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1 Introduction

A great progress on the Green-Schwarz string theories has been achieved by Tseytlin and

Wulff [1]. In particular, they have shown that the requirement of classical kappa-symmetry

of type IIB superstring theory leads to a set of the generalized equations of type IIB

supergravity [1, 2], rather than the standard ones. As an old result, it has been well known

that the on-shell condition of type II supergravity leads to kappa-invariant Green-Schwarz

string theories [3, 4]. But the converse has not been clarified for long time, more than three

decades. Actually, it should have been modified by employing the generalized equations of

type IIB supergravity.

This result indicates that the target spacetime may not be necessarily a solution of type

IIB supergravity at least at classical level. However, if the background is not a solution of

the standard type IIB supergravity, then the string world-sheet is not Weyl invariant but

still scale invariant [1, 2]. It has not been clarified what is the physical origin or mechanism

of breaking the Weyl invariance. It is of significance to try to unveil it for discovering the

unexplored physics frontier hiding behind the generalized supergravity.

The discovery of the generalized equations was not straightforward. It is worth describ-

ing that the equations were originally found in the study of Yang-Baxter deformations [5–9]

of the AdS5×S5 superstring [10–12]. In the pioneering work [10, 11], the standard q-

deformation [13–15] (often called η-deformation) of the AdS5×S5 superstring was studied

and the kappa-invariant classical action was constructed. After that, the full background
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has been determined by performing supercoset construction [16, 17]. Remarkably, it was

shown that the resulting background does not satisfy the equations of motion in type IIB

supergravity [17], while it is associated with a solution of type IIB supergravity with a

linear dilaton via T-dualities along non-isometric directions [18, 19]. Then the generalized

equations of type IIB supergravity have been proposed so as to involve the background

as a solution. At this stage, it seemed likely that the generalized equations would heavily

depend on the integrable deformation. But it is not the case as we have well recognized.

The appearance of the generalized equations is intrinsic to the kappa-symmetry of the

Green-Schwarz formulation, rather than a specific integrable deformation.

In addition to the q-deformation, a lot of examples of Yang-Baxter deformations have

been intensively discussed in a series of papers [20–36]. By performing supercoset construc-

tion [17, 31], one can derive the full backgrounds. Some deformations lead to the standard

solutions, but the other ones lead to solutions of the generalized type IIB supergravity.

The two cases are distinguished by the unimodularity condition [34]. For the generalized

solutions, see [17, 31–34]. It would be interesting to note that by performing the gener-

alized T -duality transformations [2], generalized solutions may be mapped to solutions of

the standard type IIB supergravity [18, 33, 34], some of which are locally equivalent to the

undeformed AdS5×S5 [33].

An interesting observation is that the generalized equations are covariant under gener-

alized T -duality transformations [2] and hence a manifestly T -duality covariant formulation

developed in the double field theory (DFT) [37–54] should be efficient in clarifying the struc-

ture of the generalized equations (see [55–58] for reviews of DFT and its extensions). In

this paper, we discuss a modification of the equations of motion in DFT which leads to

the generalized equations of type IIB supergravity. The equations of motion in the conven-

tional DFT is expressed as the generalized Ricci flatness conditions, but in the modified

DFT (mDFT), introducing an extra generalized vector, we make a modification in the gen-

eralized connection and the equations of motion is expressed as the modified generalized

Ricci flatness conditions. The mDFT clarifies the T -duality symmetry of the generalized

equations considerably, and we study the global O(N,N) transformations which map a

solution of mDFT to other solutions of mDFT.

We note that the modification to the DFT discussed in this paper is rather mild. In

section 4, we consider the modification introducing a null generalized Killing vector XM

by hand, but as we will discuss in the Addendum to section 5 (which is based on the

subsequent paper [59] by Baguet, Magro and Samtleben), this generalized vector XM can

be alternatively generated from the DFT by prescribing a Scherk-Schwarz ansatz (5.2) and

we do not need to go beyond the conventional DFT.

This paper is organized as follows. Section 2 introduces the generalized equations of

motion of type IIB supergravity. In section 3, we give a concise review of DFT with an

emphasis on a relation to the conventional supergravity and the construction of curvature

tensors in the doubled spacetime. In section 4, we consider a modification of the generalized

covariant derivative by introducing an extra generalized vector field. We then compute the

modified generalized Ricci tensor and derive the generalized equations of motion from the

modified generalized Ricci flatness conditions. We also discuss the T -duality transforma-
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tions which map a solution of the mDFT equations of motion to other solutions, and a

modification of the fundamental-string charge in mDFT. Finally, we make an attempt to

construct the classical action for the mDFT equations of motion. Section 5 is devoted to

conclusion and outlook.

2 Generalized equations of type IIB supergravity

In this section, we shall introduce a set of the generalized equations of type IIB supergrav-

ity [1, 2]. The generalized equations have recently been derived from the requirement of

classical kappa-symmetry of type IIB string theory in the Green-Schwarz formulation [1].

This result indicates that the set of the generalized equations is a weaker form of the stan-

dard type IIB supergravity and the target spacetime may not be necessarily a solution of

type IIB supergravity. Note also here that the off-shell action that leads to the generalized

equations has not been constructed yet. Hence this is a generalization only under the

equations of motion.

In fact, a curious thing happens at quantum level if the target spacetime does not

satisfy the usual type IIB supergravity equations of motion. The resulting string world-

sheet theory is not Weyl invariant but still scale invariant [1, 2].1 It is still unclear what is

the physical origin or mechanism of breaking the Weyl invariance. One of our motives in

this paper is to tackle this issue.

The generalized equations of motion of type IIB supergravity [1, 2] are given by2

Rmn −
1

4
HmklHn

kl − Tmn +DmXn +DnXm = 0 , (2.1)

1

2
DkHkmn +

1

2
F kFkmn +

1

12
FmnklpF

klp = XkHkmn +DmXn −DnXm , (2.2)

R− 1

12
H2 + 4DmX

m − 4XmX
m = 0 , (2.3)

DmFm − ZmFm −
1

6
HmnkFmnk = 0 , ImFm = 0 , (2.4)

DkFkmn − ZkFkmn −
1

6
HkpqFkpqmn − (I ∧ F1)mn = 0 , (2.5)

DkFkmnpq − ZkFkmnpq +
1

36
εmnpqrstuvwH

rstFuvw − (I ∧ F3)mnpq = 0 . (2.6)

The 10D spacetime indices are labeled by m,n, . . . . The first equation (2.1) is for the

metric in the string frame Gmn . The matter contribution Tmn is given by

Tmn ≡
1

2
FmFn +

1

4
FmklFnkl +

1

4× 4!
FmpqrsFnpqrs −

1

4
Gmn

(
FkFk +

1

6
FpqrFpqr

)
. (2.7)

Here Fm ,Fmnk ,Fmnkpq are the rescaled Ramond-Ramond (R-R) field strengths

Fn1n2... = eΦ Fn1n2... , (2.8)

1A series of earlier works [60–63] discussed a subtle difference between the scale invariance and the Weyl

invariance in non-linear sigma models.
2The generalized equations of the fermionic components have been determined in [1]. For simplicity,

these equations have not been displayed here.
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where Φ is the dilaton whose motion is described by (2.3) . The second equation (2.2) is

for the field strength Hmnk of the Neveu-Schwarz-Neveu-Schwarz (NS-NS) 2-form B-field.

The fourth, fifth and sixth equations (2.4), (2.5) and (2.6) are for the R-R 1-form, 3-form

and 5-form field strengths.

Furthermore, the Bianchi identities for R-R field strengths are also modified as

(dF1 − Z ∧ F1)mn − IkFmnk = 0 , (2.9)

(dF3 − Z ∧ F3 +H3 ∧ F1)mnpq − IkFmnpqk = 0 , (2.10)

(dF5 − Z ∧ F5 +H3 ∧ F3)mnpqrs +
1

6
εmnpqrstuvwI

tFuvw = 0 . (2.11)

A remarkable point is that equations (2.1)–(2.6) involve three new vector fields Xm , Im
and Zm . Hence the above equations are referred to as the generalized equations. Actually,

two of them are independent because the vector Xm is expressed as

Xm ≡ Im + Zm . (2.12)

Then Im and Zm satisfy the following relations:

DmIn +DnIm = 0 , DmZn −DnZm + IkHkmn = 0 , ImZm = 0 . (2.13)

The first equation of (2.13) is the Killing vector equation. Assuming that Im is chosen such

that the Lie derivative,

£IBmn = Ik∂kBmn +Bkn∂mI
k −Bkm∂nIk , (2.14)

vanishes, the second equation of (2.13) can be solved as

Zm = ∂mΦ−BmnIn . (2.15)

Thus Zm can be regarded as a generalization of the dilaton gradient ∂mΦ . In particular,

when Im vanishes, Zm becomes ∂mΦ and the generalized equations (2.1)–(2.6) are reduced

to the usual type IIB supergravity equations.

In the following, we will discuss the embedding of the generalized equations into DFT

introducing a slight modification.

3 A brief review of DFT

The DFT is a manifestly O(D,D) T -duality covariant formulation of supergravity initiated

in [37–43]. In this section, we shall give a concise review for readers not familiar with

DFT. This review is mainly focused upon introducing the classical action and describing

the equations of motion of DFT in a geometric language.

3.1 The classical action of DFT

In this subsection, we will introduce the classical action of DFT and show that the con-

ventional supergravity action can be reproduced from the DFT action.
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Basic ingredients of DFT. Let us introduce a 2D-dimensional doubled spacetime

which is parameterized by the generalized coordinates defined as

xM ≡ (xm, x̃m) (M = 1, . . . , 2D ; m = 1, . . . , D) . (3.1)

Here, xm are the usual coordinates and x̃m are the dual coordinates. The doubled spacetime

has an O(D,D)-invariant metric,

η ≡ (ηMN ) ≡

(
0 δnm
δmn 0

)
, (ηMN ) ≡ (η−1)MN =

(
0 δmn
δnm 0

)
, (3.2)

which is utilized to raise and lower the 2D-dimensional indices M,N, · · · . Diffeomorphisms

in the doubled spacetime is constrained so that this O(D,D)-structure is preserved. In fact,

the possible diffeomorphisms, called the generalized diffeomorphisms, are generated by the

generalized Lie derivative £̂V which satisfies

£̂V ηMN = 0 . (3.3)

For example, the generalized Lie derivative acts on a generalized vector WM (x) as

£̂VW
M = V K ∂KW

M −
(
∂KV

M − ∂MVK
)
WK . (3.4)

Here, VM (x) =
(
vm(x), ṽm(x)

)
are gauge parameters and ∂M ≡ (∂m, ∂̃

m) are the partial

derivatives associated with the generalized coordinates xM . In the present formulation of

DFT, the consistency requires a condition for all physical fields and gauge parameters.

This, so-called the strong constraint, can be expressed as

ηMN ∂MA(x) ∂NB(x) = ∂mA(x) ∂̃mB(x) + ∂̃mA(x) ∂mB(x) = 0 , (3.5)

where A(x) and B(x) are physical fields or gauge parameters.3 This condition strongly

constrains the coordinate dependence of fields. As a result, all fields can, at most, depend

on half of the doubled coordinates. For example, the strong constraint can be satisfied if

fields do not depend on the dual coordinates, i.e., ∂̃mA(x) = ∂̃mB(x) = 0 .

In addition to the O(D,D)-invariant metric, the doubled spacetime also has a dynam-

ical metric HMN (x), which is called the generalized metric. This metric is defined to admit

the following decomposition:

HMN = (VT V)MN , V ∈ O(D,D) . (3.6)

Namely, it parameterizes the coset O(D,D)/ (O(D)×O(D)) and satisfies

(H−1)MN = HMN ≡ ηMK HKL ηLN , det(HMN ) = 1 . (3.7)

Let us consider here the volume form on a doubled spacetime. The role of it is played by

e−2d(x) , where d(x) is the T -duality invariant dilaton (sometimes called the DFT dilaton).

Indeed, under a generalized diffeomorphism, it is defined to behave as

δV e−2d(x) = £̂V e−2d(x) ≡ ∂M
(
e−2d(x) VM

)
. (3.8)

This is quite similar to the behavior of the volume form in general relativity,

£v

√
|G| = ∂m

(√
|G| vm

)
. (3.9)

3Formulations of DFT without imposing the strong constraint are investigated, for example, in [64, 65].
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The classical action of DFT. From the above setups, we can write down the classical

action of DFT, which describes the dynamics of the generalized metric HMN (x) and the

T -duality invariant dilaton d(x):

S =

∫
d2DxL ,

L ≡ e−2d

(
1

8
HMN ∂MHKL∂NHKL −

1

2
HKL ∂LHMN ∂NHKM + 4∂Md ∂NHMN

− 4HMN ∂Md ∂Nd− ∂M∂NHMN + 4HMN ∂M∂Nd

)
.

(3.10)

This action is manifestly invariant under a global O(D,D) symmetry which rotates the

2D-dimensional indices (see section 4.3 for more details). As long as the strong constraint

is imposed, it is also invariant under a local symmetry generated by the generalized Lie

derivative [43] although the invariance is not manifest in the above expression.

A relation to the conventional supergravity. In order to reproduce the conventional

supergravity action, it is first necessary to remove the dual-coordinate dependence from

HMN (x) and d(x), which restricts the partial derivatives in (3.10) into the form ∂M =

(∂m, 0) . Next, the following parameterizations for HMN (x) and d(x) are supposed in

terms of the conventional massless fields in the NS-NS sector, {Gmn(x), Bmn(x), Φ(x)}:

HMN =

(
Gmn −BmpGpq Bqn BmkGkn

−Gmk Bkn Gmn

)
, e−2d = e−2Φ

√
|G| . (3.11)

Then, from a straightforward calculation, the classical action (3.10) can be recast into

the conventional supergravity action describing the NS-NS sector fields (up to a bound-

ary term):

S =

∫
dDx e−2Φ

√
|G|

[
R+ 4 |dΦ|2 − 1

2
|H3|2

]
. (3.12)

Here, Dm, Rmn, and R are the conventional covariant derivative and Ricci tensors associ-

ated with the metric Gmn. The metric Gmn is used to raise and lower the D-dimensional

indices m,n, · · · . The following convention is employed for the curvature tensors,

Dmv
n ≡ ∂mvn + γ n

mk v
k , γ k

mn ≡
1

2
Gkl

(
∂mGnl + ∂nGml − ∂lGmn

)
,

Rpqmn ≡ ∂mγ p
nq − ∂nγ p

mq + γ p
mr γ

r
nq − γ p

nr γ
r
mq , Rmn ≡ Rkmkn , R ≡ GmnRmn .

Note that, by choosing the so-called canonical section ∂M = (∂m, 0), which satisfies the

strong constraint, and also choosing the parameterizations (3.11), a local symmetry, gen-

erated by the generalized Lie derivative £̂V with gauge parameters VM = (vm, ṽm) , is

reduced to a local symmetry of the conventional supergravity generated by the conven-

tional diffeomorphism and the B-field gauge transformation,

δGmn = £vGmn , δBmn = £vBmn + ∂mṽn − ∂nṽm . (3.13)
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It should be remarked that the DFT action can be extended to support the R-R

fields [47, 48, 53] and fermion fields [49], and the supersymmetric action is constructed

in [51, 52, 54].

In the following, we will concentrate only on the NS-NS sector. A generalization to

include the R-R fields and fermions is left as a future problem.

3.2 Generalized connection and generalized Ricci tensor

In this subsection, we will introduce the generalized covariant derivative and the generalized

Ricci tensors [38, 44, 46, 50]. The generalized Ricci tensors are useful in manifesting

the covariance or invariance of various quantities under the generalized diffeomorphisms.

For example, although the local gauge invariance of the DFT action was not manifest

from (3.10), the invariance becomes manifest because the Lagrangian density L can be

identified with a product of the volume factor and the generalized Ricci scalar. This is

a generalization of the Einstein-Hilbert action for the general gravity. The equations of

motion of DFT can also be expressed as the generalized Ricci flatness conditions and the

covariance becomes manifest.

Generalized covariant derivative. Let us define the generalized covariant deriva-

tive as4

∇MV N ≡ ∂MV N + ΓM
N
K V

K , ∇MWN ≡ ∂MWN − ΓM
K
N WK . (3.14)

In the conventional formulation, the following four conditions are assumed [44, 46, 50]:

(1) The compatibility with the O(D,D) invariant metric:

∇KηMN = 0 . (3.15)

This condition is equivalent to the anti-symmetricity in the last two indices,

ΓMPQ = ΓM [PQ] . (3.16)

(2) For arbitrary generalized tensors, the following condition is imposed:

£̂V = £̂∇V . (3.17)

Here £̂∇V denotes a generalized Lie derivative with a generalized covariant derivative,

instead of a partial derivative. That is, its action on a generalized vector WM takes

the form,

£̂∇VW
M ≡ V N ∇NWM −

(
∇NVM −∇MVN

)
WN . (3.18)

By using the condition (1), i.e., ΓMNK = ΓM [NK], the condition (2) can be recast

into [44]

Γ[MNK] = 0 . (3.19)

This condition is interpreted as the torsion-free condition [50] because the difference

£̂V − £̂∇V is regarded as the generalized torsion tensor.

4We will basically follow the convention of [44, 46].
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(3) The generalized metric is required to be covariantly constant:

∇KHMN = 0 . (3.20)

For our later discussion, it is helpful to introduce here the projectors defined as

PMN ≡
1

2

(
ηMN +HMN

)
, P̄MN ≡

1

2

(
ηMN −HMN

)
,

PM
K PK

N = PM
N , P̄M

K P̄K
N = P̄M

N , PM
N + P̄M

N = δM
N .

(3.21)

From the conditions (1) and (3), it is easy to see that the projections are covariantly

constant,

∇MPKL = 0 , ∇M P̄KL = 0 . (3.22)

(4) The dilaton d(x) is also required to be covariantly constant:

∇Md = 0 . (3.23)

The factor e−2d behaves as a scalar density with a unit weight, hence this condition

can be written as

∇M e−2d = ∂M e−2d +ΓK
K
M e−2d = 0 , (3.24)

or equivalently,

∇Md = ∂Md+
1

2
ΓK

K
M = 0 . (3.25)

Explicit form of the connection. The four conditions (1)–(4) can mostly determine

the explicit form of ΓMNK in terms of HMN (x) and d(x) . We shall explain here the outline

of determining it by following [44, 46, 50]. It is convenient to employ the projections [50]:5

WM ≡ PMN WN , WM̄ ≡ P̄MN WN , WM = WM +WM̄ . (3.26)

From the conditions (1) and (3), this projection is consistent with the generalized covariant

derivative (i.e., the projection commutes with the generalized covariant derivative each

other). The condition (1) also ensure that the barred/under-barred indices can be raised

or lowered consistently (i.e., the projection commutes with the raising/lowering operations

one another). Then, for example, the following relations are satisfied:

WM YM̄ = 0 , WM YM = WM YM +W M̄ YM̄ . (3.27)

These will be useful in our later discussions.

The properties ΓMNK = ΓM [NK] and Γ[MNK] = 0 allow us to expand ΓMNK as

ΓMNK = ΓMNK + ΓM̄N̄K̄ +
(
ΓMNK̄ − ΓMKN̄ − ΓNKM̄ + ΓKNM̄

)
+
(
ΓM̄N̄K − ΓM̄K̄N − ΓN̄K̄M + ΓK̄N̄M

)
. (3.28)

5Note that our projectors (P, P̄ ) are the same as the ones in [44, 46] and correspond to (P̄ , P ) in [50].
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Thus, all we have to do is to determine the following components [50]:

ΓMNK , ΓM̄N̄K̄ , ΓMNK̄ , ΓM̄N̄K . (3.29)

The last two are determined only from the conditions (1) and (3) [44, 46, 50];

ΓMNK̄ = −(P ∂MP P̄ )NK , ΓM̄N̄K = (P̄ ∂M̄P P )NK . (3.30)

On the other hand, ΓMNK and ΓM̄N̄K̄ , depend on the contracted components ΓM ≡
ΓK

K
M , which are determined from (3.25). In fact, the following expressions can be ob-

tained:

ΓMNK =
2

D − 1
PM [N PK]

L
(
ΓL − 2 (P ∂QP P̄ )[QL]

)
+ Γ̃MNK ,

ΓM̄N̄K̄ =
2

D − 1
P̄M [N P̄K]

L
(
ΓL − 2 (P ∂QP P̄ )[QL]

)
+ Γ̃M̄N̄K̄ .

(3.31)

Here, Γ̃M̄N̄K̄ are undetermined (or unphysical) quantities satisfying

ηMK Γ̃MNK = 0 , ηMK Γ̃M̄N̄K̄ = 0 . (3.32)

They should be projected out from any physical expressions, such as the action and the

equations of motion.

By gathering the results obtained so far, the generalized connection is given by

ΓMNK = Γ̂MNK + ΣMNK , ΣMNK ≡ Γ̃MNK + Γ̃M̄N̄K̄ ,

Γ̂MNK = 2(P ∂MP P̄ )[NK] − 2
(
P[N

P PK]
Q − P̄[N

P P̄K]
Q
)
∂PPQM

+
2

D − 1

(
PM [N PK]

L + P̄M [N P̄K]
L
) (

ΓL − 2 (P ∂QP P̄ )[QL]

)
.

(3.33)

The contracted components ΓM can be expressed as

ΓM = −2 ∂Md , (3.34)

due to the condition (4), but note that the result (3.33) itself is independent of the explicit

form of ΓM . This observation will play a crucial role in section 4.

Generalized Ricci tensors. With generalized connections, a generalized Riemann ten-

sor SMNKL can be defined as [44, 46]

SMNKL ≡
1

2

(
RMNKL +RKLMN − ΓPMN ΓPKL

)
. (3.35)

Here, RPQMN = ηPRR
R
QMN is a non-tensorial curvature defined as

RPQMN ≡ ∂MΓN
P
Q − ∂NΓM

P
Q + ΓM

P
R ΓN

R
Q − ΓN

P
R ΓM

R
Q . (3.36)

The conditions (1) and (2) enable us to show the following symmetries (which are satisfied

by the conventional Riemann tensor) [44]:

SMNKL = S[MN ]KL = SKLMN , SMNKL = SMN [KL] , S[MNK]L = 0 . (3.37)
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By using the generalized Riemann tensor SMNKL, one can define the generalized Ricci

tensor6 SMN and the generalized Ricci scalar S as

SMN ≡ −2
(
PM

K P̄N
L + PM

K P̄N
L
)
SPKPL , (3.38)

S ≡
(
PMK PNL − P̄MK P̄NL

)
SMNKL . (3.39)

These quantities are constructed such that the contribution from the unphysical connection

ΣMNK is completely removed [50]. In other words, they are fully covariant quantities in

the semi-covariant formulation [44, 46].

By using the explicit form of the generalized connection (3.33) and ΓM = −2 ∂Md, the

generalized Ricci tensors, SMN and S, can be expressed in terms of HMN (x) and d(x) [42];

SMN = −2
(
PM

K P̄N
L + P̄M

K PN
L
)
KKL , (3.40)

KMN ≡
1

8
∂MHKL ∂NHKL −

1

2
∂(M |HKL ∂KH|N)L + 2 ∂M∂Nd

+ (∂K − 2 ∂Kd)

(
1

2
HKL ∂(M |H|N)L +

1

2
HL(M | ∂LHK |N) −

1

4
HKL ∂LHMN

)
,

(3.41)

S =
1

8
HMN ∂MHKL∂NHKL −

1

2
HKL ∂LHMN ∂NHKM + 4∂Md ∂NHMN

− 4HMN ∂Md ∂Nd− ∂M∂NHMN + 4HMN ∂M∂Nd . (3.42)

Let us recall here that the classical DFT action (3.10) is given by

S =

∫
d2Dx e−2d S . (3.43)

The volume form e−2d and the generalized Ricci scalar S behaves as a scalar density and

a scalar, respectively, under generalized diffeomorphisms. Hence, under an infinitesimal

generalized diffeomorphism along a generalized vector VM , the action transforms as

δV S =

∫
d2Dx ∂M

(
e−2d S VM

)
. (3.44)

Thus, the DFT action is manifestly invariant under the generalized diffeomorphisms, at

least in the absence of the boundary.

The equations of motion of DFT can be straightforwardly obtained from the ac-

tion (3.10), and the result can be summarized as

SMN = 0 , S = 0 . (3.45)

It is also possible to define the generalized Einstein tensor as [66]

GMN ≡ SMN −
1

2
HMN S . (3.46)

6The generalized Ricci tensor here is related to the conventional definition [44, 46, 50] in the following

manner: SMN |here = −2SMN |conventional .
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This tensor satisfies

SMN =
(
PM

K P̄N
L + P̄M

K PN
L
)
GKL , S = − 2

D
PMN GMN =

2

D
P̄MN GMN , (3.47)

and the differential Bianchi identity [38, 45, 67]

∇MGMN = 0 . (3.48)

By using the generalized Einstein tensor, the equations of motion is written in a sim-

ple form:

GMN = 0 . (3.49)

The covariance of the equations of motion is manifest since the generalized Einstein tensor

transforms as a generalized tensor under the global O(D,D) transformations as well as the

local generalized diffeomorphisms.

Equations of motion in the conventional formulation. For later convenience, let

us describe the relation between GMN = 0 and the equations of motion in the conventional

supergravity.

Note here that SMN = SMN̄ +SM̄N has only D×D independent components. In fact,

by using a certain matrix smn, SMN can be expressed as

(SMN ) =

(
2G(m|k s

[kl]Bl|n) − s(mn) −Bmk s(kl)Bln Bmk s
(kn) −Gmk s[kn]

s[mk]Gkn − s(mk)Bkm s(mn)

)
. (3.50)

Then, SMN = 0 is equivalent to smn = 0 . When we choose the canonical section ∂M =

(∂m, 0) and adopt the parameterizations in (3.11), we can express smn as

smn = Rmn −
1

4
HmpqHn

pq + 2Dm∂nΦ− 1

2
DkHkmn + ∂kΦHk

mn . (3.51)

If we decompose smn into the symmetric part s(mn) and the anti-symmetric part s[mn], the

well-known beta functions [68] in the conventional string sigma model are reproduced7

s(mn) = βGmn ≡ Rmn −
1

4
HmpqHn

pq + 2Dm∂nΦ , (3.52)

s[mn] = βBmn ≡ −
1

2
DkHkmn + ∂kΦHk

mn . (3.53)

Thus the flatness condition of the generalized Ricci tensor SMN = 0 is equivalent to

βGmn = 0 , βBmn = 0 . (3.54)

7Note that the beta function in Tseylin’s double sigma model [69, 70]

S =
1

4πα′

∫
Σ

d2σ
(
ηMN ∂1X

M ∂0X
N −HMN ∂1X

M ∂1X
N) ,

is also computed in [71–74] to have the form, βMN = SMN , unifying βG
mn and βB

mn in a covariant manner.
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On the other hand, S has the form

S = R+ 4Dm∂mΦ− 4 |∂Φ|2 − 1

2
|H3|2 , (3.55)

and S = 0 is equivalent to the vanishing beta function for the dilaton βΦ = 0 . To

summarize, it has been shown that GMN = 0 is equivalent to

βGmn = βBmn = βΦ = 0 . (3.56)

These equations are nothing but the equations of motion for the NS-NS sector of the

conventional supergravity.

As a side remark, it will be interesting to note that βΦ becomes a constant upon using

equations of motion SMN = 0 , as emphasized in [68]. Indeed, by using the differential

Bianchi identity and SMN = 0 , it is easy to show that

∂MS = 2HMN ∇KSKN = 0 . (3.57)

In the next section, we will consider a modification of the standard DFT introduced

here by relaxing the condition (4) for the T -duality invariant dilaton d(x) .

4 The generalized equations from modified DFT

In this section, we will consider a modification of the generalized connection by relaxing the

condition (4) associated with the DFT dilaton d(x) . This leads to the modification of the

generalized Ricci tensors. We here study a theory, referred to as a modified double field

theory (mDFT), whose equations of motion are given by the modified generalized Ricci

flatness conditions.

The goal of this section is to derive the generalized equations in the NS-NS sector,

Rmn −
1

4
HmpqHn

pq +DmXn +DnXm = 0 ,

1

2
DkHkmn −

(
XkHkmn +DmXn −DnXm

)
= 0 ,

R− 1

2
|H3|2 + 4DmX

m − 4XmXm = 0 ,

(4.1)

from the equations of motion in mDFT. Namely, we show that the generalized equations

are embedded into the mDFT.

We also discuss several aspects in mDFT; the global O(D,D) symmetry, modification

of the string charge, and the action.

4.1 Modified generalized Ricci tensor

Let us recall that the generalized covariant derivative has been defined by requiring four

conditions in section 3.2.

Our central idea here is to make a modification of the condition (4) which determines

the contracted connection ΓM = ΓK
K
M . The condition (4) was originally required for the
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covariant divergence of an arbitrary generalized vector VM multiplied by the measure e−2d

to be a total derivative,

e−2d∇MVM = ∂M
(
e−2d VM

)
. (4.2)

In the following, we will consider the following modification of this condition:

∇̊Md = ∂Md+
1

2
Γ̊K

K
M = −XM , (4.3)

by introducing an extra generalized vector field XM . Here and hereafter, we denote the

X-modified generalized covariant derivative and the generalized connection by ∇̊ and Γ̊ .

For the modified generalized connection, the relation in (4.2) is also deformed;

e−2d ∇̊MVM = ∂M
(
e−2d VM

)
− 2 e−2dXM VM . (4.4)

As we will discuss in section 4.5, this deformation makes it difficult to derive the generalized

Ricci flatness conditions as the equations of motion.

By using the expression (3.33) and

Γ̊M = −2
(
∂Md+ XM

)
, (4.5)

it is easy to calculate the difference in the generalized connection,

δXΓMNK ≡ Γ̊MNK − ΓMNK . (4.6)

Indeed, we obtain

δXΓMNK = − 4

D − 1

(
PM [N PK]

L + P̄M [N P̄K]
L
)
XL . (4.7)

In order to calculate the modifications of the generalized Ricci tensors, let us employ the

formula for the variation of the generalized Riemann tensor [50],8

δXSMNKL = ∇[MδXΓN ]KL +∇[KδXΓL]MN

− δXΓ[M |PL δXΓ|N ]K
P − δXΓ[K|PN δXΓ|L]M

P − 1

2
δXΓPMN δXΓPKL ,

(4.8)

under a shift in the generalized connection

ΓMNK → Γ̊MNK = ΓMNK + δXΓMNK . (4.9)

This formula leads to the variation of the generalized Ricci tensor:

δXSMN = −2
(
PM

K P̄N
L + P̄M

K PN
L
) [
−∇(MδXΓN) −∇KδXΓ(MN)K

− δXΓ(M |
KL δXΓL|N)K − δXΓK δXΓ(MN)

K − 1

2
δXΓKM

L δXΓKNL

]
= −4

(
PMK P̄NL + P̄MK PNL)∇(KXL) . (4.10)

8The generalized connection ΓMNK here corresponds to ΓMKN = −ΓMNK of [50].
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Note here that only the first term has non-vanishing contribution because δXΓMNK has

only M̄N̄K̄ and M N K components and the projections remove all the other terms. A

similar calculation also leads to

δXS = 4HMN ∇MXN − 4HMN XM XN . (4.11)

Then, by introducing a dual generalized vector

Y M ≡ HMN XN , (4.12)

the following expressions are obtained

δXSMN = 4
(
PMK P̄NL − P̄MK PNL)∇[KY L] = −£̂YHMN , (4.13)

δXS = 4∇MY M − 4HMN Y M Y N . (4.14)

In summary, by using the expressions of SMN and S, the modified generalized Ricci

tensors, S̊MN and S̊, are written as

S̊MN = SMN − £̂YHMN , (4.15)

S̊ =
1

8
HMN ∂MHKL∂NHKL −

1

2
HKL ∂LHMN ∂NHKM + 4∂Md ∂NHMN

− 4HMN ∂Md ∂Nd− ∂M∂NHMN + 4HMN ∂M∂Nd

+ 4∇MY M − 4HMN Y M Y N . (4.16)

It is easy to see that S̊ is derived from S by making a simple replacement,

∂Md→ ∂Md+ XM . (4.17)

This must be also true for S̊MN since the dilaton dependence in S̊MN appears only with

the combination, ∂Md+ XM .

4.2 Equations of motion as the generalized Ricci flatness conditions

The aim of this subsection is to show that the modified generalized Ricci flatness conditions,

S̊MN = 0 , S̊ = 0 , (4.18)

or equivalently,

SMN = £̂YHMN , S = −4∇MY M + 4HMN Y MY N , (4.19)

lead to the equations of motion in the generalized supergravity (4.1).

In order to reproduce (4.1), we choose the canonical section (∂M ) = (∂m, 0), and adopt

the parameterizations (3.11). We also parameterize the null generalized Killing vector as

XM ≡

(
δmn 0

Bmn δ
n
m

)(
In

Un

)
=

(
Im

Um +Bmn I
n

)
. (4.20)
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With this parameterization, Im and Um are a contravariant and a covariant vector, re-

spectively, and invariant under the B-field gauge transformations. The explicit form of the

dual generalized vector becomes

Y M = HMN XN =

(
δmn 0

Bmn δ
n
m

)(
Un

In

)
=

(
Um

Im +Bmn U
n

)
. (4.21)

Then, the generalized Lie derivative £̂YHMN , which has the components (£̂YH)MN =

(£̂YH)MN̄ + (£̂YH)M̄N , becomes a matrix of the form (3.50) with smn replaced by

`mn = −
(
DmUn +DnUm + UkHkmn +DmIn −DnIm

)
. (4.22)

From (3.52), (3.53), and (3.55), the modified generalized Ricci flatness conditions (4.18)

can be expressed as

s̊(mn) = 0 , s̊[mn] = 0 , S̊ = 0 (4.23)

with

s̊(mn) ≡ s(mn) + `(mn) = Rmn −
1

4
HmpqHn

pq + 2Dm∂nΦ +DmUn +DnUm ,

s̊[mn] ≡ s[mn] + `[mn] = −1

2
DkHkmn + ∂kΦHk

mn + UkHkmn +DmIn −DnIm ,

S̊ = R+ 4Dm∂mΦ− 4 |∂Φ|2 − 1

2
|H3|2 − 4

(
ImIm + UmUm + 2Um ∂mΦ−DmU

m
)
.

(4.24)

Although these equations are not equivalent to (4.1) yet, we can show the equivalence

by further assuming that the generalized vector,

XM = −∇̊Md , (4.25)

is a null generalized Killing vector;

ηMN XMXN = 0 , £̂XHMN = 0 , £̂Xd = 0 . (4.26)

The null property gives rise to

Im Um = 0 , (4.27)

and the generalized Killing property leads to the following relations:

DmIn +DnIm = 0 , IkHkmn +DmUn −DnUm , Im ∂mΦ = 0 . (4.28)

These requirements lead to the equations of motion (4.1) with identifications

Xm = Im + Zm , Zm = ∂mΦ + Um . (4.29)

The null property and the generalized Killing property can be summarized as

DmIn +DnIm = 0 , IkHkmn +DmZn −DnZm = 0 , Im Zm = 0 . (4.30)
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Note that, as we discuss in section 4.4, the null and the generalized Killing properties are

important in order to define a “fundamental string charge” in mDFT. This result indicates

that the kappa-symmetry constraints play an important role in defining the “string charge.”

Note also that the equations of motion can go back to the original ones if and only if

£̂YHMN = 0 , HMN Y MY N −∇MY M = 0 , (4.31)

are satisfied.

4.3 Global O(D,D) transformations in mDFT

In this subsection, we consider global transformations which map a solution to other solu-

tions.

First of all, let us consider global O(D,D) transformations in DFT. An arbitrary global

O(D,D) transformation can be generated by the following three transformations:

GL(D): Λ(a)M
N ≡

(
am

n 0

0 (a−T)mn

) [
am

n ∈ GL(D)
]
, (4.32)

B-shift: Λ(b)M
N ≡

(
δnm bmn
0 δmn

) [
bmn = −bnm

]
, (4.33)

T -duality: Λ(k)M
N ≡

(
δnm − δkm δnk δkm δ

k
n

δmk δ
n
k δmn − δmk δkn

)
. (4.34)

Here, “T -duality” represents the conventional T -duality transformation along xk direction

and the index k in the last expression is not summed. Under a general global O(D,D)

transformation ΛM
N , the generalized coordinates, the derivatives, and the generalized

metric are defined so as to transform covariantly,

xM → x′M = ΛMN x
N , ∂M → ∂′M = ΛM

N ∂N , HMN → H′MN = ΛM
K ΛN

LHKL .
(4.35)

Here the indices are raised or lowered with ηMN as usual. In addition, the transformation

rule for the DFT dilaton d(x) is given as follows. Since e−2d is a scalar density, it is

transformed under a global GL(D) transformations as

e−2d → e−2d′ = |det(a)| e−2d . (4.36)

On the other hand, it is invariant under the B-shifts and T -duality transformations. Then,

since |det(a)| is constant, ∂Md is transformed as a generalized vector,

∂Md → ∂′Md
′ = ΛM

N ∂Nd , (4.37)

under global O(D,D) transformations. The generalized Ricci tensors, SMN and S, are

polynomials in

{HMN , ∂KHMN , ∂K∂LHMN , ∂Md , ∂M∂Nd} (4.38)
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with the indices contracted with ηMN , and hence it is useful to write SMN and S in terms

of polynomials PMN and P as

SMN ≡ PMN

(
HMN , ∂KHMN , ∂K∂LHMN , ∂Md, ∂M∂Nd

)
,

S ≡ P
(
HMN , ∂KHMN , ∂K∂LHMN , ∂Md, ∂M∂Nd

)
.

(4.39)

We then have the following transformation rule for SMN and S :

S ′MN = ΛM
K ΛN

L SKL , S ′ = S , (4.40)

where

S ′MN ≡ PMN

(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂

′
Md
′, ∂′M∂

′
Nd
′) ,

S ′ ≡ P
(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂

′
Md
′, ∂′M∂

′
Nd
′) . (4.41)

This shows that under the global O(D,D) transformation, the DFT action is invariant and

the equations of motion are covariant. In the case of (4.35), however, everything is rotated

and nothing is changed physically.

Next, let us recall that the strong constraint can be satisfied by choosing the canonical

section (∂M ) = (∂m, 0), up to global O(D,D) rotations of generalized coordinates. Once

the canonical section has been fixed, we will not change doubled coordinates any longer

but perform a different kind of global O(D,D) transformation which acts only on fields,

HMN and d(x), on the canonical section:

xM → x′M , HMN → H′MN = ΛM
K ΛN

LHKL , ∂Md → ∂Md
′ = ∂Md . (4.42)

After performing this transformation, the equations of motion become

S̃MN = 0 , S̃ = 0 , (4.43)

where

S̃MN ≡ PMN

(
H′MN , ∂KH′MN , ∂K∂LH′MN , ∂Md

′, ∂M∂Nd
′) ,

S̃ ≡ P
(
H′MN , ∂KH′MN , ∂K∂LH′MN , ∂Md

′, ∂M∂Nd
′) . (4.44)

Then, even if we start from a solution of DFT,
{
HMN (x), d(x)

}
, the transformed config-

uration,
{
H′MN (x), d′(x)

}
, may not satisfy the equations of motion, because the original

equations of motion, SMN = S = 0, and the equations of motion for the transformed

solution, S̃MN = S̃ = 0, are not equivalent (although SMN = S = 0 and S ′MN = S ′ = 0

are equivalent from (4.40)). However, if we consider a special case, in which there exist

isometries, HMN (x) and d(x) are independent of the corresponding coordinates, denoted

by (yi) (i = 1, . . . , N) . Then, by decomposing the physical coordinates as (xm) = (xµ, yi)

(µ = 1, . . . , D −N), the derivative takes the following form:(
∂M ) = (∂µ, ∂i, ∂̃

µ, ∂̃i
)T

= (∂µ, 0, 0, 0
)T
. (4.45)
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In the case with isometries, under global O(N,N) transformations of the form,

(
ΛM

N
)

=


δµ
ν 0 0 0

0 Λi
j 0 Λij

0 0 δµν 0

0 Λij 0 Λij

 , (4.46)

the derivative ∂M is the same as the would-be transformed derivative,

∂′M ≡ ΛM
N ∂N = (∂µ, 0, 0, 0

)T
. (4.47)

We then obtain

S̃MN = PMN

(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂

′
Md
′, ∂′M∂

′
Nd
′) = S ′MN ,

S̃ = P
(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂

′
Md
′, ∂′M∂

′
Nd
′) = S ′ .

(4.48)

Recalling SMN = S = 0 is equivalent to S ′MN = S ′ = 0, we obtain S̃MN = S̃ = 0 and{
H′MN (x), d′(x)

}
satisfies the equations of motion of DFT. Namely, in the presence of

N isometries, O(N,N) transformations (4.46) map a solution to other solutions of DFT.

These are nothing but the O(N,N) T -duality transformations known in the conventional

supergravity.

Let us next consider a more general class of DFT solutions in which HMN is indepen-

dent of yi but the DFT dilaton has a linear dependence on yi, namely,

HMN (x, y) = HMN (x) , d(x, y) = d0(x) + ci y
i (ci : constants) . (4.49)

We show that the above yi-dependent solution of DFT is mapped to solutions of mDFT

under global O(N,N) transformations.

Starting from the solution (4.49) of DFT, {HMN , d}, let us consider an O(N,N) trans-

formation (4.46) and denote the transformed configuration by {H′MN , d
′} . As explained

above, due to the presence of the isometries, ∂KH′MN and ∂K∂LH′MN can be rewritten as

∂′KH′MN and ∂′K∂
′
LH′MN , as in the previous case. On the other hand, the non-isometry of

d leads to

∂Md
′ 6= ∂′Md

′ for ci 6= 0 , (4.50)

as we can see from the explicit expression,

∂Md
′ =


∂µd

′

∂id
′

∂̃µd′

∂̃id′

 =


∂µd

ci
0

0

 , ∂′Md
′ = ΛM

N ∂Nd
′ =


∂µd

Λi
j cj
0

Λij cj

 . (4.51)

Again, SMN = S = 0 is equivalent to S ′MN = S ′ = 0 but not equivalent to S̃MN = S̃ = 0,

and the transformed configuration {H′MN , d
′} is not a solution of DFT (in general).

We now expand our framework from DFT to mDFT. Suppose that the initial config-

uration given by (4.49) and XM = 0 is a solution of DFT;

S̊MN = SMN = 0 , S̊ = S = 0 . (4.52)
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Since S̊MN and S̊ can be obtained from SMN and S with the replacement,

∂Md → ∂Md+ XM , (4.53)

we have

S̊MN = PMN

(
HMN , ∂KHMN , ∂K∂LHMN , ∂Md+ XM , ∂M (∂Nd+ XN )

)
,

S̊ = P
(
HMN , ∂KHMN , ∂K∂LHMN , ∂Md+ XM , ∂M (∂Nd+ XN )

)
.

(4.54)

Again, S̊MN = S̊ = 0 is equivalent to S̊ ′MN = S̊ ′ = 0 if S̊ ′MN and S̊ ′ take the forms,

S̊ ′MN ≡ PMN

(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂Md

′ + X ′M , ∂
′
M (∂Nd

′ + X ′N )
)
,

S̊ ′ ≡ P
(
H′MN , ∂

′
KH′MN , ∂

′
K∂
′
LH′MN , ∂Md

′ + X ′M , ∂
′
M (∂Nd

′ + X ′N )
)
,

(4.55)

where the combination ∂Md
′ + X ′M is defined by

∂Md
′ + X ′M ≡ ΛM

N
(
∂Nd+ XN

)
. (4.56)

Then, if one could find d′ and X ′M which satisfy (4.56), and both H′MN and ∂Md
′ + X ′M

are independent of yi, the configuration {H′MN , d
′, X ′M} is a solution of mDFT, since we

have

˜̊SMN ≡ PMN

(
H′MN , ∂KH′MN , ∂K∂LH′MN , ∂Md

′ + X ′M , ∂M (∂Nd
′ + X ′N )

)
= S̊ ′MN ,

˜̊S ≡ P
(
H′MN , ∂KH′MN , ∂K∂LH′MN , ∂Md

′ + X ′M , ∂M (∂Nd
′ + X ′N )

)
= S̊ ′ ,

(4.57)

and S̊MN = S̊ = 0 becomes equivalent to
˜̊SMN =

˜̊S = 0 . In a special case where X ′M = 0,

the transformed configuration satisfies also the equations of motion of DFT.

Now, let us find out the transformed solution d′ and X ′M from the initial solution (4.49)

and XM = 0 . In this case, the right-hand side of (4.56) becomes

ΛM
N
(
∂Nd+ XN

)
= ΛM

N ∂Nd = (∂µd, Λi
j cj , 0, Λij cj)

T , (4.58)

and we need to find a pair {d′, X ′M} which satisfies

(∂Md
′ + X ′M )(x) =

(
∂µd , Λi

j cj , 0 , Λij cj
)T
. (4.59)

Note here that this quantity is independent of yi . Although there is an ambiguity in

decomposing ∂Md
′ + X ′M into ∂Md

′ and X ′M ,9 a convenient choice is

d′(x, y) = d(x, y) + (Λi
j − δji ) cj y

i , X ′M =
(
0 , 0 , 0 , Λij cj

)T
. (4.60)

These, together with H′MN = ΛM
K ΛN

LHKL satisfies the equations of motion of mDFT.

9This ambiguity is not important at the level of the equations of motion because d′ appears only through

the combination ∂Md
′ + X ′M . However, if we consider for example the action, d′ enters directly and we

need to treat the ambiguity carefully.
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In order to rewrite the above solution in terms of the generalized supergravity, let us

parameterize XM as (4.20). Then, we obtain

I ′µ = 0 , I ′i = Λij cj , U ′m = −B′mn I ′n . (4.61)

If the conventional dilaton Φ′(x, y) is defined as usual, e−2d′ = e−2Φ′
√
|G′| , and also define

vector fields Z ′m and X ′m by

Z ′m(x) ≡ ∂mΦ′ −B′mn I ′n , X ′m(x) ≡ I ′m + Z ′m , (4.62)

the configuration {G′mn(x), B′mn(x), X ′m(x)} satisfies the generalized equations (4.1). Note

also that I ′m and Z ′m defined above satisfies conditions (4.30) for arbitrary ΛM
N and ci.

The only non-trivial relation,

Im Zm = Ij ∂jΦ
′ = 0 (4.63)

can be shown by using an O(N,N) property, Λk
(i| Λk|j) = 0 .

In summary, we have shown that for a solution of DFT given by{
HMN (x), d(x, y) = d0(x) + ci y

i
(

= Φ(x, y)− ln|detGmn|1/4
)}

, (4.64)

there exists a solution of mDFT,{
H′MN (x), d′(x, y) = d0(x) + Λi

j cj y
i , X ′M =

(
0 , 0 , 0 , Λij cj

)T}
, (4.65)

or equivalently a solution of the generalized equations

{G′mn(x), B′mn(x), X ′m(x)} , (4.66)

where the transformation rule is given as follows:

H′MN (x) = ΛM
K ΛN

LHKL(x)
[

ΛM
N ∈ O(N,N)

]
,

X ′m(x) = I ′m + Z ′m = ∂mΦ′ + (G′ −B′)mn I ′n ,

Φ′(x, y) = Φ(x, y) + ln

∣∣∣∣detG′mn
detGmn

∣∣∣∣1/4 + (Λi
j − δji ) cj y

i , I ′m = (0, Λij cj) .

(4.67)

Example. As a simple example, let us consider a solution of the conventional

supergravity [2],

ds2 = e2a(x)
(
dy +Aµ(x) dxµ

)2
+ gµν(x) dxµ dxν , B2 = 0 , Φ = c y + f(x) . (4.68)

Let us perform a T -duality along y direction, i.e., Λy
y = 0 and Λyy = 1 . Then the metric

and B-field are transformed as

ds′2 = e−2a(x) dy2 + gµν(x) dxµ dxν , B′2 = Aµ(x) dxµ ∧ dy . (4.69)

From cy = c and (4.67), we can easily obtain X ′m which, together with G′mn and B′mn,

satisfies the generalized equations;

(X ′m) =

(
∂µ(Φ− a) + cAµ

c e−2a

)
. (4.70)

This agrees with the known solution (1.10) in [2], up to conventions.
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Solution-generating transformations in mDFT. As a more general case, let us con-

sider a solution of mDFT of the form,

{HMN (x) , d(x, y) = d0(x) + ci y
i , XM (x)} , (4.71)

as the initial configuration. In this case, we can again consider the O(N,N) transforma-

tions, and if

H′MN (x) = ΛM
K ΛN

LHKL(x) , ∂Md
′ + X ′M = ΛM

N
(
∂Nd+ XN

)
(x) , (4.72)

are satisfied, the transformed configuration,{
H′MN (x), d′(x, y), X ′M (x)

}
, (4.73)

is a solution of mDFT.

Here we do not try to find the most general solution of (4.72), but consider a simple

case; £IBmn = 0 . Then, one can take

Um = −Bmn In , (4.74)

by a suitable redefinition of the dilaton. It is further assumed that a coordinate system

can be chosen such that the Killing vector Im becomes constant without violating the

ansatz (4.71). Then, the second equation in (4.72) is satisfied by

Φ′(x, y) = Φ(x, y) + ln

∣∣∣∣detG′mn
detGmn

∣∣∣∣1/4 +
[
Λij I

j + (Λi
j − δji ) cj

]
yi ,

I ′µ = Iµ , I ′i = Λij cj + Λij I
j , U ′m = −B′mn I ′n .

(4.75)

It is easy to show that the conditions in (4.30) are also satisfied in the primed system as

long as they are satisfied initially. Using this formula, we can generate various solutions of

mDFT from a given solution of mDFT. Of course, if we set Im = 0, the formula (4.75) is

reduced to the previous one (4.67).

4.4 Modified F1-charge

In the conventional supergravity, the equation of motion for the B-field is

d
(
e−2Φ ∗10H3

)
= 0 , (4.76)

where ∗10 is the Hodge star operator associated with the string-frame metric Gmn. If the

spacetime has the topology, M10 = M9 × S1 with S1 a small circle, and closed strings

wrapped on S1 are propagating on M9 as point particles, the right-hand side of (4.76)

includes the source terms,

d
(
e−2Φ ∗10H3

)
=
∑
p

cp δ
8(x− xp) , (4.77)
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where xp is the position of the p-th particle and cp is a constant associated with the string

winding charge. Then the total fundamental string charge (F1-charge) can be computed as

QF1 =

∫
Vt

d
(
e−2Φ ∗10H3

)
=

∫
∂Vt

e−2Φ ∗10H3 , (4.78)

where Vt is a region on a time-slice of M9 which contains the point particles.

In mDFT, the equations of motion for the B-field is s̊[mn] = 0, namely,

d
(
e−2Φ ∗10H3

)
= ∗10

(
ιUH3 + dI

)
, (4.79)

and apparently we cannot define the F1-charge because there is a cutaneously distributed

source term on the right-hand side.

In this subsection, we show that the right-hand side of (4.79) is a closed form,

d ∗10

(
ιUH3 + dI

)
= 0 , (4.80)

as far as the null and the generalized Killing properties are satisfied. This indicates that,

at least locally, there exists a 7-form χ7, which satisfies

dχ = ∗10

(
ιUH3 + dI

)
, (4.81)

and we can define a modified 7-form field strength,

H ′7 ≡ e−2Φ ∗10H3 − χ7 , (4.82)

satisfying the Bianchi identity, dH ′7 = 0. This allows to define a modified string charge as

Q′F1 ≡
∫
Vt

dH ′7 =

∫
∂Vt

H ′7 . (4.83)

In order to show the closedness (4.80), let us rewrite (4.79) in terms of the compo-

nents as

1

2
∂k
(
e−2Φ

√
|G|Hkmn

)
= e−2Φ

√
|G|
(
UkH

kmn +DmIn −DnIm
)
. (4.84)

Then the closedness means the divergence-free condition of the right-hand side of (4.84),

∂m
[
e−2Φ

√
|G|
(
UkH

kmn +DmIn −DnIm
)]

= 0 , (4.85)

or equivalently,

Dm

[
e−2Φ

(
UkH

kmn +DmIn −DnIm
)]

= 0 . (4.86)

A straightforward calculation shows

e2ΦDm

[
e−2Φ

(
UkHk

mn +DmIn −DnIm
)]

= −2
(
s̊[nk] Uk + s̊(nk) Ik

)
+

1

2

(
Hnlk + 4GnlIk

) (
ImHmkl +DkUl −DlUk

)
+ 2Dn

(
2 Ik Zk −DmI

m
)

+
(
Dk − 2Zk

)(
DkIn +DnIk

)
. (4.87)
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Hence, as long as the null and the generalized Killing properties are satisfied, the closedness

condition (4.80) is satisfied under the equations of motion and χ7 can be found at least

locally.

Given a solution of mDFT or the generalized supergravity, it should satisfy dH ′7 = 0

and there exists the associated potential B′6 satisfying

H ′7 = dB′6 . (4.88)

In the absence of the extra generalized vector XM , this potential is reduced to the conven-

tional 6-form B6, which minimally couples to the NS5-brane. Thus it is quite natural to

expect that the NS5-brane propagating in a background, which satisfies the equations of

motion of mDFT, will minimally couples to the modified potential B′6 . It would be an in-

teresting future problem to construct a world-volume action of the NS5-brane propagating

in backgrounds of mDFT.

4.5 An attempt to construct the classical action

In DFT, the generalized Ricci flatness conditions are derived as the equations of motion.

In this subsection, let us first recall how to derive the flatness condition of the gen-

eralized Ricci tensors. We will then discuss why it is so difficult to realize the modified

generalized Ricci flatness conditions from the action principle.

Let us consider the Lagrangian density for DFT,

L = e−2d S = e−2d
(
PMK PNL − P̄MK P̄NL

)
SMNKL . (4.89)

By taking a variation, the following expression is obtained [66]:

δL = −2 e−2d S δd− 1

2
e−2d SMN δHMN + e−2d ∇M

[
2
(
PMK PNL − P̄MK P̄NL

)
δΓNKL

]
= − e−2d

(
2S δd+

1

2
SMN δHMN

)
+ e−2d∇M

(
4HMN ∂Nδd−∇N δHMN

)
. (4.90)

Thanks to the volume factor e−2d and (4.2), the last term can be rewritten as

δL = − e−2d

(
2S δd+

1

2
SMN δHMN

)
+ ∂M

[
e−2d

(
4HMN ∂Nδd−∇N δHMN

)]
. (4.91)

Note here that the total derivative terms do not contribute to the equations of motion.

Then the action principle leads to the generalized Ricci flatness conditions, SMN = 0 and

S = 0 . That is, the equations of motion are described as the flatness condition of the

generalized Ricci tensors.

Instead, let us try to consider a modified Lagrangian density,

L′ = e−2d S̊ = e−2d
(
PMK PNL − P̄MK P̄NL

)
S̊MNKL . (4.92)

Its variation with respect to HMN (x) and d(x) gives

δL′ = e−2d

[
−2 S̊ δd− 1

2
S̊MN δHMN + ∇̊M

(
4HMN ∂Nδd− ∇̊N δHMN

)]
, (4.93)
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and from (4.4), we obtain

δL′ = − e−2d

(
2 S̊ δd+

1

2
S̊MN δHMN

)
+ ∂M

[
e−2d

(
4HMN ∂Nδd− ∇̊N δHMN

)]
− 2 e−2dXM

(
4HMN ∂Nδd− ∇̊N δHMN

)
= −2 e−2d

(
S̊ − 4HMN ∇MXN

)
δd− 1

2
e−2d

(
S̊MN + 4∇(MXN) + 8XMXN

)
δHMN

+ ∂M
[
e−2d

(
4HMN ∂Nδd− 8XN HMN δd− ∇̊N δHMN + 2XN δHMN

)]
. (4.94)

Then, the equations of motion become10

S̊ − 4HMN ∇MXN = 0 ,

S̊MN + 4
(
PM

K P̄N
L + P̄M

K PN
L
) (
∇(KXL) + 2XKXL

)
= 0 , (4.95)

or equivalently,

S = 4HMN XMXN , SMN = −8
(
PM

K P̄N
L + P̄M

K PN
L
)
XKXL . (4.96)

These are not of our interest and L′ is not a correct Lagrangian density for mDFT.

A possible way is to find out a new volume factor ω which satisfies

ω ∇̊MVM = ∂M
(
ω VM

)
, (4.97)

for an arbitrary generalized vector VM and changes under the variation as

δω ∝ ω δd+ ω αMN δHMN . (4.98)

Here, αMN is a certain generalized tensor that vanishes when S̊ = 0 is satisfied. If we could

find such ω , the Lagrangian density,

LX = ω S̊ , (4.99)

gives the modified generalized Ricci flatness conditions. Indeed, the variation becomes

δLX = S̊ δω − 1

2
ω S̊MN δHMN + ∂M

[
ω
(
4HMN ∂Nδd− ∇̊N δHMN

)]
, (4.100)

and the desired relations S̊MN = 0 and S̊ = 0 are obtained. However, (4.97) is equivalent to

Γ̊M = ∂M lnω , (4.101)

and recalling Γ̊M = −2
(
∂Md+ XM

)
, the generalized vector XM must be of the form,

XM = ∂Mf . (4.102)

It is so restrictive that XM can be removed by a redefinition of the dilaton. As a result, the

system goes back to the conventional DFT. Thus, it is difficult to find a good Lagrangian

density for mDFT. It still remains to be solved.

10The same result can be easily obtained if we note that e−2d S̊ is equal to e−2d
(
S − 4HMN XMXN

)
up

to a total derivative term.
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As a closely related issue, let us make a brief comment on the differential Bianchi

identity (3.48). In DFT, this can be derived from a invariance of the action under an

infinitesimal generalized diffeomorphism [38, 45, 67]. Unfortunately, since we do not have

the action of mDFT, we cannot derive the modified differential Bianchi identity, like

∇̊M S̊ ∼ 2HMK ∇̊N S̊NK , (4.103)

from a similar consideration. However, if we choose the canonical section (∂M ) = (∂m, 0)

and adopt the parameterizations (3.11), we can show a similar identity,

DkS̊ = 2
(
Dl − 2Zl

)
s̊(lk) −

(
Hkpq + 4Gkp Iq

)
s̊[pq] + 2

(
Dl − 2Zl

) (
IpH

pkl +DkZ l −DlZk
)

− 4
[
I l
(
DkIl +DlIk

)
+Dk

(
2 I l Zl −DlI

l
)]
. (4.104)

In particular, if we use the null and the generalized Killing properties, this becomes

DkS̊ = 2
(
Dl − 2Zl

)
s̊(lk) −

(
Hkpq + 4Gkp Iq

)
s̊[pq] . (4.105)

From this identity, we can show that S̊NM = 0, or equivalently s̊mn = 0, leads to ∂kS̊ = 0

as it was shown in [2]. It will be interesting to investigate a O(D,D) covariant expression

of this Bianchi identity without choosing the canonical section.

5 Conclusion and outlook

In this paper, we have considered a modified generalized covariant derivative ∇̊M in a

doubled spacetime, relaxing a condition of the covariant constancy of the DFT dilaton,

∇Md = 0, as

∇̊Md = −XM , (5.1)

with an extra generalized vector XM . Then we have studied a modification of the equations

of motion in DFT, S̊MN = 0 and S̊ = 0 , and shown that these reproduces the NS-NS part of

the generalized equations of type IIB supergravity if the generalized vector XM is assumed

to have the null and the generalized Killing properties. We have also studied the global

transformations which map a solution of mDFT to other solutions of mDFT, generalizing

the known generalized T -duality transformations (for the NS-NS fields) in the generalized

supergravity. A subtle issue in defining the F1-charge in mDFT has also been discussed,

and a definition of the modified F1-charge is proposed.

One of the most important issues to be resolved is the construction of the mDFT action.

As we have discussed in section 4.5, the action allows us to derive the modified differential

Bianchi identity. Also, it allows us to construct Noether currents associated with certain

symmetries. For example, in [66, 75], Noether currents associated with doubled spacetime

isometries are studied from the DFT action, and expressions for the ADM momenta and

the F1-charges are obtained. If we could perform a similar analysis in mDFT, it would be

possible to derive the modified F1-charges as the Noether currents. The action also allows

to discuss the black hole thermodynamics by following Wald’s approach [76–78] (for the
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black hole thermodynamics in DFT, see [79]). In mDFT, because of a modification made

in the dilaton sector, the Einstein frame metric and accordingly the Bekenstein-Hawking

entropy may be modified as well. As discussed in section 4.5, to construct the action, the

construction of a suitable volume form will be important.

As a generalization of mDFT, it is important to include the R-R fields as well. One

approach is to extend the formulation developed in [47, 48, 53] by introducing the same

generalized vector XM . However, this approach might not be satisfactory in the sense that

it treats the NS-NS sector and the R-R sector differently; the NS-NS fields are contained

in the generalized metric but the R-R fields are treated as matters.

Another approach is a U -duality covariant formulation, called the exceptional field

theory (EFT) [80–104]. In Ed(d) EFT, all of the bosonic fields in the 11D supergravity can

be packaged into the generalized metric and certain tensors that depend on the dimension

d. After choosing a suitable section, the EFT action reproduces the bosonic part of the

conventional 11D supergravity. Interestingly, we can also consider a parameterization in

terms of the bosonic fields in 10D type IIB supergravity and the same EFT action can

reproduce the bosonic part of type IIB supergravity action as well. The construction of

the generalized Ricci tensors in EFT is studied in [92] (see also [105]) and the equations of

motion in the 11D supergravity and the type IIB supergravity are expressed by using the

generalized Ricci tensor. Then, it is interesting to consider a modification of the generalized

connection, as we have done in this paper (i.e., modification of the condition (4.12) in [92]),

and see whether the generalized equations of type IIB supergravity are reproduced just by

replacing the generalized Ricci tensor with the modified one.

For ensuring the above direction, the U -duality covariance is necessary to be realized

in the generalized equations of type IIB supergravity. Hence it will be an important task

to study the S-duality covariance of the generalized equations.

We hope that the proposed mDFT would shed light on unexplored physics hiding

behind the generalized supergravity.

Note added. After this paper has appeared on the arXiv, Baguet, Magro and Samtleben

submitted an interesting paper [59], where the equations of the generalized type IIB su-

pergravity are derived from the exceptional field theory by choosing a section condition for

the type IIA description with a Scherk-Schwarz ansatz. It is worth noting that the same

derivation (which is restricted to the NS-NS sector though) has already been explained in

section 4.3 of this paper, without using the term of the Scherk-Schwarz reduction.

In sections 4.1 and 4.2, we have explained that the generalized equations can be ex-

pressed in a manifestly covariant way (i.e. the flatness condition for the modified generalized

Ricci tensors). There, an extra generalized vector XM , which is not contained in the con-

ventional DFT, has been introduced as a modification in the generalized connection. On

the other hand, in section 4.3, we have constructed solutions of the generalized equations

with constant XM by performing the O(N,N) rotations to a solution of the conventional

DFT. In fact, the latter procedure is essentially the same as the Scherk-Schwarz reduction

considered in [59], and ∂Md
′+X ′M introduced in (4.59) is precisely a combination ∂M d̂+fM
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defined below. Namely, in section 4.3, we have introduced the additional generalized vector

XM as the gauging fM , in terms of the Scherk-Schwarz reduction.

The Scherk-Schwarz reduction in DFT has been studied in [106–108]. In terms of the

generalized metric, the ansatz is given by

HMN (x, y) = (ΛT)M
K(y) ĤKL(x) ΛLN (y) , d(x, y) = d̂(x) + λ(y) . (5.2)

The generalized Ricci scalar S for {HMN (x, y), d(x, y)} has been computed in [106–108]. In

a special case where ΛIJ is constant and λ(y) = ci y
i, which corresponds to our ansatz (4.49)

rotated by the O(N,N) transformation (4.46), S becomes a sum of S for {ĤMN (x), d̂(x)}
and an additional term Sf ,

Sf ≡ −2 fM ∂NĤMN + 4 fM ĤMN ∂N d̂− fM fN ĤMN , fM ≡ −2 (Λ−T)M
N ∂Nλ . (5.3)

According to ∂MfN = 0 and an identification fM = −2XM , Sf agrees with the modifica-

tion δXS in (4.11). The modification of the generalized Ricci curvature δXSMN can also be

reproduced in the same manner. Furthermore, the requirements for the gauging [106–108],

fM fM = 0 , fM ∂MĤKL(x) = 0 , fM ∂M d̂(x) = 0 , (5.4)

which are indeed satisfied by

fM = −2 (Λ−T)M
N ∂Nλ = −2

(
0 , Λi

j cj , 0 , Λij cj
)T
, (5.5)

correspond to the null and the generalized Killing properties for XM . Note that a combi-

nation ∂M d̂+ fM is appearing as ∂Md
′ + X ′M in (4.59).11

In addition, as it was shown in [109], when we consider a Scherk-Schwarz reduction

in EFT, the action principle does not work for the low-dimensional theory if there is a

non-vanishing trombone gauging ϑM . The trombone gauging ϑM appears to be identified

with the above introduced gauging fM in DFT, or our extra generalized vector XM . If

this identification is correct, the difficulty in the construction of the action discussed in

section 4.5 has the same origin as the EFT case discussed in [109].12 It will be interesting

to clarify this matter in more detail.
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