ooguri, Bulk locality and boundary creating operators, JHEP 10 (2015)

114 [arXiv:1507.04130] [INSPIRE].

[26] M. Guica and D.L. Jafferis, On the construction of charged operators inside an eternal black

hole, SciPost Phys. 3 (2017) 016 [arXiv:1511.05627] [INSPIRE].

[27] M. Guica, Bulk fields from the boundary OPE, arXiv:1610.08952 [INSPIRE].

[28] D. Kabat and G. Lifschytz, Locality, bulk equations of motion and the conformal bootstrap,

JHEP 10 (2016) 091 [arXiv:1603.06800] [INSPIRE].

[29] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A stereoscopic look into the

bulk, JHEP 07 (2016) 129 [arXiv:1604.03110] [INSPIRE].

[30] Y. Nakayama and H. Ooguri, Bulk local states and crosscaps in holographic CFT, JHEP 10

(2016) 085 [arXiv:1605.00334] [INSPIRE].

[31] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151

[arXiv:1704.05464] [INSPIRE].

[32] A. Almheiri, T. Anous and A. Lewkowycz, Inside out: meet the operators inside the horizon.

On bulk reconstruction behind causal horizons, JHEP 01 (2018) 028 [arXiv:1707.06622]

[INSPIRE].

[33] H. Verlinde, Poking Holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069

[INSPIRE].

[34] A. Lewkowycz, G.J. Turiaci and H. Verlinde, A CFT perspective on gravitational dressing

and bulk locality, JHEP 01 (2017) 004 [arXiv:1608.08977] [INSPIRE].
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