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1 Introduction

The M5-brane remains a mysterious object. For a single M5-brane the dynamical equations

have been known for some time [1–4]. At lowest order, in the decoupling limit, these

reduce to a free field theory. For N M5-branes there exists an interacting CFT in six-

dimensions, dubbed the (2, 0)-theory, that captures their low energy dynamics, decoupled

from gravity [5, 6]. A reliable formulation of this theory is still lacking(2, 0)-theory but

when reduced on a circle of radius R = g2/4π2 it reduces to five-dimensional maximally

supersymmetric Yang-Mills (5D MSYM) with gauge group U(N) and coupling g. Since

5D MSYM is perturbatively non-renormalizable the six-dimensional (2, 0) CFT provides a

UV-completion with an enhanced Lorentz symmetry. It is therefore of great interest to try

to understand in detail the relation of the (2, 0)-theory to 5D MSYM. In particular one

would like to know what additional states or degrees of freedom arise in the (2,0) theory

that are needed to UV complete 5D MSYM. It has been suggested that all such states

are already present in 5D MSYM non-perturbatively [7, 8] and that 5D MSYM is in fact

well-defined without new degrees of freedom.

One case where the degrees of freedom of M5-branes seem particularly mysterious

is when we consider the (2, 0)-theory on a multi-centred Taub-NUT space MmTN . This

is a completely smooth four-dimensional manifold and one expects that the (2, 0)-theory

on R
1,1 × MmTN is locally the same as on R

1,5. On the other hand reducing on the

S1 fibration leads to a string theory picture of N D4-branes intersecting with D6-branes

which are localised at the zeros of the U(1) Killing vector of multi-centred Taub-NUT space.

From standard D-brane dynamics one finds that there are stretched D4-D6 strings which

are localised at these zeros. In particular these are so-called ‘DN = 8 strings’ whose ground

state consists of chiral fermions which propagate along R
1,1 and lie in the bi-fundamental
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of U(N)×U(NI) where NI is the number of coincident D6-branes located at the Ith zero.

These fermions have been studied in [9] and [10]. Similar states have also appeared in [11]

in the case of M5-branes wrapped on cycles in elliptic Calabi-Yau compactifications. The

main question we address here is how do such charged states arise from the (2, 0)-theory?

This question arises even in the case of a single M5-brane, corresponding to N = 1,

where the M5-brane equations are known. However there is still a puzzle: the chiral

fermions are charged under the worldvolume gauge field but none of the fields in the

M5-brane theory have a minimal coupling so that their quanta can support a charge. This

follows from the fact that for a single M5-brane all the fields have an interpretation as Gold-

stone modes [12] and hence, by Goldstones theorem, they only have derivative interactions.

We will see that the resolution of this puzzle is that the chiral fermions arise as soliton states

on the M5-brane and Goldstone’s theorem does not apply to solitons, i.e. Goldstone modes

can have non-derivative couplings with solitons [13]. Aspects of this case have appeared

in [14] and in section two we review this along with some unpublished notes [15].

Thus the chiral modes arise from the same sort of mechanism that appeared in [16].

There the chiral modes of the Heterotic string worldsheet in a T
3 compactification were

obtained from zero-modes of the 2-form gauge potential obtained in Kaluza-Klein reduction

of an M5-brane on K3. However there is a key difference here in that there is a gauge field

under which the chiral modes are charged.

In the non-abelian case ofN M5-branes it was argued in [10] that the D4-D6 strings give

rise to an U(N) WZWN model. The main result of this paper is to derive these states and

the associated WZWN model from the (2, 0)-theory alone, without appealing to a D-brane

construction using open strings. In particular we will use a variation of 5D MSYM that

was constructed in [17, 18] as the natural non-Abelian extension of the abelian (2, 0)-theory

reduced on the circle fibration ofMmTN . We will present these solitons in section three and

obtain the WZWN model in section four. Finally in section five we provide a conclusion.

2 The Abelian case

We start by recalling the linearized equations of motion of a single M5-brane which is just

that of a six-dimensional abelian tensor multiplet [19] (in the notation of [17]):

∇2φα
β = 0

iΓm∇mψα = 0

Hmnp =
1

3!
ǫmnpqrsH

qrs . (2.1)

Here m,n, p = 0, 1, 2, 3, 4, 5, Hmnp = 3∂[mBnp] and ǫ012345 = 1. In addition α, β = 1, 2, 3, 4

denote indices of the fundamental 4 representation of the R-symmetry group USp(4) which

are raised (lowered) with the invariant tensor Mαβ (Mαβ) and φ(αβ) = Mαβφ
αβ = 0. These

equations are invariant under the supersymmetry transformations

δφαβ = −iǭ[αψβ]

δBmn = −iǭαΓmnψα

δψα = ∇mφα
βΓ

mǫβ +
1

2 · 3!Γ
mnpHmnpǫ

α , (2.2)
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provided that ǫα is a chiral Killing spinor on the M5-brane worldvolume: ∇µǫ
α = 0,

Γ012345ǫ
α = ǫα and subject to a reality condition.

In our configuration the M5-brane worldvolume is R1,1 ×MmTN with metric

ds26 = −(dx0)2 + (dx1)2 + ds2mTN . (2.3)

Here MmTN is the n-centred multi-centred Taub-NUT space [20]:

ds2mTN = H−1(dx5 + θ)2 +Hd~x · d~x , (2.4)

where

H = 1 +
n
∑

I=1

hI , θ =
n
∑

I=1

θI , (2.5)

and

hI =
R

2

NI

|~x− ~xI |
, dθI = ⋆3dhI . (2.6)

For NI = 1 the metric is smooth everywhere provided that one makes the identification

x5 ∼ x5 + 2πR. We have introduced the integer NI to allow for NI coincident D6-branes

at given pole ~xI in the x7, x8, x9 plane. For NI > 1 this induces a conical singularity at

the poles. Asymptotically this metric takes the form

ds2mTN =

(

1 +
ND6R

2r

)−1(

dx5 +
1

2
ND6R cos θdφ

)2

+

(

1 +
ND6R

2r

)

(

dr2 + r2dθ2 + r2 sin2 θdφ2
)

, (2.7)

where ND6 = N1+ . . .+Nn is the total number of D6-branes. In this case, or for any other

manifold M with self-dual curvature there exists a Killing spinor ǫα that satisfies

Γ2345ǫ
α = −ǫα (2.8)

Which is equivalent to the condition Γ01ǫ
α = −ǫα.

Next we look for bosonic solutions to the equations of motion which preserve all of

these remaining 8 supersymmetries. Since we cannot impose any more conditions on the

Killing spinor we see that we must have ∂mφα
β = 0. Hence without loss of generality we

take φα
β = 0. Introducing light cone coordinates

x− =
x1 − x0√

2
x+ =

x1 + x0√
2

, (2.9)

we see that

δψα =
1

4
Γ−ijH−ijǫ

α +
1

4
Γ+ijH+ijǫ

α +
1

2
Γ+−iH+−i +

1

3!
ΓijkHijkǫ

α = 0 , (2.10)

where i, j = 2, 3, 4, 5. Since Γ−ǫα = Γ+ǫα = 0, and demanding the remaining 8 super-

symmetries be preserved, we find that H−ij = Hijk = H+−i = 0 so the solutions to the

linearized equation of motion which preserve the (0, 8) supersymmetries are simply

H =
n
∑

I=1

νI+dx
+ ∧ ωI . (2.11)
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Furthermore self-duality and closure ofH implies that the ωI are self-dual harmonic 2-forms

on MmTN whereas the νI+ are arbitrary functions of x+.

Indeed one can explicitly construct n self-dual 2-forms on multi-centred Taub-NUT as

in [21]

ωI =
1

4π2R
dξI , ξI = H−1hI(dx

5 + θ)− θI , (2.12)

where we introduce a useful normalisation to ensure that the ωI are dimensionless and

which will be justified later. These forms are smooth everywhere (at least in the case

NI = 1) and satisfy
∫

ωI ∧ ωJ =

∫

ωI ∧ ⋆ωJ =
NI

4π2
δIJ . (2.13)

We can also see that there are no fermion zero-modes. In particular imposing ∂−ψα = 0

we see that the fermion equation is simply Γi∇iψ
α = 0 and it is a well-known result that

there are no solutions to the Dirac equation which vanish at infinity. Thus the solitons are

non-degenerate and not form an enhanced multiplet of the Lorentz group.

For vanishing scalars and fermions the energy-momentum tensor is simply [22]

Tmn =
π

2

√−gHmpqHn
pq . (2.14)

In which case only T++ is non-vanishing and we define

P+ =

∫

d5xT++

=
1

4π

∑

NI

∫

dx+νI+(x
+)νI+(x

+) . (2.15)

In particular the abelian (2, 0)-theory contains the conserved current (we choose the

coefficient for future convenience)

Jm(Λ) = 2π
√−gHmnp∂

nΛp , (2.16)

for any choice of 1-form Λ inherited from the gauge symmetry B → B + dΛ. On-shell the

associated charge is a total derivative:

Q(Λ) =

∫

R×MmTN

J+(Λ)d
4xdx+

= 2π

∮

R×S1×S2
∞

H+rµΛ
µ r2dΩ2dx

+ , (2.17)

where S1 × S2
∞ is the asymptotic form of MmTN and r the radial direction. Taking only

Λ5 non-vanishing we find

Q(Λ5(∞)) =
1

2πR
tr
∑

I

∮

R×S1×S2
∞

dΩ2dx
+

[

H∂r

(

hI
H

)

+ εrjkθj∂k

(

hI
H

)]

νI+Λ5(∞)

= −2πR
∑

I

NI

∫

dx+νI+(x
+)Λ5(∞) , (2.18)

where the second term in the first line arises as Λi = gi5Λ5 6= 0. Upon reduction on the

S1 parameterized by x5 the D4-brane U(1) gauge field is Aµ = 4π2RBµ5 [23] and the U(1)

gauge symmetry is Aµ → Aµ + 4π2R∂µΛ5. Thus Q(Λ5(∞)) is the corresponding electric

charge that we are looking for and each νI+ carries NI units of its charge.
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3 The non-Abelian case

In general there is no satisfactory formulation of the M5-brane in the non-Abelian case.

Nevertheless the M5-brane on a circle of radius R gives, at least at low energy, 5D MSYM.

Therefore one can reduce the abelian theory on the S1 fibration in MmTN and then find

the appropriate non-abelian generalisation. This was done in [17, 18]. Let us first give

their result. Reducing on x5 leads to the five-dimensional metric

ds25 = −(dx0)2 + (dx1)2 +Hd~x · d~x . (3.1)

For our purposes we need that the gauge field action is1

SF =
1

8π2R

∫

d5x
√
Htr(F ∧ ⋆F ) + θ ∧ tr(F ∧ F ) , (3.2)

where µ, ν = 0, 1, 2, 3, 4. For computing the energy-momentum tensor we will also need

the scalar action which is

Sφ = − 1

8π2R
tr

∫

d5x
√−g

(√
HDµφαβD

µφαβ +
1

4

1

H5/2
∂iH∂iHφαβφ

αβ

−
√
H[φαβ , φβ

δ][φδγ , φ
γ
α]

)

. (3.3)

Note that we could introduce an alternative form for the gauge part of the action:

S′
F =

1

8π2R

∫

d5x
√
Htr(F ∧ ⋆F ) + F ∧ CS , (3.4)

where

CS = tr

(

Aµ∂νAλ +
2

3
AµAνAλ

)

dxµ ∧ dxν ∧ dxλ . (3.5)

These two actions differ by whether the topological term is taken to be θ ∧ tr(F ∧ F )

or F ∧ CS. In turn these choices differ by boundary terms arising from the poles of H

and infinity and hence have the same equations of motion. The first choice preserves

all gauge symmetries of the action but depends upon the choice of θ and hence is not

diffeomorphism invariant. Whereas the second form is diffeomorphism invariant but at

the expense of introducing potential violations of worldvolume gauge symmetries. We will

mainly be interested in the first case, however in section four we will explore some of the

physical differences that arise from the second and which rule it out as the correct one.

Indeed part of the motivation of this paper is to explore such subtleties.

3.1 D4-D6 strings as solitons

We work from results in [17] which give the 5D theory resulting after reduction over x5.

The prescription for the decomposition from 6D to 5D is given in the paper and we thus

denote the decomposed 5D gamma matrices by γ, and the 5D Killing spinor by ε. One

then finds that equation (2.8) reduces, after the decomposition, to the condition

iγ234ε
α = εα , (3.6)

1We use a convention where 1

8π2 tr
∫
F ∧ F ∈ Z.
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equivalently

γ01εα = εα . (3.7)

The fermionic supersymmetry variation from [17] is given by

δψα =
1

2
Fµνγ

µνεα + 2i
√
HMβγDµ

(

1√
H

φαβ

)

γµεγ

− 1√
H

Mβγφ
αβFµνγ

µνεγ + 2MβγMδλ[φ
αβ , φγδ]ελ , (3.8)

with F = dθ and we recall that the 6 dimensional two form, Bµν , is reduced to a U(1)

gauge field as Aµ = Bµ5 with corresponding field strength

Fµν = ∇µAν −∇νAµ + [Aµ, Aν ] , (3.9)

and thus a gauge covariant derivative defined by

Dµχ = ∇µχ+ [Aµ, χ] , (3.10)

where is χ some field transforming in the adjoint of the gauge group.

We seek bosonic, BPS states of the configuration to find those maximally supersym-

metric states. This is equivalent to setting equation (3.8) to zero. Using the Killing spinor

conditions above and after changing to the light cone coordinates introduced in the abelian

case, we find that the BPS conditions for this system are

Fij = F+− = Fi− = 0 , (3.11)

where from now on i, j = 2, 3, 4 and also

Di

(√
Hφα

β

)

= D−φ
α
β = 0, [φα

β , φ
β
γ ] = 0 . (3.12)

In addition one can compute the equation of motion from the action (3.4) and obtain

√−gDσ

(√
HF σλ

)

+
1

4
FµνFρσǫ

µνρσλ = 0 . (3.13)

Upon enforcing the BPS conditions above this equation of motion reduces to

∂iF+i + [Ai, F+i] + 2∂iHF+i = 0 . (3.14)

First, looking at (3.11), we choose to set Ai = A− = 0, then we have that A+ = A+(x
+, xi)

solves these conditions.

Now turning to (3.12), notice that a solution is given by the ansatz φα
β = 1√

H
φα
0 β(x

+)

with the understanding that [φα
0 β , φ

β
0 γ ] = 0.

To solve the equation of motion (3.14) we start by noting that the general solution to

the BPS conditions Fij = Fi− = 0 is given by

Ai = g∂ig
−1 A− = g∂−g

−1 , (3.15)
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for a arbitrary element g of the unbroken gauge group. Similarly the solution to BPS

condition F+− = 0 implies that

A+ = g′∂+g
′−1 A− = g′∂−g

′−1 , (3.16)

for some other element g′ of the unbroken gauge group. Consistency of these two expressions

for A− implies that g′−1g∂−(g−1g′) = 0 and hence

g′ = gk with ∂−k = 0 . (3.17)

Thus we see that the generic solution to the BPS equation is simply a gauge transformation

by g of the configuration A+ = k∂+k
−1, A− = Ai = 0, corresponding to Fi+ = ∂iA+.

To continue then we fix the gauge A− = Ai = 0 and pick an ansatz for A+ of the form

A+ = K(~x)ν+(x
+) for some K(~x); this means that equation of motion becomes

∂i∂iK +
2

H
∂iK∂iH = 0 . (3.18)

Solutions to this equation are of the form

K =
h

H
, (3.19)

where h is any harmonic function: ∂i∂ih = 0. However, we wish to look for solutions with

finite energy. To achieve this, any pole in h must be cancelled by a pole in H (see the

expressions below for the energy-momentum tensor) and therefore we find the solutions

KI =
hI
H

=
hI

1 +
∑

J hJ
. (3.20)

One might worry that there is another finite energy solution K0 corresponding to

h = 1. However one sees that
∑

I

KI =
H − 1

H
= 1−K0 . (3.21)

Rearranging this we see that the solution

A+ = K0ν
0
+ +

∑

I

KIν
I
+ = ν0+ + ν1+ + . . .+ νn+ , (3.22)

is pure gauge. Therefore we conclude that the most general finite-energy soliton solution is

A+ =
n
∑

I=1

KI(~x)ν
I
+(x

+) , (3.23)

where νI+ is an arbitrary x+-dependent element of the unbroken gauge algebra. Of course

one can indeed check that these functions KI also appear in the self-dual 2-forms con-

structed above as KI = ξI5. In particular our solutions are

F =
∑

I

νI+(x
+)∂iKIdx

+ ∧ dxi

= 4π2R
∑

I

νI+(x
+)ωI

i5dx
+ ∧ dxi , (3.24)
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which corresponds to a simple embedding of the abelian solution into the non-abelian the-

ory by promoting νI+ to a element of the unbroken M5-brane gauge algebra and identifying

Fµν = 4π2RHµν5 , (3.25)

in agreement with [23], explaining our normalization in (2.14).

We can also see that there are no fermionic zero-modes. The fermionic equation is [17]

i
√
HγµDµψ

α − 1

8
Fµνγ

µνψα = 0 . (3.26)

Imposing ∂−ψα = 0 and expanding around our solitons we find this splits into two chiral

equations

−
√
2γ0H

1

2D+ψ
α
+ + ~γ · ~∇ψα

− +
1

4
H− 1

2~γ · ~∇Hψα
− = 0

~γ · ~∇ψα
+ − 1

4
H− 1

2~γ · ~∇Hψα
+ = 0 . (3.27)

Note that the only appearance of the non-abelian gauge field is through the D+ term in

the first equation. The second equation is simply the Dirac equation for ψ̂α
+ = e−

1

2
H1/2

ψα
+,

i.e. ~γ · ~∇ψ̂α
+ = 0. As with the abelian case there are no solutions which vanish at infinity

and hence ψα
+ = 0. In this case the first equation becomes the Dirac equation ~γ · ~∇ψ̂α

− = 0

where ψ̂α
− = e

1

2
H1/2

ψα
− and we again conclude that ψα

− = 0. Thus the solitons do not form

enhanced representations of the Lorentz group.

It is useful to note that, in terms of the group element k defined by A+ = k∂+k
−1, we

have

k−1 = Pexp

(

∑

I

KI(~x)

∫ x+

0
νI+(y

+)dy+

)

. (3.28)

Furthermore we observe that KI(~xJ) = δIJ and hence

A+(~xI) = k(~xI)∂+k
−1(~xI) = νI+(x

+) . (3.29)

Thus although the gauge fields are spread-out over the whole of the multi-centred Taub-

NUT space there is a sense in which the chiral mode νI+ is associated to the I-th pole in

H. Furthermore far from the poles the field strength falls-off as 1/|~x|2 as expected for a

massless charged particle in 4 + 1 dimensions. However it is amusing to observe that near

a pole ~xI the gauge field

A+ ∼ RNI/2

RNI/2 + |~x− ~xI |
νI+(x

+) , (3.30)

is finite [15]. In particular for |~x− ~xI | ≫ R the solution can be written terms of an infinite

expansion of perturbative g2 = 4π2R corrections to the familiar g2/4π2|~x − ~xI | Coloumb

potential.
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The energy-momentum tensor, Tµν = −2√
−g

δL
δgµν , is readily found to be

Tµν =
1

8π2R
tr

[

2
√
HDµφαβDνφ

αβ +
1

2H3/2
∂µH∂νHφαβφ

αβ + 2
√
HFµρFν

ρ

−gµν

(√
HDρφαβD

ρφαβ +
1

4

1

H5/2
∂iH∂iHφαβφ

αβ +

√
H

2
FρσF

ρσ

−
√
H[φαβ , φβλ][φ

λρ, φρα]

)]

. (3.31)

So that on our solution

T++ =
1

4π2R

1√
H

(

D+φ0αβD+φ
αβ
0 +

∑

IJ

∂iKI∂iKJν
I(x+)νJ(x+)

)

T+− = − 1

32π2R

1

H7/2
∂iH∂iHφ0αβφ

αβ
0

Ti+ = − 1

8π2R

1

H3/2
∂iHφ0αβD+φ

αβ
0 . (3.32)

Finiteness of the energy-momentum tensor implies that D+φ
α
β = 0. This is satisfied easily

by demanding φα
0 β be a constant, in particular we pick φα

0 β = 0 so that the unbroken gauge

algebra is u(N). With this extra step the energy momentum tensor again reduces to a very

simple form where only T++ is non-zero and is given by

T++ =
1

4π2R

1√
H

tr
∑

IJ

∂iKI∂iKJν
I(x+)νJ(x+) . (3.33)

We then proceed to explicitly compute the integral over the internal R3 to find

P+ =

∫

d3xdx+
√−g T++

=
1

4π

∑

I

NItr

∫

dx+νI(x+)νI(x+) . (3.34)

This agrees with the abelian case above. Furthermore we see that (3.34) corresponds

precisely to n copies, where n is the number of centres of MmTN , of a WZWN model each

at level NI . However given that the value of NI can be different for each I we can’t simply

use a standard WZWN model on a three-manifold with n boundaries. We will return to

this issue in the next section.

Next we look at the gauge charges. For the first form of the action (3.2) we find

Jσ(Λ) =
1

8π2R
tr
[

−2
√−g

√
HF σλDλΛ + εµνρσλθµFνρDλΛ

]

=
1

4π2R
∂λtr

(√−g
√
HF λσΛ +

1

2
εµνρσλθµFνρΛ

)

− 1

4π2R
tr

(√−gDλ

(√
HF λσ

)

+
1

4
εµνρλσFµνFρλ

)

, (3.35)
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where the last line vanishes on-shell. The associated charges are

Q(Λ(∞)) =
1

4π2R
tr
∑

I

∮

dΩ2dx
+
[

H∂rKI + εrjkθj∂kKI

]

νI+Λ(∞)

= − 1

2π
tr
∑

I

NI

∫

dx+ νI+Λ(∞) , (3.36)

where Λ(∞) is any element of the unbroken gauge algebra. These charges only receive

contributions from infinity and as such do not depend on the choice of θ. We see that they

are the natural non-abelian extension of (2.18) with the identification Λ = 4π2RΛ5.

4 Gauge symmetries and a WZWN-like action

As we mentioned above there are two choices for the five-dimensional action. The results in

the previous section correspond to the first choice (3.2). In this section we wish to explore

some physical consequences of the other choice of the action (3.4). We will then use this

analysis to motivate a WZWN-like model as the effective action for the chiral soliton modes

found above.

4.1 Physical ‘gauge’ transformations

The main difference between the two forms for the action can be seen from their gauge

symmetry. While the first form is gauge invariant the second is not. In particular the

second form of the action (3.4) transforms as (assuming boundary conditions that allow us

to ignore boundary terms in x+)

δΛS = − 1

4π
ND6

∫

d2xtr ((∂+A−(∞)− ∂−A+(∞))Λ(∞))

+
1

4π

∑

I

NI

∫

d2xtr ((∂+A−(~xI)− ∂−A+(~xI))Λ(~xI)) . (4.1)

We can make the first line vanish by imposing a suitable boundary condition at infinity.

However for the other terms it seems more natural to restrict the gauge symmetry so that

Λ(~xI) = 0 . (4.2)

As we will see this has the effect of introducing additional degrees of freedom that live at

the poles ~xI . These arise because there are now transformations of the soliton solution

generated by Λ(~xI) which lead to physically distinct states.

To continue we evaluate the action (3.4) on the full space of BPS solutions, including

dependence of g on x+, x−, ~x. The first term of the action is still vanishing. However

substituting the general ansatz (3.15)–(3.17) into the second form of the action (3.4) we find

SBPS =
1

8π2R
tr

∫

F ∧
(

A ∧ dA+
2

3
A ∧A ∧A

)

=
1

8π2R

∫

∂iH(CS)+−idx
+dx−d3x . (4.3)
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Evaluating the action on our BPS sector gives

SBPS =
1

8π2R
tr

∫

∂iH(∂i(A+A−) +Ai∂+A− −A−∂+Ai)dx
+dx−d3x , (4.4)

where we have used the fact that Fi− = 0 and assumed boundary conditions along x− that

allow us drop boundary terms in x−.

There are two ways to proceed. The first is analogous to the classic construction of [24].

In that treatment one integrates over the A+ gauge field which imposes the constraint

F−i = 0. Here we do not integrate over A+. Rather we have imposed the BPS conditions,

which includes the constraint F−i = 0, and evaluated the action. To this end we integrate

the first term in (4.4) by parts and, observing that

∂i∂iH = −2π
∑

NIRδ3(~x− ~xI) , (4.5)

we find a contribution

SBPS =
1

4π

∑

I

NItr

∫

dx+dx−A+(~xI)A−(~xI) + . . . . (4.6)

To continue in analogy with [24] we assume a boundary condition such that A+(xI) = 0

for each I. With this condition the full action reduces to:

SBPS = −
∑

I

NI

4π
tr

∫

dx+dx− g(~xI)∂+g
−1(~xI)g(~xI)∂−g

−1(~xI)

+
1

8π2R
tr

∫

d5x ∂iH[g−1∂−g, g
−1∂+g] g

−1∂ig . (4.7)

This is essentially a WZWN model with n two-dimensional ‘boundaries’ located at the

poles of H each with level NI (although we recall that only NI = 1 corresponds to a

completely smooth multi-centred Taub-NUT space). The difference with a traditional

WZWN model is that in our case the topological term is five-dimensional and the two-

dimensional ‘boundary’ contributions arise from the poles of H. Nevertheless it plays the

same role as the familiar three-dimensional term. In particular the associated equation of

motion is restricted to the poles and is given by

∂+(g(~xI)∂−g
−1(~xI)) = 0 , (4.8)

for each I. We thus obtain a theory of n independent two-dimensional group-valued fields

g(~xI). The solution to this is simply

g(~xI) = ℓI(x
−)rI(x

+) . (4.9)

for arbitrary group elements ℓI(x
−) and rI(x

+). However we must ensure that the boundary

condition A+(xI) = 0 is satisfied. One finds that this implies

rI = k−1(~xI) , (4.10)

and hence

g(~xI) = ℓI(x
−)k−1(~xI) . (4.11)
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Thus we are left with a single independent group element ℓI(x
−) in addition to the original

solution k−1(~xI)

The second approach is to include the ‘boundary’ term (4.6) into the action which we

again evaluate on the BPS solutions, i.e. we do not impose any conditions on A+ at the

poles. In this case find

SBPS =
∑

I

NI

4π
tr

∫

dx+dx− k(~xI)∂+k
−1(~xI)∂−g

−1(~xI)g(~xI)

+
1

8π2R
tr

∫

d5x ∂iH[g−1∂−g, g
−1∂+g] g

−1∂ig . (4.12)

Here the standard quadratic kinetic term for g has been removed and replaced by a linear

term coupled to the background field k. The associated equation of motion still only

receives contributions from the poles but has a less familiar form:

0 = ∂−gk(~xI)∂+k
−1(~xI)g

−1 + gk(~xI)∂+k
−1(~xI)∂−g

−1

+g∂+g
−1g∂−g

−1 − g∂−g
−1g∂+g

−1 , (4.13)

for each I. To solve this we can write

g(~xI) = ℓI(x
+, x−)k−1(~xI) , (4.14)

for some ℓI that is now allowed to depend on both x− and x+. Substituting this into (4.13)

we simply find, for each I,
[

ℓI∂+ℓ
−1
I , ℓI∂−ℓ

−1
I

]

= 0 . (4.15)

There are essentially two ways to satisfy this equation. Firstly, if ℓI∂−ℓ
−1
I = 0 then we

have ℓI = ℓI(x
+). This means that g = ℓIk

−1(~xI) is a function only of x+ and hence ℓI can

be absorbed into a redefinition of νI(x
+). The second solution is to demand ℓI∂+ℓ

−1
I = 0

so we have ℓI = ℓI(x
−). In this case we recover the same solutions that we saw above by

imposing the vanishing of A+(~xI).

In summary we find that with the second choice of action (3.4) there are some gauge

modes which are physical. In particular we find that the solution space includes the modes

ℓI(x
−) that arises from the broken gauge modes. Hence we can think of it as a physical

Goldstone mode and the WZWN-like model as its low energy effective action. However

we do not expect such modes to arise from the D-brane analysis and hence we conclude

that (3.4) is the wrong choice of action.

4.2 An action for the soliton modes

We now return to the original action (3.2). Here we can simply adapt the argument above.

We have seen that the D4-D6 strings can be realised in the non-Abelian theory as solitons.

We have evaluated their energy and momentum and shown that they agree with that of

a chiral half of a WZWN model. To capture the effective dynamics of these solitons we

therefore propose that the action (4.7) can be used with a slightly modified interpretation.

In particular we recall that the solution to the equations of motion can be written as

g(~xI) = ℓI(x
−)rI(x

+) , (4.16)
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for arbitrary left and right moving modes ℓI and rI . To make contact with our solitons we

first set ℓI to the identity and identify

νI+(x
+) = rI(x

+)∂+r
−1
I (x+) . (4.17)

i.e. rI(x
+) = k(~xI) in (3.29). We also see that taking a non-trivial ℓI(x

−) can be viewed

as performing the gauge transformation: A+(~xI) = ℓk∂+(k
−1ℓ−1) and A−(~xI) = ℓ∂−ℓ−1.

Therefore we consider the other chiral half to be pure gauge and we simply discard it. This

is consistent with the discussion above where such gauge modes were physical and therefore

not discarded.

5 Conclusions

In this paper we have studied how the charged D4-D6 strings which arise from a D4-brane

intersecting with a D6-string are realised in the M5-brane worldvolume theory. In particular

we showed that there are smooth soliton solutions of the five-dimensional Yang-Mills gauge

theory arising from the M5-brane reduced on the circle fibration of multi-centred Taub-

NUT space that have the right charges to be identified with the D4-D6 strings. We also

considered the physical consequences of the two choices of action and how the second

choice leads to additional physical soliton zero-modes which do not match the string theory

analysis. Lastly we obtained a WZWN-like model for the solitons but where the topological

term is five-dimensional. We thus conclude that 5D MSYM contains the charged states

predicted from the D-brane construction, albeit as solitons.

Let us briefly mention some bulk eleven-dimensional aspects of our solutions. The

states we have identified arise as stretched D4-D6-strings. In the string theory picture

these states are localized to the intersection. In M-theory they lift to M2-branes that wrap

the M-theory circle. Since the M-theory circle shrinks to zero at the poles of H the M2-

brane worldvolume theory develops a potential V ∝ H−1/2 and so the energy is minimized

by sticking to the poles ~xI , in agreement with the microscopic string theory picture.

Our solutions are given in terms of harmonic forms which can also be associated to

the existence of non-trivial two-cycles in multi-centred Taub-NUT. These two-cycles are

caused by the shrinking of the circle fibration at the poles of H and so can be thought of

as connecting two distinct poles. M2-branes wrapping these cycles are in bi-fundamental

representations of U(1) × U(1) subgroups of a U(1)ND6−1 gauge group whose bulk gauge

field arises from a Kaluza-Klein reduction of the M-theory three-form C ∼∑CI ∧ωI (here

we are one thinking of multi-centred Taub-NUT as compact or replacing it by a similar

compact space). When all the D6-branes coalesce this group is enhanced and the wrapped

M2-branes provide the additional gauge bosons to form the adjoint of SU(ND6). However

our states are different. One reason is simply that for single centred Taub-NUT there is a

harmonic two-form but no non-trivial two-cycle. More generally one sees that the soliton

profile is A+ ∼ ∑KIν
I
+ and 0 ≤ KI ≤ 1 with equality iff ~x = ~xI . Thus the I-th soliton

is peaked at the I-th pole and furthermore vanishes at all the other poles. This means

that the states we have found do not correspond to M2-branes which are wrapped on the

non-trivial two-cycles. Rather our states are trapped at the poles, as discussed above. As
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such they are naturally associated to fundamental representations of the bulk enhanced

gauge group, providing charged states of the bulk SU(ND6) gauge group. From the point

of view of the M2-brane worldvolume theory the wrapped M2-brane states arise as kink-like

solitons, interpolating between pairs of poles as in [25].
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