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1 Introduction

Conformal bootstrap uses associativity of the operator algebra to derive constraints on the

spectrum of conformal field theories [1, 2]. In the analytic approach one uses knowledge

about the spectrum of light operators in the crossed channel to make statements about

certain class of large spin operators in the direct channel. This is the method that we are

developing further in the present paper.

Consider a four-point function of scalar operators O with dimension ∆. In previous

works the leading correction to the anomalous dimensions of the double trace-like operators,

schematically O∂sO, with scaling dimensions ∆s = 2∆ + s+ γs was studied [3–5]. In this

paper we present an efficient method to take into account sub-leading corrections. These

include corrections due to

• descendants of a given primary operator;

• corrections which are of higher order in γs.

The procedure we adopt consists of two steps. First, following [6, 7], we change vari-

ables from the usual spin s to the conformal spin J

J2 = (∆ + s+ γs/2)(∆ + s+ γs/2− 1) . (1.1)

This simplifies action of the Casimir operator [8] on the conformal blocks. After this change

of variables the crossing equation in the limit v � u� 1 becomes

K̂∆

[
â(J)

(
u

1− v

)γJ
2

]
≡
∫
dj K∆(j, v)â(J)

(
u

1− v

)γJ
2

= f(v, u) , J2 =
j2

v
, (1.2)

where â(J) and γ(J) have an expansion in inverse powers of J and K∆(j, v) is an integral

kernel that can be computed order by order in integer powers of v and comes from the

collinear conformal blocks and three-point functions of generalized free fields.

To solve the crossing equations in the limit v � u� 1 amounts to rewrite a given light-

cone OPE expansion of f(v, u) in terms of â(J) and γJ using the known kernel K∆(j, v).

This is the problem we are solving in the bulk of the paper. It is important to keep in

mind that not all the operators in the OPE of f(v, u) in the r.h.s. are dual to the double

trace-like operators on the left. It is definitely true for isolated primary operators. But

for infinite families of operators with approximately equal twists the dependence on u can

significantly depart from the dependence of a single conformal block, schematically of the

form a+ b log u. This was discussed in the context of weakly coupled CFTs in [10], but the

idea is completely general. At present, to understand if a given family of infinite number of

operators with almost degenerate twists that appears in the expansion of f(v, u) contributes

to the l.h.s. requires a separate discussion and apart from very specific examples, see e.g. [9],

does not seem to be universal.

Second, notice that for all practical purposes it is enough to compute the convolution

K̂∆[J−δ]. We find that instead of computing the kernel explicitly and doing the large spin

integrals we can act with the Casimir operator C on the crossing equation. An immediate

– 2 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

consequence of this is an extension of the validity region of the formulas of [4, 5] from

∆− ∆ε
2 > 0 to arbitrary value, see [10]. We also get the following relations

K̂∆[1] = 1 , (1.3)

CK̂∆[J−δ] = K̂∆[J2−δ] ,

where the first equation is the statement that the unit operator in the crossed channel is

correctly reproduced. Using some basic properties of the kernel K̂∆ and the explicit form

of the Casimir operator the relations (1.3) can be solved recursively for δ = integer and

then analytically continued to arbitrary values of δ. This method allows one to effectively

compute corrections to â(J) and γJ without much effort.

Applying this method to the problem that involves a single conformal block in the r.h.s.

of (1.2) we find that the large spin expansions of â(J) and γJ are asymptotic, but Borel-

summable. This is expected, since, when convoluted with the kernel K̂∆, the expansions

lead unambiguously to the OPE expansion of f(v, u). We expect this property of the large

spin expansions to be completely universal and true in any CFT. We demonstrate these

properties by finding an explicit solution to the problem (1.2) when on the r.h.s. we have

a single scalar primary of dimension 2× integer. We also briefly describe a toy model that

captures qualitative features of the large spin expansion.

Expanding the crossing equation (1.2) to higher orders in (γJ)k we generate terms

(log u)k, with k ≥ 2, which cannot be reproduced by the exchange of a finite number of

operators in the crossed channel. Hence, an infinite number of operators with a particular

twist and three-point couplings at large spin is needed in the crossed channel. This was first

pointed out in [9]. This leads to accumulation points in the crossed channel. We add two

additional observations to this discussion. First, having an accumulation in the crossed

channel does not necessarily lead to an enhanced contribution (log u)k. The universal

example of this type is the exchange of the double trace-like operators themselves. It

is easy to see that in this case the enhancement does not occur and we find that the

application of the usual formulas of [4, 5], and their generalisations given in the present

paper, to this infinite family of operators leads to the correct result. Moreover, the low

spin double trace-like operators in the crossed channel dominate the sum. Second, when

the enhancement does occur we find that generically a contribution to the log u piece and

thus γJ is also generated. This contribution, however, requires a detailed knowledge of the

coupling to an infinite family of operators that is being exchanged. Thus, accumulation

points in the twist spectrum are necessary to satisfy crossing both in the direct and in the

crossed channel. Moreover, their effect generically spoils the simple relation between the

large spin data in one channel and the OPE data in the other channel.

After a general discussion which is applicable to an arbitrary CFT we apply this method

to the critical O(N) model in 2 < d < 4. We compare the known result for the two-loop, or
1
N2 , anomalous dimensions of higher spin currents in the symmetric traceless representation

of O(N), given in [11], with the prediction of the bootstrap methods. It requires a careful

treatment of descendants, accumulation points and higher order corrections in γJ described

above. After taking into account all corrections we find a perfect agreement with the result
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of [11]. We proceed by making a prediction for the two-loop anomalous dimension of

the currents in the antisymmetric representation of the O(N) and again find a perfect

agreement with the known results of the 4 − ε expansion [11]. We end up with some all-

loop relations between certain terms in the large spin expansion of anomalous dimensions

of currents in different representations of the O(N) symmetry.

Finally, we apply the same methods to the case of the O(N) model at small N . These

models are accessible both experimentally [13] and using the numerical bootstrap meth-

ods [14]. The new question that arises in this context is how well the large spin expansion

approximates the actual result for a given spin s. We find that the corrections become small

already for s = 4. This makes us believe that the first few terms in the large spin expansion

approximate the actual result with a precision better than 1%. We hope that we can check

this statement using the results obtained by other methods in the near future [16, 17].

The organization of this paper is as follows. In section two we develop an algebraic

approach to perform the sum over spins of double trace-like operators in the direct channel.

In section three we apply this approach to the computation of corrections to the anomalous

dimensions of higher spin operators due to the exchange of a primary plus all its tower of

descendants. In section four we summarize the general picture. In sections five and six

we apply this general picture to the critical O(N) model. Finally, we end up with some

conclusions and open problems, while many technical details are referred to the appendices.

2 Anomalous dimensions of higher spin operators: an algebraic approach

In this section we develop an algebraic approach to the crossing equation in the light-cone

limit. In the direct channel we focus on the contribution of certain higher spin operators. At

very large spin these operators behave like generalized free fields. To compute corrections to

the generalized free field behavior we go from the sum over spins to the integral. Conformal

blocks and three-point functions combine into a kernel K∆ which convoluted with the direct

channel data should reproduce the crossed channel. The point of this section is to show

that for practical purposes neither computing the kernel K∆, nor doing the large spin

integral explicitly is actually necessary. Instead it is enough to understand the effect of

acting with the Casimir operator on both sides of the crossing equation. This makes the

problem algebraic and allows to solve it much more easily.

2.1 The sum rule

Consider a four-point correlator of identical scalar operators O of dimension ∆ in a generic

CFT.1 Crossing symmetry implies the crossing equations

v∆

(
1 +

∑
τ,`

aτ,`u
τ/2fτ,`(u, v)

)
= u∆

(
1 +

∑
τ,`

aτ,`v
τ/2fτ,`(v, u)

)
, (2.3)

1We use the following conventions

〈OOOO〉 =
g(u, v)

(x2
12x

2
34)∆

, (2.1)

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

. (2.2)
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where we have singled out the contribution from the identity operator and have written

the conformal blocks as gτ,`(u, v) = uτ/2fτ,`(u, v) to emphasize their leading behavior at

small u. We will refer to the l.h.s. of (2.3) as the direct channel and to the r.h.s. as the

crossed channel.

As explained in [4, 5] the presence of the identity operator in the crossed channel implies

the existence of double trace-like higher spin operators, which we denote as [O,O]s, whose

twist approaches 2∆ for large spin. Furthermore, the presence of an operator Oε in the

crossed channel leads to a contribution to their anomalous dimension of the form

γs = − c0

sτε
+ · · · (2.4)

where ∆s = 2∆ + s + γs and c0 has been computed in [4, 5]. In order to understand this

result consider (2.3) in the small v limit. On the l.h.s. we focus on the contribution arising

from the double trace-like operators, with twist τ = 2∆ + γs. On the r.h.s. we focus on the

contribution arising from the operator Oε. We obtain the following sum rule∑
s

asu
γs/2f2∆+γs,s(u, v)|v→0 = aτεv

τε/2−∆fτε(v, u)|v→0 (2.5)

For τε/2 − ∆ < 0, the l.h.s. should reproduce a power law divergence near v = 0. Since

each conformal block on the l.h.s. diverges logarithmically as v → 0, this should involve an

infinite number of operators, and the divergence will arise from the large s region. In this

region the anomalous dimension is very small, and we can consider the piece proportional

to log u in the small u expansion of (2.5):∑
s

asu
γs/2f

(s)
coll(v) ∼

∑
s

as
γs
2

log uf
(s)
coll(v) = aτεv

τε/2−∆fτε(v, u)|v�u�1 ∼ v∆ε/2−∆ log u

(2.6)

where the collinear conformal blocks are given by

f
(s)
coll(v) = (1− v)s 2F1(∆ + s+ γs/2,∆ + s+ γs/2, 2∆ + 2s+ γs; 1− v) . (2.7)

The sum over spins on the l.h.s. of (2.6) reproduces the correct divergence provided the

behaviour (2.4) holds. More details will be given below.

2.2 Algebraic approach

Let us assume ∆ is sufficiently large and evaluate the divergent contributions coming from

the l.h.s. of (2.5) as v → 0. As shown in [6], the large spin expansion naturally organizes

itself in terms of the conformal spin

J2 = (∆ + s+ γs/2)(∆ + s+ γs/2− 1) (2.8)

In order to proceed we consider the scaling limit J2 = j2/v, with v very small, and con-

vert the sum over spins into an integral over j. Using the integral representation for the

hypergeometric function, expanding around v = 0 and integrating order by order we end
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up with the following expression (see appendix A for the details)2

∑
s

asu
γs/2f

(s)
coll(v) = v−∆

∫ ∞
0

dj K∆(j, v)â

(
j2

v

)(
u

1− v

)γ( j2
v

)
/2

. (2.9)

The kernel K∆(j, v) can be computed as an expansion in integer powers of v

K∆(j, v) =
4

Γ2(∆)
j2∆−1K0(2j) + · · · . (2.10)

For an intermediate operator of twist τε in the crossed channel, the anomalous dimension

and rescaled OPE coefficients (whose precise definition is given in appendix A) have the

following expansions

γ(J) = − c0

Jτε

(
1 + c1

1

J2
+ · · ·

)
, (2.11)

â(J) = 1− c0

Jτε

(
d0 +

d1

J2
+ · · ·

)
.

We could proceed as in [6]: compute the Kernel K∆(j, v) order by order in v and then

integrate over j at each order. This will lead to equations from where the coefficients ck
and dk can be computed, in terms of the r.h.s. of (2.5). This however, becomes cumbersome

very soon. In the following we will introduce an algebraic approach that will allow us to

compute the coefficients ck, dk very efficiently.

First we note that the Kernel K∆(j, v) satisfies the following condition∫ ∞
0

dj K∆(j, v) = 1 , (2.12)

to all orders in v. This guarantees we correctly reproduce the contribution from the identity

operator in the crossed channel. Next, let us introduce the following family of functions

F (n)(v) ≡
∫ ∞

0
dj K∆(j, v)

(
v

j2

)n
. (2.13)

Note that F (n)(v) will have a series expansion around v = 0 that starts at vn. The

problem of finding corrections to the anomalous dimension of double trace operators, or

OPE coefficients, will then be equivalent to the problem of writing the r.h.s. of (2.5), whose

details depend on the specific CFT under consideration, in the basis of functions F (n)(v).

2The transition from the sum to the integral is possible because we only care about terms that are

power-singular in v which cannot come from any finite number of terms in the sum over conformal blocks.

It also assumes that the CFT data admits the large spin expansion. The same argument applies to the

region of integration. We can imagine introducing some finite cut-off J0 which becomes j0 =
√
vJ0 in the j

variable. This cut-off goes to zero in the v → 0 limit. By construction corrections due to this cut-off behave

like log v, namely they have singularity of a single block and as such are subleading in all our computations.
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2.3 The Casimir operator and recurrence relations for F(n)(v)

In the following we study properties of the F (n)(v) functions. Following [6], let us start by

recalling from [8] the existence of a Casimir operator C such that∫ ∞
0

dj K∆(j, v)h

(
v

j2

)
= F (v)→

∫ ∞
0

dj K∆(j, v)
j2

v
h

(
v

j2

)
= CF (v) , (2.14)

where the Casimir operator is given by

C =
∆(∆− v)

v
+ (1− v)(1− v − 2∆)

∂

∂v
+ v(1− v)2 ∂

2

∂v2
. (2.15)

From this and the condition (2.12) it follows

CF (n)(v) = F (n−1)(v) , F (0)(v) = 1 . (2.16)

Furthermore, as already mentioned, F (n)(v) has a series expansion around v = 0 which

starts with vn. These properties can be used to derive recursion relations from which

F (n)(v) can be efficiently computed order by order in v. In order to find the recursion

relations it is convenient to write

F (n)(v) =
vn

(1− v)n

∞∑
`=0

d
(n)
`

v`

(1− v)`
. (2.17)

After some work it is possible to invert (2.16) to find

d
(n)
` =

∑̀
j=0

(−1)`−j d
(n−1)
j

(j + n−∆)(`+ n−∆)
, (2.18)

which should be supplemented with d
(0)
` = δ0

` . These recursion relations can be solved

iteratively for ` = 0, 1, 2, · · · and any n. For instance, for ` = 0 we find

d
(n)
0 =

d
(n−1)
0

(n−∆)2
, d

(0)
0 = 1 . (2.19)

This relation fixes d
(n)
0 for all integers. For our purposes it will be important to analytically

continue the result to non-integer n. The easiest way to do this is to compute d
(n)
0 explicitly

from the zeroth order Kernel (2.10). We obtain

d
(n)
0 =

Γ2(∆− n)

Γ2(∆)
. (2.20)

Which indeed can be seen to satisfy the recursion relations. We stress that this result is

valid for generic n. Using this expression we can get a recursion relation for d
(n)
1 and so

on. The solutions of these recursions are of the form

d
(n)
` = d

(n)
0 R

(n)
` , (2.21)
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where R
(n)
` are rational functions. Hence, they can be analytically continued without any

ambiguity. For instance, to second order we obtain

F (n)(v) =
vn

(1− v)n
Γ2(∆− n)

Γ2(∆)

(
1− n(3∆2 − 6∆ + n2 − 3∆n+ 3n+ 2)

3(−∆ + n+ 1)2

v

1− v
+ · · ·

)
,

(2.22)

where n is not necessarily an integer. Although the resulting expressions become more and

more cumbersome, the functions F (n)(v) can be computed to any desired order in v.

An important point to keep in mind is that if the small v limit in the crossed channel

is F (v) ∼ v
∆ε
2 then after acting with the Casimir operator the small v behavior becomes

F (v) ∼ v
∆ε−2

2 . Thus, for generic ∆ε by acting with the Casimir operator a finite number of

times we can make it singular. This singularity is reproduced by the large spin operators

in the direct channel. One can see that the result of this matching is equivalent to analytic

continuation of formulas [4, 5] away from the ∆− ∆ε
2 > 0 region (see also appendix A).

3 Application: contribution from a primary plus all its descendants

In this section we apply the method developed above to the problem of exchange of one

primary operator in the crossed channel together with its tower of descendants. For generic

quantum numbers of the external and exchanged operators we will not find a closed ex-

pression for an arbitrary term in the large spin expansion. Instead we present an explicit

solution for some particular values of those, including the case of exchange of a scalar pri-

mary with dimension ∆ε = 2n where n is integer. We elucidate general properties of the

large spin expansion, showing in particular that it is asymptotic but Borel-summable.

3.1 The problem and summary of the results

The most natural application of the method above is to compute corrections of the form

γs = − c0

Jτε

(
1 +

c1

J2
+
c2

J4
+ · · ·

)
(3.1)

due to the exchange, in the crossed channel, of an operator Oε plus all its tower of descen-

dants. We will first discuss the case of a scalar operator ∆ε. The conformal block for a

scalar operator of dimension ∆ε was given in [8]

f∆ε(v, u) =
∑
m,n=0

(∆ε/2)2
m(∆ε/2)2

m+n

m!n!(∆ε + 1− d/2)m(∆ε)2m+n
vm(1− u)n. (3.2)

We are interested in the piece proportional to log u in the small u expansion. After a short

computation we obtain

f∆ε(v, u)|u→0 = − log u
Γ(∆ε)

Γ2
(

∆ε
2

) 2F1

(
∆ε

2
,

∆ε

2
, 1− d

2
+ ∆ε; v

)
≡ log uF∆ε(v) (3.3)

This should be reproduced by the corresponding contribution to the anomalous dimension

of the double trace operators in the direct channel, namely∫
dj K∆(j, v)

1

2
γ

(
v

j2

)
= v∆ε/2a∆εF∆ε(v) . (3.4)

– 8 –
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Plugging the expansion (3.1) into the sum rule we get

− c0

(
F (∆ε/2)(v) +

∑
k=1

ckF (∆ε/2+k)(v)

)
= 2v∆ε/2a∆εF∆ε(v) . (3.5)

Hence, the problem of finding the coefficients ck is equivalent to the problem of writing Fε(v)

in the basis of functions v−∆ε/2F (∆ε/2+k)(v). Furthermore, since F (∆ε/2+k)(v) ∼ v∆ε/2+k

for small v, the system can be truncated to a given order and then expanding in powers of

v we obtain a system of equations, from which ck up to that order can be solved.

A natural question we would like to answer is what is the nature of the sum

γ̂(J) ≡ 1 +

∞∑
k=1

ck
J2k

. (3.6)

Does it have a finite radius of convergence, or is it asymptotic? Is it Borel-summable? As we

show below, the answer to these questions depend on the precise values of the parameters

of the problem, ∆, ∆ε and d. For isolated cases the series may have finite radius of

convergence, but we will find that generically, the series is asymptotic and Borel-summable.

Furthermore, the asymptotic behaviour is universal and we obtain an alternating series with∣∣∣∣ck+1

ck

∣∣∣∣ =
k2

π2
+ · · · , (3.7)

where, provided the series is asymptotic, this leading behaviour is independent of the pa-

rameters of the problem. For generic ∆ε we present a numerical evidence for this statement,

whereas for integer ∆ε/2 we prove it analytically.

3.2 Results for general ∆ε

We have applied the method above to compute coefficients ck in the series (3.1). Such coef-

ficients are complicated functions of the parameters of the problem, namely the dimension

∆ of the external operators, the dimension ∆ε of the intermediate primary being exchanged

and the spacetime dimension d. For instance,

c0 =
2Γ(∆ε)Γ

2(∆)

Γ2
(

∆ε
2

)
Γ2
(
∆− ∆ε

2

)aε , (3.8)

c1 =
∆ε

(
− 2d

(
∆ε(−3∆ + ∆ε + 3) + 2

)
+ ∆ε

(
− 12(∆− 1)∆ + ∆ε(∆ε + 4) + 8

)
+ 8
)

24
(
d− 2(∆ε + 1)

) .

The leading coefficient c0 agrees with [4, 5]. In general the coefficients are of the form

ck(∆,∆ε, d) =

(
∆ε
2

)
k(

1− d
2 + ∆ε

)
k

Pk(∆,∆ε, d) , (3.9)

where (a)n stands for the Pochhammer symbol and Pk(∆,∆ε, d) are polynomials of degree

3k, 2k and k in ∆ε, ∆ and d respectively. Furthermore, they have a parity property: they

are even in the variable ∆− d+2
4 . For specific values of the parameters, analytic expressions

– 9 –
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for ck can be found. First of all, c1, c2, · · · vanish for ∆ = (d − 2)/2 and ∆ε = 2. As we

will see below this is consistent with the results for the critical O(N) model at large N .

Furthermore, we can find analytic expressions in the following cases

∆ε = 1 , d = 3 , ∆ = 1/2 → ck = (−1)k+1

(
1
2

)
k−1

22k+1Γ(k + 1)
, (3.10)

∆ε = 1 , d = 3 , ∆ = 1 → ck = (−1)k
Γ
(
k + 1

2

)
4k
√
πΓ(k + 1)

.

In both cases the sum γ̂(J) = 1 +
∑∞

k=1
ck
J2k has a finite radius of convergence 1/J2 = 4.

Finally, let us analyse the expressions for large values of ∆ or ∆ε. For large values of ∆

and ∆ε ∼ 1 we obtain

Pk(∆,∆ε, d) =
Γ
(
k + ∆ε

2

)
Γ(1 + k)Γ

(
∆ε
2

)(∆2k − `d+ 2

2
∆2k−1 + · · ·

)
. (3.11)

In particular, note that we can re-sum the leading terms to obtain

γ̂(J) = 2F1

(
∆ε

2
,

∆ε

2
, 1− d

2
+ ∆ε;

∆2

J2

)
+ · · · . (3.12)

This gives the leading contribution in the large J,∆ limit with ∆/J kept fixed. For large

∆ε,∆ and J with ∆3
ε ∼ ∆3 ∼ J2 we obtain

γ̂(J) ∼ e
12∆2∆ε+∆3

ε
48J2 + · · · . (3.13)

For the general case we were not able to find analytic expressions for ck for arbitrary k.

However, the method described above can be used to compute a large number of them,

and these can be used to study properties of the sum γ̂(J).

Example: the Ising model. An interesting example to study is that of corrections to

anomalous dimensions of higher spin operators in the Ising model, due to exchange of the

ε operator. In this case we use d = 3, ∆ = 0.518151 and ∆ε = 1.41264 [21]. We have

computed all the coefficients up to c30. Figure 1 shows | ck+1

ck
| vs. k.

The data is consistent with the following behaviour∣∣∣∣ck+1

ck

∣∣∣∣ = ak2

(
1 +

b

k
+ · · ·

)
(3.14)

with a ∼ 0.1. Furthermore, for large k the series is alternating. This implies that the series

is actually asymptotic and Borel-summable. The result for the first few terms is

c1 = 0.06097 , c2 = −0.00846 , c3 = 0.00097 (3.15)

c4 = 0.00046 , c5 = −0.00165 , c6 = 0.00540

The theory of asymptotic series then suggests that the best approximation is obtained by

including the first few terms (5 or 6, depending of the spin), and the error is very small.

– 10 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

� � �� �� �� ��
�

�

�

�

�

�

��+�
��

Figure 1. Asymptotic behaviour of the coefficients ck for d = 3, ∆ = 0.518151 and ∆ε = 1.41264.

The data is consistent with the behaviour | ck+1

ck
| ∼ k2 for large k.

For instance, for spin s = 4, we have j2 ∼ 12 and the error is of the order of c6/126, which

is extremely small.

We have analysed several cases and found that generically the series is Borel summable,

with a universal behaviour at large k. We will prove this analytically in the next subsection

for ∆ε = 2m, with m integer. Before we go ahead, however, let us mention that the

asymptotic property and Borel-summability can be understood in terms of a relatively

simple toy model, which we discuss in the following.

Toy model. Many features of the above computation can be understood with a simple

toy model. Let us introduce a toy Kernel such that∫ ∞
0

K∆
toy(j, v)

(
v

j2

)n
=

vn

(1− v)n
Γ2(∆− n)

Γ2(∆)
. (3.16)

Now, introducing v
1−v = ζ ∫ ∞

0
K∆
toy(j)h

(
v

j2

)
=
∑
n=0

knζ
n (3.17)

is solved by

h(z) =
∑
n=0

Γ2(∆)

Γ2(∆− n)
knz

n. (3.18)

For the cases at hand, the r.h.s. will have a singularity at v = 1, hence∑
n=0

knv
n ∼ 1

(1− v)δ
= (1 + ζ)δ (3.19)

Which is a convergent alternating series when expanded around ζ = 0 (this is also true

for logarithmic singularities). Hence this will lead to a asymptotic expansion, with Borel

summable h(z).
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3.3 Analytic results for ∆ε = 2m

In the particular case in which ∆ε/2 is an integer, we can actually introduce a new for-

mulation which is even more efficient. Let us introduce the variable ζ = v/(1 − v) and

define an infinite dimensional vector space such that to each function regular at ζ = 0 we

associate a vector:

f(ζ) = a0 + a1ζ + a2ζ
2 + · · · → ~f = (a0, a1, a2, · · · )T . (3.20)

For instance, F (0)(v) → ~F (0) = (1, 0, 0, · · · )T . Now the recurrence relations (2.18) can be

written in a very convenient form, namely

~F (n+1) = B ~F (n), (3.21)

where B is an infinite dimensional matrix whose matrix elements are given by

Bi,j =

{
(−1)i−j+1

(i−∆)(j−∆+1) i− j ≥ 1 ,

0 otherwise ,
(3.22)

where the indices i, j run from zero. B can be interpreted as the inverse of the Casimir

operator, although the matrix B has zero determinant.

Let us consider for example the case ∆ε = 2 and let us apply this formalism. In matrix

notation the sum rule takes the form

c0(1 + c1B + c2B2 + · · · ) ~F (1) = ~F∆ε , (3.23)

where remember ~F (1) = B ~F (0). The important point is that Bn ~F (0) has all its first nth

elements equal to zero, so that the above system can be truncated. Furthermore, remember

that ~F∆ε is given by a hypergeometric function (times a power of v). As such, there exist

a second order differential operator that annihilates it. In matrix notation

D ~F∆ε = 0 (3.24)

with

Di,j = (2j −∆ε)(−d+ 2j + ∆ε)δi,j + 2(2− d+ 2j)δi−1,j . (3.25)

Hence, we get the following matrix equation for the coefficients ck

D
(

1 +
∑
`

ckBk
)
~F (1) = 0 . (3.26)

In practice, we can truncate the matrices to a given order n × n and then solve for

c1, · · · , cn−1. Just to give an example, for the simplest case ∆ε = 2, d = 2 we obtain

c1 =
1

2
(∆−2)∆ , c2 =

1

3
(∆−2)2∆2, c3 =

1

12
(∆−2)2∆2(3∆2−6∆−1) , (3.27)

and so on. Let us stress that this method is very efficient.
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For general values of ∆ε = 2m the matrix equation becomes

D
(

1 +
∑
`

ckBk
)
Bm ~F (0) = 0 (3.28)

from which the coefficients ck can be computed, as explained above. For ∆ = 3, 4, . . . they

have the general form

ck =

∆−2∑
j=1

bj(∆ε,∆, d)
(
j(j + 1)

)k
, (3.29)

where bj(∆ε,∆, d) are in general complicated but for any fixed ∆ε = 2, 4, · · · they can be

computed for general d and ∆ (and we have computed them up to ∆ε = 12). For instance,

bj(∆ε = 2,∆, d) =
(d− 4)(−1)j(2j+1)Γ(∆−1)2Γ

(
d
2−∆

)
Γ
(
− d

2 +j+∆+1
)

2Γ
(
− d

2 +∆+1
)
Γ(−j+∆−1)Γ(j+∆)Γ

(
d
2 +j−∆+1

) . (3.30)

The limit d→ Z should be taken with care, as ∆ and j above are also integer.

Let us next focus in a specific example, lets say ∆ε = 2 and d = 2. For ∆ = 3, 4, · · ·
we obtain

ck =

∆−3∑
j=1

(2j + 1)

(∆− 1)2

(
j(j + 1)

)k
. (3.31)

Given this, we can compute γ̂(J) = 1 + c1
J2 + · · · . We obtain

γ̂(J) =
J2

(∆− 1)2

(
1

J2
+ψ

(
3

2
−x
)

+ψ

(
3

2
+x

)
+ψ

(
∆− 1

2
−x
)

+ψ

(
∆− 1

2
+x

))
, (3.32)

where we have introduced x = 1
2

√
1 + 4J2 and ψ(z) is the digamma function. By using the

following identities

ψ(−z) = ψ(z) + π cot(πz) +
1

z
, (3.33)

ψ(z + 1) = ψ(z) +
1

z
,

we can write

γ̂an.(J) =
2J2 + ∆ + ∆

√
1 + 4J2

2(1−∆)(J2 + ∆−∆2)
+

J2

(∆− 1)2
Υ(x) , (3.34)

where

Υ(x) = ψ

(
x+

1

2

)
+ ψ

(
x− 1

2

)
− ψ

(
x+

1

2
−∆

)
− ψ

(
x− 1

2
+ ∆

)
(3.35)

has been introduced for later convenience. We see that γ̂(J) and γ̂an.(J) differ by

γ̂an.(J)− γ̂(J) =
J2π

(1−∆)2

(
tan(πx)− tan

(
π(x−∆)

))
, (3.36)

which vanishes for ∆ integer, so that both expressions agree in this case. On the other hand,

for arbitrary ∆, not necessarily integer, γ̂an(J) behaves smoothly for large J , whereas γ̂(J)
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has an essential singularity. Hence we claim that γ̂an.(J) is the correct analytic continuation,

valid for arbitrary ∆. Indeed, expanding it for large J we obtain

γ̂an.(J) = 1 +
∆(∆− 2)

2J2
+

∆2(∆− 2)2

3J4
+

(∆− 2)2∆2(3∆2 − 6∆− 1)

12J6
+ · · · (3.37)

which exactly agrees with (3.27) for any value of ∆.

We have performed the resummation and analytic continuation for ∆ε = 2, 4, · · · and

d even consistent with the unitary bound. For d = 0, 2, · · · ,∆ε the expressions have always

the form

γ̂(J)an. = R1(x) +R2(x)Υ(x) , (3.38)

where remember x = 1
2

√
1 + 4J2 and R1 and R2 are rational functions of x which depend

of course on ∆ and the specific values of ∆ε and d. Note that for integer values of ∆,

Υ(x) becomes a rational function and the expansion in 1/J2 will have a finite radius of

convergence. On the other hand, as we will show in appendix B, for generic ∆ the series is

asymptotic, with its asymptotic behaviour controlled by the universal function Υ(x), which

is independent of d and ∆ε.

Finally, let us comment on the re-summed results for ∆ε = 2, 4, · · · and d = ∆ε + 2,

∆ε+4, · · · , 2∆ε.
3 In this case, the behaviour is very different and the radius of convergence

is finite, even for arbitrary ∆. For instance, for ∆ε = 4, d = 6 we obtain

ck =
1

2

(
(∆− 1)

(
(∆− 1)(∆− 2)

)k − (∆− 3)
(
(∆− 2)(∆− 3)

)k)
(3.39)

that leads to

γ̂(J)an. =
J4(

J2 − (∆− 3)(∆− 2)
)(
J2 − (∆− 2)(∆− 1)

) (3.40)

which has a finite radius of convergence.

3.4 Exchange of operators with spin

The large spin expansion of the anomalous dimension of double trace-like operators is con-

trolled by the twist of the exchanged operators. Hence, it is important to take into account

exchanged operators with spin. The methods developed in section 2 can be applied in a

straightforward way, provided we know enough about the conformal blocks for intermedi-

ate operators with spin vτε/2fε(v, u). For applications to the anomalous dimension, we will

be interested in the piece proportional to u0 log u in a small u expansion. As we show in

appendix C, for an intermediate operator of twist τε = ∆ε − ` and spin ` we obtain

fε(v, u)|log u = −(−1)`Γ(∆ε + `)

Γ2
(

∆ε+`
2

) (
1 +

∑
i=1

a
(i)
∆ε,`

vi
)
. (3.41)

It is shown in the appendix how to compute the coefficients a
(i)
∆ε,`

. Once these coefficients

are known we proceed exactly as for the case of a scalar exchange. We obtain

γs = − c0

Jτε

(
1 +

c1

J2
+ · · ·

)
, (3.42)

3Notice that the scalar operator with dimension d− 2m satisfies unitarity only for k ≤ d+2
4

.
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with

c0 = aε
2(−1)`Γ(τε + 2`)Γ2(∆)

Γ2
(
∆− τε

2

)
Γ2
(
`+ τε

2

) ,
c1 = −

(−2∆ + τε + 2)2
(
2`2(d+ τε − 2) + 2`(τε − 1)(d+ τε − 2) + (d− 4)τ2

ε

)
8(d+ 2`− 4)

(
d− 2(`+ τε + 1)

) (3.43)

− 1

12
τε
(
τε(−3∆ + τε + 3) + 2

)
,

and so on. c0 above agrees with the result obtained in [4, 5].

Finally, we note the coefficients c1, c2, · · · do not depend on the spin ` for τε = d−2. We

expect that this persists for arbitrary ci (although we have computed just a few of them)

so that the problem is thus reduced to the case of a scalar operator being exchanged. Of

course, this case is very special since it describes conserved currents. In this case we can

re-sum the whole series coming from descendants to get

γ̂(J) =
Jd−2Γ

(
3
2 −∆ + 1

2

√
1 + 4J2

)
Γ
(
∆− d−1

2 + 1
2

√
1 + 4J2

)
Γ
(

1+d
2 −∆ + 1

2

√
1 + 4J2

)
Γ
(
∆− 1

2 + 1
2

√
1 + 4J2

) . (3.44)

If we plug the zeroth order value in γs value for J2 in the formula above we get

the following simple formula which takes care of contribution of descendants of conserved

currents in general number of dimensions

γs = −c0
Γ(s+ 1)Γ

(
2∆ + s− d

2

)
Γ
(
s+ d

2

)
Γ(2∆ + s− 1)

= − c0

sd−2
+ . . . . (3.45)

4 General picture

As we have seen in the previous section, given an operator of twist τε in the cross-channel,

the anomalous dimension of higher spin double trace operators receives corrections of the

form (3.1), while the same is true for the corresponding OPE coefficients. For a generic

CFT then the naive expectation would be

γnaive
s = −

∑
τε,`

c0(τε, `)

Jτε

(
1 +

c1(τε, `)

J2
+
c2(τε, `)

J4
+ · · ·

)
, (4.1)

δânaive
s = −

∑
τε,`

c0(τε, `)

Jτε

(
d0(τε, `) +

d1(τε, `)

J2
+
d2(τε, `)

J4
+ · · ·

)
,

where the sum runs over the whole spectrum. For isolated operators in the spectrum, the

coefficients ck, dk are the ones computed above. In any CFT, however, there are accumu-

lation points, where an infinite number of operators is arbitrarily close to specific twists,

so that the sum above is at best formal. When considering the contributions to (4.1) from

a tower in an accumulation point, two things can occur:

• The sum over spins for a given twist is convergent: in this case, the naive expec-

tation (4.1) captures the correct answer. This happens, for example, when double

trace-like operators themselves get exchanged.
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• The sum over spins for a given twist is divergent: this is signalling an enhancement of

the log u divergence on the r.h.s. of the sum rule (2.6). In this case the contribution to

the r.h.s. from the infinite tower of operators exchanged has to be computed carefully.

Examples of this phenomenon are discussed in [9, 10].

This second effect is actually necessary for consistency of the crossing relation. Indeed,

plugging the expansions (4.1) into the full sum in the direct channel∫ ∞
0

dj K∆(j, v)(1 + δâ)

(
u

1− v

)γ/2
(4.2)

we see that at higher orders in γ we produce higher powers of log u, which can only be

reproduced from an infinite number of operators on the crossed channel.

In order to understand the situation in this case, let us consider a simple example.

Suppose the spectrum contains two isolated primary operators of twist τ1 and τ2 (such

that no other primary or descendant has their twist), and let us consider the contributions

from (4.2) to order vτ1/2+τ2/2, arising from quadratic corrections. We obtain

c0(τ1)c0(τ2)

(
log

(
u

1− v

)
d0(τ1) + d0(τ2)

2
+

1

4
log2

(
u

1− v

))∫ ∞
0
dj K∆(j, v)

(√
v

j

)τ1+τ2

,

(4.3)

which at leading order in v is

c0(τ1)c0(τ2)

(
log u

d0(τ1) + d0(τ2)

2
+

1

4
log2 u

)
F (τ1/2+τ2/2)(v) . (4.4)

As shown in [4, 5] τ1 + τ2 will be an accumulation point in the CFT spectrum. It follows

that we can consider the exchange of an infinite number of operators with twist close to

τ1 + τ2 in the crossed channel. The microscopic data of the CFT should be such that the

quadratic logarithm in (4.4) is reproduced [9]. Furthermore, the anomalous dimension will

generically contain a term of the form

γs = − c̃0

Jτ1+τ2
+ · · · . (4.5)

In order to compute c̃0, we need to consider its contribution to the log u term, together

with the contribution from (4.4), and match that to the appropriate log u piece on the

crossed channel. We will perform this explicitly for the examples below.

5 Example: the critical O(N) model at large N

In this section we consider the critical O(N) model at large N . We consider the 1
N2

correction to the anomalous dimension of the higher spin currents in the symmetric traceless

representation of the O(N) model. It was computed explicitly in [11]. We consider the

large spin expansion of their result and compare it to the predictions from this paper. In

particular this involves taking into account corrections due to infinite families of operators in
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the crossed channel as well as corrections which are quadratic in γs. The two computations

perfectly agree.

In principle, computations in this section could be extended to higher orders in 1
J as

well as higher 1
N orders but this would require knowledge of the correspondent OPE data

as well as evaluating correspondent sums over operators.

5.1 Known results

Let us consider the critical O(N) model in d = 2µ dimensions, with 1 < µ < 2. Correlators

in this theory can be computed perturbatively in the large N expansion. The spectrum

includes the fundamental field σi of dimension ∆σ = µ−1+γσ and the Lagrange multiplier

field α of dimension ∆α = 2 + γα with

γσ =
η1

N
+ · · · , (5.1)

γα = −4η1

N

(µ− 1)(2µ− 1)

2− µ
+ · · · ,

where η1 = 2(2−µ)Γ(2µ−2)
Γ(µ−1)2Γ(2−µ)Γ(µ+1)

. We also have an infinite number of operators formed out

of these and their derivatives.

In order to apply the methods of the previous sections, we consider the four-point

correlator

〈σi(x1)σj(x2)σk(x3)σl(x4)〉 =
gijkl(u, v)

x2∆
12 x

2∆
34

, (5.2)

defining fijkl(u, v) = v∆gijkl(u, v), crossing symmetry implies

fijkl(u, v) = fkjil(v, u) . (5.3)

The above correlator can be conveniently decomposed into representations of the O(N)

global symmetry

fijkl(u, v) = δijδklf
S(u, v) +

1

2

(
δikδjl + δilδjk −

2

N
δijδkl

)
fT (u, v) (5.4)

+
1

2
(δikδjl − δilδjk)fA(u, v) , (5.5)

where S, T,A denote the singlet, traceless symmetric and anti-symmetric representations.

In this way, we can decompose the crossing relations into three different channels:

fT (u, v) + fA(u, v) = fT (v, u) + fA(v, u) ,

fS(u, v) +

(
1− 1

N

)
fT (u, v) = fS(v, u) +

(
1− 1

N

)
fT (v, u) , (5.6)

2fS(u, v)−
(

1 +
2

N

)
fT (u, v) + fA(u, v) = −2fS(v, u) +

(
1 +

2

N

)
fT (v, u)− fA(u, v) .

In particular, these relations imply

fT (u, v) =
1

2

(
fT (v, u) + fA(v, u)

)
+ fS(v, u)− fT (v, u)

N
. (5.7)
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We will apply our considerations above to this crossing relation. In the direct channel (l.h.s.

of (5.7)) we will consider higher spin operators, in the symmetric traceless representation,

of the form σ(i∂i1 · · · ∂isσj). These operators were considered in [11] where their anomalous

dimension was computed to order 1/N2. More precisely,

∆s = s+ 2γσ +
γ

(1)
s

N
+
γ

(2)
s

N2
+ · · · . (5.8)

The results are given in formulas (5.24) and (5.25) of that paper (upon taking η1 → 2η1

and setting n→ s). At one loop the result is

γ(1)
s = − 2µ(µ− 1)

(µ− 1 + s)(µ− 2 + s)
η1 = −2µ(µ− 1)

J2
0

η1 , (5.9)

where we have written the result in terms of the zeroth order conformal spin J2
0 = (µ −

1 + s)(µ− 2 + s). Note that at this order we could have written the result in terms of the

full conformal spin J2 = (µ− 1 + s+ γs/2 + γσ)(µ− 2 + s+ γs/2 + γσ). At two loop all the

ingredients of the answer can be readily expanded for large spin except for

R(s, µ) =

∫ 1

0

∫ 1

0
dαdβαµ−3βµ−3(1− α− β)s, (5.10)

where the spin is even. We see that for large spin the leading contribution comes from

the corners α, β ∼ 0 and α, β ∼ 1. The first corner can be analysed by changing variables

α = A/s, β = B/s, while the second by changing variables α = 1 − A/s, β = 1 − B/s.
As a result, the large s expansion will consist of two kind of terms. We obtain (see also

appendix E)

R(s, µ) = Γ2(µ− 2)
1

s2µ−4

(
1 +

(3− 2µ)(µ− 2)

s
+

(µ− 2)(µ− 1)(2µ− 3)(6µ− 11)

6s2
+ · · ·

)
+

1

s2

(
1 +

3− 2µ

s
+

(µ− 2)(3µ− 2)

s2
+ · · ·

)
. (5.11)

When expanding the full answer, we obtain different kind of contributions

γ(2)
s = I1 + I2 + I3 + I4 , (5.12)

where I1 includes a term proportional to log J0

J2
0

plus odd powers of 1/J0, I2 includes a single

term proportional to 1/J2
0 , I3 includes terms of the form 1

J2µ−2+2n
0

and I4 even powers of

1/J0 starting with 1/J4
0 . More precisely

I1 =
8(µ− 1)2µ(2µ− 1)

(µ− 2)
η2

1
log J0

J2
0

+ 4η2
1
µ(µ− 1)

J3
0

− 1

2
η2

1

(µ− 1)µ
(
8(µ− 1)µ− 1

)
J5

0

+ · · · ,

I2 =−
4(µ−1)µ

(µ(µ2−5µ+5)
(µ−2)(µ−1)

−(2µ2−3µ+2)
(
ψ(2−µ)−ψ(µ−1)+ψ(2µ−2)+γ

)
+2(µ−1)(2µ−1)ψ(µ−1)+1

)
µ− 2

η2
1

J2
0

,

I3 =−2
µ2(1−µ)2Γ2(µ−2)

J2µ−2
0

η2
1

(
1+

(µ−3)(µ−2)(µ−1)

3J2
0

+
(µ−3)(µ−2)µ

(
µ(5µ−21)+19

)
(µ−1)

90J4
0

+ · · ·
)
,

I4 =
2(µ− 1)µ

(
µ(4µ− 3)− 4

)
3(µ− 2)

η2
1

J4
0

−
2(µ− 1)2µ

(
µ
(
15(µ− 5)µ+ 94

)
− 2
)

15(µ− 2)

η2
1

J6
0

+ · · ·

written in terms of the zeroth order Casimir J2
0 = (µ− 1 + s)(µ− 2 + s) and we kept only

first several terms in the expansion of the full answer.

– 18 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

5.2 Microscopic interpretation

Let us interpret the above expansion in terms of exchanged operators in the crossed channel,

r.h.s. of (5.7). In the formulas of sections two and three, the dimensions of space-time and

of the external operators are to be set to d = 2µ, ∆ = µ− 1 + γσ.

Exchange of α. Let us first consider the exchange of the scalar auxiliary field α in the

crossed channel. This leads to the following contribution

Iα = − c0

J∆α

(
1 +

c1

J2
+
c2

J4
+ · · ·

)
. (5.13)

Where the coefficients ck are those of section three, with ∆ε = 2 + γα and the relevant

three point function can be found in eq. (21) of [19]. Expanding to order 1/N2 we get

c0 =
2µ(µ− 1)

N
η1 +

4 sin(πµ)Γ(2µ− 2)
(
γ

(1)
α ψ(µ− 2) + γ

(1)
α + 2γ

(1)
σ

µ−2 + g1

)
π(µ− 2)N2Γ(µ− 2)2

+ · · · , (5.14)

where g1 can be found in [19]. Furthermore,

c1 = −γ
(1)
α + 6γ

(1)
σ

6N
+ · · · , c2 =

γ
(1)
α

30N
+ · · · , c3 = − 4γ

(1)
α

315N
+ · · · , (5.15)

etc. Finally, recall that the full Casimir J2 contains γs itself, which can in turn be first

expanded in powers of 1/N and then around J = ∞. Putting all the pieces together we

find:

Iα =
I

(1)
α

N
+
I

(2)
α

N2
+ · · · , (5.16)

with

I(1)
α = −2µ(µ− 1)η1

J2
0

,

I(2)
α =

8(µ− 1)2µ(2µ− 1)η2
1

(µ− 2)J2
0

log J0 (5.17)

+
4(µ− 1)µη2

1

J3
0

−
(µ− 1)µ

(
8(µ− 1)µ− 1

)
η2

1

2J5
0

+ · · ·

+

4(µ− 1)µ
(

(6µ− 4µ2 − 2)ψ(µ− 2)− π3/2g121−2µ csc(πµ)Γ(µ+1)

Γ
(
µ− 1

2

) − 4µ2 + 6µ− 3
)

(µ− 2)J2
0

+
2(µ− 1)µ

(
µ(4µ− 3)− 4

)
η2

1

3(µ− 2)J4
0

−
4
(
(µ− 1)2µ(2µ− 1)

)
η2

1

15(µ− 2)J6
0

+ · · · .

We see that I
(1)
α exactly reproduces the one-loop contribution to γ

(1)
s . Then I

(2)
α exactly

reproduces I1 and I2 plus the leading term in I4 in (5.12),
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Exchange of higher spin operators σ∂`σ. Next let us consider the tower of higher

spin operators of the form [σi, σj ]`, with spin ` = 0, 1, 2, · · · . Recall that the odd spin

operators transform in the anti-symmetric representation of the O(N) symmetry, whereas

the even spin ones transform in the symmetric traceless representation. In this case the

exchanged operators have twist

τ` = 2µ− 2 + 2γσ + γ` , γ` = − 2µ(µ− 1)

(µ− 1 + `)(µ− 2 + `)

η1

N
+O

(
1

N2

)
. (5.18)

So that the coefficients c0(τ`, `) become

a`
2(−1)`Γ(τ` + 2`)Γ2(∆)

Γ2
(
∆− τ`

2

)
Γ2
(
`+ τ`

2

) = a`
(−1)`Γ2(µ− 1)Γ

(
2(µ+ `− 1)

)
2Γ2(µ+ `− 1)

(γ
(1)
` )2

N2
+ · · · . (5.19)

Hence, at this order, we can approximate the OPE coefficients a` by their mean field theory

value. For the symmetric traceless and anti-symmetric representations

a
(0)
` = 2

Γ2(`+ µ− 1)Γ(`+ 2µ− 3)

Γ2(µ− 1)Γ(`+ 1)Γ(2`+ 2µ− 3)
, (5.20)

while the singlet representation does not contribute at this order. At leading order in 1/J

we obtain

I[σ,σ] = −1

2

1

J2µ−2

∞∑
`=0

4(−1)`(µ− 1)2µ2(2`+ 2µ− 3)Γ(`+ 2µ− 3)

(`+ µ− 2)2(`+ µ− 1)2Γ(`+ 1)

η2
1

N2
+ · · · (5.21)

= −2µ2(1− µ)2Γ2(µ− 2)

J2µ−2

η2
1

N2
+ · · · .

It is worth noting that the sum over spins above converges very quickly for any µ and already

first few terms approximate the exact answer with the precision better than 1%. This is

related to the fact that three-point couplings to the higher spin currents are exponentially

suppressed.

Higher orders in J can be computed from our results in section 3, after setting ∆ =

µ− 1 +O(1/N), τε = 2µ− 2 +O(1/N), d = 2µ. At leading order in 1/N we obtain

c1 =
(µ− 1)(µ− 2)(µ− 3)

3
, c2 =

µ(µ− 1)(µ− 2)(µ− 3)
(
19 + µ(5µ− 21)

)
90

,

(5.22)

and so on, so that at order 1/N2 we obtain

I[σ,σ] = −2µ2(1− µ)2Γ2(µ− 2)

J2µ−2

(
1 +

(µ− 1)(µ− 2)(µ− 3)

3J2
(5.23)

+
µ(µ− 1)(µ− 2)(µ− 3)

(
19 + µ(5µ− 21)

)
90J4

+ · · ·
)
η2

1

N2
,

in perfect agreement with I3 of the two loop result (5.12).
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Exchange of higher spin operators [α,α]`. Next let us consider double trace opera-

tors of the form [α, α]`, for ` = 0, 2, · · · . For these operators τ` = 4 +O(1/N) so that the

coefficients c0(τ`, `) become

c0(τ`, `) = a`
2Γ(2`+ 4)Γ(µ− 1)2

Γ(`+ 2)2Γ(µ− 3)2
+ · · · . (5.24)

In this case the OPE coefficients a` are already of order 1/N2 at large N , so that we can

stop the expansion at this order. They can be computed using the results for the 〈αασiσj〉
four-point function, given in appendix F. We obtain

a` =
Γ(`+ 1)2

4(`+ 2)(µ2 − 5µ+ 6)2Γ(2`+ 2)

c2
0

N2
+O(1/N3) , (5.25)

where c0 = 2µ(µ − 1)η1 should not be confused with c0(τ`, `). Note that at this order

c0(τ`, `) ∼ 1
` for large `, so that if we try to proceed as for the operators above, we would

get a divergent sum. This is a manifestation of the phenomenon discussed in section four,

and is signalling an enhancement in the logarithmic divergence log u → log2 u. Note that

this enhancement is actually necessary: since the crossed channel contains the operator α,

of approximate twist two, quadratic corrections in the anomalous dimension will produce

a log2 u contribution, which should be reproduced by an infinite tower of operators with

twist close to four. These are nothing but the [α, α]` operators.

Exchange of [α,α]`,n and descendants of [α,α]`. Corrections due to descendants of

[α, α]` as well as due to the exchange of the tower [α, α]`,n should be treated similarly. For

descendants of [α, α]`, it is easy to check that the coefficients ck(`) ∼ 1 for large `, so that

the sum over spins diverges. We have also computed the corresponding OPE coefficients

for [α, α]`,n, with n = 1, and the sum over spins diverges as well.

As discussed in section four, one needs to consider the precise infinite sum in the crossed

channel (keeping the full u dependence) and match it to the appropriate contributions in

the direct channel, taking into account higher order corrections from δâs and γs. We do

this calculation for the first non-trival correction in the following section and find that the

expansion (5.12) is precisely reproduced.

5.3 Higher order corrections

Consider the one-loop corrections to the anomalous dimensions and OPE coefficients:

γ(1) = − c0

N

1

J2
+ · · · , δâ(1) =

(µ− 3)(µ− 1)

2N

c0

J4
+ · · · , (5.26)

where c0 = 2µ(µ− 1)η1. These will generate the following contributions to order 1/N2 in

the direct channel:∫ ∞
0

dj K∆(j, v)(1 + δâ(1))

(
u

1− v

)γ(1)/2

(5.27)

=
c2

0 log2 u

8
F (2)(v) +

c2
0 log u

4

(
vF (2)(v)− (µ− 1)(µ− 3)F (3)(v)

)
+ · · ·

=
c2

0 log2 u

8(µ− 3)2(µ− 2)2
v2 + c2

0

log u(13− 4µ) + (7− 2µ) log2 u

4(µ− 4)2(µ− 3)2(µ− 2)2
v3 + · · · .
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Let us now turn to the crossed channel. The tower of operators [α, α] have twist

τ` = 4 +O(1/N) and they contribute as follows

S[α,α] =
∑
`

a`v
2(1− u)` 2F1(2 + `, 2 + `, 4 + 2`; 1− u) , (5.28)

where we have kept only the leading piece for small v. Plugging (5.25) into the sum we

obtain

S[α,α] =
v2

N2

16µ−1 sin2(πµ)Γ
(
µ− 1

2

)2
π3(µ− 3)2Γ(µ− 1)2

log2 u

(1− u)2
. (5.29)

We see that indeed, the sum has a log2 u singularity as u approaches zero. Furthermore,

its coefficient precisely agrees with the one in (5.27). Furthermore, note that the correct

sum S[α,α] has a vanishing log u piece. This explains why the 1/J4 piece in (5.12) was

already reproduced by the exchanged operator α and their descendants! Note that in order

to reach this conclusion the full sum needs to be evaluated, and not only its leading piece.

At next order we have both, primary operators [α, α]`,n with n = 1 as well as the first

descendant of the operators just considered. Both of them have twist six at large N , so

that they will contribute to order v3. The sum to be evaluated is

S[α,α]n=1+[α,α]k=1
= v3

∑
`=0,2

(
aσ,σ,[α,α]`,n=1

f
(0)
6+`,`(u) + aσ,σ,[α,α]`f

(1)
4+`,`(u)

)
, (5.30)

where f
(0)
∆,`(u) and f

(1)
∆,`(u) are given in appendix B, aσ,σ,[α,α]` are given in (5.25) and

aσ,σ,[α,α]`,n=1
can be computed to leading order

aσ,σ,[α,α]`,n=1
= −

√
π4−`−3(`+ 1)Γ(`+ 5)

(`+ 2)(`+ 3)2(µ− 4)2(µ− 3)(`− µ+ 5)(`+ µ)Γ
(
`+ 5

2

) c2
0

N2
. (5.31)

The sums are much more involved in this case, but one can proceed as follows: for each

integer µ, the coefficient in front of (1 − u)n can be guessed with some effort. Then the

sums can be performed, and the expansion around u = 0 performed. As a result we get

S[α,α]n=1+[α,α]k=1
=

v3

N2

(
π2

12

2−µ
(4−µ)2

+
16−5µ

4(4−µ)2
log u+

7−2µ

4(4−µ)2
log2 u

)
c20

(µ−2)2(µ−3)2
+O(u) .

(5.32)

The piece proportional to log2 u exactly agrees with the corresponding contribution

in (5.27). In order to match the piece proportional to log u, we need to consider the

linear correction at order 1/N2 which is not accounted for by the exchange of α plus its

descendants. Namely

γ(2)
s − Iα = 2(µ− 3)(µ− 1)2µ2 η

2
1

N2

1

J6
+ · · · , (5.33)

when integrated agains the Kernel this results in

− η2
1

N2
v3 (µ− 1)2µ2

(µ− 4)2(µ− 3)(µ− 2)2
= − c2

0

N2
v3 1

(µ− 4)2(µ− 3)(µ− 2)2
. (5.34)

– 22 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

When added to the v3 log u contribution from (5.27) we see that this precisely agrees with

what is expected from (5.32)!

In summary, we have given a microscopic description of the large spin expansion of the

anomalous dimension of higher spin currents in the symmetric traceless representation of

the O(N) symmetry up to order 1/J6.

5.4 Currents in other representations

We can solve the crossing equations for currents in other representations as well. We get

fT (u, v) =
1

2

(
fT (v, u) + fA(v, u)

)
+ fS(v, u)− fT (v, u)

N
,

fA(u, v) =
1

2

(
fT (v, u) + fA(v, u)

)
− fS(v, u) +

fT (v, u)

N
, (5.35)

fS(u, v) =
1

2

(
fT (v, u)− fA(v, u)

)
+

1

2N

(
fT (v, u) + fA(v, u)

)
+
fS(v, u)

N
− fT (v, u)

N2
.

From this we can make certain predictions about anomalous dimensions of currents in

different representations. Let us start with the one-loop discussion. Recall that the three-

point function of σ fields with higher spin currents in the singlet representation is 1
N

suppressed compared to the other representations. The anomalous dimensions can be

found for example in [15]

γT,(1)
s = −2µ(µ− 1)

J2
0

η1 , s− even ,

γA,(1)
s = −2µ(µ− 1)

J2
0

η1 , s− odd , (5.36)

γS,(1)
s = −2µ(µ− 1)

J2
0

η1 −
Γ(2µ+ 1)

2µ− 1

Γ
(

1
2

√
1 + 4J2

0 + 5
2 − µ

)
J2

0 Γ
(

1
2

√
1 + 4J2

0 − 3
2 + µ

)η1 .

Notice that the 1
J2

0
term that comes from the contribution of the α in the crossed channel

and is the same for all representations. At higher loops we will get also contributions from

the operators involving multiple α’s and derivatives. We can focus on the contribution of

those by setting all the terms of the type 1
Jn2µ in the expansion of âI and γIs to zero. Then

for any two representations we will get the following equation∫
dj K∆(j, v)

(
(1 + δâRi)

(
u

1− v

)γRi
2

− (1 + δâRj )

(
u

1− v

)γRj
2

)∣∣∣∣
1

J
nµ
0

=0

= 0 . (5.37)

The solution of this equation is

γTs = γAs = γSs ,
1

sµ
= 0 , (5.38)

δâTs = δâAs = NδâSs ,
1

sµ
= 0 .

By (5.38) we mean that if anomalous dimensions and three-point couplings are expanded

in 1
N and 1

s and all 1
snµ terms are set to zero then the expressions between different repre-

sentations should agree. These relations should be valid to any order in 1
N expansion.
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The uniqueness follows from the fact that∫
dj K∆(j, v)

∞∑
n=0

cn

(
v

j2

)n
= 0 (5.39)

implies cn = 0. We can apply (5.39) to the terms without and with log u in (5.37).

At two loops we can make another prediction which follows from the same reasoning

as above but by noticing that higher spin currents in the singlet representations do not

contribute at this order and the fact that the contribution of the non-singlet currents is the

same for both symmetric traceless and anti-symmetric representation up to a sign. We get

γA,(2)
s = γT,(2) − 2I3 , (5.40)

I3 = −2
µ2(1− µ)2Γ2(µ− 2)

J2
0

η2
1

Γ
(

1
2

√
1 + 4J2

0 + 5
2 − µ

)
Γ
(

1
2

√
1 + 4J2

0 − 3
2 + µ

) .
To our knowledge the result for the currents in the asymmetric representations has not

been computed to 1
N2 order. Comparing (5.40) to the computation using ε-expansion [12]

we find a perfect agreement.

6 The critical O(N) model at small N

In this section we apply the techniques of previous sections to the critical O(N) model at

small N , namely N = 1, 2. The discussion of this section is much less rigorous than the

discussion of previous sections since we truncate the crossed channel sum and estimate the

effect of this truncation by evaluating the size of the next few dropped terms. On the other

hand, the detailed study of previous sections supports the picture that this is a proper way

to handle the large spin expansion sums in CFTs.

As usual we use the known low spin crossed channel data to predict the high spin

direct channel data. In the case at hand the low spin data being used consists of:

• anomalous dimension of the Lagrange multiplier field α and its coupling to the spin

field λ2
σσα;

• anomalous dimensions of higher spin currents in different representations of the O(N)

symmetry with spin s ≤ 2 and their coupling to the spin field λ2
σσjIs

.

At small N this data is partially available through numerical bootstrap methods. The

direct channel data that we would like to compute includes anomalous dimensions of higher

spin currents with spin s ≥ 4 and in various representations.

In principle we have the whole tower of higher spin operators being exchanged in the

crossed channel. However, as we observed above, in the case of large N the exchange of

high spin operators in the crossed channel is highly suppressed. This follows from the fact

that the relevant three-point couplings are exponentially suppressed in the free field theory

and also from the 1
Γ(∆− τs

2
)2 in the prefactor. We assume that this happens at small N and

for s ≥ 4 as well and check that it is a self-consistent assumption at the end. For s� 1 it
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is not an assumption and is true in any CFT since the relevant three-point functions are

the ones of generalized free fields. Of course, introducing the cut-off in twist and spin in

the crossed channel and throwing away everything else is an approximation. The point of

this section is to note that for the O(N) model and for 3d Ising it works very well with

very few terms.

Note that after truncating the crossed channel we have to consider an exchange of a

finite number of primary operators. The formalism for that was fully developed in the bulk

of the paper, thus, we simply have to plug the relevant numbers for the particular model.

More precisely, we get the following expressions

τ Is = 2∆σ −
cα
s∆α
−

2∑
I′,s′=0

c̃I,I
′

s′

sτ
I′
s′

+ . . . , (6.1)

where the dots include the contribution both from descendants as well as from heavier

primaries and ∆σ is the dimension of the spin field as before. We will estimate the contri-

bution of the latter using the technique of this paper and the contribution of the former

when the relevant microscopic data is available.4

6.1 O(2) model

The relevant low-energy data is [16, 17]

∆α = 1.511 , ∆σ = 0.519 , ∆T
0 = 1.236 , τT2 = ? ,

cJ

cfree
J

= 0.905 ,
cT

cfree
T

= 0.944 , (6.2)

λ2
σσα = ? , c0,2 =

λ2
σσjT0,2

λ2
σσjT0,2;free

= ? ,

where in the last line we introduced the ratios of the actual three-point functions to the

free-field ones for spin 0 and 2 operators in the symmetric traceless representation of O(N).

Four numbers are missing to write down the prediction for the currents. We leave them

as free parameters hoping that they can be determined in the near future, for example,

using the numerical bootstrap methods. We present explicitly here the formula for the

currents in the traceless symmetric representation of the O(N) which is particularly simple

τTs − 1 = 0.038− 0.134λ2
σσα

J1.511
0

− 0.007λ2
σσα

J3.511
0

− 5 · 10−5

J0
− 5.5 · 10−6

J3
0

, (6.3)

J2
0 = (s+ 0.519)(s− 0.481) ,

and depends only on one unknown parameter. The leading spin corrections to the anoma-

lous dimension of currents were recently computed in [18] and are in a perfect agreement

with the formula above.

4One can object that our considerations may not smoothly interpolate to the finite values of spin. One

can imagine that the low spin currents do not lie on the smooth curve predicted by the large spin expansion.

We simply assume that this does not happen. We thank Slava Rychkov for discussion on that point.

– 25 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

To get the formula (6.3) we used (3.8) together with (6.2) for the terms 1
J1.511

0
and 1

J3.511
0

.

Similarly, the terms 1
J0

and 1
J3

0
come from the stress tensor exchange and its descendants,

see formula (3.43).

Formulas for currents in other representations could be easily obtained using the general

formulas in the bulk of the paper, see also [18].

6.2 3d Ising

The relevant low-energy data is [20, 21]

∆α = 1.4127 , ∆φ = 0.5182 ,
cT

cfree
T

= 0.9465 , λ2
φφα = 1.1064 . (6.4)

Plugging this data into the generic formula for anomalous dimension we get

τs − 1 = 0.0364− 0.0925

J1.4127
0

− 0.0027

J0
− 0.0056

J3.413
0

− 0.0003

J3
0

, (6.5)

J2
0 = (s+ 0.5182)(s− 0.4818) .

In this formula we kept only the leading correction due to descendants because with the

precision we are working we found that the contribution of the higher order corrections is

negligible for s ≥ 4. More precisely, we find that the correction due to other descendants

or heavier primaries for s = 4 is of order ±0.001. Of course, our estimate is not rigorous

because we do not have the full control over the crossed channel sum. Also we kept only

the contribution of the stress tensor from the tower of higher spin currents. In our previous

work [10] we left the coefficient c0
J0

unknown. As explained above the contribution of higher

spin currents to c0 is small compared to the one of the stress tensor.

7 Conclusions

In this paper we considered the crossing equations for conformal field theories in the light-

cone limit. Based on the previous work [6] we developed a systematic method to compute

further corrections to the double trace-like operators in the direct channel using the low

energy data in the crossed channel, generalising the results of [4, 5] to arbitrarily high

order. The basic idea is first to switch from the usual spin s to the conformal spin J and

then analyse the effects of acting on the crossing equation with the Casimir operator. As

we showed in section 2 it makes the problem effectively algebraic.

We considered the problem of exchange of a single primary together with its descen-

dants in the crossed channel. Our systematic procedure allows to compute arbitrarily high

corrections to the anomalous dimension of double trace-like operators for the generic case.

For the special case of exchange of a scalar operator whose dimension is an even integer, we

found a closed expression for the n’th correction. We found that generically the expansion

is asymptotic but Borel summable. This feature can be understood from a relatively simple

toy model. Furthermore, the toy model suggests that Borel summability is a feature of the
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expansion of the full anomalous dimension, and is intimately connected to the fact that

the anomalous dimension results in a convergent, unambiguous expression when integrated

against the Kernel. We also discussed the general picture of the large spin expansion in a

generic CFT that emerges from previous considerations in section 4 and applied it to the

critical O(N) model in sections 5.

The main new feature of the critical O(N) example is several infinite families of op-

erators being exchanged in the crossed channel. The contribution of higher spin currents

and their descendants is taken into account by simply summing over the results we got

for the exchange of a single primary. On the other hand, operators [α, α]n,` contribute

to the quadratic, as predicted by [9], as well as to linear in γs terms. After taking into

account all corrections we found perfect agreement with the perturbative result of [11].

Moreover, using crossing equations we predicted a two-loop result for currents in the anti-

symmetric representation of the O(N) symmetry. Comparing it with the known 4 − ε

expansion result [12] we found perfect agreement. We also made some further all-loop

predictions.

At last we applied the large spin methods to the O(N) models with small N . The new

feature in this case is that we truncate the large spin expansion series and ask how good

this approximation is. Treating the large spin expansion as an asymptotic series expansion

and estimating the error by the size of the first dropped term we found that already for

s = 4 the error is very small. It would be nice to compare this picture with the results

obtained by some other methods, most probably the ones of numerical bootstrap.

We hope that the present analysis will help to develop connections between the boot-

strap methods and other methods, be it the usual perturbation theory or integrability,

initiated in [10, 22]. Already in the case of the O(N) model it became clear that bootstrap

techniques allow to understand the perturbative results microscopically and lead to further

predictions. Conversely having an explicit perturbative result allowed us to test very gen-

eral ideas about the crossing equation. One may hope that this instance is not a single one

and we can learn many more things by combining different techniques.

There are many directions in which the present analysis can be extended. The most

immediate one would be to push further the application to the O(N) model, for instance

in the ε-expansion. One could also extend the methods to the case of external operators

with spin. Furthermore, it would be interesting to apply this algebraic approach other

conformal field theories, e.g. gauge theories dual to string theories. Perturbative gauge

theories, along the lines of [10, 22] or gauge theories with a large central charge, along the

lines of [23], would be two very interesting examples.

Another extension is to generalize the analysis to the case of operators O(∂2)n∂`O
with non-zero n 6= 0 [24]. Taking into accounts the descendants and considering n � 1

limit we expect to recover the full AdS propagator along the lines of [25]. This together

with [26] may be useful for deriving [27] directly from bootstrap. Another open problem is

more systematic understanding of convergence properties of the large spin expansion and

errors made when truncating the series. This seems to be necessary to connect analytic

bootstrap results to the ones of numerical bootstrap [14]. Our results (and the study of

the toy model) suggest that such expansions are asymptotic and Borel-summable, however,
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since the spectrum of a CFT becomes denser and denser as we increase the twist, it is hard

to make rigorous claims. On a more conceptual level it would be interesting to understand

if analytic bootstrap can be used to say anything about the landscape of possible CFTs. At

present the spectrum in one of the channels is given and then consequences are derived. In

the case of weakly coupled CFTs one can do better [10], but it is not clear if this approach

can be made completely general.
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A The Kernel and the Casimir operator

Given the four-point correlator of identical operators O, the contribution from double trace

operators [O,O] is proportional to the following sum:

S =
∑

s=0,2,···
asu

γs/2(1− v)s 2F1(∆ + s+ γs/2,∆ + s+ γs/2, 2∆ + 2s+ γs; 1− v) . (A.1)

We are interested in evaluating the divergent contributions, as v → 0, from such a sum. In

a conformal field theory of generalised free fields, the OPE coefficients take the following

value

as =
2Γ(∆ + s)2Γ(2∆ + s− 1)

Γ(s+ 1)Γ(∆)2Γ(2∆ + 2s− 1)
. (A.2)

One can explicitly check that for small values of v, divergent contributions comes from

large spins, of order s ∼ 1
v1/2 . Based on this, we consider the scaling limit s = x√

v
and

convert the sum over spins into an integral over x:∑
s

→ 1

2

∫
dx , (A.3)

where the factor of 1/2 is due to the fact that only even spins contribute. Furthermore, we

consider the following standard integral representation for the hypergeometric function

2F1(a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− tz)a
dt , (A.4)

and change variables t → λ, with t = 1 − λ
√
v, such that the important contributions

will come from a finite range in the λ variable. Finally, it is convenient to perform a final

change of variables, from x→ j, with

j2

v
=

(
x√
v

+
γ
(
x√
v

)
2

+ ∆− 1

)(
x√
v

+
γ
(
x√
v

)
2

+ ∆

)
. (A.5)
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In terms of the redefined structure constants

as =
2Γ
(
∆ + s+ γs

2

)2
Γ
(
s+ 2∆ + γs

2 − 1
)

Γ
(
s+ 1 + γs

2

)
Γ(∆)2Γ(2s+ 2∆ + γs − 1)

(
1 +

1

2
∂sγs

)
âs , (A.6)

we end up with the following expression

S = v−∆

∫ ∞
0

dj K∆(j, v)â

(
j2

v

)(
u

1− v

)γ( j2
v

)
/2

, (A.7)

where now â and γ are interpreted as functions of the conformal spin J2 = j2/v, and the

Kernel is given by

K∆(j, v) =
2jv∆−1

(1− v)∆

Γ
(

∆ + 1
2

(√4j2

v + 1− 1
))

Γ
(

1
2

√
4j2

v + 1 + 3
2 −∆

)
Γ2(∆)

(A.8)

×
∫ ∞

0

dλ

λ(1−
√
vλ)

(
λ(1− v)(1− λ

√
v)

λ− vλ+
√
v

)1
2

(√
4j2

v
+1+1

)
.

The Kernel can be explicitly computed to any desired order in v, by expanding and then

integrating. To leading order in v:

K∆(j, v) =
4

Γ2(∆)
j2∆−1K0(2j) + · · · . (A.9)

The normalisation property (2.12) can be verified order by order in v, to any desired order.

The property∫ ∞
0

dj K∆(j, v)h

(
v

j2

)
= F (v)→

∫ ∞
0

dj K∆(j, v)
j2

v
h

(
v

j2

)
= CF (v) (A.10)

is easier to check at the level of the original sum, since each collinear conformal block is an

eigenfunction of the Casimir operator.

Let us discuss in detail how the Casimir operator can be used in order study the contri-

butions from higher spin operators to the sum S. First, let us make clear the limitations of

the method: we will be able to capture only combinations that become singular as v → 0,

upon the application of the Casimir operator a finite number of times. In particular, a finite

number of terms in the sum over conformal blocks will not produce the required behaviour.

A finite number of conformal blocks has only a logarithmic divergence as v → 0, and this

will remain so, no matter how many times the Casimir operator is applied.

In order to see precisely how the method works, let us consider∫ ∞
0

dj K∆(j, v)h

(
v

j2

)
= v∆Freg(v) , (A.11)

where Freg(v) = a0(log v) + va1(log v) + · · · does not contain power-law divergences as

v → 0, but can contain logarithmic divergences. The would-be solution h(v/j2) has then

an expansion of the form

h

(
v

j2

)
=

(
v

j2

)∆

h0

(
log

v

j2

)
+ · · · . (A.12)
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But upon plugging this into (A.11) we see that the integrand has a non-integrable singu-

larity in the small j region. This is a direct consequence of Freg(v) in (A.11) not being

divergent enough as v → 0. In order to proceed, let us apply the Casimir operator on both

sides: ∫ ∞
0

dj

(
j2

v

)
K∆(j, v)h

(
v

j2

)
= v∆

(
a′′0(log v)

v
+ · · ·

)
. (A.13)

On the l.h.s. this has ameliorated the behaviour of the integrand in the small j region. On

the r.h.s. this has enhanced the divergence as v → 0. Now we can safely plug

h

(
v

j2

)
=

(
v

j2

)∆

h0

(
log

v

j2

)
+ · · ·

and obtain an equation for the leading order h0

(
log v

j2

)
:

4

Γ2(∆)

∫ ∞
0

dj jK0(2j)h0

(
log

v

j2

)
= a′′0(log v) . (A.14)

Now all integrals involved are perfectly convergent. Note a very important point. In order

for this contribution to be non-zero, a0(log v) needs to diverge at least as log2 v as v → 0,

this can only be possible if an infinite number of operators contributes to the sum, in

agreement with the discussion above. Finally, let us mention that in most applications

Freg(v) will contain an extra-parameter (such as the twist of exchange operators) so that

the sum will actually be of the form∫ ∞
0

dj K∆(j, v)h

(
v

j2

)
= v∆ε/2

(
a0(log v) + · · ·

)
. (A.15)

The solution is now

h

(
v

j2

)
=

(
v

j2

)∆ε/2

h0(log v) + · · ·

with

4

Γ2(∆)

∫ ∞
0

dj j2∆−1K0(2j)

(
v

j2

)∆ε/2

h0

(
log

v

j2

)
= v∆ε/2a0(log v) . (A.16)

We can solve for h0 in the region 2∆ > ∆ε and then analytically continue. Note that to

the leading order we are considering, acting with the Casimir operator has the same effect

as changing ∆ε → ∆ε − 2, so that acting with the Casimir operator (for a case in which

the integrals do not converge) is equivalent to analliticaly continue in ∆ε.

B Asymptotics of the universal function

We want to study the asymptotic expansion of Υ
(

1
2

√
1 + 4J2

)
, with

Υ(x) = ψ

(
x+

1

2

)
+ ψ

(
x− 1

2

)
− ψ

(
x+

1

2
−∆

)
+ ψ

(
x− 1

2
+ ∆

)
. (B.1)
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At leading order we can approximate 1
2

√
1 + 4J2 = J + O(1/J) so that we are interested

in the asymptotic behaviour of

Υasym(J) = ψ

(
J +

1

2

)
+ ψ

(
J − 1

2

)
− ψ

(
J +

1

2
−∆

)
− ψ

(
J − 1

2
+ ∆

)
(B.2)

the above can be expanded as

Υasym(J) =

∞∑
n=1

1

(2n)!22n−1

(
1− (2∆− 1)2n

)
ψ2n(J) . (B.3)

The asymptotic expansion of the polygamma function is given by

ψ2n(J) = −(2n− 1)!(2n+ 2J)

2J2n+1
−
∞∑
k=1

(2k + 2n− 1)!

(2k)!J2k+2n
B2k , (B.4)

where B2k are the even Bernoulli numbers. The first term in this expression, as well as

any finite number of terms in the sum, will lead to an expression with a finite radius of

convergence. Hence the leading asymptotic behaviour will come from the large k region.

Rearranging the sums and discarding the first term we obtain

Υasym(J) ∼
∞∑
m

(2m− 1)!

J2m

m∑
n=0

(2∆− 1)2 − 1

22n−1(2n)!(2(m− n)!)
B2(m−n) . (B.5)

We would like to estimate the sum for large values of m. Using the asymptotic expression

for the Bernoulli numbers

B2n ∼ (−1)n−14
√
πn

(
n

πe

)2n

(B.6)

we obtain

Υasym(J) = −
∞∑
m

4

J2m

(−1)m(2m− 1)!

4mπ2m

∞∑
n=0

(−1)nπ2n
(
(2∆− 1)2n − 1

)
(2n)!

(B.7)

= −
∞∑
m

4

J2m

(−1)m(2m− 1)!

4mπ2m

(
1− cos(2π∆)

)
.

For non-integer ∆, we get alternating coefficients growing like Γ(2m). From this we can

compute the leading asymptotic behaviour∣∣∣∣cm+1

cm

∣∣∣∣ =
m2

π2
+ · · · . (B.8)

Note that the presence of overall rational functions will not change this behaviour, so this

result should be universal. In particular, note that this perfectly agrees with the numerical

results for the 3d Ising model, see section 3.2.
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C Conformal blocks with spin

In this appendix we compute conformal blocks for intermediate operators with spin, in a

particular limit which we describe bellow. We are interested in the case were the external

operators are all identical scalars. In this case, [20] gave sets of recursion relations to

compute the conformal blocks for a given spin G∆,`(u, v) in terms of lower spin conformal

blocks. The relation between G∆,`(u, v) and the conformal blocks used in this paper is

given by:

u(∆−`)/2f∆,`(u, v) = (−1)`
(d− 2)`

(d/2− 1)`
G∆,`(u, v) . (C.1)

Among the recurrence relations given by [20], the one we found most useful is

(∆−α)(`+2α−1)

`+α−1
G∆,` =

(
1

2
(∆ + `− 2α− 2)

1− v
u
− 2v∂v + (1− u− v)∂u

)
G∆+1,`−1

− (`−1)

(
∆(∆−2α+1)

(∆−α)(∆−α+1)
β 1

2 (∆−`+2−2α)G∆+2,`−2 +
∆+`−1

`+α−1
G∆,`−2

)
,

(C.2)

where α = d/2 − 1 and βp = p2

4(4p2−1)
. Given the conformal block G∆,0, from this re-

cursion we can compute G∆,1, G∆,2, · · · iteratively. We stress however, that the resulting

expressions become very messy very soon!

We are interested in a particular term in the small v limit, namely

G∆,`(u, v) = log vh∆,`(u) + · · · . (C.3)

Inserting this expansion in the recursion relation above, we obtain a simplified recursion

for h∆,`(u), which can be supplemented with the known expression for h∆,0(u) as initial

condition. The solutions have a expansion of the form

h∆,`(u) = −Γ(∆ + `)

Γ2(∆+`
2 )

(d− 2)`
(d/2− 1)`

u(∆−`)/2
(

1 +
∑
i=1

a
(i)
∆,`u

i

)
. (C.4)

The coefficients a
(i)
∆,` have the following structure

a
(i)
∆,` =

Γ(`+ α− i)Γ(1 + α− i−∆)

(`+ 2α−∆− 1)Γ(α+ 1)Γ(α+ 1−∆)
p(i)(∆, `) , (C.5)

where p(i)(∆, `) are polynomials of degree 2i+ 1 in both ` and ∆. The recursion relations

for h∆,`(u) can then be translated into recursion relations for such polynomials:

∆− 2α− `+ 3

∆− 2α− `+ 1
p(i)(∆, `) +

α+ `− 1

i− α− `+ 1
p(i)(∆ + 1, `− 1) =

− (`− 1)(2α+ `− 2)(∆ + `− 2)(−α+ ∆ + i− 1)

4(α−∆)(α− i+ `− 1)
p(i−1)(∆, `− 2)

− ∆(`− 1)(2α−∆− 1)(α+ `− 1)(2α+ `− 2)(−2α+ ∆− `+ 2)2

16(α−∆)(2α−∆ + l − 5)(2α−∆ + `− 1)
p(i−2)(∆ + 2, `− 2) ,

– 32 –



J
H
E
P
0
4
(
2
0
1
7
)
1
5
7

with the initial conditions p(−2)(∆, `) = p(−1)(∆, `) = 0, the known results for p(i)(∆, 0):

p(i)(∆, 0) =
(−1)i

(
(2α−∆− 1)Γ(α)Γ

(
i+ ∆

2

)2)
Γ
(

∆
2

)2
Γ(i+ 1)Γ(α− i)

(C.6)

and enough patience, one can solve for the polynomials p(i)(∆, `) to any desired order. For

instance, we find

a
(1)
∆,` =

−(d− 4)∆2 + `2(−d+ 2∆ + 2) + 2`(d−∆2 −∆− 2)

2
(
d− 2(∆ + 1)

)
(d+ 2`− 4)

(C.7)

and so on. The coefficients a
(2)
∆,` and higher are too complicated to be shown here.

Finally, for several applications in the body of the paper, we will be interested in the

small u limit of the conformal blocks. With some effort, higher order corrections to the

collinear conformal blocks can again be computed used the recursion relations above. We

find

f∆,`(u, v) = f
(0)
∆,`(v) + uf

(1)
∆,`(v) + · · · ,

f
(0)
∆,`(v) = (1− v)` 2F1

(
`+ ∆

2
,
`+ ∆

2
, `+ ∆; 1− v

)
,

f
(1)
∆,`(v) = (−1)`

(∆+`−1)(v−1)`−4

(∆+`−2)
(
d−2(∆+1)

)(8(∆−1)∆(v+1) 2F1

(
1

2
(`+∆−4),

1

2
(`+∆−2); `+∆−2; 1−v

)

−
4
(
∆2
(
v(v+6)+1

)
(d+2`−4)+2∆

(
`
(
− `(v−1)2+(v−10)v+1

)
−4(d−4)v

)
+(d−2)(`−2)`(v−1)2

)
(d+2`−4)

×2 F1

(
1

2
(∆ + `− 2),

1

2
(∆ + `− 2); ∆ + `− 2; 1− v

))
.

D Correction to OPE coefficients

It is straightforward to apply the algebraic method to the computation of large spin cor-

rections to the OPE coefficients of double trace-like operators. Let us focus in the case of

a scalar operator Oε plus its tower of descendants. To linear order in δâ = â− 1 and γ we

obtain∫ ∞
0

dj K∆(j, v)
(
δâ−γ log(1−v)

)
= −aεv∆ε/2 Γ(∆ε)

Γ2
(

∆ε
2

)(2ψ

(
∆ε

2

)
+ 2γ+

(
∆2
ε

(
2ψ
(
1+ ∆ε

2

)
+2γ

)
4− 2d+ 4∆ε

)
v+ · · ·

)
,

(D.1)

which translates into

δâ=−
c0

J∆ε

(
ψ

(
∆ε

2

)
+ γ

)

+
c0

J∆ε+2

(
3(d−2)(∆ε−2∆+2)2−∆ε

(
ψ
(∆ε

2

)
+γ
)(

∆ε
(
−12(∆−1)∆+∆ε(∆ε+4)+8

)
+8
)
−2d

(
∆ε(−3∆+∆ε+3

)
+2
)

24
(
d−2(∆ε+1)

) )

+ · · · , (D.2)

where we have used the expansion for the anomalous dimension γ = −c0/J
∆ε + · · · . In

section five we will be interested in the case ∆ε = 2, ∆ = µ − 1, d = 2µ, relevant for the

critical O(N) sigma model. In this case:

δâ =
(µ− 3)(µ− 1)

2

c0

J∆ε+2
+ · · · . (D.3)
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E R(s, µ) integral and colored permutations

Let us consider the integral that appears in the two-loop computation of the O(N) model

R(s, µ), In the large spin expansion it has the structure (92). Both series can be computed

exactly and we get

R(s, µ) =
Γ(µ− 2)2Γ

(
1
2

√
1 + 4J2

0 + 5
2 − µ

)
Γ
(

1
2

√
1 + 4J2

0 + µ− 3
2

) (E.1)

+
3F2

(
1, 1

2 + 1
2

√
1 + 4J2

0 , 3− µ; 3
2 + 1

2

√
1 + 4J2

0 ,
7
2 + 1

2

√
1 + 4J2

0 − µ; 1
)(

1
2 + 1

2

√
1 + 4J2

0

)(
1
2

√
1 + 4J2

0 + 5
2 − µ

)
where the first line contains all the terms of the type 1

s2µ−2+n and the second 1
s2+n . We also

notice that the second line of (E.1) is related to the number of non-crossing, non-nesting

colored permutations NCN2,2(n, k) [29] (see section 4.3 in that paper). More precisely, we

observe the following relation

∑
n≥0

NCN2,2(n, µ−3)xn =
3F2

(
1, 1

2 + 1
2

√
1 + 4

x , 3− µ; 3
2 + 1

2

√
1 + 4

x ,
7
2 + 1

2

√
1 + 4

x − µ; 1
)

x
(

1
2

√
1 + 4

x −
1
2

)(
1
2

√
1 + 4

x + 5
2 − µ

) .

(E.2)

We do not understand the origin of this relation. Equivalently, we can write for integer k

∑
n≥0

NCN2,2(n, k)xn =

k∑
m=0

Γ(k + 1)2

Γ(m+ 1)Γ(2k −m+ 2)

2k + 1− 2m

1− (k −m)
(
1 + (k −m)

)
x
. (E.3)

F Correlation functions in the O(N) model

Here we present some explicit formulas for correlation functions in the critical O(N) model.

One can rewrite the results of [28] in the following form

〈σa(x1)σb(x2)σc(x3)σd(x4)〉 =
δabδcd

(x2
12x

2
34)∆σ

+
δacδbd

(x2
13x

2
24)∆σ

+
δadδbc

(x2
14x

2
23)∆σ

+
η1µΓ(µ)

(µ− 2)Γ(µ− 1)2N

f
(1)
abcd(u, v)

(x2
12x

2
34)∆σ

, (F.1)

f
(1)
abcd(u, v) = δabδcdD̄1,µ−1,1,µ−1(u, v) + δadδbcD̄1,µ−1,µ−1,1(u, v)

+ δacδbdD̄µ−1,µ−1,1,1(u, v) ,

where the definition of the D̄-functions is given for instance in [8]. Another correlator that

we used in the bulk of the paper to compute some of the relevant three-point couplings is

the following

〈α(x1)α(x2)σc(x3)σd(x4)〉 =
δcd

x2∆α
12 x2∆σ

34

(
1 +

Γ(µ+1)η1

Γ(µ−1)2N

[
D̄µ−1,2,µ−2,1(u, v)+D̄µ−2,2,µ−1,1(u, v)

]
+

2µ(µ− 1)(2µ− 3)η1

(µ− 2)2Γ(µ− 2)N
D̄µ−1,1,µ−1,1(u, v)

)
. (F.2)

Recall that η1 = 2(2−µ)Γ(2µ−2)
Γ(µ−1)2Γ(2−µ)Γ(µ+1)

.
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