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1 Introduction

BCFT is a conformal field theory defined on a manifold M with a boundary P with suitable

boundary conditions. It has important applications in string theory and condensed matter

physics near boundary critical behavior [1]. In the spirit of AdS/CFT [2], Takayanagi [3]

proposes to extend the d dimensional manifold M to a d + 1 dimensional asymptotically

AdS space N so that ∂N = M ∪ Q, where Q is a d dimensional manifold which satisfies

∂Q = ∂M = P . We mention that the presence of the boundary Q is very natural from the

point of view of the UV/IR relation [4] of AdS/CFT correspondence since the presence of

boundary in the field theory introduce an IR cutoff and this can be naturally implemented
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in the bulk with the presence of a boundary. Conformal invariance on M requires that N is

part of AdS space. The key point of holographic BCFT is thus to determine the location of

boundary Q in the bulk. For interesting developments of BCFT and related topics please

see, for example, [5–16].

The gravitational action for holographic BCFT is given by [3, 5] (taking 16πGN = 1)

I =

∫
N

√
G(R− 2Λ) + 2

∫
Q

√
h(K − T ) + 2

∫
M

√
g K + 2

∫
P

√
σ θ (1.1)

where T is a constant and θ = arccos(nM .nQ) is the supplementary angle between the

boundaries M and Q, which makes a well-defined variational principle on the corner

P [17]. Notice that T can be regarded as the holographic dual of boundary conditions

of BCFT since it affects the boundary entropy (and also the boundary central charges,

see (2.43), (2.44) below) which are closely related to the boundary conditions of BCFT [3, 5].

Considering the variation of the on-shell action, we have

δI = −
∫
Q

√
h
(
Kαβ − (K − T )hαβ

)
δhαβ −

∫
M

√
g(Kij −Khij)δgij +

∫
P

√
σ θσabδσab.

(1.2)

For conformal boundary conditions in CFT, Takayanagi [3] proposes to impose Dirichlet

boundary condition on M and P , δgij |M = δσab|P = 0, but Neumann boundary condi-

tion on Q. And the position of the boundary Q is determined by the Neumann boun-

dary condition

Kαβ − (K − T )hαβ = 0. (1.3)

For more general boundary conditions which break boundary conformal invariance even

locally, [3, 5] propose to add matter fields on Q and replace eq. (1.3) by

Kαβ −Khαβ =
1

2
TQαβ , (1.4)

where we have included 2Thαβ in the matter stress tensor TQαβ on Q. For geometrical shape

of M with high symmetry such as the case of a disk or half plane, (1.3) fixes the location

of Q and produces many elegant results for BCFT [3, 5, 6]. However since Q is of co-

dimension one and its shape is determined by a single embedding function, (1.3) gives too

many constraints and in general there is no solution in a given spacetime such as AdS. On

the other hand, of course, one expect to have well-defined BCFT with general boundaries.

To solve this problem, [5] propose to take into account backreactions of Q. For 3d

BCFT, they show that one can indeed find perturbative solution to (1.3) if one take into

account backreactions to the bulk spacetime. In other words although not all the shapes

of boundary P are allowed by (1.3) in a given spacetime, by carefully tuning the spacetime

(which is a solution to Einstein equations) one can always make (1.3) consistent for any

given shape. However, it is still a little restrictive since one has to change both the ambient

spacetime and the position of Q for different boundaries of the BCFT.

As motivated in [3, 5], the conditions (1.3) and (1.4) are natural from the point of view

of braneworld scenario, and so is the backreaction. However from a practical point of view,
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it is not entirely satisfactory since one has a large freedom to choose the matter fields as long

as they satisfy various energy conditions. As a result, it seems one can put the boundary

Q at almost any position as one likes. Besides, it is unappealing that the holographic dual

depends on the details of matters on another boundary Q. Finally, although eq. (1.4) could

have solutions for general shapes by tuning the matters, it is actually too strong since as

we will prove in the appendix it always makes vanishing some of the central charges in

the boundary Weyl anomaly. In a recent work [18], we propose a new holographic dual

of BCFT with Q determined by a new condition (1.9). This condition is consistent and

provides a unified treatment to general shapes of P . Besides, as we will show below, it

yields the expected boundary contributions to the Weyl anomaly.

Instead of imposing Neumann boundary condition (1.3), we suggest to impose the

mixed boundary conditions on Q [18]:

(Kαβ − (K − T )hαβ)Π α′β′

+αβ = 0, (1.5)

Π α′β′

−αβ δhα′β′ = 0. (1.6)

where Π α′β′

+αβ and Π α′β′

−αβ are the projection operators satisfying Π α′β′

+αβ + Π α′β′

−αβ =

δα
′

α δ
β′

β and Π α′β′

±αβ Π α1β1

±α′β′ = Π α1β1
±ij . Since we could impose at most one condition

to fix the location of the co-dimension one surface Q, we require Π α′β′

+αβ = AαβB
α′β′ and

trAB = 1 from Π+Π+ = Π+. Now the mixed boundary condition (1.5) becomes

(Kαβ − (K − T )hαβ)Aαβ = 0, (1.7)

where Aαβ are non-zero tensors to be determined. It is natural to require that eq. (1.7) to

be linear in K so that it is a second order differential equation for the embedding. Thus

we propose the choice Aαβ = hαβ in [18]. In this paper, we will provide more evidences for

this proposal. Besides, we find that the other choices such as

Aαβ = λ1hαβ + λ2Kαβ + λ3Rαβ + · · · , λ1, λ2 6= 0, (1.8)

all lead problems.

To sum up, we propose to use the traceless condition

TBY
α
α = 2(1− d)K + 2dT = 0 (1.9)

to determine the boundary Q. Here TBYαβ = 2Kαβ−2(K−T )hαβ is the Brown-York stress

tensor on Q. In general, it could also depend on the intrinsic curvatures which we will treat

in section 4. A few remarks on (1.9) are in order. 1. It is worth noting that the junction

condition for a thin shell with spacetime on both sides is also given by (1.4) [17]. However,

here Q is the boundary of spacetime and not a thin shell, so there is no need to consider

the junction condition. 2. For the same reason, it is expected that Q has no back-reaction

on the geometry just as the boundary M . 3. Eq. (1.9) implies that Q is a constant mean

curvature surface, which is also of great interests in both mathematics and physics [19]

just as the minimal surface. 4. (1.9) reduces to the proposal by [3] for a disk and half-

plane. And it can reproduce all the results in [3, 5, 6]. 5. Eq. (1.9) is a purely geometric
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equation and has solutions for arbitrary shapes of boundaries and arbitrary bulk metrics.

6. Very importantly, our proposal gives non-trivial boundary Weyl anomaly, which solves

the difficulty met in [3, 5]. In fact as we will show in the appendix the proposal (1.4) of [3]

is too restrictive and always yields c2 = b1 = 0 for the central charges in (1.10), (1.11).

Since b1 is expected to satisfy a c-like theorem and describes the degree of freedom on the

boundary, thus it is important for b1 to be non-zero.

Let us recall that in the presence of boundary, Weyl anomaly of CFT generally pick

up a boundary contribution 〈T aa 〉P in addition to the usual bulk term
〈
T ii
〉
M

, i.e.
〈
T ii
〉

=〈
T ii
〉
M

+ δ(x⊥) 〈T aa 〉P , where δ(x⊥) is a delta function with support on the boundary P .

Our proposal yields the expected boundary Weyl anomaly for 3d and 4d BCFT [20–22]:

〈T aa 〉P = c1R+ c2Trk̄2, d = 3, (1.10)

〈T aa 〉P =
a

16π2
Ebdy

4 + b1Trk̄3 + b2C
ac
bck̄

b
a, d = 4, (1.11)

where c1, c2, b1, b2 are boundary central charges, a = 2π2 is the bulk central charge for 4d

CFTs dual to Einstein gravity, R is intrinsic curvature, k̄ab is the traceless part of extrinsic

curvature, Cijkl is the Weyl tensor on M and (−Ebdy
4 ) is the boundary terms of Euler

density E4 used to preserve the topological invariance

Ebdy
4 = 4

(
2Tr(kR)− kR+

2

3
Trk3 − kTrk2 +

1

3
k3

)
. (1.12)

Since Q is not a minimal surface in our case, our results (2.43), (2.44) are non-trivial

generalizations of the Graham-Witten anomaly [23] for the submanifold.

The paper is organized as follows. In section 2, we study PBH transformations in the

presence of submanifold which is not orthogonal to the AdS boundary M and derive the

boundary contributions to holographic Weyl anomaly for 3d and 4d BCFT. In section 3, we

investigate the holographic renormalization for BCFT, and reproduce the correct boundary

Weyl anomaly obtained in section 2, which provides a non-trivial check of our proposal. In

section 4, we consider the general boundary conditions of BCFT by adding intrinsic curva-

ture terms on the bulk boundary Q. In section 5, we study the holographic entanglement

entropy and boundary effects on entanglement. In section 6, we discuss the phase tran-

sition of entanglement wedge, which is important for the self-consistency of AdS/BCFT.

Conclusions and discussions are found in section 7. The paper is finished with three ap-

pendices. In appendix A, we give an independent derivation of the leading and subleading

terms of the embedding function by solving directly our proposed boundary condition for

Q. The result agrees with that obtained in section 2 using the PBH transformations. In

appendix B, we show that the proposal of [3] always make vanish the central charges c2

and b1 in the boundary Weyl anomaly for 3d and 4d BCFT. In appendix C, we give the

details of calculations for the boundary contributions to Weyl anomaly.

Notations. Gµν , gij , hαβ and σab are the metrics in N, M, Q and P , respectively. We

have µ = (1, . . . , d+1), i = (1, . . . , d), α = (1, . . . , d) and a = (1, . . . , d−1). The curvatures

are defined by Rρσµν = ∂µΓρσν+ΓρµλΓλσν−(µ↔ ν), Rµν = Rρµρν and R = Rµµ. The extrinsic

curvature on Q are defined by K = ∇µnµ, where nµ is the unit vector normal to Q and

pointing outward from N to Q.
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Note added. Two weeks after [18], there appears a paper [51] which claims that our

calculations of boundary Weyl anomaly (2.43), (2.44) are not correct. We find they have

ignored important contributions from the bulk action IN for 3d BCFT and the boundary

action IQ for 4d BCFT. After communication with us, they realize the problems and

reproduce our results (2.43), (2.44) in a new revision of [51]. For the convenience of the

reader, we give the details of our calculations in appendix C. We also emphasis here that,

from our analysis, it is natural to keep T as a free parameter rather than to set it zero.

Otherwise, the corresponding 2d BCFT becomes trivial since the boundary entropy [3] is

zero when T = 0. Besides, we emphasis that, as we previously demonstrated in section 4,

by allowing intrinsic curvatures terms on Q, one can always make the holographic boundary

Weyl anomaly matches the predictions of BCFT with general boundary conditions. This

may or may not match with the result of free BCFT since so far it is not clear whether and

how non-renormalization theorems hold. However in the special case it holds, e.g. in the

presence of supersymmetry, it just means the parameters of the intrinsic curvature terms

are fixed, which is completely natural due to the presence of more symmetry.

2 Holographic boundary Weyl anomaly

According to [24], the embedding function of the boundary Q is highly constrained by

the asymptotic symmetry of AdS, and it can be determined by PBH transformations up to

some conformal tensors. By using PBH transformations, we find the leading and subleading

terms of the embedding function for Q are universal and can be used to derive the boundary

contributions to the Weyl anomaly for 3d and 4d BCFT. It is worth noting that we do

not make any assumption about the location of Q in this approach. So the holographic

derivations of boundary Weyl anomaly in this section is very strong.

2.1 PBH transformation

Let us firstly briefly review PBH transformation in the presence of a submanifold [24].

Consider a (p+ 1)-dimensional submanifold Σ embedded into the (d+ 1)-dimensional bulk

N such that it ends on a p-dimensional submanifold ∂Σ on the d-dimensional boundary

M . Denote the bulk coordinates by Xµ = (xi, ρ) and the coordinates on Σ by τα = (ya, τ)

with i = 1, . . . , d and a = 1, . . . , p. The embedding function is given by Xµ = Xµ(τα).

We consider the bulk metric in the FG gauge

ds2 =
dρ2

4ρ2
+
gijdx

idxj

ρ
. (2.1)

Here ρ = 0 denote the boundary of the metric. It is known that if one assume the metric

gij admits a series expansion in powers of ρ, gij =
(0)
g ij + ρ

(1)
g ij + · · · , then

(1)
g ij can be fixed

by the PBH transformation [26]1

(1)
g ij = − 1

d− 2

(
R

(0)
ij −

R(0)

2(d− 1)
g

(0)
ij

)
. (2.2)

1Note that in our notation, the sign of curvatures differs from the one of [24, 26] by a minus sign.
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PBH transformations are a special subgroup of diffeomorphism which preserve the

FG gauge:

δρ = −2ρσ(x), (2.3)

δxi = ai =
1

2

∫ ρ

0
dρ′gij(x, ρ′)∂jσ(x) + ai0(x). (2.4)

Here σ(x) is the parameter of Weyl rescalings of the boundary metric, i.e., δσg
(0)
ij = 2σg

(0)
ij

and ai0(x) is the diffeomorphism of the boundary M . To keep the position of ∂Σ on M , we

require that ai0(x)|∂Σ = 0.

Next let us include the submanifold. The metric on Σ is given by

hττ =
1

4τ2
+

1

τ
∂τX

i∂τX
jgij(X, τ), (2.5)

hab =
1

τ
∂aX

i∂bX
jgij(X, τ). (2.6)

To fix the reparametrization invariance on Σ, we chose similarly the gauge fixing condition

τ = ρ, haτ = 0 (2.7)

Now under a bulk PBH transformation (2.3), (2.4), one needs to make a compensating

diffeomorphism on Σ [24] such that δρ = δτ and δhaτ = ∂aξ̃
τhττ + ∂τ ξ̃

bhab = 0 in order to

stay in the gauge (2.7). This gives

ξ̃τ = −2τσ(x) and ξ̃a = 2

∫ τ

0
dτ ′τ ′hττh

ab∂bσ. (2.8)

As a result, Xi changes under PBH transformation as

δX i = ξ̃α∂αX
i − ai, (2.9)

where ξ̃α is given by (2.8) and ai is given by eq. (2.4). As in the case of the metric, if one

expand the embedding function in powers of τ ,

Xi(τ, ya) =
(0)

X i(ya) + τ
(2)

X i(ya) + · · · , (2.10)

the first leading nontrivial term can be fixed by its transformation properties [24]. In

fact, since

δ
(0)

X i = 0,

δ
(2)

X i = −2σ
(2)

X i +
1

2

(0)

h ab∂a
(0)

X i∂bσ −
1

2

(0)
g ij∂jσ, (2.11)

one can solve the second equation of (2.11) by

(2)

X i =
1

2p
ki, (2.12)

– 6 –
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where ki is the trace of the extrinsic curvature of ∂Σ

ki =
(0)

h abkiab =
(0)

h ab

(
∂a∂b

(0)

X i −
(0)
γ cab∂cX

(0)i +
(0)

Γ i
jk∂a

(0)

X j∂b
(0)

X k

)
, (2.13)

(0)

h ab is the inverse of
(0)

h ab which appears in the expansion:

hab =
1

τ
∂a

(0)

X i∂b
(0)

X jgij(
(0)

X, τ) + · · · := 1

τ

(0)

h ab + · · · (2.14)

and
(0)
γ cab is the Christoffel symbol for the induced metric

(0)

h ab.

Now let us focus on our problem with p = d − 1, Σ = Q and ∂Σ = P . Inspired

by [3], we relax the assumption of [24] and expand Xi in powers of
√
τ in the presence of

a boundary:

Xi(τ, ya) =
(0)

X i(ya) +
√
τ

(1)

X i(ya) + τ
(2)

X i(ya) + · · · (2.15)

This means that Σ = Q is not orthogonal to the AdS boundary M generally due to the

non-zero
(1)

X i(ya). Then we have

hτa =
1

τ
∂τX

i∂aX
jgij(X, τ) (2.16)

=
1

2τ
3
2

(1)

X i∂a
(0)

X jg
(0)
ij +

1

2τ

(
2

(2)

X i∂a
(0)

X j(0)
g ij +

(1)

X i∂a
(1)

X j(0)
g ij +

(1)

X i∂a
(0)

X j
(1)

X k∂k
(0)
g ij

)
+ · · · .

Imposing the gauge (2.7), we get

(1)

X i = |
(1)

X | ni, (2.17)

hij
(2)

X j = −1

4
hij∂j |

(1)

X |2 − 1

2
hij

(0)

Γ j
kln

knl|
(1)

X |2, (2.18)

where ni is the normal vector pointing inside from P to M , |
(1)

X | =

√
(1)

X i
(1)

X i, hij :=
(0)
g ij − ninj is the zeroth order induced metric on Σ, ki = −nik and k = ∇ini. It is

worth noting that
(2)

X i is on longer a vector due to the appearance of the affine term in

eq. (2.18). This is not surprising since we have imposed the gauge (2.7) which fixes all the

reparametrization of Q except the one acting on ∂Q = P [24]. One can easily check that
(0)

Γ j
kln

knl is indeed covariant under the residual gauge transformations of the reparametriza-

tion of P . Besides, note that coordinates are not vector generally, so there is no need to

require
(2)

X i to be a vector. What must be covariant are the finial results such Weyl anomaly

and entanglement entropy.

– 7 –
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Now let us study the transformations of Xi under PBH. From eq. (2.9), we obtain

δ
(0)

X i = 0, (2.19)

δ
(1)

X i = −σ
(1)

X i, (2.20)

δ
(2)

X i = −2σ
(2)

X i +
1

2
|
(1)

X |2hij∂jσ −
1

2

(
1 + 2|

(1)

X |2
)
ninj∂jσ. (2.21)

Using the following formulas

δσn
i = −σni, (2.22)

δσk
i = −2σki − p ninj∂jσ, (2.23)

δσ
(0)

Γ i
jk = δij∇kσ + δik∇jσ −

(0)
g jk∇iσ, (2.24)

one can easily check that eqs. (2.17), (2.18) indeed obey the transformations (2.20), (2.21).

One may also solve (2.21) directly and obtain for the normal components of
(2)

X i as:

ninj
(2)

X j =
1 + |

(1)

X |2

2p
ki − 1

2
|
(1)

X |2
(0)

Γ n
nnn

i + c1

(
ki

p
+

(0)

Γ n
nnn

i

)
. (2.25)

Here
(0)

Γ n
nn =

(0)

Γ i
jknin

jnk and c1 is a parameter to be determined. Note that a term propor-

tional to ninj∂j |
(1)

X |2 from (2.18) drops out automatically in (2.25) since |
(1)

X (ya)| is functions

of only the transverse coordinates ya, such term vanishes due to the normal derivatives.

As we have mentioned,
(2)

X i is no longer a vector in the normal sense due to the gauge

fixing (2.7). Instead,
(2)

X i admit some kinds of deformed covariance under the remaining

diffeomorphism after fixing the FG gauge (2.1) in N and world-volume gauge (2.7) on Q.

It is clear that the remaining diffeomorphism are the ones on M and P . The key point is

that, for every diffeomorphism on M , there exists compensating reparametrization on Q in

order to stay in the gauge (2.7). As a result,
(2)

X i is covariant in a certain sense under the

combined diffeomorphisms on M and Q. As we will illustrate below, the deformed gauge

symmetry is useful and it fixes the value of the parameter λ1 to be zero.

Without loss of generality, we consider the Gauss normal coordinates Xi = (x, ya)

on M

ds2
M =

(0)
g ijdx

idxj = dx2 +
(
σab + 2xkij + x2qij + · · ·

)
dyadyb, (2.26)

where P is located at x = 0, and Q is determined by

x = a1(y)
√
τ + a2(y)τ + · · · (2.27)

To satisfy the gauge (2.7), we should choose the coordinates on Q carefully. For example,

the natural one τα = (ya, τ) does not work. Instead, we should choose τα = (y′a, τ) with

– 8 –
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the embedding functions given by

ρ = τ, (2.28)

x = a1(y′)
√
τ + a2(y′)τ + · · · (2.29)

ya = y′a − 1

4
σab∂ba

2
1(y′)τ + · · · (2.30)

Notice that ni = (1, 0, · · · , 0) and Γnnn = 0 for the Gauss normal coordinates (2.26). Recall

also that k = −niki, we obtain from eq. (2.25)

a2(y′) = −1 + a2
1(y′)

2p
k − c1

k

p
. (2.31)

Now let us use the remaining diffeomorphism to fix the parameter c1. Consider a remaining

diffeomorphism

x = x′ + cx′2 +O(x′3) (2.32)

which keeps the position of P and the gauge eqs. (2.1), (2.7). From eqs. (2.29), (2.31),

(2.32), we have

x′ = x− cx2 +O(x3) = a1(y′)
√
τ −

(
1 + a2

1(y′)

2p
k + c1

k

p
+ c a2

1(y′)

)
τ + · · · (2.33)

Since the new coordinate x′ satisfies the gauge (2.1), (2.7), it must take the form (2.25)

because of PBH transformations. Substituting n′i = (1, 0, . . . , 0) and Γn
′
n′n′ = 2c into

eq. (2.25), we get

a′2(y′) = −1 + a2
1(y′)

2p
k − c1

k

p
− c a2

1(y′) + 2cc1 (2.34)

for the new coordinate x′. Comparing eq. (2.34) with the coefficients of τ in eq. (2.33), we

find that they match if and only if c1 = 0. Hence our claim.

As a summary, by using the PBH transformations and the covariance under remaining

diffeomorphism, we find the leading and subleading terms of embedding functions are

universal and take the following form

(1)

X i = |
(1)

X | ni, (2.35)

(2)

X i =
1 + |

(1)

X |2

2p
ki − 1

4
hij∂j |X(1)|2 − 1

2

(0)

Γ i
nn|

(1)

X |2 (2.36)

In the Gauss normal coordinates (2.26), the embedding function has very elegant expression

x = a1(y)
√
τ − 1 + a2

1(y)

2p
k τ + · · · (2.37)

These are the main results of this section. One may still doubt eq. (2.36) due to the non-

covariance. Actually, we can derive it from the covariant equation (1.9) together with the

gauge (2.7). So it must be covariant under the remaining diffeomorphism. This is a non-

trivial check of our results. Please see the appendix for the details. Besides, we have checked

other choices of boundary conditions such as eq. (1.7) with Aαβ = hαβ + λ2Kαβ + λ3Rαβ .

They all yield the same results eqs. (2.35), (2.36), (2.37). This is a strong support for

the universality.
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2.2 Boundary Weyl anomaly

In this section, we apply the method of [25] to derive the Weyl anomaly (including the

boundary contributions to Weyl anomaly [5]) as the logarithmic divergent term of the

gravitational action. For our purpose, we focus only on the boundary Weyl anomaly on

P below.

Let us quickly recall our main setup. Consider the asymptotically AdS metric

ds2 =
dz2 + gijdx

idxj

z2
(2.38)

where z =
√
ρ, gij = g

(0)
ij + z2g

(1)
ij + · · · , g(0)

ij is the metric of BCFT on M and g
(1)
ij , fixed

uniquely by the PBH transformation, is given by (2.2). Without loss of generality, we

choose Gauss normal coordinates for the metric on M

ds2
M = g

(0)
ij dx

idxj = dx2 +
(
σab + 2xkij + x2qab + x3lab + · · ·

)
dyadyb, (2.39)

where the boundary P is located at x = 0 . The bulk boundary Q is given by x = X(z, y).

Expanding it in z, we have

x = a1z + a2z
2 + · · ·+ (bd+1 ln z + ad+1)zd+1 + · · · (2.40)

where ai and bd+1 are functions of ya. By using the PBH transformation, we know that

a2 is universal and can be expressed in terms of a1 and the extrinsic curvature k through

eq. (2.37). a1 can be determined by the boundary condition on Q. Noting that Kα
β =

a1√
1+a2

1

δαβ +O(z), we get the leading term of eq. (1.7) as

(
Kα
β − (K − T )δαβ

)
Aβα =

(
(1− d)

a1√
1 + a2

1

+ T

)
Aαα + · · · = 0, (2.41)

where · · · denotes higher order terms in z. It is remarkable that we can solve a1 from

eq. (2.41) without any assumption of Aij except its trace is nonzero. In other words, we

can solve a1 from the universal part of the boundary conditions. From eqs. (2.37), (2.41),

we finally obtain

T = (d− 1) tanh ρ∗, a1 = sinh ρ∗, a2 = − Trk

2(d− 1)
cosh2 ρ∗, · · · , (2.42)

where we have re-parameterized the constant T in terms of ρ∗, which can be regarded as

the holographic dual of boundary conditions for BCFT. That is because, as will be clear

soon, ρ∗ affects the boundary central charges as the boundary conditions do. It should

be mentioned that one can also obtain a1, a2 by directly solving the boundary condition

eq. (1.9) or eq. (1.7) with Aαβ = hαβ + λ2Kαβ + λ3Rαβ + · · · . They yield the same results

for (T, a1, a2) but different results for (a3, a4, · · · ).
Now we are ready to derive the boundary Weyl anomaly. For simplicity, we focus on

the case of 3d BCFT and 4d BCFT. Substituting eqs. (2.38)–(2.42) into the action (1.1)

and selecting the logarithmic divergent terms after the integral along x and z, we can
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obtain the boundary Weyl anomaly. We note that IM and IP do not contribute to the

logarithmic divergent term in the action since they have at most singularities in powers

of z−1 but there is no integration alone z, thus there is no way for them to produce log z

terms. We also note that only a2 appears in the final results. The terms including a3

and a4 automatically cancel each other out. This is also the case for the holographic Weyl

anomaly and universal terms of entanglement entropy for 4d and 6d CFTs [27, 28]. After

some calculations, we obtain the boundary Weyl anomaly for 3d and 4d BCFT as

〈T aa 〉P = sinh ρ∗ R− sinh ρ∗ Trk̄2, for 3d BCFT, (2.43)

〈T aa 〉P =
1

8
Ebdy

4 +

(
cosh(2ρ∗)−

1

3

)
Trk̄3 − cosh(2ρ∗)C

ac
bck̄

b
a, for 4d BCFT. (2.44)

which takes the expected conformal invariant form [20–22]. It is remarkable that the

coefficient of Ebdy
4 takes the correct value to preserve the topological invariance of E4. This

is a non-trivial check of our results. Besides, the boundary charges c1, b1 in (1.10), (1.11) are

expected to satisfy a c-like theorem [5, 7, 29]. As was shown in [3, 6], null energy condition

on Q implies ρ decreases along RG flow. It is also true for us. As a result, eqs. (2.43), (2.44)

indeed obey the c-theorem for boundary charges. This is also a support for our results.

Most importantly, our confidence is based on the above universal derivations, i.e., we do

not make any assumption except the universal part of the boundary conditions on Q. Last

but not least, we notice that our results (2.43), (2.44) are non-trivial generalizations of

the Graham-Witten anomaly [23] for the submanifold, i.e., we find there exists conformal

invariant boundary Weyl anomaly for non-minimal surfaces.

We remark that based on the results of free CFTs [21] and the variational principle, it

has been suggested that the coefficient of Ck in (2.44) is universal for all 4d BCFTs [22].

Here we provide evidence, based on holography, against this suggestion: our results agree

with the suggestion of [22] for the trivial case ρ = 0, while disagree generally. As argued

in [29], the proposal of [22] is suspicious. It means that there could be no independent

boundary central charge related to the Weyl invariant
√
σCac bck̄

b
a. However, in general,

every Weyl invariant should correspond to an independent central charge, such as the case

for 2d, 4d and 6d CFTs. Besides, we notice that the law obeyed by free CFTs usually does

not apply to strongly coupled CFTs. See [30–33] for examples.

To summarize, by using the universal term in the embedding functions eq. (2.37) and

the universal part of the boundary condition eq. (1.7), we succeed to derive the boundary

contributions to Weyl anomaly for 3d and 4d BCFTs. Since we do not need to assume the

exact position of Q, the holographic derivations of boundary Weyl anomaly here is very

strong. On the other hand, since the terms including a3 and a4 automatically cancel each

other out in the above calculations, so far we cannot distinguish our proposal (1.9) from

the other possibilities such as eq. (1.7) with Aαβ = hαβ + λ2Kαβ + λ3Rαβ . We will solve

this problem in the next section.

3 Holographic renormalization of BCFT

In this section, we develop the holographic renormalization for BCFT. We find that one

should add new kinds of counterterms on boundary P in order to get finite action. Using
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this scheme, we reproduce the correct boundary Weyl anomaly eqs. (2.43), (2.44), which

provides a strong support for our proposal eq. (1.9).

3.1 3d BCFT

Let us use the regularized stress tensor [34] to study the boundary Weyl anomaly. This

method requires the knowledge of (a3, a4, · · · ) and thus can help us to distinguish the

proposal (1.9) from the other choices. we will focus on the case of 3d BCFT in this

subsection.

The first step is to find a finite action by adding suitable covariant counterterms [34]. We

obtain

Iren =

∫
N
dx4
√
G(R− 2Λ) + 2

∫
Q
dx3
√
h(K − T ) + 2

∫
M
dx3√g

(
K − 2− 1

2
RM

)
+ 2

∫
P
dy2√σ (θ − θ0 −KM ) , (3.1)

where IM includes the usual counterterms in holographic renormalization [34, 35], θ0 =

θ(z = 0) is a constant [5], KM is the Gibbons-Hawking-York term for RM onM . Notice that

there is no freedom to add other counterterms, except some finite terms which are irrelevant

to Weyl anomaly. For example, we may add
√
σRP and

√
σK2

M to IP . However, these

terms are invariant under constant Weyl transformations. Thus they do not contribute to

the boundary Weyl Anomaly. In conclusion, the regularized action (3.1) is unique up to

some irrelevant finite counterterms.

From the renormalized action, it is straightly to derive the Brown-York stress tensor

on P

Bab = 2(KMab −KMσab) + 2(θ − θ0)σab (3.2)

In sprint of [5, 34, 35], the boundary Weyl anomaly is given by

〈T aa 〉P = lim
z→0

Ba
a

z2
= lim

z→0

4(θ − θ0)− 2KM

z2
, (3.3)

where θ = arccos x′√
gxx+x′2

+ O(z3), θ0 = arccos(tanh ρ) and KM = z
∂x(
√
g
√
gxx)√

g + O(z3).

Actually since we are interested only in boundary Weyl anomaly, we do not need to calculate

all the components of Brown-York stress tensors on P . Instead, we can play a trick. From

the constant Weyl transformations σab → e2εσab,
√
σ → e2ε√σ, θ → θ and KM → e−εKM ,

we can read off the boundary Weyl normally as∫
P
dy2√σ0 〈T aa 〉P =

∫
P
dy2√σ (4(θ − θ0)− 2KM ) , (3.4)

which agrees with eq. (3.3) exactly.

Substituting eqs. (2.38)–(2.42) into eq. (3.3), we obtain

〈T aa 〉P =−1

4
sech2(ρ)[48a3+sinh(ρ)

(
2R+6q−3k2−6Trk2

)
+sinh(3ρ)

(
2q−k2−4Trk2

)
]

(3.5)
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Comparing eq. (3.5) with eq. (2.43), we find that they match if and only if

a3 =
1

48
sinh(ρ)

(
cosh(2ρ)(−2R− 4q + k2 + 10Trk2)− 4R− 8q + 3k2 + 12Trk2

)
, (3.6)

which is exactly the solution to our proposed boundary condition (1.9). One can check

that eq. (1.7) with the other choices Aαβ = hαβ + λ2Kαβ + λ3Rαβ gives different a3 and

thus can be ruled out. Following the same approach, we can also derive boundary Weyl

anomaly for 4d BCFT, which agrees with eq. (2.44) if and only if a3 and a4 are given by the

solutions to condition (1.9). This is a very strong support to the boundary condition (1.9)

we proposed.

To end this section, let us talk more about the stress tensors on P . In general, since

the Brown-York stress tensor on Q is non-vanishing, we have

δIren =
1

2

∫
M

√
g0T

ij
Mδg

(0)
ij +

1

2

∫
P

√
σ0T

abδσ0ab +
1

2

∫
Q

√
hTαβQ δhαβ (3.7)

From the viewpoint of BCFT, the variations of effective action should takes the form

δIeff =
1

2

∫
M

√
g0T

ij
Mδg

(0)
ij +

1

2

∫
P

√
σ0

(
T abe δσ0ab + JδO

)
(3.8)

where J and O are the currents and operators on P , respectively. After the integration

along z on Q, we can identify Iren with Ieff . Since σ0ab = limz→0
hab
z2 , integration of hab on

Q can also contribute to the stress tensor on P . So T abe and T ab are different generally.

Interestingly, they always yield the same Weyl anomaly Te
a
a = T aa due to TQ

α
α = 0 and

the fact that the integration on Q, i.e. dzzm, cannot produce terms of order O(z0). An

advantage of T abe is that it is always finite by definition T abe = 2√
σ0

δIeff
δσ0ab

, since Ieff is finite.

The integration of the other components of hαβ on Q give the new operator O on P . It is

worth noting that since hαβ is related to gij on-shell, the new operator O coming from hαβ

is also related to geometric quantity derived from g
(0)
ij . According to [40], such geometric

quantity appears naturally as the new operator on the boundary of BCFT.

3.2 4d BCFT

Now we study the holographic renormalization for 4d BCFT, which is more subtle. We

find that one has to add squared extrinsic curvature terms on the corner P in order to

make the action finite.

We propose the following renormalized action

Iren =

∫
N
dx5
√
G(R− 2Λ) + 2

∫
Q
dx4
√
h (K − T ) + 2

∫
M
dx4√g

(
K − 3− 1

4
RM

)
+ 2

∫
P
dy3√σ

(
θ − θ0 −

1

2
KM + αRP + βTrK̄2

Q + γ

)
. (3.9)

Similar to the case of 3d BCFT, IM includes the usual counterterms in holographic renor-

malization [34, 35], θ0 = θ(z = 0) is a constant [5] and KM is the Gibbons-Hawking-York

term for RM on M . It is worth noting that the induced metric on Q is AdS-like, i.e., it
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can be rewritten into the form of eq. (2.38) except that now gij are in powers of z instead

of z2. In spirit of the holographic renormalization for asymptotically AdS, one can add

a constant term γ and an intrinsic curvature term RP into IP . However, they are not

enough to make the action finite. Instead, we have to add the extrinsic curvature terms

TrK̄2
Q on P . This maybe due to the presence of the singular corner P and the non-AdS

metric on Q. Note that RP ∼ K̄2
Q ∼ O(z2) are designed to delete the O(1

z ) divergence in

the action.2 It should be mentioned that K̄Q ab can be regarded as new boundary operator

from the viewpoints of BCFT, since it is defined by the embedding from P to Q rather

than to the spacetime where BCFT lives. On the other hand, KM ab is not an independent

operator, since it is defined by the derivatives of the metric for BCFT. As a result, if we

add K2
M ∼ O(z2) terms on P , we get ill-defined stress tensors with ∂xδ(x)Txa, where x = 0

denotes the location of P . This means there is energy flowing outside P , which is not a

well-defined BCFT. For these reasons, we propose eq. (3.9) as the renormalized action.

Substituting eqs. (2.38)–(2.42) into the action (3.9), we can solve α, β and γ that make

a finite action. It is remarkable that a3 and a4 disappear in the divergent terms of the

action (3.9) once we impose the universal relations (2.42). Thus the solutions to α, β and

γ are irrelevant to a3 and a4. After some calculations, we get

α = −1

4
sinh ρ∗, β =

1

4
cosh ρ∗ coth ρ∗, γ = 0. (3.10)

A quick way to derive eq. (3.10) is to consider AdS5 in the bulk and choose spherical

coordinates and cylindrical coordinates on M for α and β, respectively. Note that the new

counterterms αRp ∼ βTrK̄2
Q ∼ O(ρ∗) vanish for the trivial boundary condition ρ∗ = 0.

Now we are ready to calculate the boundary contributions to Weyl anomaly. Similar

to the 3d case, from the constant Weyl transformations σab → e2εσab,
√
σ → e3ε√σ, θ → θ,

KM → e−εKM , RP → e−2εRP and TrK̄2
Q → e−2εTrK̄2

Q, we can read off the boundary Weyl

anomaly as∫
P
dy3√σ0 〈T aa 〉P = 2

∫
P
dy3√σ

(
(d− 1)(θ − θ0)−KM + (d− 3)(αRP + βTrK̄2

Q)
)
,

(3.11)

To make eq. (3.11) finite, we solve

a3 = − 1

72
sinh ρ∗

(
cosh(2ρ∗)

(
R+ 4q − k2 − 9Trk2

)
+ 2

(
R+ 4q − k2 − 6Trk2

))
, (3.12)

which is exactly the solution to our proposed boundary condition (1.9). Substituting the

above a3 into eq. (3.11), we get

〈T aa 〉P =
1

54

[
−27sech2(ρ∗)(48a4+qk−6l−2kTrk2−6Trk3+Tr(kR)+7Tr(kq))

−3cosh(2ρ∗)
(
k
(
−3R−12q+k2+27Trk2

)
+27l+90Trk3−9Tr(kR)−63Tr(kq)

)
q+9kR+9kq−81l−13k3+45kTrk2−54Tr(kR)+54Tr(kq)

]
(3.13)

2We have KQ
a
b ∼ O(1) and K̄Q

a
b ∼ O(z). Thus only the combination TrK̄2

Q is of order O(z2).
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Comparing eq. (3.14) with eq. (2.44), we find that they match if and only if

a4 =
1

1728

[
24kR−14k3−21kq+90kTrk2+135l+108Trk3−90Tr(kR)−144Tr(kq)

+4cosh(2ρ∗)
(
6kR−4k3+6kq−9

(
3l+6Trk3+Tr(kR)−5Tr(kq)

))
+cosh(4ρ∗)

(
−2k3+9kq−18kTrk2−9

(
3l+12Trk3−2Tr(kR)−8TR(kq)

))]
, (3.14)

which is again the solution to the boundary condition (1.9) we proposed. The other choices

of boundary conditions give different a3 and a4 and thus can be excluded. In the above

calculations, we have used the following formulas

Ebdy
4 = 4

(
2Tr(kR)− kR+

1

3
k3 − kTrk2 +

2

3
Trk3

)
, (3.15)

Trk̄3 =
2

9
k3 − kTrk2 + Trk3, (3.16)

Cac bck̄
b
a = −1

6
kR− 1

6
kq +

1

6
k3 − 1

2
kTrk2 +

1

2
Tr(kR) +

1

2
Tr(kq) (3.17)

in Gauss normal coordinates (2.39). Since the calculations are quite complicated, the

non-patient readers can study some simple examples instead. For example, AdS in spher-

ical coordinates and cylindrical coordinates are good enough to reproduce most of the

results above.

To sum up, we have developed a scheme of holographic renormalization for BCFT. We

find that it reproduces the correct boundary Weyl anomaly eqs. (2.43), (2.44) only when Q

is determined by eq. (1.9). This is a non-trivial check of our proposal for holographic BCFT.

4 General boundary condition

In this section, we consider more general boundary conditions for BCFT. As we have

mentioned before, the constant T in the gravitational action eq. (1.1) can be regarded

as the holographic dual of boundary conditions for BCFT, since it is closely related to

boundary central charges. Naturally, we propose to add intrinsic curvature terms on Q to

mimic general boundary conditions. For simplicity, we focus on the case of Ricci scalar.

Now the gravitational action for holographic BCFT becomes

I =

∫
N

√
G(R− 2Λ) + 2

∫
Q

√
h(K − T − λRQ) + 2

∫
M

√
g K + 2

∫
P

√
σ θ, (4.1)

where λ is a constant. Similarly, we suggest to impose the mixed boundary conditions on

Q with the non-trivial one given by

TBY
α
α = 2(1− d)K + 2dT + 2λ(d− 2)RQ = 0. (4.2)

Below we will apply the methods of section 3 and section 4 to investigate the boundary

contributions to Weyl anomaly. As it is expected, we find the boundary central charges

depend on the new parameter λ. And again, these two methods give the same results only

if the bulk boundary Q is determined by the traceless-stress-tensor condition eq. (4.2).
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4.1 General boundary Weyl anomaly I

Now let us use the method of section 2 to derive the boundary Weyl anomaly. For simplic-

ity, we focus on AdS4 with spherical coordinates and cylindrical coordinates below. The

generalization to higher dimensions and other metrics is straightforward.

ds2 =
dz2 + dr2 + r2dθ2 + r2 sin2 θdφ2

z2
, spherical coordinates (4.3)

ds2 =
dz2 + dr2 + r2dθ2 + dy2

z2
, cylindrical coordinates. (4.4)

P is at r = r0 and Q is given by r = r(z) with

r = r0 + sinh ρ∗z −
k

4
cosh2 ρ∗z

2 + a3z
3 + · · · (4.5)

where k is 2
r0

for sphere and 1
r0

for cylinder. From the leading term of eq. (4.2), we can

re-express T in terms of ρ∗ and λ. In general, we get

T = (d− 1) tanh ρ∗ + λ(d− 1)(d− 2)sech2ρ∗. (4.6)

Substituting eqs. (4.3)–(4.6) into the action (4.1) and selecting the logarithmic divergent

term after the integral along r and z, we can obtain the boundary Weyl anomaly. Similarly,

one can check that IM and IP in the action (4.1) and a3, a4 in the embedding function (4.5)

are irrelevant in the above derivations. Rewriting the final results into covariant form,

we obtain

〈T aa 〉P = sinh ρ∗(1− 2λ coth ρ∗) R− sinh ρ∗(1− 2λ tanh ρ∗) Trk̄2. (4.7)

Interestingly, now the central charges with respect to R and Trk̄2 become independent,

which implies that there are two independent boundary central charges for 3d BCFT gen-

erally. This is the expected result, since every independent Weyl invariant should corre-

spond to an independent central charge. The above discussions can be easily generalized

to higher dimensions and general metrics. For 4d BCFT, we obtain

〈T aa 〉P =
1

8
Ebdy

4 +

(
cosh(2ρ∗)(1− 4λ tanh ρ∗)−

1

3

)
Trk̄3

− cosh(2ρ∗)(1− 4λ tanh ρ∗)C
ac
bck̄

b
a (4.8)

Now the central charges related to Trk̄3 and Cac bck̄
b
a are still not independent. One can

check that, by adding more general curvatures in IQ, the boundary central charges can

indeed become independent. For example, let us consider the action

I =

∫
N

√
G(R−2Λ)+2

∫
Q

√
h(K−T−λRQ−λ2R̄Q

α
βR̄Q

β
γ R̄Q

γ
α)+2

∫
M

√
g K+2

∫
P

√
σ θ,

(4.9)

where R̄Q
α
β = RQ

α
β + (d−1)

cosh2 ρ∗
δαβ . Following the above approach, we derive

〈T aa 〉P =
1

8
Ebdy

4 +

(
cosh(2ρ∗)(1− 4λ tanh ρ∗)−

1

3
− 16λ2 tanh3 ρ∗sech2ρ∗

)
Trk̄3

− cosh(2ρ∗)(1− 4λ tanh ρ∗)C
ac
bck̄

b
a (4.10)
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We remark that in obtaining the results (4.8) and (4.10), it is necessary to consider non-

AdS solutions in order to derive the central charge related to Cac bck̄
b
a since Cabcd = 0

for AdS.

4.2 General boundary Weyl anomaly II

In this section, we take the method of section 3 to study the boundary Weyl anomaly for

general boundary conditions. Due to the Ricci scalar in IQ (4.1), we should add new a

Gibbons-Hawking-York term KQ in IP . Recall that the induced metric on Q is AdS-like,

i.e., it can be rewritten into the form of eq. (2.38) except that now gij are in powers of

z instead of z2. In spirit of the holographic renormalization for asymptotically AdS, one

can add a constant term and intrinsic curvature terms on P . Besides, from the experience

of section 3, one has to add extrinsic curvature terms in order to make the action finite

generally. This is may because of the presence of the corner P and the non-AdS metric on

Q. Based on the above discussions, we propose the following renormalized action for 3d

and 4d BCFT

Ire =

∫
N
dxd+1

√
G(R− 2Λ) + 2

∫
Q
dxd
√
h(K − T − λRQ) (4.11)

+ 2

∫
M
dxd
√
g

(
K − (d− 1)− 1

2(d− 2)
RM

)
+ 2

∫
P
dyd−1√σ

(
θ − θ0 −

1

d− 2
KM − 2λKQ + αRP + βTrK̄2

Q + γ

)
. (4.12)

where α, β, γ are parameters and will be determined below. For 3d BCFT, we have γ =

2λsechρ∗, and α, γ are free parameters since they are related to finite counterterms. Below,

we focus on 4d BCFT.

For simplicity, we focus on AdS with spherical coordinates and cylindrical coordinates.

ds2 =
dz2 + dr2 + r2dΩ2

z2
, spherical coordinates, (4.13)

ds2 =
dz2 + dr2 + r2dθ2 + sin2 θdφ2 + dy2

2

z2
, cylindrical coordinates I, (4.14)

ds2 =
dz2 + dr2 + r2dθ2 + dy2

1 + dy2
2

z2
, cylindrical coordinates II, (4.15)

Again, we put P at r = r0 and label Q by r = r(z) with

r = r0 + sinh ρ∗z −
k

6
cosh2 ρ∗z

2 + a3z
3 + a4z

4 + · · · (4.16)

where k take values ( 3
r0
, 2
r0
, 1
r0

) for the metrics (4.13), (4.14), (4.13), respectively. From the

traceless-stress-tensor condition eq. (4.2), we can solve the above embedding function. For

the spherical metric (4.13), we can get exact solution

r =
√
r2

0 cosh2 ρ∗ − (z − r0 sinh ρ∗)2. (4.17)
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For the first kind of cylindrical metric eq. (4.14), we obtain

a3 =
cosh ρ∗(9 sinh(2ρ∗)− 4λ(9 cosh(2ρ∗)− 8))

54r2
0(1− 4λ tanh ρ∗)

, (4.18)

a4 =
cosh ρ∗(−84λ sinh ρ∗ + 44λ sinh(3ρ∗) + cosh ρ∗ − 11 cosh(3ρ∗))

108r3
0(1− 4λ tanh ρ∗)

(4.19)

As for the second second of cylindrical metric eq. (4.15), we have

a3 =
cosh ρ∗(9 sinh(2ρ∗)− 36λ cosh(2ρ∗) + 28λ)

108r2
0(1− 4λ tanh ρ∗)

, (4.20)

a4 =
cosh ρ∗(4λ(47 sinh(3ρ∗)− 81 sinh(ρ∗)) + 19 cosh(ρ∗)− 47 cosh(3ρ∗))

864r3
0(1− 4λ tanh ρ∗)

(4.21)

Substituting eqs. (4.13)–(4.16) into the action (4.11) and requiring the action finite,

we derive

α = λ cosh ρ∗ −
sinh ρ∗

4
, β =

1

4
cosh ρ∗ coth ρ∗ − λ cosh ρ∗, γ = 4λ sechρ∗. (4.22)

Again, a3 and a4 do not appear in the divergent terms of the action (4.11). Actually, we

can use only two of the three examples in eqs. (4.13), (4.14), (4.15) to derive eq. (4.22).

The third one provides a double check of our calculations.

Now we are ready to calculate the boundary contributions to Weyl anomaly. Similar

to the cases of section 3, with the help of constant Weyl transformations, we can read off

the boundary Weyl anomaly as∫
P
dy3√σ0 〈T aa 〉P

= 2

∫
P
dy3√σ

(
dλ+(d−1)(θ−θ0)−KM−2λ(d−2)KQ+(d−3)(αRP +βTrK̄2

Q)
)
, (4.23)

Substituting eqs. (4.13)–(4.22) into the above formula, we can derive the boundary Weyl

anomaly for the three examples in eqs. (4.13), (4.14), (4.15), which exactly agrees with the

result eq. (4.8) of last subsection. This is a strong support to our proposal of holographic

BCFT with zero trace of the stress tensors on Q, i.e., TBY
α
α|Q = 0.

5 Holographic entanglement entropy

5.1 General formula

Let us go on to discuss the holographic entanglement entropy. Following [36, 37], it is not

difficult to derive the holographic entanglement entropy for a d-dimensional BCFT, which

is also given by the area of minimal surface

SA =
Area(γA)

4GN
, (5.1)

where A is a (d − 1)-dimensional subsystem on M , and γA denotes the minimal surface

which ends on ∂A. What is new for BCFT is that the minimal surface could also end on
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Figure 1. OBA > OBA′ > OA′.

the bulk boundary Q, when the subsystem A is close to the boundary P . See figure 2

for example.

We could keep the endpoints of extreme surfaces γ′A freely on Q, and select the one with

minimal area as γA. It follows that γA is orthogonal to the boundary Q when they intersect

naγA · nQ|γA∩Q = 0. (5.2)

Here nQ is the normal vector of Q and naγA are the two independent normal vectors of γA.

It is easy to see that if γ′A is not normal to Q, one can always deform γ′A to decrease the

area until it is normal to Q.3 Let us take an example in figure 1 to illustrate this. For

simplicity, we focus on static spacetime and constant time slice. Then the normal vector

of γA alone time is orthogonal to nQ trivially. It is worth keeping in mind that the induced

metric on constant time slice is Euclidean and positive definite. Below we focus on the case

d = 2. It is straightforward to generalize our discussions to higher dimensions. Consider an

extreme surfaces OA in figure 1, where O is a fixed point in the bulk, and OA is not normal

to the boundary Q. Then select an arbitrary point B alone OA as long as it is near enough

to the boundary. Starting from B, we can construct a minimal surface BA′ that is normal

to the boundary and ending on the boundary at A′ . Since the metric is positive definite

and B is near enough to the boundary, we have BA > BA′ and thus OBA > OBA′. Next

we construct a minimal surface OA′ linking A′ and O. By definition, it is smaller than

OBA′. As a result, we have OBA > OBA′ > OA′. If OA′ is not orthogonal to Q either,

we can repeat the above approach again and again until the extreme surface is normal to

Q. Now it is clear that the minimal area condition leads to the orthogonal condition (5.2).

Another way to obtain the orthogonal condition is that, otherwise there will arise

problems in the holographic derivations of entanglement entropy by using the replica trick.

In the replica method, one considers the n-fold cover Mn of M and then extends it to

the bulk as Nn. It is important that Nn is a smooth bulk solution. As a result, Einstein

3We thank Dong for emphasizing this point to us.
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equation should be smooth on surface γA. Now the metric near γA is given by [37]

ds2 =
1

r2ε
(dr2 + r2dτ2) +

(
gij + 2Kaijxa +O(r2)

)
dyidyj ,

where ε ≡ 1 − 1
n , r is coordinate normal to the surface, τ ∼ τ + 2πn is the Euclidean

time, yi are coordinates along the surface, xa = (r cos τ, r sin τ) and Kaij are the two

extrinsic curvature tensors. Going to complex coordinates z = reiτ , the zz component of

Einstein equations

Rzz = −Kz
ε

z
+ · · · (5.3)

is divergent unless the trace of extrinsic curvatures vanish Ka = 0. This gives the condition

for a minimal surface [37]. Labeling the boundary Q by f(z, z̄, y) = 0, we obtain the

extrinsic curvature of Q as

K ∼ ε ∂zf∂z̄f
(
∂zf

z̄
+
∂z̄f

z

)
+ · · · . (5.4)

So the boundary condition (1.9) is smooth only if ∂zf |γA∩Q = ∂z̄f |γA∩Q = 0, which is

exactly the orthogonal condition (5.2). It should be mentioned that the smooth requirement

of the general boundary conditions (1.7) may yield more constraints in addition to the

orthogonal condition (5.2). When Aαβ includes higher curvature terms, sometimes the

smooth requirement even leads to contradictions. This can also help us to exclude a large

class of Aαβ in the boundary condition (1.7). Since our boundary condition (1.9) yields

the expected orthogonal condition (5.2), this is also a support to our proposal.

In summary, the holographic entanglement entropy for BCFT is given by RT for-

mula (5.1) together with the orthogonal condition (5.2). As we will show below, there

appear many new interesting properties for entanglement due to the presence of boundaries.

5.2 Boundary effects on entanglement

Let us take an simple example to illustrate the boundary effects on entanglement entropy.

Consider Poincare metric of AdS3

ds2 =
dz2 + dx2 − dt2

z2
, (5.5)

where P is at x = 0. Solving eq. (1.9) for Q, we get x = sinh(ρ)z and T = tanh ρ ≥ 0.

We choose A as an interval with two endpoints at x = d and x = d + 2l. Due to the

presence of boundary, now there are two kinds of minimal surfaces, one ends on Q and the

other one does not. It depends on the distance d that which one has smaller area. From

eqs. (5.1), (5.2), we obtain

SA =

 1
2GN

log(2l
ε ), d ≥ dc,

ρ
2GN

+ 1
4GN

log
(

4d(d+2l)
ε2

)
, d ≤ dc,

(5.6)

where dc = l
√
e−2ρ + 1 − l is the critical distance. The parameter ρ can be regarded

as the holographic dual of the boundary condition of BCFT, since it affects the boundary
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Figure 2. Subsystem A and its mirror image A′.

entropy [3] and the boundary central charges (2.43), (2.44) as the boundary condition does.

It is remarkable that entanglement entropy (5.6) depends on the distance d and boundary

condition ρ when it is close enough to the boundary. This is the expected property from

the viewpoint of BCFT, where the correlation functions depend on the distance to the

boundary [40].

To extract the effects of boundary, let us define a new physical quantity when A∩P = 0

IA = SCFTA − SBCFTA , (5.7)

where SCFTA is the entanglement entropy when the boundary disappears or is at infinity.

For simplicity, we focus on the case ρ∗ ≥ 0. In the holographic language, SCFTA is given by

the area of minimal surface that does not end on Q. Thus, SCFTA is equal to or bigger than

SBCFTA and IA is always non-negative. It is expected that boundary does not affect the

divergent parts of entanglement entropy when A ∩ P = 0, so all the divergence cancel in

eq. (5.7). As a result, IA is not only non-negative but also finite. For the example discussed

above, we have

IA =

{
0, d ≥ dc
1

4G log( l2

d(d+2l))− ρ
2G , 0 < d < dc,

(5.8)

which is indeed both non-negative and finite. Actually in this simple example, IA is just one

half of the mutual information between A and its mirror image, so it must be non-negative

and finite. See figure 2 for example. For this simple case, the metric at the mirror image

O′ of a point O is given by the metric at the point O. One should keep in mind that the

mirror image is only an auxiliary tool, there is no real spacetime outside the boundary Q.

5.3 Entanglement entropy for stripe

In this subsection, we study the entanglement entropy of stripe in general dimensions.

Consider a BCFT defined on M the half space x ≡ x1 < 0, and consider a subsystem

A given by the constant time slice −l < x1 < 0, −L < x2, x3, · · · , xd−1 < L. The
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Figure 3. The minimal surface of stripe.

bulk boundary Q is given by the co-dimension-1 surface x = z tan θ. Here the parameter

θ = arctan(sinh(ρ∗)), where ρ∗ is the parameters that we used in previous section. θ + π
2

is the angle between Q and M . See figure 3.

Let the minimal surface γ be specified by the equation x = x(z) with the boun-

dary condition

x(0) = l. (5.9)

The induced metric on the minimal surface γ is

ds2
γ =

(1 + x′(z))dz2 +
∑d−1

i=2 dx
2
i

z2
. (5.10)

and gives the equation of motion

x′(z)

zd−1
√

1 + x′(z)2
= C, C = constant, (5.11)

for the minimal surface. There are two kinds minimal surface. If C = 0, the solution is

x = −l. The other situation is C 6= 0, in this case, assume when z = z∗, x
′(z∗) = ∞. Let

(x0, z0) be the coordinates of the point P ′ where Q and γ intersect. It is x0 ≡ x(z0) =

z0 tan θ. Denote the unit normal vectors of Q by nQµ , the unit normal vector of γ by nγµ.

At point P ′ we have nQ · nγ = 0. This gives the boundary condition

x′(z0) = − cot θ. (5.12)

Now we solve (5.11) together with the boundary conditions (5.9), (5.12). Using the condi-

tion (5.12) we have

zd−1
0 = zd−1

∗ cos θ, (5.13)

and

x′(z) =
( zz∗ )

d−1√
1− ( zz∗ )

2(d−1)
. (5.14)
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Figure 4. F (θ) for d = 3 (left) and d = 4 (right).

We also have the relation

x0 + l =

∫ z∗

0
x′(z)dz +

∫ z∗

z0

x′(z)dz. (5.15)

This allow us to solve for z∗,

z∗ =
l

F (θ)
, (5.16)

where

F (θ) =

∫ 1

0

xd−1√
1− x2(d−1)

dx+

∫ 1

(cos θ)
1
d−1

xd−1√
1− x2(d−1)

dx− tan θ(cos θ)
1
d−1

=
B
(

cos2 θ; d
2(d−1) ,

1
2

)
2(d− 1)

+ 2

√
πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

) − tan θ(cos θ)
1
d−1 , (5.17)

where B(x; a, b) is the incomplete beta function. When d ≥ 3, there always exist some

critical point θc such that F (θc) = 0, as we can see in the figure 4 for d = 3 and d = 4. One

can also show that θc is a monotone decreasing function of d. In particular in the limit

d→ +∞, θc → 0.

In the limit θ → θc, z∗ → +∞, the solution will tend to the case C = 0, i.e. the solution

x = −l. For θ > θc there is only one solution of minimal surface x = −l. For θ < θc we

have two minimal surface solutions, the desired solution is the one with a smaller area.

Consider first the surface x = −l. It is easy to obtain its area

A1 =
A0

(d− 2)εd−2
, (5.18)

where A0 is the area of the entangling surface. The area of the other surface is

A2 =A0

(
1

z∗

)d−2
(∫ 1

ε/z∗

dx

xd−1
√

1−x2(d−1)
+

∫ 1

(cosθ)
1
d−1

dx

xd−1
√

1−x2(d−1)

)

=
A0

(d−2)εd−2
(5.19)

+
A0

z∗d−2

 √
πΓ
(
−(d−2)
2(d−1)

)
(d−1)Γ

(
1

2(d−1)

)+
(cosθ)−

d−2
d−1

d−2
2F1

(
1

2
,
−(d−2)

2(d−1)
;

d

2(d−1)
;cos2 θ

)+· · · .
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Here ε is the cutoff and 2F1(a, b; c; z) is the hypergeometric functions. In the limit θ → θc,

z∗ → +∞, as a result, A2 → A1. One could also show A2 is a monotone decreasing function

of θ when θ < θc. Therefore in the region θ < θc, A2 < A1, the entanglement entropy is

given by A2
4G .

We remark that our holographic calculation suggests that there is a phase transition

at the critical value θ = θc. In our example we see that θc is independent of the size of the

stripe l. But it is probably related to the shape of the entangling surface in general. As the

parameter θ is expected to be dual to the boundary condition of BCFT, it is interesting to

explore what is the nature of the boundary condition in the field theory that would lead

to this phase transition in the BCFT.

6 Entanglement wedge

According to [38, 39], a sub-region A on the AdS boundary is dual to an entanglement

wedge EA in the bulk where all the bulk operators within EA can be reconstructed by

using only the operators of A. The entanglement wedge is defined as the bulk domain of

dependence of any achronal bulk surface between the minimal surface γA and the subsystem

A. Apparently, it seems to conflict with the holographic proposal of BCFT by [3] and us,

where the holographic dual of A is given by N , which is larger than EA generally. Of course,

there is no contradiction. That is because CFT and BCFT are completely different theories.

For CFT, although we do not know the information outside, there still exists spacetime

outside A. As for BCFT, there is no spacetime outside A at all. Besides, we should impose

suitable boundary conditions for BCFT, while there is no need to set boundary condition

on the entangling surface for CFT.

It is interesting to study the entanglement wedge in the framework of AdS/BCFT. For

simplicity, we focus on the static spacetime and constant time slice. Recall that the entan-

glement wedge is given by the region between the minimal surface γA and the subsystem

A on M . A key observation is that entanglement wedge behaves a phase transition and

becomes much larger than that within AdS/CFT, when A is increasing and approaching

to the boundary. See figure 5 for example. This phase transition is important for the self-

consistency of holographic BCFT. If there is no phase transition, then the entanglement

wedge is always given by the first kind (left hand side of figure 5). When A fills with the

whole boundary M and P , there are still large space left outside the entanglement wedge,

which means there are operators in the bulk cannot be reconstructed by all the operators

on the boundary. Thanks to the phase transition, the entanglement wedge for large A is

given by the second kind (right hand side of figure 5). As a result all the bulk operators

can be reconstructed by using the operators on the boundary.

7 Conclusions and discussions

In this letter, we have proposed a new holographic dual of BCFT, which can accommodate

all possible shapes of the boundary P with a unified prescription. The key idea is to

impose the mixed boundary condition (1.9) so that there is only one constraint for the
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Figure 5. Entanglement wedge for small A and large A.

co-dimension one boundary Q. In general there could be more than one self-consistent

boundary conditions for a theory [41], so the proposals of [3] and ours have no contradiction

in principle. However, the proposal of [3] is too restrictive to include the general BCFT.

The main advantage of our proposal is that we can deal with all shapes of the boundary

P easily and that it can accommodate nontrivial boundary Weyl anomaly as is needed in

a general BCFT. It is appealing that the bulk boundary Q is given by a constant mean

curvature surface, which is a natural generalization of the minimal surface.

Applying the new AdS/BCFT, we obtain the expected boundary Weyl anomaly for 3d

and 4d BCFT and the obtained boundary central charges satisfy naturally a c-like theorem

holographically. As a by-product, we give a holographic disproof of the proposal [22]

and clarify that the validity of the SRE = SEE conjecture [42] which is based on [22]

and is sensitively dependent on the choices of boundary conditions of non-free BCFT.

Besides, we find the holographic entanglement entropy is given by the RT formula together

with the condition that the minimal surface must be orthogonal to Q if they intersect.

The presence of boundaries lead to many interesting effects, e.g. phase transition of the

entanglement wedge. Of course, many things are left to be explored, for instance, the

holographic Rényi entropy [43, 44], the edge modes [45, 46], the shape dependence of

entanglement [47, 48], the applications to condensed matter and the relation between BCFT

and quantum information [49]. Finally, it is straightforward to generalize our work to

Lovelock gravity, higher dimensions and general boundary conditions.
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A Another derivation of (2.36)

In section 2.1, we have obtained the key result (2.36) from the PBH transformation together

with the explicit requirement of covariance under the residual diffeomorphism of the gauge

fixing condition (2.7). In this appendix, we derive eq. (2.36) directly from the covariant

equation (1.9) and the gauge fixing (2.7). The analysis is manifestly covariant with respect

to (2.7) and provides an independent derivation of the (2.36).
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To compute K, we note that the extrinsic curvature Kαβ on Q is

Kαβ = nQµK
µ
αβ , (A.1)

where

Kµ
αβ = ∂α∂βX

µ − γδαβ∂δXµ + Γµνλ∂αX
λ∂βX

ν , (A.2)

γδαβ is the Christoffel symbol for the induced metric hαβ and nQµ is the unit normal vector

on Q. The components of Kµ
αβ can be worked out easily. Expanded in powers of

√
τ for

small τ , we have

Kρ
ττ =

(
(1)

Xi)2

2τ
− 1√

τ

(1)

Xi
(2)

Xi+
1
2

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm

1+(
(1)

Xi)2

+
2√
τ

(1)

Xi
(2)

Xi+
1√
τ

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm+O(1), (A.3)

Kρ
ab =

2(
(1)

Xi)2
(0)

h ab

1+(
(1)

Xi)2

+
√
τ

2
(1)

Xik
i
ab

1+(
(1)

Xi)2

+8
√
τ

(1)

Xi
(2)

Xi+
1
2

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm

(1+(
(1)

Xi)2)2

−4
√
τ

(1)

Xik
i
ab+O(τ), (A.4)

Ki
ττ =−

(1)

Xi

4τ3/2
− 1

2τ

(1)

Xi
(2)

Xi+
1
2

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm

1+(
(1)

Xi)2

(1)

Xi+
1

4τ

(0)

Γ i
km

(1)

Xk
(1)

Xm+O

(
1

τ1/2

)
, (A.5)

Ki
ab =− 1√

τ

(0)

h ab

1+(
(1)

Xi)2

(1)

Xi+kiab−
2

1+(
(1)

Xi)2

(0)

h ab
(2)

Xi+

(1)

Xik
i
ab

(1)

Xi

1+(
(1)

Xi)2

+4

(1)

Xi
(2)

Xi+
1
2

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm

(1+(
(1)

Xi)2)2

(1)

Xi+O(τ1/2), (A.6)

Since nQµ
∂Xµ

∂τ = 0, we have

nQρ = −nQi
∂X i

∂τ
. (A.7)

The trace K is

K = −(p+1)
√
τnQi

(1)

Xi−2τ
(p+ 1)(

(1)

Xi)2 + p

1 + (
(1)

Xi)2

nQj
(2)

Xj+τnQi k
i+τ

nQi
(0)

Γ i
km

(1)

Xk
(1)

Xm

1 + (
(1)

Xi)2

+· · · . (A.8)

Generally nρ and ni can be expanded as

nQρ =
1√
τ

(0)
nQρ +

(1)
nQρ + · · · , nQi =

1√
τ

(0)
nQi +

(1)
nQi + · · · . (A.9)

Taking them to (A.7) we have

(0)
nQρ = −1

2

(0)
nQi

(1)

Xi, (A.10)

(1)
nQρ = −1

2

(1)
nQi

(1)

Xi − (0)
nQi

(2)

Xi. (A.11)
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Using the relation

hαβ =
∂Xµ

∂xα
∂Xν

∂xβ
h̃µν , (A.12)

where ds2
Q = hαβdτ

αdτβ = h̃µνdX
µdXν is the induced metric on Q, we obtain that also

h̃ρi = 0. Hence

hττ = h̃ρρ = Gρρ − (nQρ )2Gρρ (A.13)

and as a result

(0)
nQi

(1)

Xi = −

√
(

(1)

Xi)2√
1 + (

(1)

Xi)2

, (A.14)

(1)
nQi

(1)

Xi = −2
(0)
nQi

(2)

Xi − 2

(1)

Xi
(2)

Xi + 1
2

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm√
(

(1)

Xi)2(1 + (
(1)

Xi)2)3/2

. (A.15)

The gauge haτ = 0 lead to the result ∂a
(0)

Xi

(1)

Xi = 0, which means
(1)

Xi is orthogonal to

boundary submanifold P . Using nQµ ∂aX
µ = 0 one could show that

(0)
nQi is also orthogonal

to P . We have the following relations

(1)

Xi =

√
(

(1)

Xi)2ni, (A.16)

(0)
nQi = − 1√

1 + (
(1)

Xi)2

ni,

where ni is the unit normal vector of P . Taking (A.9)(A.14)(A.16) into (A.8) we have

K =−(p+1)
(0)
nQi

(1)

Xi+
√
τ

(0)
nQi k

i−
√
τ

2p

1+(
(1)

Xi)2

(0)
nQi

(2)

Xi+p
√
τ

(0)

Γm
ki

(1)

Xi
(1)

Xk
(1)

Xm

(1+(
(1)

Xi)2)3/2

√
(

(1)

Xi)2

+O(τ).

(A.17)

Now on the surface Q, K = p+1
p T , we obtain

ni
(1)

Xi =

√
T 2

p2 − T 2
, (A.18)

ni
(2)

Xi =
1 + (

(1)

Xi)2

2p
nik

i − 1

2
ni

(0)

Γ i
km

(1)

Xk
(1)

Xm. (A.19)

Recall that from the gauge hτa = 0, we can solve the transverse components of Xi as

eqs. (2.17), (2.18). Combining eqs. (A.18), (A.19) and eqs. (2.17), (2.18) together, we

recover exactly eqs. (2.35), (2.36).

B Boundary Weyl anomaly for the proposal of [3]

In this appendix, we show that the BC (1.4) proposed by [3] always make vanish the

central charges c2 and b1 in the boundary Weyl anomaly (1.10), (1.11) for 3d and 4d
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BCFT. Since b1 is expected to satisfy a c-like theorem and describes the degree of freedom

on the boundary, thus it is important for b1 to be non-zero. We emphasis that this holds

for any energy-momentum tensor TQαβ on Q as long as the BC (1.4) holds. In this sense, the

proposal of [3] is too restrictive to include the general BCFT, in particular, the non-trivial

4d BCFT.

Let us first start with a simple example to see explicitly how c2 and b1 vanish in the

proposal of [3]. Consider AdS with cylindrical coordinates on M eqs. (4.4), (4.15) so that

only the Trk̄d−1 terms are non-vanishing in the Weyl anomaly (1.10), (1.11). We note that

in the present case, the equation (1.4) does not admit a solution with a constant T term and

one needs to include on Q either nontrivial matter fields or higher derivatives gravitational

action terms. For simplicity, let us consider the addition of an intrinsic Ricci scalar RQ on

Q. In other words, we focus on the action (4.1). Requiring all the components of stress

tensors on Q vanishing, we get the following exact solutions

λ =
1

2(d− 2)
coth ρ∗, T = (d− 1) coth(2ρ∗), r = r0 + sinh ρ∗ z. (B.1)

Substituting eqs. (4.4), (4.15), (B.1) into the action (4.1) and selecting the logarithmic

divergent term after integration alone r and z, we find

〈T aa 〉P = 0 (B.2)

for both 3d and 4d BCFT. This means that c2 = b1 = 0. This example can be easily

generalized to include general higher curvature terms, i.e., we replace RQ by L(RQαβλγ) in

action (4.1). Using the trick of [27], we expand L(RQαβλγ) around a ‘background-curvature’

R̄Qαβλγ = − 1
cosh2 ρ∗

(hαλhβγ − hαγhβλ). Then we find only the first a few terms up to

(RQ− R̄Q)d−1 ∼ zd−1 contribute to the boundary Weyl anomaly for d-dimensional BCFT.

We have worked out the cases for 3d and 4d BCFT on cylinders and find they all yield

eq. (B.2). So the boundary Weyl anomaly c2, b1 indeed vanish for 3d and 4d BCFT in the

proposal of [3]. We have also constructed a model with only matter on Q (non-minimally

coupled scalar field with suitable potential energy), which also yield c2 = b1 = 0.

Now let us present the general proof. Consider the following action

I =

∫
N

√
G(R− 2Λ) + 2

∫
Q

√
h (K − T + Lm(φ)) + 2

∫
M

√
g K + 2

∫
P

√
σ θ (B.3)

where Lm(φ) is the Lagrangian of matter fields φ on Q. According to [25], we can derive

the Weyl anomaly as the logarithmic divergent term of the gravitational action. Recall that

IM and IP do not contribute the logarithmic divergent term.4 Considering the variation

of the on-shell action, we have

δI = −
∫
Q

√
h

((
Kαβ − (K − T )hαβ − 1

2
TQαβ

)
δhαβ + Eφδφ

)
−
∫
M

√
g(Kij −Khij)δgij +

∫
P

√
σ
(
θσabδσab + Pφδφ

)
, (B.4)

4Instead of ln z, IM and IP may contribute terms such as zn ln z with n > 1, which vanish in the limit

z → 0.
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where Eφ denotes E.O.M for matter fields φ on Q, Pφ is the conjugate momentum of φ

along the direction nP , which is the normal vector pointing from Q to P . If one impose

the BC (1.4), one obtain for arbitrary boundary variations δgij , δσab and δφ:

δI = −
∫
M

√
g(Kij −Khij)δgij +

∫
P

√
σ
(
θσabδσab + Pφδφ

)
(B.5)

where we have used the EOM Eφ = 0. It is worth noting that the integral on Q vanishes

due to the BC (1.4). This is the main reason why the proposal of [3] yields trivial boundary

central charges c2 and b1 in eqs. (1.10), (1.11). In fact as we will show below, the integration

on M and P in eq. (B.5) are not sufficient to produce the full structures of the boundary

Weyl anomaly.

To proceed, we note that the logarithmic divergent term of δI is equal to the variation

of the Weyl anomaly A

δI|ln ε = δA = δ

∫
M

√
g0

〈
T ii
〉
M

+ δ

∫
P

√
σ0 〈T aa 〉P . (B.6)

Since there is no integration alone z on M and P , the only way to produce ln z in δI is

that the integral element includes ln z. There are two possible sources for ln z: one is the

expansion of gij and the other one is the expansion of the embedding function (2.40)

gij = g
(0)
ij + z2g

(1)
ij + · · ·+ zd(g

(d/2)
ij + h

(d/2)
ij ln z) + · · · , for even d (B.7)

x = a1z + a2z
2 + · · ·+ (bd+1 ln z + ad+1)zd+1 + · · · . (B.8)

Note that there is no ln z term in gij when d is odd. As a result, there is no bulk Weyl

anomaly
〈
T ii
〉
M

for odd d. It is also worth keeping in mind that h
(d/2)
ij and bd+1 are of the

same order O(kd) where k is the trace of the extrinsic curvature of P . In general, E.O.M

for matter fields Eφ = 0 will also give ln z terms in φ . However, such terms are expected to

yield new contributions to Weyl anomaly in addition to the geometric Weyl invariant such

as eqs. (1.10), (1.11). See [35, 50] for some examples. Since here we are interested only

in the geometric Weyl invariant which defines c2 and b1, we will ignore these ln z terms of

φ (from Eφ = 0) in this appendix. Of course, φ can inherit ln z terms from gij (B.7) and

x (B.8) through eq. (1.4). And these ln z terms are functions of h
(d/2)
ij and bd+1.

Let us firstly consider the case without the boundary P , i.e., the standard case of

AdS/CFT. From the above discussions, we must have

(δI)M |ln ε = −
∫
M

√
g(Kij −Khij)δgij = δ

∫
M

√
g0

〈
T ii
〉
M

(B.9)

When d is odd, we have
〈
T ii
〉
M

= 0, which agrees with the fact that there is no ln z term

in gij and thus in (δI)M . When d is even, one can check eq. (B.9) by straightforward

calculations. Actually eq. (B.9) must be satisfied since I|ln ε =
∫
M

√
g0

〈
T ii
〉

in AdS/CFT.

In the presence boundary P , the formulas of (δI)M and δ(
√
g0

〈
T ii
〉
M

) do not have

any change. So eq. (B.9) is still satisfied up to a possible boundary term ΩM on P from

δ(
√
g0

〈
T ii
〉
M

). Then from eqs. (B.5), (B.6), we get

(δI)P |ln ε =

∫
P

√
σ
(
θσabδσab + Pφδφ

)
|ln ε = δ

∫
P

√
σ0 〈T aa 〉P +

∫
P

√
σ0ΩM (δgij) (B.10)
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Notice that only the terms linear in h
(d/2)
ij and bd+1 could include ln z in (δI)P . However,

h
(d/2)
ij and bd+1 are of order O(kd), while 〈T aa 〉P is of order O(kd−1). Thus they cannot

contribute to 〈T aa 〉P at all. Actually, the terms linear in h
(d/2)
ij and bd+1 take the form

z ln z, which vanish in the limit z → 0. Thus, we have

δ

∫
P

√
σ0 〈T aa 〉P +

∫
P

√
σ0ΩM (δgij) = 0 (B.11)

for arbitrary boundary variations.

For 3d BCFT,
〈
T ii
〉
M

= 0 and ΩM (δgij) disappear. Eq. (B.11) implies that∫
P

√
σ0 〈T aa 〉P is a topological invariant. As a result, we must have c2 = 0 in the bound-

ary Weyl anomaly (1.10). For 4d BCFT,
〈
T ii
〉
M

and ΩM (δgij) are non-zero. Note that

ΩM (δgij) is proportional to the Weyl tensor C and its derivatives. Therefore for the simple

case where Cijkl|P = ∇mCijkl|P = 0, we have ΩM (δgij) = 0. This together with eq. (B.11)

implies that
∫
P

√
σ0 〈T aa 〉P is a topological invariant. So b1 related to Trk̄3 must vanish

in the boundary Weyl anomaly (1.11). Notice that in this argument we only require Cijkl
to vanish at the boundary P . It can be nontrivial inside M . For instance, the following

metric g
(0)
ij with a free parameter c works well for our purpose:

ds2
0 = dx2 + [(1 + cx)2 +O(x4)]dy2

1 + [1 +O(x4)]dy2
a, (B.12)

where x = 0 denotes the location of P . One can easily check that the above metric

satisfy Cijkl|P = ∇mCijkl|P = 0 but Cijkl|M 6= 0 generally. Now since the boundary

central charges are independent of the shapes of the boundary, so we also have b1 = 0

for the boundary with Cijkl|P 6= 0. One can also include higher curvature terms on Q in

the action (B.3) and the proof proceeds exactly the same way. Therefore we find that,

independent of the form of the matter or gravitational action, the proposal of [3] always

give c2 = b1 = 0 in the boundary Weyl anomaly (1.10), (1.11). As we explained above, the

reason why the proposal of [3] always yield c2 = b1 = 0 is that the requirement that all the

components of stress tensors on Q vanish Tαβ = 0 is too strong. On the other hand, if one

require only the trace of the stress tensor to vanish as in our proposal then the integral

on Q in eq. (B.4) is no longer zero and one can indeed obtain non-trivial boundary central

charges c2 and b1 in eqs. (1.10), (1.11).

Finally we remark that, as the careful readers may notice also, the solution (B.1) with

a2 = 0 does not obey the universal law for a2 = − cosh2 ρ∗
2(d−1) Trk as in eq. (2.42). This is not

surprising since the parameter λ does not lie in the “physical range”. In fact the solutions

to our proposal TBY
α
α = 0 are not unique when we allow higher curvature terms in the

stress tensors. Generally as long as the parameters of the higher curvature terms lie in

some “physical” region, there is an unique solution which satisfies the universal law for

a2 and give the non-trivial boundary central charges. We select this kind of solution as

the physical one. However when one set the parameters of higher curvature terms to the

critical value as in eq. (B.1), the physical solution is replaced by a different solution which

violate the universal law of a2 = − cosh2 ρ∗
2(d−1) Trk. Actually, the same situation already appears

in [24]: for higher curvature gravity such as Lovelock gravity, the bulk entangling surfaces
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obtained by minimizing the entropy functional are not unique. One usually select the one

which can be continuously reduced to the minimal surface when the parameters of higher

curvature terms are all turned off. This kind of surface always satisfy an universal relation

for a2 [24]. However if one set the parameters of higher curvature terms to the critical

value as in eq. (B.1), there exist solutions which violate the universal relation [24]. Thus,

the universality of a2 in our proposal has the same meaning as the one in [24]: it holds

as long as the parameters of higher curvature terms lie in the physical ranges. Curiously,

the proposal of [3] has solution only if the parameter of higher curvature terms takes the

critical value λ = 1
2(d−2) coth ρ∗ and this prevents the realization of non-trivial boundary

central charges.

C Derivations of boundary contributions to Weyl anomaly

In section 2.2, we have shown the key steps of holographic derivations of boundary con-

tributions to Weyl anomaly. Here we provide more details. We work in Gaussian normal

coordinate and find the following formulas useful:

T = (d− 1) tanh ρ∗,

x = sinh ρ∗ z −
k cosh2 ρ∗
2(d− 1)

z2 + a3z
3 + a4z

4 + · · · . (C.1)

Since we want to consider the general boundary condition (1.7), we keep a3 and a4 off-

shell in this appendix. For the bulk action IN = −2d
∫
N

√
G and the BCFT boundary

metric (2.39), we have

√
G =

1

zd+1

√
(0)
g

[
1 +

1

2
z2(1)
g ii + · · ·

]
, (C.2)

where√
(0)
g =

√
(0)
σ

[
1+kx+

1

2

(
k2+q−2Trk2

)
x2

+
1

6

(
k3+3kq−6kTrk2+3l+8Trk3−6Tr(kq)

)
x3+· · ·

]
,

(1)
g ii =−R−k

2−2q+3Trk2

2(d−1)
+
−2kTrk2+kq+3l+6Trk3+Tr(kR)−5Tr(kq)

d−1
x+· · · . (C.3)

Here · · · denotes terms of order O(k4) which do not contribute to boundary Weyl anomaly

for 3d BCFT and 4d BCFT.

For the boundary action IQ = 2
∫
Q

√
h(K − T ), we need

√
h=

1

zd

√
(0)
g
√

1+gxxx′2
[
1+

1

2
z2(1)
g aa

]
+· · · ,

gxx = 1+
R+2(d−2)q−2dTrk2−k2+5Trk2

2(d−2)(d−1)
z2

−−3dl−4dTrk3+4dTr(kq)+kq−2kTrk2+6l+10Trk3−9Tr(kq)+Tr(kR)

d2−3d+2
z2x+· · · ,
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gxx = 1−R+2(d−2)q−2dTrk2−k2+5Trk2

2(d−2)(d−1)
z2

+
−3dl−4dTrk3+4dTr(kq)+kq−2kTrk2+6l+10Trk3−9Tr(kq)+Tr(kR)

d2−3d+2
z2x+· · · ,

(1)
g aa =

R−k2+Trk2

4−2d
+
kq−2kTrk2+2Trk3−Tr(kq)+Tr(kR)

d−2
x+· · ·

K =
1√
h
∂µ(
√
hnu), nu =

z√
gxx+x′2

(
−x′,gxx,

(0)
σ ab∂bx

)
+· · · , (C.4)

where x′ = ∂zx and · · · denotes higher order terms irrelevant to the boundary Weyl

anomaly for 3d BCFT and 4d BCFT.

Now we are ready to derive the boundary Weyl anomaly. Substituting the above for-

mulas into the action (1.1) and selecting the logarithmic divergent terms after the integral

along x and z, we can obtain the boundary Weyl anomaly. For 3d BCFT, we have

IN =−1

8
ln

1

ε

∫
P

√
(0)
σ
[
48a3−3sinhρ∗

(
2R+k2−2q+2Trk2

)
+sinh(3ρ∗)

(
−k2+2q−4Trk2

)]
,

IQ =
1

8
ln

1

ε

∫
P

√
(0)
σ
[
48a3+sinh(ρ)

(
2R+k2+6q−14Trk2

)
+sinh(3ρ∗)

(
−k2+2q−4Trk2

)]
,

where we have ignored terms without ln 1
ε above. Combining IN and IQ together, we get

I|ln 1
ε

=

∫
P

√
(0)
σ (R− Trk̄2) sinh ρ∗, (C.5)

which exactly gives the boundary Weyl anomaly (2.43). It is remarkable that a3 and all

non-conformal invariant terms automatically cancel each other out.

Similarly, for 4d BCFT we have

IN = ln
1

ε

∫
P

√
(0)
σ

1

72

[
−576a3k sinhρ∗−576a4−2k3+23kq−16kR

−30kTrk2+45l+72Trk3−66Tr(kq)+24Tr(kR)

−4cosh(2ρ∗)(kq−2kR+9l+12Trk3−12Tr(kq)+6Tr(kR))

+cosh(4ρ∗)
(
2k3−3kq+6kTrk2−9l−24Trk3+18Tr(kq)

)]
(C.6)

IQ = ln
1

ε

∫
P

√
(0)
σ

1

216

[
1728a3k sinhρ∗+1728a4+26k3−135l−69kq−60kR

+54kTrk2−216Trk3+198Tr(kq)+144Tr(kR)

+12cosh(2ρ∗)
(
k3+4kq+kR−9kTrk2+9l+30Trk3−21Tr(kq)−3Tr(kR)

)
+3cosh(4ρ∗)

(
−2k3−6kTrk2+24Trk3−18Tr(kq)+3kq+9l

)]
(C.7)

Combining the above IN and IQ together, we obtain

I|ln 1
ε

=

∫
P

√
(0)
σ

1

54

[
5k3−9k(3R+Trk2)+54Tr(kR)

+3cosh(2ρ∗)
(
k3+3k(q+R−3Trk2)+18Trk3−9Tr(kq)−9Tr(kR)

)]
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=

∫
P

√
(0)
σ

[
1

8
Ebdy

4 +

(
cosh(2ρ∗)−

1

3

)
Trk̄3−cosh(2ρ∗)C

ac
bck̄

b
a

]
(C.8)

which yields exactly the boundary Weyl anomaly (2.44). In the above calculations, we have

used eqs. (3.15), (3.16), (3.17). Similar to the 3d case, a3, a4 and all of the non-conformal

invariant terms automatically cancel each other out in the final results.

To end this appendix, let us discuss the physical meaning of the parameter ρ∗. As

we have mentioned, ρ∗ can be regarded as the holographic dual of boundary conditions of

BCFT since it affects the boundary entropy [3] and also the boundary central charges (2.43),

(2.44) which are closely related to the boundary conditions of BCFT. To cover the general

boundary condition, it is natural to keep ρ∗ free rather than to set it zero. If we set

ρ∗ = 0, we get zero boundary entropy Sbdy = ρ∗
4GN

for 2d BCFT [3] which gives trivial

BCFT. Furthermore, it is expected that the boundary central charges related to different

conformal invariants are independent in general. As a result we must keep ρ∗ free. Of

course, as discussed in section 4 one could add intrinsic curvature terms on Q in order to

make all the boundary central charges independent.

Finally, we notice that for 4d BCFT, the case ρ∗ = 0 can reproduce the proposal of [22]

and agree with the boundary Weyl anomaly of N = 4 super Yang-Mills multiplet with a

special choice of boundary conditions that preserve half of supersymmetry [51]. For the

convenience of the reader, we list the boundary Weyl anomaly of free super Yang-Mills

multiplet with general boundary condition in the large N limit below [51].

〈T aa 〉P =
1

8
Ebdy

4 +

(
2

3
+

∆n

70

)
Trk̄3 − Cac bck̄ba, (C.9)

where ∆n := nDs −nRs with the total number nDs +nRs = 6 fixed. Here ‘s’ denotes scalar, ‘D’

and ‘R’ refers to the Dirichlet boundary condition and Robin boundary condition respec-

tively. ∆n = 0 corresponds to the case that half of the supersymmetry is preserved [52–54].

It is not known in general when non-renormalization theorem of the trace anomaly holds.

In case it does, the result (C.9) agrees with the general expression (4.10) of the holographic

anomaly if the coefficients for the intrinsic curvature terms on Q are fixed to be:

λ =
1

4
tanh(2ρ∗), (C.10)

λ2 = −cosh2 ρ∗ coth3 ρ∗
1120

∆n, (C.11)

where ρ∗ is a free parameter.
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entanglement of the conformal scalar, JHEP 03 (2015) 075 [arXiv:1407.7816] [INSPIRE].

[32] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP 10

(2014) 178 [arXiv:1407.6429] [INSPIRE].

[33] C.-S. Chu and R.-X. Miao, Universality in the shape dependence of holographic Rényi entropy
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