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1 Introduction

Supersymmetry breaking is commonly sourced by F-terms or by D-terms. The case of

F-term breaking has been studied extensively. One of its issues is related to the existence

of scalar modes, which in general have to be stabilized in the vacuum, in order to obtain

de Sitter backgrounds [1]. D-term supersymmetry breaking, on the other hand, does not

essentially involve scalar fields, as it is constructed from a vector multiplet. Its prototype ex-

ample in supergravity is represented by the embedding of the Fayet-Iliopoulos (FI) term [2].

The only known method to couple a pure FI term to supergravity [3, 4] is related to

the gauging of the R-symmetry. It allows to study D-string solutions, inflation and no-scale

models in supergravity [5–9]. As pointed out in [10], models of pure D-term supersymmetry

breaking with FI terms cannot arise directly from any UV-complete theory of gravity, as

they imply the existence of a global abelian symmetry in the UV regime. Even though

caveats can exist to the applicability of [10], it is acknowledged that D-term breaking à la

Fayet-Iliopoulos has either to be excluded, or to be treated as an effective description of

some more fundamental underlying mechanism.

In this work we present a new supersymmetric coupling, which includes only a Maxwell

vector multiplet and leads to D-term supersymmetry breaking within supergravity. The

model contains non-linearities similar to supersymmetric Born-Infeld actions [11]. In sharp

contrast to the case of the D-term breaking arising from a FI term with R-symmetry

gauging, the model we are introducing allows for a non-vanishing gravitino mass term on a

generic vacuum. As it is going to be clarified in the following, another distinctive property

of the new term is that it can be consistent if and only if supersymmetry is broken by —

but not only from — the auxiliary field of the abelian vector multiplet. As far as we know,

this is the first example of D-term breaking in supergravity that has these properties and
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that is not introducing higher derivatives in the bosonic sector (for example, models with

higher derivatives were presented in [12, 13]). In addition, as the model we are presenting

does not require the gauging of the R-symmetry, the results of [10] do not apply.

To illustrate the properties of the new coupling, in the following we first construct

a pure model that contains only the abelian gauge multiplet coupled to supergravity and

subsequently we couple it to matter chiral multiplets. We find then that the generic impact

of the new term is to uplift the vacuum energy. In particular, if we couple to a chiral model

with a Kähler potential K, we obtain1

V = VStandard
SUGRA

+
ξ2

2
e2K/3 , (1.1)

where ξ is a real constant and the contribution to the scalar potential (1.1) proportional to

ξ2 comes from the new term we are introducing. Notice how this contribution is reminiscent

of the uplift arising from an D3 brane, which can be also described with nilpotent multi-

plets [15–17], even though our construction has linearly-realized supersymmetry off-shell.

This work is organized as follows. In section 2 we discuss the model of Freedman and

we illustrate the associated gauging of the R-symmetry. In section 3 we present the new

D-term model together with its properties. In section 4 we couple the model to matter

and show how the uplift is produced. In section 5 we recast this new model into the

language of nilpotent multiplets. In section 6 we summarize our conclusions and give some

comments. In the appendix A we formulate a specific parametrization for the constrained

superconformal multiplets, which is useful for section 5, and in the appendix B we give

details on the electric-magnetic duality of the new D-term.

2 Freedman model and gauged R-symmetry

The prototype example of D-term breaking in N = 1 supergravity is the model introduced

in [3]. In this section we are going to discuss this model in some detail, in order to identify

the differences with our new model in the next section. The model in [3] describes the

couplings of a gravitational spin-(2, 32) multiplet interacting with an abelian spin-(1, 12)

vector multiplet. The vector field couples both to the gravitino and the spin-12 fermion

and gauges a chiral symmetry acting on them. This symmetry can be identified with the

R-symmetry, as it rotates the fermions of the theory.

In order to reproduce this model within the language of tensor calculus, we introduce

a real multiplet V = {V, ζ, H, vµ, λ,D},2 with vanishing Weyl (w) and chiral (c) weights,

gauged by a chiral multiplet B
V → V + iB − iB , (2.1)

and a compensator chiral multiplet φ0 = {φ0, Ω0, F 0}, with (w, c) = (1, 1). The compen-

sator multiplet transforms under (2.1) as

φ0 → φ0 exp

(
−2

3
κ2iξB

)
, (2.2)

1We adopt the conventions of [14].
2In our notation, each multiplet is going to be identified with its lowest component. Higher components

are going to be denoted with subscripts, e.g. (V )ζ = ζ.
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where ξ is a real constant and the normalizations are the ones adopted in [14]. In the

Wess-Zumino gauge, the first components of V are put to zero: v = ζ = H = 0, and only

the gauge multiplet {vµ, λ, D} is non-vanishing. The only effective part of B is the real

part of the lowest component: θ = −2ReB, acting as

δ(θ)φ0 =
1

3
κ2i θ ξ φ0 , δ(θ)vµ = ∂µθ . (2.3)

The Lagrangian in the superconformal setup reads

L = −3
[
φ0φ

0
]
D
− 1

4

[
λPLλ

]
F
. (2.4)

In order to obtain Poincaré supergravity in the Einstein frame, part of the superconformal

symmetries have to be gauge-fixed. In particular, in this setup one proceeds to the Poincaré

supergravity by setting φ0 = κ−1. This mixes the symmetry (2.3) with the conformal U(1)

symmetry, acting e.g. as

δ(λT )φ
0 = iλTφ

0, δ(λT )F
0 = −2iλTF

0, δ(λT )ψµ =
3

2
iγ∗λTψµ , δ(λT )Aµ = ∂µλT ,

(2.5)

keeping after the gauge fixing λT = −1
3κ

2ξθ.

Once the conformal symmetry in (2.4) is gauge fixed and the auxiliary fields are inte-

grated out, supersymmetry is broken by a non-vanishing vacuum expectation value

〈D〉 = ξ (2.6)

and the goldstino can be identified with the gaugino λ. The component form Lagrangian

in the gauge in which the goldstino is set to zero is

e−1L =
1

2κ2

(
R(ω(e, ψ))− ψµγ

µνρ

(
∂ν +

1

4
ων

ab(e, ψ)γab +
1

2
iκ2ξ vνγ∗

)
ψρ

)

− 1

4
FµνF

µν +
3

κ2

(
Aa +

1

3
κ2vaξ

)(
Aa +

1

3
κ2vaξ

)
− 3F 0F

0
+

1

2
D2 − ξD ,

(2.7)

where Fµν = 2∂[µvν] and F 0, Aa are the two auxiliary fields of supergravity in the old-

minimal formulation. As anticipated, in the covariant derivative of the gravitino the vector

vµ has the role of gauge connection for the local R-symmetry. It is important to notice

that there exists a smooth limit for ξ → 0 in which supersymmetry is restored.

By integrating out the auxiliary degrees of freedom, the following expression for the

on-shell Lagrangian can eventually be obtained

e−1L =
1

2κ2

(
R(ω(e, ψ))− ψµγ

µνρ

(
∂ν +

1

4
ων

ab(e, ψ)γab +
1

2
iκ2ξ vνγ∗

)
ψρ

)

− 1

4
FµνF

µν − 1

2
ξ2.

(2.8)

The positive contribution to the vacuum energy given by the FI term can be recognized.

Extensions of this setup with chiral superfields can be found in [7, 18].
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Before ending this section, it is instructive to review why the gauged R-symmetry

was essential for the local supersymmetric completion of the FI term in [3], using the

Noether method. Recall first of all that, under rigid supersymmetry, D transforms to a total

derivative. In supergravity, however, when considering the supersymmetry variation of

LFI = −e ξD, (2.9)

we have to take into account that D does not transform as a total derivative:

δD =
i

2
ǫγ∗γ

µDµλ → δLFI = − i

2
eξ ǫγ∗ /Dλ+ . . . , (2.10)

where ǫ is the local supersymmetry parameter. In order to complete its variation in (2.9)

to a total derivative, one needs at least a gravitino-goldstino mixing term

Lmix =
i

2
eξ ψµγ

µγ∗λ . (2.11)

The variation of λ to Dǫ in the same term cancels also the contributions −1
4e ξ ǫγ

µψµD,

which come from the variation of the vielbein and of D in (2.9).

The remaining interesting contribution in δLmix is the one from δλ containing the

field-strength Fµν , which together with the term in the variation (2.10) where

Dµλ = . . .− 1

4
γ · Fψµ , (2.12)

produces

δ (LFI + Lmix) = e
i

4
ξ ψµγ

µνργ∗ǫ Fνρ + . . . . (2.13)

In order to eliminate it, in [3] a new term was added, modifying the covariant derivative

of the gravitino with a contribution proportional to vµ. This is the last term on the first

line of (2.7). To add the vector to the covariant derivative, one has to declare vµ as a

gauge field for the R-symmetry. This, in turn, also modifies the covariant derivative of the

gravitino supersymmetry transformation in the same way. As a consequence, the varia-

tion of the gravitino kinetic energy contains the curvature of these covariant derivatives,

canceling (2.13). The variation of (2.9) is therefore completely eliminated by adding a

gravitino-goldstino mixing term and by promoting the vector vµ to be the gauge field of

the R-symmetry rotating the gravitino and the other fermions.

In the next section we are going to show at which point of this procedure a difference

appears in the construction of the model of Freedman and of the one we are proposing and,

in turn, how we avoid the gauged R-symmetry that was necessary in [3].

3 A new D-term

In this section we are going to discuss the properties of the new D-term model when it is

coupled to supergravity. The pure abelian vector multiplet sector is always going to be

described by the Lagrangian

LNEW = −1

4

[
λPLλ

]
F
− κ2

[
ξ φ0φ0

w2w2

T(w2)T(w2)
(V )D

]

D

, (3.1)
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where ξ is a real constant, w2 is the chiral multiplet of (Weyl,chiral) weight (1,1):

w2 =
λPLλ

(φ0)2
, w2 =

λPRλ

(φ0)2
, (3.2)

T is the operator defined in [19, 20], which defines a chiral multiplet, and T defines an

antichiral multiplet.3 The chiral multiplet T
(
w2

)
has Weyl and chiral weights (2, 2), while

the multiplet (V )D is a real linear multiplet, which has Weyl and chiral weights (2, 0). It

is the conformal version of the multiplet K defined in [22], with components

(V )D ≡ D =
{
D, /Dλ, 0, DbF̂ab, − /D /Dλ,−�

CD
}
, (3.3)

where the definition of /Dλ and F̂ab can be found in [14, (17.1)]. It has been shown in [22]

that also the first term in (3.1) can be written in terms of this multiplet as

− 1

4

[
λPLλ

]
F
= [V D]D . (3.4)

The gauge invariance of the Lagrangian (3.1) is manifest. Using the fermionic nature

of λ and taking into account that

(
λPLλ

)
F
= 2λPL /Dλ+ F̂− · F̂− −D2 , (3.5)

one can write (3.1) as

LNEW = −1

4

[
λPLλ

]
F
− κ2ξ

[
(φ0φ0)3w2w2

D2
+D

2
−

D

]

D

, (3.6)

where

D2
+ = D2 − F̂+ · F̂+ , D2

−
= D2 − F̂− · F̂− . (3.7)

These factors appear in denominators and should thus be non-vanishing. If the vacuum

expectation value of D is vanishing, then the new ξ-term becomes ill defined. This term

has a structure similar to the models of [11], which make use of the same multiplets, but,

as we are going to show, in the bosonic sector it produces a linear term in the auxiliary

field D. The component expansion of (3.1) is indeed

e−1LNEW = −1

4
FµνF

µν − 1

2
λ/Dλ+

1

2
D2 − κ2ξφ0φ0D+ fermionic interactions . (3.8)

Notice that if one integrates out the D auxiliary field from (3.8) there is a contribution to

the pure bosonic sector of the form

Lξ = −1

2
ξ2

(
κ2φ0φ0

)2
, Lξ|⊡ = −1

2
ξ2 , (3.9)

where the last expression uses the Poincaré gauge φ0 = κ−1.

3In the superspace formalism of [21] the supergravity Lagrangian (3.1) has the form

LNEW =
1

4

(
∫

d
2Θ2E W

2(V ) + h.c.

)

+ 8

∫

d
4
θ E ξ

W2W
2

D2W2D
2
W

2
D

α
Wα.
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Let us now turn to the fermionic interactions arising from the couplings proportional

to ξ in (3.1), which are highly non-linear. To obtain these, note that the second term

of (3.1) contains a product of the linear multiplet (3.3) and a real multiplet

R =
φ0w2

T
(
w2

) · φ0w2

T (w2)
, i.e. LNEW = −1

4

[
λPLλ

]
F
− κ2ξ [RD]D , (3.10)

where R is built from chiral and antichiral multiplets. Such an action simplifies [23] and

for our case the terms that can have at most quadratic terms in the fermions are

2 e−1 [RD]D = (R)DD− (R)λ /Dλ− 1

2
iDψ · γγ∗(R)λ −DbFab(R)av + . . . . (3.11)

To find the relevant components, note that (3.10) contains three chiral multiplets. The first

is the compensating multiplet {φ0, PLΩ
0, F 0}. The second is the multiplet λPLλ, whose

F-component is (3.5) and its fermionic component is

PL

(
λPLλ

)
χ
=

√
2PL

(
−1

2
γ · F̂ + iD

)
λ . (3.12)

The third chiral multiplet is the multiplet T
(
w2

)
, whose lowest component is

T
(
w2

)
= (φ0)−2

(
2λPR /Dλ+ F̂+ · F̂+ −D2

)

− 2(φ0)−3

[√
2Ω

0
PR

(
1

2
γ · F + iD

)
λ+ F

0
λPRλ

]
+ 4-fermions .

(3.13)

Its fermion component is for the part linear in fermions

PL

(
T
(
w2

))
χ
= −

√
2PL /D

[
(φ0)−2

(
1

2
γ · F + iD

)
λ

]
+ . . . (3.14)

and the F component has no pure bosonic part. The components of R can be found then

from the tensor calculus rules. They take a simple form in terms of the composite fermion

G = 2φ0

(
1
2γ · F̂− − iD

)

D2
−

PLλ+ 2φ0

(
1
2γ · F̂+ + iD

)

D2
+

PRλ , (3.15)

whose left component has weights (w, c) = (12 ,
1
2) and transforms under supersymmetry as

δPLG = φ0PLǫ+ · · · , (3.16)

where dots refer to terms with fermionic component fields. We obtain therefore the ex-

pressions

(R)av =
1

4
iGγ∗γaG + . . . ,

(R)PLλ = iφ0PLG + . . . ,

(R)D = 2φ0φ
0
+

1

2
G /DG +

[
1

2φ0
GPLGF 0 −

√
2Ω

0
PLG + h.c.

]
+ . . . .

(3.17)
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The leading order contributions in the fermions to the second term in (3.1) are obtained

by inserting (3.17) into (3.11):

e−1 [RD]D =φ0φ0D+
1

4
D

[
G /DG+G

(
PL

F 0

φ0
+PR

F 0

φ0

)
G−2

√
2GΩ0+ψ ·γ

(
PLφ

0+PRφ0
)
G
]

+
i

8
Gγ∗γaGDbFab−

i

2
G
(
PLφ

0−PRφ0
)
/Dλ+4-fermions . (3.18)

Note that the terms without the gauge curvature in the Poincaré gauge φ0 = κ−1, Ω0 = 0,

where G = −2i 1
κDγ∗λ+ . . ., simplify to

−κ2ξ [RD]D|⊡ = LFI+Lmix+κe
ξ

D
λ
(
PLF

0 + PRF 0
)
λ+4-fermions + gauge field terms ,

(3.19)

where LFI and Lmix are the expressions (2.9) and (2.11), which appeared in the Freedman

model. Note, however, that before gauge fixing the first term is

LFI,new = κ2φ0φ0LFI . (3.20)

This prefactor, which is here just 1, is going to be relevant when discussing matter couplings

in section 4.

At this point it is instructive to understand the deeper origin of the difference between

the model presented here and the model of Freedman discussed in the previous section. The

term in (3.18) linear in Fµν and in the gravitino, namely the first correction to (3.19), is

Ldiff = −eξ
1

2D
ψµγ

µνρλ Fνρ . (3.21)

It is now the variation δλ = 1
2 iγ∗ǫD that cancels (2.13) and thus replaces the contribution

of the modified gravitino covariant derivatives. We observe that such term, after the D

field equation are used, does not vanish in the ξ → 0 limit:

Ldiff = −e
1

2
ψµγ

µνρλ Fνρ , δλ = . . .+
i

2
ξγ∗ǫ . (3.22)

The complete Lagrangian (3.1) still is ill defined in this limit.

We proceed now to couple the Lagrangian (3.1) to the pure supergravity sector. In

the superconformal setup the minimal model is described by

L = −3
[
φ0φ0

]
D
+
[
(φ0)3κm3/2

]
F
+ LNEW , (3.23)

where m3/2 is a real constant which is going to be identified with the gravitino mass. Notice

that, since there is no R-symmetry gauging, terms are allowed that explicitly break the

R-symmetry. This is the reason why a non-vanishing gravitino mass can be consistently

included within our model. Once we gauge fix and integrate out all the auxiliary fields,

one can notice that supersymmetry is spontaneously broken by 〈D〉 = ξ and the goldstino

is identified with the gaugino λ. Since the vacuum expectation value of D is not allowed to

vanish, supersymmetry cannot be restored and a smooth ξ → 0 limit does not exist, once

the Lagrangian is written on-shell.

– 7 –
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The complete component form of the off-shell Lagrangian, after gauge fixing the con-

formal symmetry setting φ0 = κ−1 and in the gauge in which the goldstino is gauge-fixed

to vanish, namely the unitary gauge, reads

e−1L =
1

2κ2

(
R(ω(e, ψ))− ψµγ

µνρ

(
∂ν +

1

4
ων

ab(e, ψ)γab

)
ψρ + 6AaA

a +m3/2ψµγ
µνψν

)

− 1

4
FµνF

µν − 3F 0F 0 +
6

κ
m3/2Re(F

0) +
1

2
D2 − ξD .

(3.24)

The equations of motion for the auxiliary fields give in the unitary gauge: F 0 = F 0 =

κ−1m3/2, D = ξ and Aµ = 0. The on-shell Lagrangian is therefore

e−1L =
1

2κ2

(
R(ω(e, ψ))− ψµγ

µνρ

(
∂ν +

1

4
ων

ab(e, ψ)γab

)
ψρ +m3/2ψµγ

µνψν

)

− 1

4
FµνF

µν −
(
1

2
ξ2 − 3

κ2
(m3/2)

2

)
.

(3.25)

A notable difference between the model (3.25) and the standard D-term model of

Freedman (2.8) is that the vector vµ is not appearing in the covariant derivative of the

gravitino in (3.25) as connection for the R-symmetry, since the latter is not gauged. In

addition notice that, even though we started from a Lagrangian with a complicated non-

linear term, there are no non-linearities in the bosonic sector and neither in the complete

action when it is written in the unitary gauge. In this model, finally, the supersymmetry

breaking scale is proportional to
√
ξ and the unitarity bound for the gravitino mass derived

in [24] is always respected.

4 Matter couplings and uplift

We are going now to couple the Lagrangian (3.1) to standard supergravity together with

a set of chiral multiplets φI = {φ0, φi}. The multiplet φ0 still serves as conformal compen-

sator with Weyl and chiral weights (1, 1), while the matter multiplets φi have vanishing

weights. We therefore consider the couplings

L = −3
[
φ0φ0e−K(φi,φi)/3

]
D
+
[
(φ0)3W (φi)

]
F
+ LNEW , (4.1)

where K(φi, φi) is the Kähler potential and W (φi) is the superpotential of the chiral model.

The properties of the Lagrangian (4.1), without the new term LNEW, can be found in [14].4

In the next section we are going to recast the model (4.1) into an equivalent one written

in terms of constrained multiplets.

We concentrate now on the bosonic sector of (4.1). As anticipated, the contribution

of LNEW in the chiral model (4.1) generates a positive definite term in the scalar poten-

tial. After gauge fixing of superconformal symmetry, setting φ0 = κ−1eK/6, and once the

auxiliary fields are integrated out, the pure bosonic sector of the theory reads

e−1L(B) =
1

2κ2
R− 1

4
FµνF

µν − 1

κ2
gi̄ ∂φ

i∂φ
̄ − V , (4.2)

4In comparison to that reference, our K is κ2K, our W is κ3W , φ0 = κ−1y, and the φi are the zα.
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with the scalar potential taking the form

V = κ−4eK
(
|∇iW |2 − 3|W |2

)
+

ξ2

2
e2K/3 , (4.3)

where ∇iW = ∂iW + KiW and |∇iW |2 = gi̄∇iW∇̄W . Note that the factor in the

ξ term originates from the prefactor in (3.20). We remind the reader that, within this

setup, supersymmetry always has to be spontaneously broken, albeit linearly-realized, and

the auxiliary field of the abelian vector multiplet has to be non-vanishing on the vacuum,

otherwise the model becomes ill defined.

As a simple application, let us couple the new term to a single chiral multiplet T

and investigate the resulting theory. In particular we choose the Kähler potential and

superpotential to be of the type studied in [15–17], but we make no further assumptions

and we are not including any constrained multiplet. We have therefore

K(T, T ) = −3 log
(
T + T

)
, W (T ) = W0 +A e−aT , (4.4)

where A and a are constants. The full bosonic sector is given by (4.2) but, due to the new

contribution proportional to ξ, the scalar potential (4.3) has the form

V = κ−4eK
(
|∇iW |2 − 3|W |2

)
+

ξ2

2
(
T + T

)2 . (4.5)

This specific setup has been studied in [15–17] with the use of constrained superfields. It

describes the impact of a D3 probe brane on the scalar potential of standard supergravity.

Interestingly, the model (4.2) not only has such a very specific form for the scalar

potential, but also contains an abelian gauge vector. It matches therefore exactly the field

content of the effective theory for the D3 brane at strong warping, where ξ is proportional

to the warping factor [25, 26].

5 Emergence of non-linear realizations

In this section we make explicit use of non-linear realizations of supersymmetry in order

to recast the model (4.1) into an equivalent one, in which the relation of our work to the

formalism of constrained multiplets is manifest. In particular, the chiral goldstino multiplet

X is emerging and we are going to show how a Kähler potential and a linear superpotential

in X are generated. In other words, the D-term breaking model, where supersymmetry

is linearly realized, is recast into an F-term breaking one, where supersymmetry is non-

linearly realized.

The key ingredient for the entire construction is a chiral multiplet X = {X,ΩX , FX},
with Weyl and chiral weights (1, 1) and that is constrained to be nilpotent [27–29]

X2 = 0 ⇐⇒ X =
Ω
X
PLΩ

X

2FX
. (5.1)

In particular, for this constraint to be imposed consistently, the auxiliary field FX has to be

non-vanishing on the vacuum. For the rest of the discussion, when referring to the multiplet
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X, we always assume it satisfies the constraint (5.1). Once the scalar X is replaced by

the composite expression Ω
X
PLΩ

X

2FX , local supersymmetry becomes non-linearly realized. In

general, when other multiplets are present in the theory, one can impose constraints on

them in order to eliminate specific component fields [20, 30].

As a first step in our analysis we organize the degrees of freedom of the vector multiplet

in two parts, one of which is going to contain the vector component field, while the other

is going to contain the goldstino and the auxiliary field, which breaks supersymmetry. As

shown in [31], this can be accomplished by parametrizing unconstrained multiplets in terms

of constrained ones. To this purpose, beside the nilpotent chiral multiplet X, we introduce

another real vector multiplet Ṽ = {Ṽ , ζ̃, H̃, ṽµ, λ̃, D̃} that satisfies the constraints5

XX D̃ = 0 , X PLλ̃ = 0 . (5.2)

The first constraint eliminates the highest component D̃ while the second eliminates the

gaugino λ̃. These component fields are both expressed in terms of the other degrees of

freedom in the theory. For a recent discussion in global supersymmetry in a setup where

the vector is eliminated see [32].

Notice that, when we write (5.1) as6

X =
1

2
FXχPLχ , PLχ ≡ PLΩ

X

FX
, (5.3)

the supersymmetry transformation of PLχ is only a function of PLχ and not of FX . There-

fore FX is an overall nonzero factor in (5.2) and the components PLλ̃ and D̃ depend on

the components of X only through PLχ (and PRχ for D̃).

We are now in the position to parametrize the vector multiplet V in terms of the

constrained multiplet Ṽ and X

V = Ṽ +
1

2
√
2

XX

φ0φ0

(
1

t
+

1

t

)
, t ≡ T

(
X
)

(φ0)2
. (5.4)

This parametrization is the generalization within supergravity of the one presented in [31].

Note that in this expression FX appears only in the combination χ and it appears in the

second term, due to the proportionality of X and T(X) with FX , in the form

f ≡ Re

(
FX φ0

φ0

)
. (5.5)

The expression in the bracket indeed has conformal weights (2, 0), so that one can take the

real part. In other words, f is the real part of the lowest component of φ0 φ0 t. Notice also

5Similar as in superspace, we can define the multiplets that have PLλ̃ and D̃ as lowest components by

respectively λ̃α = T(DαṼ ) and Dαλ̃α. These operations are consistent with the Weyl and chiral weights as

summarized in appendix B of [20], following [19].
6Such a splitting of X, but then in terms of two chiral multiplets X = A+Z, is discussed in the

appendix A. See e.g. the first of (A.5) with (A.7). In [33] another splitting is presented where the linear

multiplet is split in multiplets transforming under the standard non-linear realizations of supersymmetry.

In [10, 26] for example other similar splittings are presented. However these are not the splittings we use here.
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that the bosonic part of the D-component of V in (5.4) can be identified as

D =
√
2f + fermionic terms . (5.6)

To sum up, as a consequence of (5.4), the vector vµ is replaced by ṽµ plus some function

of χ and f , while λ and D are given entirely in terms of χ and f .

In the following, instead of the known Wess-Zumino gauge choice, it is going to be

convenient to adopt the modified gauge condition proposed in [34], namely

XṼ = XV = 0 , (5.7)

which means that the components Ṽ , ζ̃ and H̃ of Ṽ are removed from the spectrum and

expressed as functions of the goldstino and of the remaining degrees of freedom. To preserve

this gauge choice, the chiral multiplet B entering the gauge transformations (2.1) is required

to satisfy XB = XB, which implies that the only independent field in B is a real scalar in

the lowest component.

In other words after these redefinitions, the independent 4+4 field components, apart

from the pure supergravity fields and the compensator φ0, can be embedded into

{ṽµ, χ, f} , (5.8)

where ṽµ is a gauge vector and f is real.

Due to the properties (5.1), (5.2) one can then rewrite the chiral multiplet λPLλ as7

λPLλ = λ̃PLλ̃− 1

2
X T

[
X

(
(t+ t)2

t t

)]
. (5.9)

The F -component of this multiplet has pure bosonic part:

(
λPLλ

)
F
= F̃− · F̃− − 2f2 + fermionic terms , F̃µν = 2∂[µṽν] , (5.10)

which in fact is similar to (3.5), after using (5.6). Since for any real C of Weyl weight 2:

[C]D =
1

2
[T(C)]F , (5.11)

(5.9) implies for the action

−1

4

[
λPLλ

]
F
= −1

4

[
λ̃PLλ̃

]
F
+

1

4

[
XX

(
(t+ t)2

t t

)]

D

. (5.12)

Note that (5.2) implies that PLλ̃ is proportional to PLΩ
X and therefore both terms in (5.9)

are proportional to X. Thus w2w2 is proportional to XX and with the methods of

footnote 7 one can then obtain

w2w2

T(w2)T(w2)
=

XX

T(X)T(X)
. (5.13)

7The main tools in these calculations are the identities T(Z Y ) = Z T(Y ) for Z a chiral multiplet and

any Y , and that the nilpotent properties imply XT
(

X Y
)

= XT
(

X
)

Y .
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The left-hand side appears in R in (3.10). Concentrating now on the action term [RD]D,

the proportionality of R with XX discussed above implies that only some parts of D have

to be taken into account. The D-component of the first term in (5.4) can be omitted and

for the D-component of the second term the XX is replaced by 2FXF
X

= 2T(X)T(X).

Thus only the explicit term in (5.6) survives:

XX D =
1√
2
XX

T(X)T(X)

φ0φ0

(
1

t
+

1

t

)
, (5.14)

and (5.13) and (5.14) imply thus

RD =
1√
2
XX

(
1

t
+

1

t

)
. (5.15)

The theorem [35], written in our notations in (7.7) of [20], then implies

[RD]D =
1√
2

[
X

T(X)

t

]

F

=
1√
2

[
(φ0)2X

]
F
. (5.16)

A linear superpotential term for X has therefore been generated.

Combining everything, the Lagrangian (3.1) is

LNEW = −1

4

[
λ̃PLλ̃

]
F
+

1

4

[
XX

(
(t+ t)2

t t

)]

D

− 1√
2
κ2ξ

[
(φ0)2X

]
F
. (5.17)

The second term has an on-shell equivalence with the action [XX]D. Similar to

what has been done in global supersymmetry in [31] one can add to this Lagrangian a

contribution

Ladd = −1

4

[
XX

(
(t− t)2

t t

)]

D

. (5.18)

This term is proportional to t− t, which does not appear anywhere in (5.17), and thus it is

on-shell trivial. A more detailed argument is given in the appendix A, where the degrees

of freedom of χ and f (or Re t) are encoded in the multiplets Z and A1, while the degree

of freedom that appears only in (5.18) is contained in A2.

Adding (5.18) to (5.17) we thus obtain the simple result:

LNEW + Ladd = −1

4

[
λ̃PLλ̃

]
F
+ [XX]D − 1√

2
κ2ξ

[
(φ0)2X

]
F
. (5.19)

A canonical Kähler potential has also been generated for the nilpotent multiplet X.

When the supergravity action and matter couplings are included, the original La-

grangian (4.1) gets the final form

L = −3
[
φ0φ0e−K(φi,φi)/3

]
D
+
[
XX

]
D
+

[
− 1√

2
κ2ξ(φ0)2X + (φ0)3W (φi)

]

F

− 1

4

[
λ̃PLλ̃

]
F
.

(5.20)

This model describes the interactions of supergravity with the real vector ṽµ, the fermion

ΩX and the scalars and fermions of the matter chiral multiplets (φi,Ωi). The breaking
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is manifestly F-term. We stress the fact that supersymmetry has to be broken and there

always has to be a contribution to the breaking from the auxiliary field of X, otherwise

the model is ill defined. The multiplets appearing in (5.20) satisfy the constraints

X2 = 0 , XX D̃ = 0 , X PLλ̃ = 0 , D̃ = Dαλ̃α , (5.21)

while the matter chiral multiplets φi are unconstrained. Despite its simple form, the

model (5.20) is equivalent to (4.1) and its pure X sector coincides with the one of [15–

17, 36–42].

We can recast (5.20) into a more familiar form, defining the chiral multiplet S = X/φ0

with vanishing weights. We obtain then the Lagrangian

L = −3
[
φ0φ0e−K̂/3

]
D
+
[
(φ0)3 Ŵ

]
F
− 1

4

[
λ̃PLλ̃

]
F
, (5.22)

where the Kähler potential is

K̂ = −3 log

(
e−K(φi,φi)/3 − 1

3
SS

)
= K(φi, φi) + SS eK(φi,φi)/3 , (5.23)

and the superpotential is

Ŵ = W (φi)− κ2ξS/
√
2 . (5.24)

As a simple application, let us couple the new term to a single chiral superfield T and

investigate the resulting theory. In particular, for the T sector we choose the Kähler

potential and superpotential given in (4.4). Due to the coupling to our new term, the

model takes the form

K̂ = −3 log

(
T + T − 1

3
SS

)
, Ŵ = W0 +A e−aT − 1√

2
κ2ξS . (5.25)

The relation between our model and the ones in [15–17] describing an D3 uplift is now man-

ifest. We have to stress however that we started from the Lagrangian (4.1) and therefore

we have not introduced any constrained multiplet in the theory beforehand.

6 Conclusions and discussion

We showed how an action with a gauge multiplet can be constructed that contains a Fayet-

Iliopoulos term without R-symmetry gauging. This action has no non-linearities in the

bosonic sector or in unitary gauge, but is highly non-linear in the fermions. For consis-

tency the FI constant ξ should be non-vanishing and the model thus describes broken

supersymmetry. It can be included in a full model with matter multiplets, a Kähler man-

ifold and a superpotential, even though the ξ term explicitly breaks Kähler invariance.8

In particular, the impact of a D3 probe brane on the scalar potential of standard super-

gravity is nicely described in this setup. We took in this paper a constant parameter ξ

8This is at least so for the formulation with constant ξ. As mentioned below, ξ could be taken field-

dependent, which can restore a modified Kähler transformation in which ξ transforms under Kähler trans-

formations.
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and a unit gauge kinetic function for the action of the gauge multiplets. Note, however,

that once matter multiplets are introduced, the parameter ξ in (3.1) can become a real

field-dependent function ξ(φi, φi). The gauge kinetic function, which is set to unit in (3.1),

can also be a holomorphic function of the chiral multiplets.

In the last few years it was found that models with supersymmetry breaking have

a nice description in terms of constrained multiplets [27–29, 34, 43–45]. A systematic

description for rewriting regular superfields in terms of such constrained building blocks for

broken global supersymmetry has been developed in [31]. We upgraded ingredients of that

approach to the local superconformal tensor calculus to rewrite the new FI model. We found

that after suitable redefinitions, our model can be written in terms of a constrained gauge

multiplet λ̃ (with gauge field ṽµ) and the nilpotent chiral multipletX with a superpotential,

describing the supersymmetry breaking.

As a final comment, we observe that the model we are presenting enjoys a duality

invariance of the type discussed in [46, 47], which implies the electric-magnetic duality for

the U(1) gauge field. This is an on-shell duality and, in order to make it manifest, one

can consider the Lagrangian (5.20) and notice that the second constraint in (5.21) can

be relaxed on-shell as, after reintroducing an independent D̃, the solution of its equations

of motion is satisfying also the aforementioned constraint. The third constraint in (5.21)

can then be implemented with a Lagrange multiplier and, following the procedure of [47],

one can obtain the Lagrangian (5.20) where the multiplet PLλ̃ is replaced with its dual.

The interested reader can find more details in appendix B. This procedure shows that the

Lagrangian (4.1) enjoys an electric-magnetic duality.

Acknowledgments

We would like to thank Gianguido Dall’Agata, Christoph Roupec and Timm Wrase for

discussions. N.C. thanks the KU Leuven for hospitality. This work is supported in part

by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy

(P7/37), and in part by support from the KU Leuven C1 grant ZKD1118 C16/16/005.

N.C. is supported in parts by the Padova University Project CPDA144437. The work of

M.T. is supported by the FWO odysseus grant G.0.E52.14N. M.T. would like to thank the

University of Amsterdam for its hospitality during which part of this work has been done.

Furthermore M.T. is grateful to the Delta ITP for financing his stay.

A Parametrization of the X superconformal multiplet

This appendix contains the local superconformal version of the equations developed in rigid

superspace in [31, 34]. We start from the nilpotent chiral multiplet X with Weyl weight 1.

From this one we define

Z =
X

T(X)
T

(
(φ0)2X

T(X)

)
, (A.1)

which is also a chiral multiplet with Weyl weight 1. Since it is proportional toX, this multi-

plet is nilpotent and its lowest component is eliminated in terms of the others. Calculating
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ZT(Z) using the methods of footnote 7 we obtain

Z T(Z) = (φ0)2 Z , (A.2)

which implies that also the auxiliary field component of Z is defined in function of the

fermionic component. Therefore Z contains only one fermion as independent degree of

freedom.

Moreover X and Z satisfy

X
T(Z)

T(X)
= Z . (A.3)

Defining, the following chiral superfields of chiral weight 0:

A1 = A+ +A− , A2 = −i (A+ −A−) ,

A+ =
1

T(Z)
T

(
Z
T(X)

T(Z)

)
, A− =

1

T(Z)
T

(
Z
T(X)

T(Z)

)
=

T(X)

T(Z)
, (A.4)

we find using (A.3)

ZA+ = ZA− = X , ZA− = ZA+ = Z
T(X)

T(Z)
, (A.5)

such that

Z
(
A1 −A1

)
= 0 , Z

(
A2 −A2

)
= 0 . (A.6)

This implies that A1 and A2 contain only one real scalar in the lowest component as

independent degree of freedom. We have therefore decomposed the nilpotent goldstino

multiplet X into three constrained multiplets, one pure goldstino multiplet Z and two

constrained chiral multiplets A1 and A2.

To compare these with the objects in section 5, we extract from these objects the

leading terms:

Z =
X

t
+ 4-fermion terms ,

A+ = t+ fermionic terms , A− = t+ fermionic terms , (A.7)

Therefore A1 contains the real part of the auxiliary field that breaks supersymmetry, and

A2 contains its imaginary part.

Since t and t appear in (5.17) and (5.18) multiplied by XX, being 4-fermion terms,

we have also

XX

(
(t+ t)2

t t

)
= ZZA2

1 , XX

(
(t− t)2

t t

)
= −ZZA2

2 . (A.8)

In fact, using the decomposition in (A.5), we also have directly

XX = ZZA+A− = ZZ
(
A2

1 +A2
2

)
. (A.9)

Similarly, by the definitions in (A.4) and using (A.2) and (A.3), we have

(φ0)
2X = (φ0)2ZA+ = T

(
ZX

)
, (φ0)2ZA− = T

(
ZX

)
. (A.10)
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Due to the property [20] [T(C)]F =
[
T(C)

]
F
, the F -term density of both expressions is

equal and thus
[
(φ0)

2X
]
F
=

1

2

[
(φ0)2ZA1

]
F
. (A.11)

Since A2 depends on the imaginary part of t, which does not appear in A1 (due to the

constraints (A.6)), the last term in (A.9), which is equal to Ladd (5.18) as a consequence

of (A.8), is on-shell trivial.

B The electric-magnetic duality of the new D-term

In this appendix we give more details about the electric-magnetic duality invariance en-

joyed by our new D-term. We will formulate the procedure in four-dimensional N = 1

supersymmetry, which is sufficient to illustrate how the duality works in our setup, but the

results can then be easily lifted to supergravity.

In four dimensions the dual theory of a gauge vector is again a gauge vector theory.

The electric-magnetic duality is a symmetry that operates on the level of the equations of

motion of the abelian gauge vector. It is realized by exchanging the electric field Ei = F0i

with the magnetic field Bi = −1
2εijkFjk, and asking the equations of motion to remain

invariant. Therefore it is a property that holds on-shell, namely when we are using the

equations of motion. On the manifest Lorentz covariant formulation the duality acts by

exchanging the equations of motion for the field-strength of the gauge vector with the

Bianchi identity for the dual field-strength and vice versa, in other words the duality acts

by exchanging the field-strength Fmn by the dual field-strength εkℓmnFmn.

The formulation of the duality within a supersymmetric setup can be found for example

in [47], which we will follow here. In this appendix we follow the superspace conventions

of [21]. The supersymmetric procedure starts from a Lagrangian written in terms of the

vector multiplet’s V superfield field-strength

Wα = −1

4
D

2
DαV , (B.1)

which satisfies the supersymmetric embedding of the Bianchi identity ∂[mFkℓ] = 0 in

the form DαWα = Dα̇W
α̇
. Subsequently one relaxes the Bianchi identity, which stems

from (B.1) and introduces the term

i

2

∫
d2θ ZαWα + h.c. ⊃ Fkℓ ε

kℓmnBmn . (B.2)

Here Wα is unconstrained, but we have introduced the field-strength superfield of the dual

vector multiplet U (U is a real superfield), namely

Zα = −1

4
D

2
DαU , (B.3)

which contains the field-strength for the dual vector Bmn = ∂mCn − ∂nCm, where

Cm =
1

4
σα̇α
m [Dα, Dα̇]U | . (B.4)
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By integrating out U we get (B.1) and the theory takes the original form. However by

integrating out Wα we get the dual theory in terms of Zα. Essentially one has to show

that the theory takes the same form when U is integrated out with the form it has when

Wα is integrated out. In this way the field-strength of the gauge vector is exchanged with

the dual field-strength, within a setup that manifestly preserves supersymmetry.

We will now turn to the theory

LNEW =
1

4

(∫
d2θW 2(V ) + h.c.

)
+ 8

∫
d4θ ξ

W 2W
2

D2W 2D
2
W

2D
αWα (B.5)

and show how it preserves the aforementioned duality. Since the duality operates on the

level of the equations of motion we are allowed to use any form of the theory, as long as it

is on-shell equivalent to the original model (B.5). We will therefore assume one follows the

procedure presented in section 5 of the article, and in this way the theory takes the form

L =

∫
d4θ XX +

1

4

(∫
d2θ W̃ 2(V ) + h.c.

)
− ξ√

2

(∫
d2θ X + h.c.

)
. (B.6)

The superfields satisfy

X2 = 0 , X W̃α = 0 , |X|2DαW̃α = 0 . (B.7)

We will show that the gauge field belonging to the vector multiplet Ṽ in the Lagrangian (B.6)

enjoys the electric-magnetic duality.

To prove the duality we will bring the theory in a simpler form. In particular we will

show that the last constraint in (B.7) can be relaxed on-shell. This observation makes the

electric-magnetic duality much easier to prove in the supersymmetric setup, following the

method of [47].

We impose the middle equation in (B.7) with a chiral spinor Lagrange multiplier field

Bα. Including also (B.2), we write

L =

∫
d4θ XX +

1

4

(∫
d2θ W̃ 2 + h.c.

)
− ξ√

2

(∫
d2θ X + h.c.

)

+

(
− i

8

∫
d2θ (D

2
DαŨ)W̃α +

1

2

∫
d2θ BαW̃αX + h.c.

)
, (B.8)

where X is nilpotent (X2 = 0), W̃α, Ũ and Bα are unconstrained. First we prove the

equivalence with the Lagrangian (B.6) with the constraints (B.7). By varying Ũ we find that

W̃α = −1

4
D

2
DαṼ , (B.9)

where Ṽ is real but otherwise unconstrained. Varying Ṽ and Bα we find

δṼ : DαW̃α +Dα(XBα) +Dα̇(X B
α̇
) = 0 , (B.10)

δBα : XW̃α = 0 . (B.11)
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We can multiply (B.10) with |X|2, using (B.11) to derive also the last of (B.7). Therefore

we have proved that the latter constraint, even if it is not imposed by a Lagrange multi-

plier, will emerge from the equations of motion, and we can relax it in any situation where

we want to study an equivalent theory.

Instead of varying Ũ in (B.8), we now vary W̃α and Bα to get

δW̃α : W̃α − i

4
D

2
DαŨ +XBα = 0 , (B.12)

δBα : XW̃α = 0 . (B.13)

From here we see that by replacing W̃α back into (B.8) and using (B.12) and (B.13) we get

Ldual =

∫
d4θXX +

1

4

(∫
d2θ Z̃2(Ũ) + h.c.

)
− ξ√

2

(∫
d2θ X + h.c.

)
, (B.14)

where now Z̃α is the field-strength superfield of the constrained vector multiplet Ũ which

satisfies

Z̃α = −1

4
D

2
DαŨ , XZ̃α = 0 . (B.15)

Now following the inverse procedure of the one described in appendix A and in sec-

tion 5, one can go from the non-linear realization of the theory in terms of constrained

superfields X and Z̃α(Ũ), back to the linear realization in terms of (B.3) and find

LNEW-dual =
1

4

(∫
d2θ Z2(U) + h.c.

)
+ 8

∫
d4θ ξ

Z2Z
2

D2Z2D
2
Z

2D
αZα . (B.16)

This completes the proof of the equivalence between the theory (B.5) and the theory (B.16).

However, when (B.5) is describing the interactions of the electric field, then (B.16) will

describe the interactions of the magnetic, and vice versa, and since they are equivalent, the

theory enjoys electric-magnetic duality.
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