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Abstract: We study the patterns of flavour violation in renormalisable extensions of

the Standard Model (SM) that contain vector-like quarks (VLQs) in a single complex

representation of either the SM gauge group GSM or G′SM ≡ GSM ⊗ U(1)Lµ−Lτ . We first

decouple VLQs in the M = (1−10) TeV range and then at the electroweak scale also Z,Z ′

gauge bosons and additional scalars to study the phenomenology. The results depend on

the relative size of Z- and Z ′-induced flavour-changing neutral currents, as well as the size

of |∆F | = 2 contributions including the effects of renormalisation group Yukawa evolution

from M to the electroweak scale that turn out to be very important for models with

right-handed currents through the generation of left-right operators. In addition to rare

decays like P → `¯̀, P → P ′`¯̀, P → P ′νν̄ with P = K,Bs, Bd and |∆F | = 2 observables we

analyze the ratio ε′/ε which appears in the SM to be significantly below the data. We study

patterns and correlations between these observables which taken together should in the

future allow for differentiating between VLQ models. In particular the patterns in models

with left-handed and right-handed currents are markedly different from each other. Among

the highlights are large Z-mediated new physics effects in Kaon observables in some of the

models and significant effects in Bs,d-observables. ε′/ε can easily be made consistent with

the data, implying then uniquely the suppression of KL → π0νν̄. Significant enhancements

of Br(K+ → π+νν̄) are still possible. We point out that the combination of NP effects to

|∆F | = 2 and |∆F | = 1 observables in a given meson system generally allows to determine

the masses of VLQs in a given representation independently of the size of VLQ couplings.
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1 Introduction

Among the simplest renormalisable extensions of the Standard Model (SM) that do not

introduce any additional fine tunings of parameters are models in which the only new

particles are vector-like fermions. Such fermions can be much heavier than the SM ones as

they can acquire masses in the absence of electroweak symmetry breaking. If in the process

of this breaking mixing with the SM fermions occurs, the generation of flavour-changing

neutral currents (FCNC) mediated by the SM Z boson is a generic implication. If in

addition the gauge group is extended by a second U(1) factor, a new heavy gauge boson Z ′

is present and additional heavy scalars are necessary to provide mass for the Z ′ and to break

the extended gauge-symmetry group down to the SM gauge group. There is a rich literature

on FCNCs implied by the presence of vector-like quarks (VLQs), see in particular [1–12].

The goal of the present paper is an extensive study of patterns of flavour violation in

models with VLQs that are based on the following gauge groups:

GSM ≡ SU(3)c ⊗ SU(2)L ⊗U(1)Y, (1.1)

G′SM ≡ GSM ⊗U(1)Lµ−Lτ . (1.2)

The choice of the particular symmetry group U(1)Lµ−Lτ [13, 14] is phenomenologically

motivated by the fact that it allows in a simple manner to address successfully the LHCb

anomalies [9, 15], while being anomaly-free and containing less parameters than general Z ′

models [16].

In our paper we will be guided by the analyses in refs. [3, 11, 17] which identified

all renormalisable models with additional fermions residing in a single vector-like complex

representation of the SM gauge group with a mass M . It turns out that there are 11

models where new fermions have the proper quantum numbers so that they can couple in

a renormalisable manner to the SM Higgs and SM fermions, thereby implying new sources

of flavour violation. Our analysis will concentrate on FCNCs in the K, Bd and Bs systems,
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therefore only the five models with couplings to down quarks are relevant for us, as specified

in section 2. We call this class of models GSM-models.

Consequently the models based on the gauge group G′SM are called G′SM-models. The

VLQs in these models belong to the same representations under GSM as in GSM-models, but

are additionally charged under U(1)Lµ−Lτ . These models also contain new heavy scalars.

As we will discuss in detail in section 2 and section 5, the patterns of flavour violation

in GSM-models and G′SM-models differ significantly from each other:

• In GSM-models Yukawa interactions of the SM scalar doublet H involving ordinary

quarks and VLQs imply flavour-violating Z couplings to ordinary quarks, which

then dominate |∆F | = 1 FCNC transitions. However, the situation in |∆F | = 2

transitions is much more involved and depends on whether right-handed (RH) or

left-handed (LH) flavour-violating quark couplings to the Z are present. If they

are RH the effects of renormalisation group (RG) evolution from M (the common

VLQ mass) down to the electroweak scale, µEW, generate left-right operators [18] via

top-Yukawa induced mixing. These operators are strongly enhanced through QCD

RG effects below the electroweak scale and in the case of the K system through

chirally enhanced hadronic matrix elements. They dominate then new physics (NP)

contributions to εK , but in the Bs,d meson systems for VLQ-masses above 5 TeV they

have to compete with contributions from box diagrams with VLQs [11]. If they are

LH the Yukawa enhancement is less important, because left-right operators are not

present and box diagrams play an important role both in the Bs,d and K systems.

• In G′SM-models the pattern of flavour violation depends on the scalar sector involved.

We consider only models in which at least one of the additional scalars is charged

under U(1)Lµ−Lτ in such a way that Yukawa couplings between the given VLQ and

ordinary quarks are allowed. If this is the case for a new scalar which is just a singlet

S under the SM group, the latter imply flavour-violating Z ′ couplings to ordinary

quarks without any FCNCs mediated by the Z. In the following we refer to these

models as G′SM(S)-models. If, on the other hand, such a Yukawa coupling requires the

scalar to be a doublet Φ, both tree-level Z ′ and Z contributions to flavour observables

will be present. Their relative size depends on the model parameters, specifically the

Z ′ mass. In these cases we introduce again an additional scalar singlet, but without

Yukawa couplings, since otherwise the Z ′ mass would have to be of the order of

the electroweak scale, which is phenomenologically very difficult to achieve. In the

following we refer to these models as G′SM(Φ)-models.

In this manner we will consider three classes of VLQ models with rather different

patterns of flavour violation:

GSM , G′SM(S) , G′SM(Φ) , (1.3)

in which |∆F | = 1 FCNCs are mediated by the Z, Z ′ and both, respectively. In G′SM(Φ)

models |∆F | = 2 transitions are dominated for M ≥ 5 TeV by box diagrams with VLQs

and scalar exchanges, while in the G′SM(S) models also tree-level Z ′ exchanges can play
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an important, sometimes dominant, role. A particular feature of GSM models are the top-

Yukawa induced RG effects to |∆F | = 2 transitions that are largest for RH scenarios and

are absent in G′SM models.

In [11] an extensive analysis of the GSM-models has been performed and a subset of

G′SM-models has been analyzed in [9, 15]. Therefore it is mandatory for us to state what

is new in our article regarding these models:

• The authors of [11] concentrated on the derivation of bounds on the Yukawa cou-

plings as functions of M but did not study the correlations between various flavour

observables which is the prime target of our paper. Similar comments apply to [9].

• NP contributions to flavour observables depend in each model on the products of

complex Yukawa couplings λ∗sλd, λ
∗
bλd and λ∗bλs for s → d, b → d and b → s tran-

sitions, respectively, as well as the VLQ mass M . This structure allows to set one

of the λq-phases to zero, such that each model depends on only five Yukawa param-

eters and M , implying a number of correlations between flavour observables. The

strongest correlations are, however, still found between observables corresponding to

the same flavour-changing transition, and we concentrate our analysis on them. The

correlations between observables with different transitions are weaker, but could turn

out to be useful in the future when the data and theory improve, in particular in the

context of models for Yukawa couplings.

• An important novelty of our paper, relative to [9, 11, 15], is the inclusion of the

ratio ε′/ε in our study. Recent analyses indicate that the measurement of ε′/ε is

significantly above its SM prediction [19–22]; it is hence of interest to see which of

the models analyzed by us, if any, are capable of addressing this tension and what

the consequences for other observables are.

• Another important novelty in the context of VLQ models and |∆F | = 2 transitions in

general is the inclusion of the effects of RG top-Yukawa evolution from M to the elec-

troweak scale that turn out to be very important for models with RH currents through

the generation of left-right operators contributing to these transitions as mentioned

above. This changes markedly the pattern of flavour violation in such models relative

to models with LH currents where no left-right operators are generated.

Our paper is organized as follows. In section 2 we present the particle content of the

considered VLQ models, together with the gauge interactions, Yukawa interactions and the

scalar sector. In section 3 we perform the decoupling of the VLQs and construct the effective

field theory (G
(′)
SM-EFT) for each model for scales µEW < µ < M . Section 4 is devoted to the

matching of these EFTs to phenomenological ones describing |∆F | = 1, 2 processes below

the scale µEW. This results in explicit flavour-violating couplings of the Z and Z ′ to the SM

quarks. These enter the effective Lagrangians for the various flavour-changing processes,

from which we derive the explicit formulae for the considered observables. In section 5

we describe the patterns of flavour violation expected in different models, summarizing

them with the help of two DNA tables. In section 6, after formulating our strategy for
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the phenomenology, we present numerical results of our study. We conclude in section 7.

Several appendices collect additional information on the models, the decoupling of VLQs,

RG equations in the GSM-EFT, the considered decays, some technical details and the input

and statistical procedure used in the numerical analysis.

2 The VLQ models

Throughout the article we focus on models with vector-like fermions residing in complex

representations, either of the the SM gauge group GSM or its extension by an additional

gauged (Lµ −Lτ ) symmetry, U(1)Lµ−Lτ . For both models we adapt the usual SM fermion

content of the three generations (i = 1, 2, 3) of quarks (qiL = (uiL, d
i
L)T , uiR, d

i
R) and leptons

(LiL = (νi, `
i
L)T , `iR), which acquire masses via spontaneous symmetry breaking from the

standard scalar SU(2)L doublet H.

The gauged (Lµ − Lτ ) symmetry is anomaly-free in the SM [13, 14]. The only non-

vanishing (Lµ − Lτ ) charges of the SM fermions are introduced as

Q′(L2
L) = Q′(µR) = Q′`, Q′(L3

L) = Q′(τR) = −Q′`. (2.1)

Here L2
L = (νµ, µL) and L3

L = (ντ , τL) are left-handed SU(2)L doublets and µR and τR
right-handed singlets. We normalize the (Lµ − Lτ ) charges of the leptons without loss of

generality by setting Q′` = 1. The SM quarks do not couple directly to the U(1)Lµ−Lτ

gauge boson Z ′. However, such couplings are generated in G′SM models through Yukawa

interactions of SM quarks with VLQs that couple directly to Z ′.

2.1 VLQ representations

As we are mainly interested in the phenomenology of down-quark physics, we will restrict

our analysis to SU(3)c triplets and consider the following five models with SU(2)L singlets,

doublets and triplets:

singlets : D(1,−1/3,−X), (V)

doublets : QV (2,+1/6,+X), Qd(2,−5/6,−X), (IX,XI)

triplets : Td(3,−1/3,−X), Tu(3,+2/3,+X), (VII,VIII)

(2.2)

where the transformation properties are indicated as (SU(2)L,U(1)Y,U(1)Lµ−Lτ ), i.e. X

denotes the charge under U(1)Lµ−Lτ . It is implied that in GSM-models the U(1)Lµ−Lτ

charge should be omitted. The representations D, QV , Qd, Td, Tu correspond to the

models V, IX, XI, VII, VIII introduced in ref. [11], where a complete list of renormalisable

models with vector-like fermions under GSM can be found, see also [3, 17]. Concerning

G′SM, the combination of representations D, QV and additionally U(1,+2/3,−X) has been

studied first in [9].

The kinetic and gauge interactions of the new VLQs are given by

Lkin = D(iD/−MD)D +
∑
a=V,d

Qa(iD/−MQa)Qa +
∑
a=d,u

Tr
[
T a(iD/−MTa)Ta

]
, (2.3)
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with appropriate covariant derivatives Dµ and we follow [11] for the triplet representations

as given in (2.13) and (2.14) of that paper. The masses M of the VLQs introduce a new

scale, which we will assume to be significantly larger than all other scales. The covariant

derivative is, omitting the SU(3)c part,

Dµ = ∂µ − ig1
σa

2
W a
µ − ig2Y Bµ − ig′Q′Ẑ ′µ (2.4)

with the gauge couplings g2,1 and g′ of SU(2)L, U(1)Y and U(1)Lµ−Lτ , respectively, and

charges Y and Q′ of U(1)Y and U(1)Lµ−Lτ . The Pauli-matrices are denoted by σa. The

“hat” on Ẑ ′µ indicates that we deal here with the gauge eigenstate and not mass eigenstate,

see (A.7).

2.2 Yukawa interactions of VLQs

2.2.1 GSM

The scalar sector consists of the SM scalar doublet H with its usual scalar potential. The

VLQs interact with SM quarks (qL, uR, dR) via Yukawa interactions

−LYuk(H) =
(
λDi H

†DR + λTdi H†T dR + λTui H̃†T uR

)
qiL

+ λVui ūiRH̃
†QV L + d̄iR

(
λVdi H†QV L + λQdi H̃†QdL

)
+ h.c. ,

(2.5)

where H̃ ≡ iσ2H
∗. The complex-valued Yukawa couplings λVLQ

i give rise to mixing with the

SM quarks and flavour-changing Z-couplings, which have been worked out in detail [3, 11]

and are discussed in section 3.1.

2.2.2 G′
SM(S)

In models with an additional U(1)Lµ−Lτ the scalar sector has to be extended in order

to generate the mass of the corresponding gauge boson Z ′. A complex scalar S(1, 0, X)

(SU(3)c singlet) is added in the minimal version. As VLQs are charged under U(1)Lµ−Lτ ,

their Yukawa couplings with the SM doublet H are forbidden, but the ones involving S are

allowed for Q′S = ±Q′VLQ and given by [9]

−LYuk(S) =
(
λDi d̄

i
RDL + λVi QV R q

i
L

)
S + h.c. . (2.6)

In fact this scalar system is sufficient for models with VLQs having U(1)Y charges Y = −1/3

and +1/6 of the SM fermions dR and qL, respectively. In the following we refer to these

models as G′SM(S)-models. The special feature of these models is that because of the

absence of tree-level Z contributions tree-level Z ′ exchanges dominate ∆F = 1 transitions

and in some part of the parameter space can also compete with contributions from box

diagrams with VLQs and scalars in the case of ∆F = 2 transitions.

2.2.3 G′
SM(Φ)

For VLQs with GSM quantum numbers different from one of the SM quark fields, the simple

extension by a scalar singlet is not possible. In a next-to-minimal version we therefore add
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to the scalar sector an additional scalar SU(2)L doublet Φ(2,+1/2, X), besides the SM-

like H(2,+1/2, 0). We require |X| 6= 1, 2 in order to avoid lepton-flavour violating (LFV)

Yukawa couplings — see for example [23] — and in consequence there are no LFV Z ′

couplings, which are subject to strong constraints at low energies. The vacuum expectation

value (VEV) of Φ gives an unavoidable contribution to the Z ′ mass of the order of the

electroweak scale, contributes to the mass of H and generates potentially large Z − Z ′

mass mixing effects. The latter would be strongly constrained by electroweak precision

tests [24], in particular there would be sizeable corrections to the Z couplings to muons. In

order to avoid these difficulties, Φ is accompanied by an additional complex scalar singlet

S(1, 0, Y ), which breaks the U(1)Lµ−Lτ symmetry at the TeV scale. The Lµ−Lτ charge of

S is chosen to be Y = X/2 in order to avoid the appearance of a Goldstone boson in the

scalar sector and to forbid Yukawa couplings of S with SM fermions and VLQs.

The Yukawa interactions of the VLQs with Φ are

−LYuk(Φ) =
(
λDi Φ†DR + λTdi Φ†T dR + λTui Φ̃†T uR

)
qiL + λQdi Φ̃†d̄iRQdL + h.c., (2.7)

with Φ̃ ≡ iσ2Φ∗ and we will refer to these models as G′SM(Φ)-models. We note that the

structure of couplings equals the one of GSM models given in eq. (2.5) upon H ↔ Φ.

For the VLQ D(1,−1/3, X) we consider thus two versions, one in G′SM(S) and one in

the G′SM(Φ)-model. We refrain from the same procedure for QV (2,+1/6, X). In G′SM(Φ)

models FCNCs are mediated by both Z and Z ′ but in the case of ∆F = 2 transitions box

diagrams with VLQs and scalars play the dominant role for sufficiently large M .

For ease of notation, we will sometimes refrain below from explicitly labelling the λi by

the VLQ representation, as should be done if several of them are considered simultaneously.

2.2.4 Yukawa couplings of several representations

In our numerics we will consider one VLQ representation at a time as this simplifies the

analysis significantly. In particular the number of parameters is quite limited. Still it

is useful to make a few comments on the structure of flavour-violating interactions and

at various places in our paper to state how our formulae would be modified through the

presence of several VLQ representations in a given model. We plan to return to the

phenomenology of such models in the future.

When admitting several VLQ representations Fm and Fn simultaneously, potentially

additional locally gauge-invariant Yukawa couplings ∼ λ̃mnFmL ϕmnFnR with ϕmn = H have

to be included in the case of GSM-models [3]. They give rise to flavour-changing neutral

Higgs currents at tree level. In the G′SM-models the U(1)Lµ−Lτ -charges of the additional

ϕmn = S,Φ have been chosen following the criteria explained above, which fixes in turn the

U(1)Lµ−Lτ -charges of the VLQs. In consequence such couplings to ϕmn = S,Φ are not per-

mitted, however they are still allowed for ϕmn = H, which has zero U(1)Lµ−Lτ -charge. In

G′SM(S) models, only the particular choice of the U(1)Lµ−Lτ charges Q′QV = −Q′D [9] forbids

these couplings to H, whereas the choice Q′QV = Q′D would allow them, due to the possibil-

ity to replace QV R q
i
L → q̄iLQV R in eq. (2.6), which maintains gauge invariance since S is a

singlet. On the other hand, in G′SM(Φ) models such couplings arise for Qd with D and Td.

– 6 –
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Another important consequence of the presence of several representations is the gen-

eration of left-right |∆F | = 2 operators in models with both LH and RH currents via box

diagrams discussed in section 3.2, which is the case when singlets or triplets together with

doublets are present. In the case of a single representation such operators can also be

generated in models with doublets through the top-Yukawa RG evolution from M to the

electroweak scale, see section 3.3.

2.3 Scalar sectors

In the GSM-models, the scalar sector contains only the standard doublet H(2,+1/2, 0),

which provides masses to gauge bosons and standard fermions in the course of spontaneous

symmetry breaking of SU(2)L ⊗U(1)Y → U(1)em via the VEV v ' 246 GeV, where

〈H〉 = (0, v/
√

2)T . (2.8)

In G′SM(S)-models the doublet H(2,+1/2, 0) fulfils again the same role, whereas the

singlet S(1, 0, X) provides via its VEV 〈S〉 = vS/
√

2 a mass for the additional U(1)Lµ−Lτ

Z ′-gauge boson

M2
Z′ = g′2v2

SX
2. (2.9)

In G′SM(Φ)-models the doublet Φ2 ≡ H(2,+1/2, 0) gives masses to the chiral fermions,

whereas Φ1 ≡ Φ(2,+1/2, X) contributes to the masses of the Z and Z ′ gauge bosons in

combination with S(1, 0, X/2).1 The neutral components of the doublets acquire VEV’s

〈Φ0
a〉 =

va√
2
, tanβ ≡ v2

v1
, v =

√
v2

1 + v2
2 ' 246 GeV , (2.10)

with 0 ≤ β ≤ π/2. In this case, neutral gauge boson mixing occurs with details given in

appendix A.2.

Further details on the scalar sectors of the G′SM(S) and G′SM(Φ) models are collected in

appendix A.1 and A.2, respectively. In table 1 we summarize all G′SM-models and indicate

which diagrams dominate NP contributions to |∆F | = 1 and |∆F | = 2 transitions in a

given model.

3 Decoupling of VLQs

The VLQ models are characterised by the masses M of the VLQs, the various Yukawa

couplings λVLQ
i (i = 1, 2, 3) of section 2.2 and the VEVs of the respective scalar sectors,

see section 2.3. The present lower bound on M from the LHC is in the ballpark of 1 TeV,

while the lower bounds on MZ′ are typically close to 3 TeV if Z ′ has a direct coupling

to light quarks. But as emphasized in [9, 15, 25], Z ′ of U(1)Lµ−Lτ does not have such

couplings, implying a much weaker lower bound on its mass, which could in fact be as low

1This convention corresponds to that of the Type I 2HDM.
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VLQ Representation Scalar Singlet Scalar Doublets |∆F | = 1 |∆F | = 2

Da(3, 1,−1/3,−X) S(1, 1, 0, X) H(1, 2, 1/2, 0) Z ′ Z ′, Box

Db(3, 1,−1/3,−X) S(1, 1, 0, X/2) Φ1(1, 2, 1/2, X), Φ2(1, 2, 1/2, 0) Z ′, Z Box

QV (3, 2,+1/6,+X) S(1, 1, 0, X) H(1, 2, 1/2, 0) Z ′ Z ′, Box

Qd(3, 2,−5/6,−X) S(1, 1, 0, X/2) Φ1(1, 2, 1/2, X), Φ2(1, 2, 1/2, 0) Z ′, Z Box

Td(3, 3,−1/3,−X) S(1, 1, 0, X/2) Φ1(1, 2, 1/2, X), Φ2(1, 2, 1/2, 0) Z ′, Z Box

Tu(3, 3,+2/3,+X) S(1, 1, 0, X/2) Φ1(1, 2, 1/2, X), Φ2(1, 2, 1/2, 0) Z ′, Z Box

Table 1. Fermion and scalar representations under SU(3)c⊗SU(2)L⊗U(1)Y⊗U(1)Lµ−Lτ in G′SM-

models. In the last two columns we show which diagrams dominate NP contributions to |∆F | = 1

and |∆F | = 2 transitions for M ≥ 5 TeV.

as the electroweak scale and even lower. While it could also be as heavy as the VLQ mass,

we will assume the hierarchy

MZ .MZ′ �M, or equivalently v . vS �M , (3.1)

in order to simplify the analysis. It is then natural to decouple first the VLQs and to con-

sider EFTs for GSM and G′SM valid between the scales µM ∼M and µEW ∼ v ' vS . These

are subsequently matched in one step onto SU(3)c ⊗ U(1)em-invariant phenomenological

EFTs of |∆F | = 1, 2 decays, which are valid between µEW and µb ∼ mb, where mb denotes

the bottom mass. The coefficients determined in the process will indicate which operators

are the most important. In principle one could consider an intermediate EFT which is

constructed by integrating out Z ′ and the new scalars before integrating out top quark,

W and Z, but from the point of view of renormalisation group effects, integrating out all

these heavy fields simultaneously appears to be an adequate approximation.

In this section we present the results from the decoupling of the VLQs that are im-

portant for our phenomenological applications within the framework of the G
(′)
SM-EFTs.

The matching step of the G
(′)
SM-EFTs to phenomenological EFT’s of |∆F | = 1, 2 processes

at the scale µEW is given in section 4. The Lagrangian of the G
(′)
SM-EFT consists of the

dimension-four interactions of the light fields and dimension six interactions generated by

the decoupling of VLQs

L
G

(′)
SM−EFT

= Ldim−4 +
∑
a

CaOa, (3.2)

which are invariant under either GSM or G′SM, depending on the model. Thus in GSM-

models Ldim−4 coincides with the SM Lagrangian and the corresponding non-redundant

set of operators of dimension six has been classified in ref. [26]. In G′SM-models operators

that are invariant under G′SM must be added, which involve the Z ′-boson and the additional

scalar singlets and/or doublets. The Wilson coefficients Ca2 are effective couplings, which

are suppressed by 1/M2 and their effects on observables by v2
i /M

2 compared to the SM,

2The Wilson coefficients of G
(′)
SM-EFTs are denoted with calligraphic Ci, whereas the ones of phenomeno-

logical EFTs with Ci.
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with vi = (v, v1, vS) depending on the model. They are determined at the scale µM
when decoupling VLQs. The decoupling proceeds either by explicit matching calculations

starting at tree-level and including subsequently higher orders or by integrating them out

in the path integral method [3]. The tree-level decoupling has been known for a long time

for GSM models [3] and is given for G′SM(S) models in ref. [9].

Within the EFT, RG equations allow to evolve the Wilson coefficients from µM down to

µEW. In leading logarithmic approximation and retaining only the first logarithm (1stLLA)

it has the approximate solution

Ca(µEW) =

[
δab −

γab
(4π)2

ln
µM
µEW

]
Cb(µM ) , (3.3)

which holds as long as the second term remains small compared to the first. The anomalous

dimension matrices (ADM) γab depend in general on couplings of the gauge, Yukawa and

scalar sectors and are known for the GSM-EFT [27–29]. Largest contributions might be

expected for the case of γab ∝ Y †uYu ∼ y2
t mixing due to the top-quark Yukawa coupling

yt ∼ 1 of the order of a few percent in the case of self-mixing (a = b) and from the mixing

due to QCD under αs. On the other hand, for a 6= b non-zero Wilson coefficients can be

generated at 1stLLA order.3 In particular, as we will see below, in the case of models

with right-handed neutral currents left-right operators can be generated in this manner

with profound direct impact on |∆F | = 2 transitions, thereby affecting the predictions for

|∆F | = 1 observables.

The VLQs have a very limited set of couplings to light fields, which are either via gauge

interactions (2.3) to the gauge bosons or via Yukawa interactions (2.5)–(2.7) to light —

w.r.t. to VLQ mass M — SM quarks and scalars ϕ = H,S or Φ, depending on the model.

At tree-level, this particular structure of interactions can give rise only to flavour-changing

Z and Z ′ couplings, whereas all other decoupling effects are loop-suppressed [30].

The decoupling of the VLQs proceeds in the unbroken phase of SU(2)L⊗U(1)Y, hence

quark fields are flavour-eigenstates and neutral components of scalar fields are without VEV

at this stage. After the RG evolution from µM to µEW, spontaneous symmetry breaking will

take place within the G
(′)
SM-EFTs and the transformation from flavour- to mass-eigenstates

for fermions and gauge bosons can be performed, accounting for the dimension six part in

eq. (3.2).

3.1 Tree-level decoupling and Z and Z′ effects

The couplings of the VLQs permit at tree level only a dimension six contribution from

the generic 4-point diagram in figure 1a. Since its dimension-five contribution vanishes [3],

it is equivalent to consider the 5-point diagram figure 1b, where either SU(2)L or U(1)Y

gauge bosons in GSM-models or in addition a Ẑ ′ in G′SM-models is radiated off the VLQ [3,

9]. As a consequence, in GSM- and G′SM-models only operators of the type ψ2ϕ2D ∝
3Note that the 1stLLA neglects “secondary mixing” effects that are present in LLA, i.e. summing all

large logarithms, because although operator OA might not have ADM entry with operator OB (no “direct

mixing”), it can still contribute to the Wilson coefficient CB(µEW), if it mixes directly with some operator

OC that in turn mixes directly into OB .
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ϕa ϕb

Fm

ψiψj

(a)

ϕa ϕb

Fm

ψiψj Gµ

(b)

ϕa ϕb

Fm

ψiψj ϕc

Fn

(c)

Figure 1. Tree-level graphs (a) and (b) of the decoupling of a VLQ Fm that give rise to ψ2ϕ2D

operators. They proceed via their Yukawa interactions with scalars ϕ = (H,S,Φ) and SM quarks

ψ = (qL, uR, dR). The gauge boson Gµ depends on the representation. Tree-level graph (c) requires

two representations Fm,n with a Yukawa coupling via ϕc and give rise to ψ2ϕ3 operators.

GSM G′SM(S) G′SM(Φ)

ψ2ϕ2D

O(1)
Hq (H†i

←→DµH)[q̄iLγ
µqjL] OSq (S∗i

←→DµS)[q̄iLγ
µqjL] O(1)

Φq (Φ†i
←→DµΦ)[q̄iLγ

µqjL]

O(3)
Hq (H†i

←→D a
µ H)[q̄iLσ

aγµqjL] — — O(3)
Φq (Φ†i

←→D a
µ Φ)[q̄iLσ

aγµqjL]

OHu (H†i
←→DµH)[ūiRγ

µujR] OSu (S∗i
←→DµS)[ūiRγ

µujR] OΦu (Φ†i
←→DµΦ)[ūiRγ

µujR]

OHd (H†i
←→DµH)[d̄iRγ

µdjR] OSd (S∗i
←→DµS)[d̄iRγ

µdjR] OΦd (Φ†i
←→DµΦ)[d̄iRγ

µdjR]

OHud (H̃†iDµH)[ūiRγ
µdjR] — — OΦud (Φ̃†iDµΦ)[ūiRγ

µdjR]

ψ2ϕ3

OuH (H†H)[q̄iLu
j
RH̃] OuS (S∗S)[q̄iLu

j
RH̃] OuΦ (Φ†Φ)[q̄iLu

j
RH̃]

OdH (H†H)[q̄iLd
j
RH] OdS (S∗S)[q̄iLd

j
RH] OdΦ (Φ†Φ)[q̄iLd

j
RH]

Table 2. We follow the definitions of [26] for ψ2ϕ2D operators, except for the signs of gauge

couplings in the covariant derivatives, and (ψ2ϕ3 + h.c.) operators in the case of GSM models and

extend them to G′SM(S) and G′SM(Φ)-models (ϕ = H,S,Φ). Superindices i, j = 1, 2, 3 on quark

fields denote the generations. These are all operators that could arise from tree-level decoupling of

VLQs, depending on the model.

(ϕ†i
←→Dµ ϕ)[ψiγ

µψj ] (ϕ = H,S,Φ) receive non-vanishing contributions at tree-level, which

are projected in part onto ψ2ϕ3-type operators via equation of motions (EOM) [26, 31].

We list the corresponding definitions of the operators in table 2, following the notation

of [26] in the case of the GSM-EFT and extending it to G′SM-EFTs.

After spontaneous symmetry breaking the ψ2ϕ3 operators contribute to the quark

masses mψ (ψ = u, d) at the scale µEW via

mij
ψ =

v2√
2

(
Y ij
ψ −

v2
2

2
CijψH −

v2
S

2
CijψS −

v2
1

2
CijψΦ

)
, (3.4)

which allows to substitute Yukawa couplings Yψ in terms of measured mψ and new physics

parameters Cψ2ϕ3 ∝ Yψ Cψ2ϕ2D, see appendix B.2. If several representations of VLQs are
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present in a given model and two of them Fm,n couple to a scalar ϕc
4 via Yukawa couplings

λ̃mn, a third possibility is allowed at tree-level depicted in figure 1c, which contributes

directly to ψ2ϕ3 operators and gives rise to flavour-changing neutral Hψ̄iψj interactions at

tree-level [3]. The various possibilities for GSM models, where ϕc = H, can be found in [3].

The relation of quark masses to the Yukawa interactions (3.4) includes now also 1/M2

contributions. Their diagonalisation proceeds as usual for the quark fields with the help of

3× 3 unitary rotations in flavour space:

ψL → V ψ
L ψL , ψR → V ψ

R ψR , (3.5)

implying

V ψ†
L mψV

ψ
R = mdiag

ψ , V = (V u
L )†V d

L , (3.6)

with diagonal up- and down-quark masses mdiag
ψ and the unitary quark-mixing matrix V . In

the limit of vanishing dimension-six contributions, V will become the Cabibbo-Kobayashi-

Maskawa (CKM) matrix of the SM. Throughout we will assume for down quarks the weak

basis in which the mass term md is already diagonal, implying qL = (V †uL, dL)T . This

fixes also the definition of the Wilson coefficients Cψ2ϕ2D (for more details see [32]) and the

basis for the VLQ Yukawa couplings λVLQ
i .

After spontaneous symmetry breaking the ψ2ϕ2D operators give rise to flavour-

changing Z and Z ′ interactions for fermions (f = `, u, d), which we parametrise as follows:

L(Z)
VLQ = f̄ i

[
∆ij
L (Z) γµPL + ∆ij

R(Z) γµPR

]
f jZµ , (3.7)

L(Z′) = f̄ i
[
∆ij
L (Z ′) γµPL + ∆ij

R(Z ′) γµPR

]
f j Z ′µ . (3.8)

For completeness, we provide the matching conditions for the Wilson coefficients in ap-

pendix B. We note that RG effects have been neglected in (3.7) and (3.8) since they are

only due to self-mixing of ψ2ϕ2D operators as listed in appendix B.3.

The flavour-diagonal (i = j) couplings of leptons to the Z will be set to the ones of the

SM as corrections from NP to them are in GSM-models one-loop suppressed. This is also

the case of G′SM(S) models where Z does not play any role in FCNCs. In G′SM(Φ) models

modifications of the Zff̄ couplings come from Z − Z ′ mixing. These shifts are relevant

for leptons in partial widths of Z → `¯̀ (see appendix A.2) and could be of relevance in

electroweak precision tests. In the semi-leptonic |∆F | = 1 FCNCs we will include them for

consistency in G′SM(Φ) models, although they are negligible in comparison to other effects.

3.1.1 GSM-models

In the case of GSM-models, the decoupling of VLQs gives the results for ∆L,R(Z) couplings

collected for down-quarks in table 3, where

∆ij ≡ λ∗iλj
gZ

M2
Z

M2
, gZ ≡

√
g2

1 + g2
2. (3.9)

Except for the sign in the case of Tu, our results agree with those in [11]. Furthermore, also

non-zero couplings to up-type quarks arise [11] but they will not play any role in our paper.

4As discussed above ϕc = H in GSM and G′SM-models.
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Coupling q D QV Qd Td Tu

∆
qiqj
L (Z)

d ∆ij 0 0 ∆ij/2 −∆ij

u 0 0 0 Vim∆mn(V †)nj −Vim∆mn(V †)nj/2

∆
qiqj
R (Z)

d 0 −(∆ij)∗ (∆ij)∗ 0 0

u 0 (∆ij
u )∗ 0 0 0

Table 3. ∆
qiqj
L,R(Z) for down- and up-type-quark couplings (i, j = 1, 2, 3) to the Z boson in GSM-

models. Here Vij is the CKM matrix and ∆u = ∆(λVdi → λVui ), see (2.5).

3.1.2 G′
SM-models

In the G′SM-models, the (Lµ − Lτ ) symmetry fixes the Z ′ coupling to leptons to be

∆`¯̀
L (Z ′) = ∆`¯̀

R(Z ′) = ∆ν`ν̄`
L (Z ′) = g′Q′`, (3.10)

with Q′` = {0,+1,−1} for ` = {e, µ, τ}. Here we have neglected Z − Z ′ mixing effects

existing in G′SM(Φ)-models. However, for consistency we have to include these effects in

the couplings of the Z to leptons

∆`¯̀
L (Z) = −gZ

(
1

2
− s2

W

)
+ g′Q′`ξZZ′ , ∆`¯̀

R(Z) = gZs
2
W + g′Q′`ξZZ′ , (3.11)

to first order in the small mixing angle ξZZ′ (see appendix A.2 for details). On the other

hand, the gauge couplings to quarks are model dependent.

In G′SM(S)-models the scalar sector of S and H generates only non-zero quark couplings

to Z ′, whereas in G′SM(Φ)-models the scalar sector of S, H and Φ gives rise to non-zero

couplings of SM quarks to both Z ′ and Z. We define

Gij ≡ − λ
∗
iλj

2Xg′
M2
Z′

M2
, Kij ≡ c2

β

λ∗iλj
gZ

M2
Z

M2
= c2

β∆ij , (3.12)

with ∆ij defined in eq. (3.9) and the Z − Z ′ mixing angle [see (A.9)]

ξZZ′ ' r′ c2
β

M2
Z

M2
Z′
, r′ ≡ 2Xg′

gZ
. (3.13)

Here cβ ≡ cosβ is a parameter associated with the scalar sector (see (2.10)) of G′SM(Φ)-

models, i.e. v1 = v cosβ. The ξZZ′ describes Z − Z ′ mixing, which is phenomenologically

constrained to be small, ξZZ′ < 0.1, due to constraints from the Z-boson mass, MZ , and

partial widths Z → `¯̀ measured at LEP, as described in more detail in appendix A.2. The

down- and up-quark couplings to Z ′ and Z are collected for these models in table 4. We

confirm previous findings [9] for the G′SM(S)-models.

We note that the Z ′ couplings are suppressed/enhanced by the ratio r′ w.r.t. the Z-

couplings. Enhancement takes place for 2 g′X > gZ ≈ 0.75, such that for example r′ ≈ 3

can be reached with g′X ≈ 1.1, still within the perturbative regime. The couplings of Td
and Tu differ just by a sign and factors 1/2. In distinction to Z-contributions in GSM-

models, both Z- and Z ′-contributions in G′SM(Φ) models decouple with large tan β, see

Kij in eq. (3.12).
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Model q ∆
qiqj
L (Z ′) ∆

qiqj
R (Z ′) ∆

qiqj
L (Z) ∆

qiqj
R (Z)

G′SM(S)

D d 0 (Gij)∗ 0 0

QV
d Gij 0 0 0

u VimG
mn (V †)nj 0 0 0

G′SM(Φ)

D d −r′Kij 0 [1− r′ξZZ′ ]Kij 0

Qd d 0 −r′(Kij)∗ 0 [1− r′ξZZ′ ] (Kij)∗

Td
d −r′Kij/2 0 [1− r′ξZZ′ ]Kij/2 0

u −r′ VimKmn(V †)nj 0 [1− r′ξZZ′ ]VimKmn(V †)nj 0

Tu
d r′Kij 0 − [1− r′ξZZ′ ]Kij 0

u r′VimK
mn(V †)nj/2 0 − [1− r′ξZZ′ ]VimKmn(V †)nj/2 0

Table 4. ∆
qiqj
L,R(Z ′) and ∆

qiqj
L,R(Z) for down- and up-type quark couplings (i, j = 1, 2, 3) in G′SM-

models. Here Vij is the CKM matrix.

ψj ψi

ψkψl

Fm

Fn

ϕa ϕb

(a)

ψj ψi

ψkψl

Fm

Fn

ϕa ϕb

(b)

Figure 2. Box graphs for the decoupling of VLQs in representations Fm,n due to their Yukawa

interactions with scalars ϕ = H,S,Φ and SM quarks ψ = (qL, dR, uR). The crossed graph appears

for certain representations Fm 6= Fn. The |∆F | = 2 graphs are found for k = j and l = i.

3.2 Decoupling at one-loop level

All other decoupling processes proceed via loops. Those that would lead to non-canonical

kinetic terms in the G
(′)
SM-EFTs can be absorbed by a suitable choice of wave-function

renormalisation constants in the full theory above the scale µM , resulting in non-minimal

renormalisation of interactions and giving rise to finite threshold effects of coupling con-

stants. In G′SM-models this is the case for kinetic mixing of Bµ and Ẑ ′µ, which enters our

analysis only as a higher order effect.

All other effects enter as dimension six operators. The ones with four quarks are most

important for quark-flavour phenomenology. They involve only VLQ-Yukawa interactions,

as depicted in figure 2a and figure 2b, and give rise to ψ4-type operators, among which

are also |∆F | = 2 operators. Here we match directly to the operators present in the

phenomenological EFT of |∆F | = 2 decays, using the conventions in appendix C.1, avoiding
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thereby the intermediate matching to the GSM-invariant form.5 Still, we outline this step

for completeness here. In the VLQ models considered, there are four relevant ψ4 operators

in G
(′)
SM-EFTs at the VLQ scale µM and a fifth operator is generated due to QCD mixing

via RG evolution from µM to µEW. These are the (LL)(LL) operators

[O(1)
qq ]ijkl = [q̄iLγµq

j
L][q̄kLγ

µqlL], [O(3)
qq ]ijkl = [q̄iLγµσ

aqjL][q̄kLγ
µσaqlL], (3.14)

the (LL)(RR) operators

[O(1)
qd ]ijkl = [q̄iLγµq

j
L][d̄kRγ

µdlR], [O(8)
qd ]ijkl = [q̄iLγµT

AqjL][d̄kRγ
µTAdlR], (3.15)

and the (RR)(RR) operator

[Odd]ijkl = [d̄iRγµd
j
R][d̄kRγ

µdlR], (3.16)

with kl = ij for |∆F | = 2 processes and the TA denoting SU(3)c colour generators. Their

Wilson coefficients are matched to the ones of the |∆F | = 2 phenomenological EFT at the

electroweak scale µEW [32] as

CijVLL = −N−1
ij

(
[C(1)
qq ]ijij + [C(3)

qq ]ijij

)
, CijVRR = −N−1

ij [Cdd]ijij ,

CijLR,1 = −N−1
ij

[C(1)
qd ]ijij −

[C(8)
qd ]ijij

2Nc

 , CijLR,2 = N−1
ij [C(8)

qd ]ijij ,
(3.17)

where Nij is given in (C.2). Here we anticipate this matching to the VLQ scale µM as

there are no RG effects of phenomenological importance for the discussion of B-meson and

Kaon sectors. For more details see section 3.3, where also QCD mixing is given for these

operators. Since the Wilson coefficients of these operators are generated at µM at one-loop,

their interplay with other sectors in quark-flavour physics due to RG mixing are considered

higher order and hence beyond the scope of our work.

In GSM-models VLQs contribute to |∆F | = 2 operators Oija for a = VLL,VRR,LR1

via box diagrams (see figures 2a and 2b), which contain two heavy VLQ propagators

with representations Fm and Fn and massless components of the standard doublet H =

(H+, H0)T . These box diagrams yield the general structure of the Wilson coefficients

Cija (µM ) =
ηmn

(4π)2

Λmij Λnij
Nij

f1(Mm,Mn) (3.18)

at the scale µM . Here the prefactor corresponds to the SM normalisation of the |∆F | = 2

EFT, see (C.2). The function

f1(Mm,Mn) =
ln(M2

m/M
2
n)

M2
m −M2

n

, with f1(Mm,Mm) =
1

M2
m

, (3.19)

5Note that the set of ψ4-type operators is the same in all G
(′)
SM models and a non-redundant set can be

found in ref. [26].
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(Fm, Fn) D Qd QV Td Tu

D VLL, +1/8 LR1, +1/4 LR1, −1/4 VLL, +1/16 VLL, −1/8

Qd VRR, +1/4 VRR, −1/4 LR1, +3/8 LR1, −3/8

QV VRR, +1/4 LR1, −3/8 LR1, +3/8

Td VLL, +5/32 VLL, −1/8

Tu VLL, +5/32

Table 5. The index a = VLL,VRR,LR1 appearing in eq. (3.18) for representations (Fm, Fn),

followed by corresponding ηmn.

depends on the VLQ masses of representations Fm,n. The couplings Λmij are

Λmij = (λmi )∗λmj for Fm = D,Td, Tu,

Λmij = λmi (λmj )∗ for Fm = Qd, QV . (3.20)

The index a of the operator and the numerical factors ηmn are collected in table 5. Note

that a = VLL for Fm,n = D, Td, Tu, and a = VRR for Fm,n = Qd, QV , whereas a = LR1

for Fm = D, Td, Tu and Fn = Qd, QV . The factors ηmn are positive except for interference

of Fm = D, Qd, Td with Fn = QV , Tu, because in this case the scalar propagators are

crossed, which gives rise to an additional sign w.r.t. the diagram with non-crossed scalar

propagators. For Fm = Fn, these results agree with [11] for D, Tu, Td, but for Qd (model

XI) we find an additional factor of 2. Concerning QV (model IX) we find a contribution to

∼ OVRR instead of ∼ OVLL and also opposite sign. For completeness we provide also the

results for Fm 6= Fn.

In G′SM(S) models we consider only VLQs D and QV and their interference

D : CVRR =
1

(4π)2

(λDi λ
D∗
j )2

Nij
1

8M2
D

,

QV : CVLL =
1

(4π)2

(λV ∗i λVj )2

Nij
1

8M2
V

,

D ×QV : CLR1 = − 1

(4π)2

(λDi λ
D∗
j )(λV ∗i λVj )

Nij
f1(MD,MV )

4
,

(3.21)

which agrees with [9] except for a minus sign from crossed scalar propagators in the inter-

ference term D ×QV .

The results for G′SM(Φ) models can be found straight-forwardly from the ones of the

GSM models, bearing in mind that (2.5) and (2.7) are equivalent up to the replacement

H → Φ.
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3.3 Renormalisation group evolution

The VLQ tree-level exchange in the considered VLQ scenarios generates only ψ2ϕ2D- and

ψ2ϕ3-type operators at the scale µM with nonvanishing Wilson coefficients (see appendix B)

GSM : CHd, C
(1)
Hq, C

(3)
Hq, CuH , CdH , (3.22)

G′SM(S) : CSd, CSq, CuS , CdS , (3.23)

G′SM(Φ) : CΦd, C
(1)
Φq , C

(3)
Φq , CuΦ, CdΦ , (3.24)

depending on the VLQ scenario.6 The RG evolution from µM down to µEW can induce

via operator mixing leading logarithmic contributions also to other classes of operators in

G
(′)
SM EFTs at the scale µEW. These operators are possibly related to a variety of processes

and thus imply additional potential constraints.

The largest enhancements can appear if the ADM γab in (3.3) is proportional to the

strong coupling 4παs ∼ 1.4 or the top-Yukawa coupling yt ∼ 1. Note that QCD mixing

is flavour-diagonal and hence can not give rise to new genuine phenomenological effects,

i.e. one can not expect qualitative changes. On the other hand, Yukawa couplings are

the main source of flavour-off-diagonal interactions and we will focus on these here. The

SU(2)L gauge interactions induce via ADMs γab ∝ g2
2 [29] only intra-generational mixing

between uiL ↔ diL and are parametrically smaller than yt-induced effects, such that we

do not consider them here. The U(1)Y gauge interactions are only flavour-diagonal and

numerically even more suppressed.

Concerning G′SM models, RG effects due to top-Yukawa couplings are absent for ψ2ϕ2D

and ψ2ϕ3 operators, because ϕ = S,Φ do not have Yukawa couplings to qL, uR, dR, which

are forbidden by their additional U(1)Lµ−Lτ charge. Hence RG effects as discussed below

are not present in these scenarios.

The ADMs due to Yukawa interactions can be found in [28] for the GSM-EFT (ϕ = H)

and we collect the ones involving the Wilson coefficients (3.22) in appendix B.3. The RG

equations of these Wilson coefficients are also coupled with those of SM couplings, such as

the quartic Higgs coupling and quark-Yukawa couplings [27], but in 1stLLA they decouple.

The modification of SM couplings due to dim-6 effects can be neglected when discussing

the RG evolution of dim-6 effects themselves in first approximation. Moreover, the quartic

Higgs coupling is irrelevant for the processes discussed here and the quark masses are

determined from low-energy experiments, i.e. much below µEW. Hence phenomenologically

most interesting are RG effects of mixing of ψ2H2D and ψ2H3 operators into other operator

classes that do not receive tree-level matching contributions at µM . Those classes are

H6 (1) , H4D2 (2) , ψ4 (5) , (3.25)

where we list in parentheses the number of operators.7 We focus on the ψ4 operators,

which all turn out to be four-quark operators, because they are most relevant for processes

6We assume that in the VLQ scenario QV the VLQ Yukawa couplings λVui = 0, otherwise in this scenario

also CHu and CHud must be considered.
7Implying footnote 6.
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of down-type quarks considered here. We comment shortly on the H6 and H4D2 classes

in appendix B.3.

The RG equation (3.3) implies for a specific a ∈ ψ4, see also [18],

Ca(µEW) = − 1

(4π)2
ln

µM
µEW

∑
b∈ψ2H2D

γab Cb(µM ), (3.26)

where a 6= b, such that 1stLLA contributions are one-loop suppressed w.r.t. tree-level gener-

ated ψ2H2D contributions. Three of the ψ4 operators (O(1,3)
qq and O(1)

qd ) can mediate down-

type quark |∆F | = 2 processes and all five |∆F | = 1 processes, see again appendix B.3.

The |∆F | = 1 four-quark operators modify directly hadronic |∆F | = 1 processes,

whereas they enter semileptonic |∆F | = 1 processes only via additional operator mixing

in both SMEFT and phenomenological EFTs, therefore receiving another suppression in

semileptonic processes. The 1stLLA contribution is a novel effect for |∆F | = 2 processes,

where it competes with the direct one-loop box contribution in VLQ models discussed in

section 3.2. On the other hand, semileptonic and hadronic |∆F | = 1 processes are gener-

ated directly by ψ2H2D operators in the next matching step of GSM to phenomenological

EFTs at µEW (see section 4 and figure 4), which are therefore enhanced in these processes

compared to the 1stLLA contributions discussed here. Consequently, the 1stLLA is one-

loop suppressed in VLQ models in hadronic |∆F | = 1 processes, unless the potentially

novel chiral structure of the ψ4 operators enhances a specific hadronic observable. We will

return to this point in section 4.3.

Under the transformation from weak to mass eigenstates for up-type quarks (3.5)

Yu
dim−4≈

√
2

v
V u
Lm

diag
U V u†

R =

√
2

v
V †CKMm

diag
U , (3.27)

the corresponding ADMs of ψ4 operators in appendix B.3 transform as

[Y †uYu]ij =
2

v2

∑
k

m2
kδkiδkj ≈

2

v2
m2
t δ3iδ3j , (3.28)

[YuY
†
u ]ij =

2

v2

∑
k=u,c,t

m2
kV
∗
kiVkj ≈

2

v2
m2
tλ

(t)
ij , (3.29)

with up-type quark mass mk and the definition of CKM-products λ
(t)
ij given in (4.1). Since

the ADMs are needed here for the evolution of dim-6 Wilson coefficients themselves, we

have used tree-level relations derived from the dim-4 part of the Lagrangian only, thereby

neglecting dim-6 contributions, which would constitute a dim-8 corrections in this context.

In the sum over k only the top-quark contribution is relevant (mu,c � mt), if one assumes

that the unitary matrix V is equal to the CKM matrix up to dim-6 corrections.8

The |∆F | = 2 mediating ψ4 operators involve the combination (3.29). We obtain

via (3.26) and explicit matching conditions (B.1)

Cija (µEW) =
κm

(4π)2

Λmijλ
(t)
ij

Nij
1

M2

2m2
t

v2
ln

µM
µEW

, (3.30)

8We expect only tiny contributions from k = c in case that ij = sd, for ij = bd, bs such contributions

are entirely negligible.
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with Λmij from (3.20), the chirality of the |∆F | = 2 operator

a = VLL for Fm = D,Td, Tu ,

a = LR, 1 for Fm = Qd, QV ,
(3.31)

and the VLQ-model-dependent factor

κm =

(
0, −1

2
, +

1

2
, −1

2
, +

1

4

)
for Fm = (D, Qd, QV , Td, Tu). (3.32)

We note the relations

κm
Λmij
M2

= [C(1)
Hq − C

(3)
Hq]ij (Fm = D, Td, Tu), (3.33)

where the relative sign comes from relative signs in (B.23) and (B.24) when inserted

in (3.17) and

κm
Λmij
M2

= [CHd]ij , (Fm = Qd, QV ) . (3.34)

We point out the different flavour structure of the 1stLLA contribution (3.30) compared

to the one of the direct box-contribution (3.18) discussed in the previous section section 3.2:

Cija |1stLLA ∼ Λij × λ(t)
ij , Cijb |Box ∼ (Λij)

2, (3.35)

showing linear versus quadratic dependence on the product of VLQ Yukawa couplings Λij .

A detailed comparison of both contributions is given in section 5.

The LLA RG equations of |∆F | = 2 Wilson coefficients from QCD, only [33, 34], are

given as

CVLL(VRR)(µEW) = η
2/7
6 CVLL(VRR)(µM ) ,

CLR,1(µEW) = η
1/7
6 CLR,1(µM ) ,

CLR,2(µEW) =
2

3

(
η

1/7
6 − η−8/7

6

)
CLR,1(µM ) + η

−8/7
6 CLR,2(µM ) ,

(3.36)

with Nf = 6 denoting the number of active quark flavours and η6 = α
(6)
s (µM )/α

(6)
s (µEW).

The initial conditions of Cija (µM ) from box-diagrams are collected in (3.18) and (3.21).

Note that CLR,2(µM ) = 0, and CLR,1(µM ) 6= 0 only in the presence of several VLQ repre-

sentations.

4 Implications for the down-quark sector

In the previous section the decoupling of the VLQs at tree-level and for |∆F | = 2 at

one-loop level at the scale µM has been presented, including the most important effects

from the RG evolution down to the electroweak scale µEW. In this section we discuss the

decoupling of degrees of freedom of the order of µEW by matching onto phenomenological

|∆F | = 1, 2 EFTs. In the GSM-models these are the W and Z bosons, the top-quark and
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the standard Higgs h0 that are all in the mass range µEW ∈ [80, 180] GeV. In G′SM models

the Z ′ and additional scalars are present, which we allow to be heavier, up to the ∼ 1 TeV

range. For the purpose of the decoupling, however, we ignore this hierarchy with the heavy

standard sector ∼ 100 GeV.

In our analysis we will frequently use general formulae for flavour observables in models

with tree-level neutral gauge boson exchanges that are collected in [35]. These formulae

were given in terms of the so-called master one-loop functions which have been already used

before in many concrete extensions of the SM, see [36] for a review. Therefore our task is to

calculate NP contributions to these functions in the VLQ models, using the results obtained

in the previous section. To this end it will be useful to adopt the notations of [35, 36].

We define the relevant CKM factors by9

λ
(U)
ij = V ∗UiVUj with U ∈ {u, c, t} and i, j ∈ {d, s, b} . (4.1)

We introduce further

g2
SM = 4

G2
FM

2
W

2π2
= 1.78137× 10−7 GeV−2 . (4.2)

The relevant master functions in the SM are

S0(xt), X0(xt), Y0(xt), Z0(xt) . (4.3)

They are flavour universal and real valued. For completeness their explicit expressions

can be found in the appendices. In the considered VLQ models new contributions not

only break flavour universality, but also bring in new CP-violating phases, so that minimal

flavour violation (MFV) is violated.

4.1 |∆F | = 2

The Wilson coefficients10 of |∆F | = 2 operators governing neutral kaon and Bq-meson mix-

ing (q = d, s), defined in appendix C.1, can receive at the scale µEW several contributions

depicted in figure 3, depending on the model. Firstly, there are the local contributions,

figure 3a, from the one-loop decoupling presented in section 3.2, which are formally of order

v2/M2, but one-loop suppressed. Secondly, there are also local 1stLLA contributions in

GSM models due to top-Yukawa RG effects from ψ2H2D operators presented in section 3.3,

which are formally of order v2/M2 ln(v/M) and also one-loop suppressed. Thirdly, there

are double-insertions of flavour-changing Z(′) couplings, figure 3b, that count due to the

double insertion formally as v4/M4, but are generated already at tree-level. Fourthly,

when considering several VLQ representations also double-insertions of ψ2ϕ3-type opera-

tors [3], generating flavour-changing neutral Higgs exchange, can contribute in analogy to

figure 3b when replacing the Z(′) by h0. As a consequence in this case also non-vanishing

contributions can arise to the operators OSχχ,1 with χ = L,R and OLR,2 [32].

9This notation differs sufficiently from the one for Yukawa couplings λi so that there should not be any

problem in distinguishing them.
10See footnote 2.
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ψj ψi

ψkψl

(a)

ψj ψi

ψkψl

Z

〈v〉 〈v〉

〈v〉〈v〉

ψj ψi

ψkψl

Z ′

〈vS,1〉 〈vS,1〉

〈vS,1〉〈vS,1〉
(b)

Figure 3. Figure 3a shows flavour-changing four-quark transitions in the G
(′)
SM-EFT that are

mediated by local ψ4-operators, generated at the scale µM at one-loop level (indicated by the filled

square). Figure 3b shows contributions from double insertions of ψ2ϕ2D-operators via intermediate

Z or Z ′ exchange, which are formally of higher power, but are generated by tree-level VLQ exchange

(indicated by the triangles).

Unless we consider several VLQ representations simultaneously, new physics contri-

butions from box diagrams, the top-Yukawa generated 1stLLA contributions in LH GSM

models and the double-insertions of flavour-changing Z(′)-couplings involve only the op-

erators OijVLL and OijVRR. Below µEW, they obey the same RG evolution (3.36) — with

appropriate change of number of active quark flavours Nf = 6 → 5 — and enter the M12

element of the mass-mixing matrix as the linear combination[
CijVLL + CijVRR

]
(µEW) ≡ Sij = S0(xt) + ∆Sij (4.4)

with ∆Sij denoting VLQ contributions. The SM contribution is given at LO by S0(xt),

see (C.4). We have

∆Sij = [∆Sij ]VLL + [∆Sij ]VRR , (4.5)

although in a given model only one of these contributions is present. If two different models

containing LH and RH couplings are combined, the most important transitions in |∆F | = 2

are not these two operators, but OijLR,1 and OijLR,2.

The [∆Sij ]Vχχ with χ = L,R include quite generally box diagrams with VLQs and

scalar exchanges, the top-Yukawa generated 1stLLA contributions in LH GSM models as

well as tree-level Z and Z ′ contributions. We can therefore write

[∆Sij ]Vχχ = CijVχχ(µEW) +
4rZ

g2
SMM

2
Z

[
∆ij
χ (Z)

λ
(t)
ij

]2

+
4rZ′

g2
SMM

2
Z′

[
∆ij
χ (Z ′)

λ
(t)
ij

]2

, (4.6)

where CijVχχ(µEW) are given by (3.36) for χ = R or the sum of (3.36) and (3.30) for χ = L.

The rV for V = Z,Z ′ are NLO QCD corrections11 to figure 3b from decoupling of the V

boson at the scale µ = µEW [38], Note the model-dependence of the factors ∆ij
χ (Z) and

11Since we decouple Z and Z′ simultaneously at µEW ∼MZ , we do not resum logarithms between scales

MZ′ and µEW as for example in ref. [37].
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ψj ψi

ℓℓ

Z

〈v〉 〈v〉

ψj ψi

ℓ2,3ℓ2,3

Z ′

〈vS,1〉 〈vS,1〉

(a)

ψj ψi

ψkψk

Z

〈v〉 〈v〉

(b)

Figure 4. Flavour-changing ∆F = 1 processes that are mediated in the G
(′)
SM-EFTs by dimension

six ψ2ϕ2D-operators (indicated by the triangle), which are in turn generated at the scale µM
at tree level. Semileptonic transitions ψj → ψi `¯̀ in figure 4a can be mediated by both Z and

Z ′ exchange, depending on the model. Not shown are analogous transitions ψj → ψi νν̄. Note

that the Z ′ couples only to the second and third generations of leptons and neutrinos. Hadronic

transitions ψj → ψi ψkψk in figure 4b are mediated only by Z exchange, with ψ = (qL, uR, dR),

depending on the operator.

∆ij
χ (Z ′), given in table 3 and table 4, and the different dependence on the VLQ mass of

these factors and CijVχχ(µEW).

The top-Yukawa operator mixing generates in RH GSM models also LR operators for a

single VLQ representation. When two or more representations are considered, also LR and

SLL (SRR) operators contribute in principle. The Wilson coefficients of LR operators can

receive contributions from box diagrams, top-Yukawa generated RG effects and tree-level

Z(′) exchanges, whereas SLL (SRR) and LR,2 from tree-level h0 exchange. The results for

all box contributions CijLR,1 are given in formulae (3.18) and (3.21) and the RG evolution

in (3.36), to which the top-Yukawa generated 1stLLA contributions (3.30) have to be added

in RH GSM models. Adding the Z- and Z ′-contributions, one arrives at

CijLR,1(µEW) = CijLR,1(µEW) +
1

Nij

[
∆ij
L (Z)∆ij

R(Z)

M2
Z

+
∆ij
L (Z ′)∆ij

R(Z ′)

M2
Z′

]
,

CijLR,2(µEW) = CijLR,2(µEW) ,

(4.7)

with the couplings ∆ij
χ (Z(′)) (χ = L,R) collected in table 3 and table 4. Nij is defined

in (C.2).

The RG evolution from µEW to mb is done at NLLA accuracy for the SM contribution

and LLA accuracy for the VLQ contribution.

4.2 |∆F | = 1: semi-leptonic dj → di + (`¯̀, νν̄)

Semileptonic decays in the down-quark sector receive in VLQ models contributions via the

Z and Z ′ tree-level exchanges depicted in figure 4a. They lead to modifications of the

Wilson coefficients of the corresponding phenomenological EFTs of dj → diνν̄ and dj →
di`¯̀ decays given in appendix C.2 and appendix C.3, respectively. All Wilson coefficients
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in this section are formally at µEW, but since the corresponding operators are conserved

currents under QCD, the RG evolution to the scale µb is trivial in all cases.12

The V = Z,Z ′ contributions modify the Wilson coefficients and one-loop functions

Cij,νL (R) = −
∑
V

Xij,ν
L (R)(V )

s2
W

, X ij,ν
L (R)(V ) =

∆νν̄
L (V )

g2
SMM

2
V

∆ij
L (R)(V )

λ
(t)
ij

, (4.8)

which enter the expressions for dj → diν̄ν decays like K+ → π+νν̄, KL → π0νν̄ and also

B → K(∗)νν̄ with more details in appendix C.2.

The Wilson coefficients of the operators entering the dj → di`¯̀ transitions receive the

following contributions

Cij,`9 (9′) = −
∑
V

[
∆`¯̀
R(V ) + ∆`¯̀

L (V )
]

s2
W g

2
SMM

2
V

∆ij
L (R)(V )

λ
(t)
ij

, (4.9)

Cij,`10 (10′) = −
∑
V

[
∆`¯̀
R(V )−∆`¯̀

L (V )
]

s2
W g

2
SMM

2
V

∆ij
L (R)(V )

λ
(t)
ij

, (4.10)

where the leptonic Z couplings are taken to be the ones of the SM except for G′SM(Φ)

models, where Z − Z ′ mixing is included following (3.11). There are no Z ′ contributions

to C10 (10′), as the lepton couplings are vectorial, see (3.10).

The purely leptonic decay KL → µµ̄ is described by (s̄→ d̄)

YA(K) = Y SM
L +

[
∆µµ̄
R (Z)−∆µµ̄

L (Z)
]

g2
SMM

2
Z

[
∆sd
L (Z)−∆sd

R (Z)

λ
(t)
sd

]
, (4.11)

with Y SM
L = 0.942 [39].

4.3 |∆F | = 1: hadronic dj → diqq̄ and ε′/ε

Purely hadronic flavour-changing decays dj → diqq̄ receive in the considered VLQ models

predominantly contributions from Z exchange depicted in figure 4b. Other contributions

from scalar boxes, figure 3a, or double-insertions of Z or Z ′ exchange in figure 3b are

either loop- or power-suppressed. The phenomenological EFT of these transitions is given

in appendix C.4. Since the flavour-diagonal Z couplings are given by the SM ones to the

order we are working in, no dependence on q arises. The non-vanishing contributions to

the |∆F | = 1 Wilson coefficients are conveniently rewritten as NP contributions to the

Inami-Lim Z-penguin function C (see appendices C.2 and C.3)13

CijL(R) = − gZ
2g2

SMM
2
Z

∆ij
L(R)(Z)

λ
(u)
ij

. (4.12)

12The usual mixing of Q9 operators with current-current operators Q1,2 present in the SM and affecting

C9 coefficient is fully negligible here because NP contributions to C1,2 are tiny in all models.
13Note that whereas the SM contribution to the function C is gauge dependent this shift is gauge inde-

pendent.
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It contributes at the scale µEW to the Wilson coefficients of the QCD- and EW-penguin

operators [40],

Cij3(5′) =
α

6π

CijL(R)

s2
W

, Cij7(9′) =
α

6π
4CijL(R), Cij9(7′) = − α

6π

c2
W

s2
W

4CijL(R) . (4.13)

The RG evolution induces also non-vanishing contributions for the remaining QCD- and

EW-penguin operators at lower scales relevant for Kaon and B-meson decays. Here we are

mainly interested in CP violation in the Kaon sector, especially ε′/ε.

It is known from various analyses of ε′/ε, see [40] and references therein, that NP has

to generate contributions to the Wilson coefficients of O8 ∝ (V − A) ⊗ (V + A) or O′8 ∝
(V +A)⊗(V −A) operators at the low energy scale in order to be able to modify significantly

the SM predictions. This requires the presence of both LH flavour-violating couplings and

RH flavour-diagonal couplings of Z or Z ′ in the case of O8, or RH flavour-violating couplings

and LH flavour-diagonal couplings in the case of O8′ . But in the models considered quark

couplings of the Z ′ are either LH or RH, hence such contributions can only be generated

as a higher-order effect. Given that (V − A) and (V + A) flavour-diagonal Z couplings to

SM quarks are always present, tree-level Z exchanges fully dominate. NP contributions to

O9,10 ∝ (V − A) ⊗ (V − A) or O′9,10 ∝ (V + A) ⊗ (V + A) operators are negligible due to

their suppressed hadronic matrix elements relative to the ones of O8 and O′8. This can be

clearly seen in the semi-numeric expression (C.29) for ε′/ε, where the coefficients of C
(′)
7 ,

which mixes into C
(′)
8 , is largely enhanced w.r.t. all others. Whether O8 or O′8 is generated

depends on whether a given model has (V −A) or (V +A) flavour-violating couplings:

• Within the GSM- and G′SM(Φ)-models, the pattern of NP contributions to ε′/ε is as

follows
singlets : D → (O8) ,

doublets : QV , Qd → (O′8) ,

triplets : Td, Tu → (O8) .

(4.14)

• In G′SM(S)-models ε′/ε remains SM-like, which could become problematic as we dis-

cuss briefly below.

Tree-level Z contributions to ε′/ε have been recently considered in detail in ref. [40],

where explicit expressions for the relevant hadronic matrix elements 〈Q8(mc)〉2 and

〈Q′8(mc)〉2 can be found. Whereas these matrix elements differ only by sign from each

other, their Wilson coefficients differ also in magnitude, the one of Q′8 being larger by a

factor of c2
W /s

2
W = 3.33. This can also be seen in eq. (4.13), remembering that the Wilson

coefficients of Q8 and Q′8 at µ = mc are directly related to the Wilson coefficients of Q7

and Q′7 at µEW, respectively.

Finally let us mention that the top-Yukawa generated 1stLLA contributions to |∆F | =
1 operators in GSM models discussed in section 3.3 induce operators with the same chiral

structure as already present from the Z-exchange due to ψ2H2D operators. In particu-

lar the ψ2H2D Wilson coefficients generate ψ4 Wilson coefficients via the mixing given
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in (B.23)–(B.28)

C(1,3)
Hq → C(1,3)

qq , C(1)
qu (4.15)

CHd → C
(1)
qd , C

(1)
ud (4.16)

where O(1,3)
qq ∼ (V −A)⊗(V −A), O(1)

qu,qd ∼ (V −A)⊗(V +A) and O(1)
ud ∼ (V +A)⊗(V +A).

Given their additional suppression w.r.t. existing contributions we do not consider these

contributions further.

The status of ε′/ε in the SM can be summarized as follows. The RBC-UKQCD lat-

tice collaboration calculating hadronic matrix elements of all operators, but not including

isospin-breaking effects, finds [19, 41]

(ε′/ε)SM = (1.38± 6.90)× 10−4 (RBC−UKQCD). (4.17)

Using the hadronic matrix elements of QCD- and EW-penguin (V −A)⊗(V +A) operators

from RBC-UKQCD lattice collaboration [19, 41] but extracting the matrix elements of

(V − A) ⊗ (V − A)-penguin operators from the CP-conserving K → ππ amplitudes and

including isospin breaking effects, one finds [20]

(ε′/ε)SM = (1.9± 4.5)× 10−4 (BGJJ) . (4.18)

This result differs by 2.9σ from the experimental world average from the NA48 [42] and

KTeV [43, 44] collaborations,

(ε′/ε)exp = (16.6± 2.3)× 10−4, (4.19)

suggesting that models providing enhancement of ε′/ε are favoured. A new analysis in

ref. [22] confirms these findings

(ε′/ε)SM = (1.1± 5.1)× 10−4 (KNT) . (4.20)

These results are supported by upper bounds on the matrix elements of the dominant

penguin operators from the large-Nc dual-QCD approach [21, 45], which allows to derive

an upper bound on ε′/ε [20],

(ε′/ε)SM ≤ (8.6± 3.2)× 10−4, (4.21)

still 2σ below the experimental data. In particular it has been demonstrated in ref. [45] that

final state interactions are much less relevant for ε′/ε than previously claimed in refs. [46–

53]. These findings diminish significantly hopes that improved lattice QCD calculations will

be able to bring the SM prediction for ε′/ε to agree with the experimental data in (4.19),

motivating additionally to search for NP models capable of alleviating this tension.

In fact it has been demonstrated that in general models with flavour-changing Z and

Z ′ exchanges [40, 54], in the Littlest Higgs model with T -parity [55], 331 models [56, 57]

and supersymmetric models [58–60] agreement with the data for ε′/ε can be obtained, with

interesting implications for other flavour observables.

We will see in section 6 that also in VLQ models large NP contributions to ε′/ε are

possible, such that agreement with the data in (4.19) can be obtained with a significant

impact not only on rare K decays but also B decays.
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5 Patterns of flavour violation

Our analysis involves three model variants GSM, G′SM(S) and G′SM(Φ), with up to five VLQ

representations. In this section we describe the patterns of flavour violation in |∆F | = 1, 2

FCNC processes in the Kaon and Bd,s-meson sectors that can be expected in these models,

based on our results in sections 3 and 4. The quantitative phenomenology depends in addi-

tion to the NP parameters on the CKM and hadronic ones and will be discussed in the next

section. However, on the basis of the information collected so far, some general patterns

of flavour violation emerge and it is possible to state whether in a given model relevant

NP contributions to a given observable can be expected. We hope that the collection of

observations below will be useful in monitoring the numerical analysis of the next section.

5.1 |∆F | = 2

In all models local VLQ contributions to |∆F | = 2 operators are generated at the VLQ-

scale µM via one-loop box diagrams. The contributions from tree-level exchanges of Z

and Z ′ at the scale µEW are power-suppressed due to the hierarchy (3.1) and should be

therefore numerically subleading, at least for large VLQ masses. This property decouples

|∆F | = 1 and |∆F | = 2 contributions to some extent, rendering it easier to accommodate

potential tensions [61, 62] in ∆F = 2 processes.

In GSM models additional contributions from four-fermion operators are generated

through Yukawa RG evolution from µM to µEW. In the case of models QV and Qd these

contributions turn out to be dominant for µM ≥ 1 TeV in the K meson system and very

important in the Bd,s meson systems. In the following we compare the various contributions

one by one.

The |∆F | = 2 box contributions given in eq. (3.18) and (3.21) depend only on the

VLQ mass(es) M and their Yukawa couplings λVLQ
i , but neither on the gauge couplings

nor on the scalar sector. Moreover for a given VLQ-representation, they are equal in

GSM and G′SM(Φ) models owing to the equality of (2.5) and (2.7) upon H ↔ Φ. Hence

the measurements of |∆F | = 2 observables will result for a given M in the very same

constraints on λVLQ
i in both GSM and G′SM(Φ) models.

Using (4.6), the relative size of box-to-Z exchange in GSM and G′SM(Φ) models is

(∆S)Box

(∆S)Z
= a ηLL

g2
Z

8π2

[
η

2/7
6

rZ

]
M2

M2
Z

×

 1 GSM

c−4
β G′SM(Φ)

, (5.1)

with ηLL collected in table 5, rZ ≈ 1, and a = 4 for Td and unity otherwise. While the

Z contribution is comparable to the box contribution for M ≈ 1 − 2 TeV, it amounts

only to a few percent for M = 10 TeV in GSM models, whereas in G′SM(Φ) models the

Z-contributions are suppressed by c4
β . In G′SM(Φ) models we have furthermore

(∆S)Z′

(∆S)Z
= (r′)2

[
rZ′

rZ

]
M2
Z

M2
Z′
, G′SM(Φ) (5.2)
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with rZ′ ≈ rZ ≈ 1. Therefore Z exchange might be more important w.r.t. the Z ′ contri-

bution for MZ < MZ′ , depending on r′, see (3.13) but both are suppressed w.r.t. the box

contribution.

In the G′SM(S) models the same picture holds qualitatively, however a Z-exchange is

absent and the relative size of box-to-Z ′ exchange is different,

(∆S)Box

(∆S)Z′
=

(Xg′)2

(4π)2

[
η

2/7
6

rZ′

]
M2

M2
Z′
, G′SM(S) (5.3)

which for X = 1 reduces to the result in ref. [9]. In contrast to GSM and G′SM(Φ) models,

we note the particular structure of Z ′ couplings, not being suppressed by M2
Z/M

2
Z′ . A

lower bound on |X| vS = MZ′/g
′ & 750 GeV exists in G′SM(S) models, mainly from a

combination of Z → 4µ and the neutrino trident production [9]. This implies that only for

M & 9 TeV the ratio (∆S)Box/(∆S)Z′ & 1 and shows the numerical importance of the Z ′

contributions, unless one considers much larger VLQ masses.

With only these contributions taken into account the |∆F | = 2 observables are not

sensitive to the chirality of the VLQ interactions as long as only one VLQ representation

is present, because the contributions are additive as can be seen in (4.5). However, the

inclusion of RG Yukawa effects and NLO contributions discussed in [18] changes this picture

drastically in the case of GSM models with flavour changing RH currents (Qd, QV ) and has

also significant impact in the remaining three models with LH currents.

In the case of D, Td and Tu models we find[
(∆S)RG

(∆S)Box

]ij
=

κm
ηmm

λtij
Λmij

2m2
t

v2η
2/7
6

[
ln

µM
µEW

+
FNLO(xt, µEW)

κmΛmij

]
(5.4)

with κm given in (3.32) and ηmm in table 5. The NLO correction

FNLO(xt, µEW) = [C(1)
Hq]ijH1(xt, µEW)− [C(3)

Hq]ijH2(xt, µEW)

+
2S0(xt)

xt

∑
m

(
λimt [C(3)

Hq]mj + [C(3)
Hq]imλ

mj
t

) (5.5)

has been calculated in [18], where also the xt-dependent functions H1,2 can be found. The

result for H1(xt, µEW) in [18] has been confirmed in [63] where NLO corrections in the

context of a general analysis of Z-mediated NP have been calculated, however in contrast

to [18] leaving out RG effects above the electroweak scale represented by ln µM/µEW

in (5.4) and (5.6).

In the case of Qd and QV models the box and RG contributions yield coefficients to

different operators, hence a meaningful comparison of their impact on observables has to

include their QCD running between µEW and the light flavour scales (we choose 3 GeV for

Kaons and MB for Bd,s) as well as the corresponding matrix elements. We find[
(M∗12)RG

(M∗12)Box

]ij
=

[
(M∗12)LR

(M∗12)box
VRR

]ij
=

κm
ηmm

λtij
Λmij

2m2
t

v2η
2/7
6

[
ln

µM
µEW

+H1(xt, µEW)

]
Rij , (5.6)
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with Rij including RG factors and the ratio of the hadronic matrix elements. From eqs.

(60) and (61) in [18] we obtain

Rsd ≈ −80 and Rb(d,s) ≈ −3 . (5.7)

This large chiral enhancement in the Kaon system renders the RG contribution dominant,

while in the Bd,s systems the contribution remains comparable with the box contribution.

5.2 |∆F | = 1

In semi-leptonic |∆F | = 1 processes governed by dj → di+(`¯̀, νν̄), the VLQ contributions

arise from tree-level Z exchange in GSM models, Z ′ exchange in G′SM(S) models and both

in G′SM(Φ) models.

It is instructive to begin the discussion with G′SM(S) models considered already in

ref. [9], as they involve only Z ′ contributions to ∆F = 1 processes and the leptonic Z ′

couplings have a special structure as given in eq. (3.10). Moreover, as pointed out in that

paper, the |∆F | = 1 contributions of VLQs in these models are independent of the scalar-

and gauge-sector parameters, in contrast to |∆F | = 2 contributions that depend on vS .

We find the following pattern in NP contributions:

• Due to the equality of the LH and RH Z ′ couplings to leptons in (3.10), Z ′ exchange

does neither contribute to Bs,d → µµ̄ nor to KL → µµ̄. If future improved data will

show the need for NP contributions to Bs,d → µµ̄, this will be a problem for this

scenario.

• The crucial virtue of G′SM(S) models, pointed out in [9], is the possibility of solving

the LHCb anomalies; in particular, they can accommodate violation of lepton-flavour

universality (LFU).

• In B → K(K∗)νν̄ only small contributions are possible due to cancellations among

muon and tau contributions when averaging over neutrino flavours as a consequence

of the U(1)Lµ−Lτ symmetry.

• These cancellations are less efficient in K+ → π+νν̄ due to interference with the

charm component, see appendix C.2.

Considering next GSM and G′SM(Φ) models in which tree-level Z contributions to ∆F =

1 processes dominate, the most notable feature comes from the tree-level decoupling of the

VLQs depicted in figure 1b, which implies a relationship between the flavour-changing Z

and Z ′ couplings in these models, again owing to the equality of (2.5) and (2.7) upon

H ↔ Φ. Below the scale µM in both models a ψ2ϕ2D operator is generated, with the

same Wilson coefficient, where ϕ = H,Φ in GSM and G′SM(Φ) models, respectively. The

covariant derivative is the same in both models, up to the additional U(1)Lµ−Lτ part in

G′SM(Φ) models. Upon spontaneous symmetry breaking at the scale µEW, this operator

becomes ∝ v2 in GSM models and ∝ v2
1 = c2

β v
2 in G′SM(Φ) models. Consequently, in

G′SM(Φ) models all Z and Z ′ couplings ∝ c2
β∆ij are suppressed by c2

β = (1 + tan2 β)−1

w.r.t. Z couplings ∝ ∆ij in GSM models, see (3.12), (3.9) and table 4.
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Note that the additional modifications from Z − Z ′ mixing in G′SM(Φ) models do not

affect the dependence on the λVLQ
i . The suppression by c2

β can be only softened by going to

very small tan β. In order to guarantee perturbativity of the top-quark Yukawa coupling

0.3 . tanβ [64]. In appendix A.2 we discuss further constraints on tan β in G′SM(Φ)

models from the measured Z mass and partial widths to leptons, which for MZ < MZ′

allow at most 2 . tanβ, i.e. c2
β . 0.2. Depending on the choice of g′ and vS , this bound

becomes even stronger. Therefore, VLQ effects in |∆F | = 1 FCNC processes are generically

suppressed in G′SM(Φ) models w.r.t. GSM models. As an example one might consider the

Wilson coefficient Cij9 given in (4.9), governing dj → di`¯̀. The suppression factor in

G′SM(Φ) versus GSM models is

(Cij9 )G′SM(Φ)

(Cij9 )GSM

= c2
β

[
1− r′ξZZ′ −

g′

gZ

4Q′`
(1− 4s2

W )
ξZZ′ −

g′

gZ

4Q′`
(1− 4s2

W )

M2
Z

M2
Z′

]
. (5.8)

The mixing angle ξZZ′ ∼M2
Z/M

2
Z′ is small in most of the parameter space, such that (1−

4s2
W )−1 ∼ 10 is overcompensated. The comparison of the first three terms with the last one

in the brackets also shows the relative size of the Z ′ to Z contribution in G′SM(Φ) models,

which is also suppressed by M2
Z/M

2
Z′ . Consequently VLQ contributions to semileptonic

|∆F | = 1 FCNC decays are in most cases suppressed in G′SM(Φ) w.r.t. GSM models.

However, there are exceptions related to the fact that with the parametric suppression

of the Z and Z ′ couplings, the values of Yukawa couplings are weaker constrained by

∆F = 1 transitions than in GSM models and the constraints on Yukawas are governed this

time by ∆F = 2 processes. A detailed numerical analysis in the next section then shows

that the allowed NP effects in ∆MK are in fact significantly larger than in GSM models.

For a given flavour-changing transition the correlations between different |∆F | = 1

observables depend on whether Z(′) have LH or RH flavour-violating quark couplings and

the size of the corresponding leptonic Z(′) couplings. A summary is given in table 6, where

in addition to GSM and G′SM(Φ) models we include G′SM(S) models discussed already above.

The generically small NP contributions in C
(′)ij,`
9 compared to C

(′)ij,`
10 and Cij,νL(R) in GSM

models are due to the smallness of leptonic vector Z couplings relative to the axial-vector

ones. The additional generic suppression of NP effects in G′SM(Φ) w.r.t. GSM is due to the

aforementioned suppression by c2
β .

We observe that in GSM models significant NP effects in K+ → π+νν̄, KL → π0νν̄,

Bs,d → µµ̄, B → K(∗)µµ̄ and B → K(∗)νν̄ are possible, but the LHCb anomalies in angular

observables in B → K∗µµ̄ cannot be explained in these models because the vector coupling

of Z to muons is suppressed by (1 − 4s2
W ) ∼ 0.1 w.r.t. the axial-vector coupling of the Z.

LFU of Z couplings precludes also the explanation of the violation of this universality in

RK , hinted at by LHCb data.

Due to the particular structure of Z ′ couplings, the general pattern of NP contributions

to K+ → π+νν̄, KL → π0νν̄, Bs,d → µµ̄, B → K(∗)µµ̄ and B → K(∗)νν̄ in G′SM(Φ) models

is dominated by tree-level Z contributions as in GSM models, but because of the aforemen-

tioned suppression by c2
β these contributions are smaller, with few exceptions mentioned

above, than in the latter models. On the other hand, the presence of Z ′ with only vector
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GSM G′SM(S) G′SM(Φ)

D QV Qd Td Tu D QV D Qd Td Tu

Cij,`9 � — — � � — F � — � �

C ′ ij,`9 — � � — — F — — � — —

Cij,`10 F — — F F — — ? — ? ?

C ′ ij,`10 — F F — — — — — ? — —

Cij,νL F — — F F — F ? — ? ?

Cij,νR — F F — — F — — ? — —

Table 6. “DNA” table for NP contributions to the b → sµ+µ− Wilson coefficients C
(′)
9,10 and to

the dj → diνν̄ ones CνL,R. F means that the NP contribution is potentially large, while � stands

for a generically small contribution, due to the suppressed vector couplings of the Z to leptons

compared to its axial-vector couplings. Smaller symbols in the G′SM(Φ) models indicate the general

suppression by c2β w.r.t. GSM models.

lepton couplings allows in principle to address the LHCb anomalies more easily; however,

given the generic suppression of the Z ′ couplings, this is harder than in G′SM(S) models.

Hadronic |∆F | = 1 processes governed by dj → diqq̄ receive VLQ contributions only

from tree-level Z exchange in GSM and G′SM(Φ) models. The suppression of VLQ effects by

c2
β in G′SM(Φ) models w.r.t. GSM models is the same as discussed previously for semileptonic

|∆F | = 1 processes. Such contributions are entirely absent in G′SM(S) models and ε′/ε is

generated for example in the case of dj → didd̄ either by Z ′ double insertions or via box

diagrams, which are both additionally suppressed by |λd|2 compared to GSM models.

5.3 Determination of M

There is a common claim that from flavour-violating processes it is only possible to measure

the ratio gNP/MNP, where gNP is the coupling present in a given theory, while MNP is the

NP scale. The scale tested by a given observable is typically quoted at the value of MNP

when setting gNP = 1, and correspondingly changes when the latter is suppressed by some

mechanism, as in the case of MFV.

Here we would like to point out that in concrete models with correlations between

|∆F | = 2 and |∆F | = 1 processes, it is in general possible to determine MNP without

making any assumptions on the couplings involved. This is in particular important if MNP

should turn out to be beyond the reach of direct searches at the LHC.

In the context of 331 models the relevant correlations that allow the determination

of MZ′ can be found in section 7.2 of [37], although this point has not been made there.

In order to illustrate this in the case of VLQ models we consider the GSM-models. Let

us consider the example of ∆Ms and first take into account for the shift ∆S only box

contributions with VLQ exchanges. On the other hand, ∆Y entering the branching ratio
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for Bs → µµ̄ is governed by tree-level Z exchange. Then we find independently of Yukawa

couplings and CKM parameters a useful formula:√
(∆S)∗

∆Y
= 1.90 b

√
ηmm

[
M

10 TeV

]
, (Boxes), (5.9)

where ηmm are given in table 5 and b = 1 for D and QV , b = −1 for Tu and Qd and b = 1/2

for Td. Note that ∆S and ∆Y are generally complex but their phases are related so that

r.h.s. of this equation is real valued. Extracting ∆S and ∆Y from experiment, a range for

M can be determined.

This formula is modified in the presence of Yukawa RG effects and when the simple

tree-level Z contributions cannot be neglected:

• For sufficiently large M the Yukawa RG effects become important. As these con-

tributions have the same dependence on the couplings as ∆F = 1 amplitudes and

the dependence on the VLQ mass differs only by a logarithm, the determination of

M will not be possible if the RG contribution dominates. However, we expect this

situation only for RH GSM models in the Kaon sector, as explained above. If RG and

box contributions are comparable, the determination of M will be possible, although

the relevant expressions will be more involved than (5.9).

• For sufficiently low M the tree-level Z contributions to |∆F | = 2 could become im-

portant and again dilute the sensitivity to M . However, if VLQs are not found at the

LHC, the value of M is sufficiently large so that these contributions are numerically

irrelevant. On the other hand, if VLQs are discovered at the LHC, we will know their

masses and this determination will not be necessary — instead, the determination of

the couplings would improve.

In summary the determination of M outside the reach of the LHC will depend on the

relevance of box contributions relative to the RG Yukawa effects. Unless RG contributions

are clearly dominant, which is only the case in the Kaon sector for RH scenarios, this

determination should be possible by means of a formula like (5.9). The determination is

expected to work best for LH scenarios, but also for RH scenarios it should remain possible

for b→ d, s transitions, as discussed in the following section.

5.4 Kaon and B-meson systems

The correlations between flavour observables in different meson systems are governed by the

Yukawa structure of the model in question, as will be elaborated quantitatively in section 6.

The important property of VLQ models is that the products defined in eq. (3.20),

Λmij = |Λmij |eiϕ
m
ij , (5.10)

together with the VLQ mass M determine at the same time the flavour-violating j →
i couplings of Z and Z ′, as well as the flavour-diagonal Z ′ couplings to quarks. The

relevant flavour-changing parameters are hence Λm
ds in Kaon decays, and Λmdb, Λmsb in b→ d, s

– 30 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
9

GSM G′SM(S) G′SM(Φ)

D QV Qd Td Tu D QV D Qd Td Tu

|∆F | = 2 F F F F F F F F F F F

Bs,d → µµ̄ F F F F F ? ? ? ?

B → Kµµ̄ F F F F F F F ? ? ? ?

B → K∗µµ̄ F F ? ? ? ?

B → K(K∗)νν̄ F F F F F ? ? ? ?

K+ → π+νν̄ F F F F F ? ? ? ?

KL → π0νν̄ F F F F F

ε′/ε F F F F F ? ? ? ?

Table 7. “DNA” of flavour effects in VLQ models. A star indicates that significant effects in

a given model and given process are in principle possible, but could be reduced (see section 6)

through correlation among several observables. Empty space means that the given model does not

predict sizeable effects in that observable. The star F indicates left-handed currents and the star

F right-handed ones, smaller stars indicate the suppression of |∆F | = 1 decays in G′SM(Φ) models.

transitions of B mesons, respectively. Since only the relative phases of the λVLQ
i enter the

Λmij , the phases ϕmij fulfill the relation

ϕbs = ϕbd − ϕsd, (5.11)

dropping the index m of the VLQ representation for convenience. This leaves us with

five parameters for the three complex quantities Λij . The phases ϕij can vary in the

full range [−π, π], implying the occurrence of discrete ambiguities when determining them

from experiment, as explicitly seen in the plots in ref. [35] and in the plots in the next

section. They can be resolved using observables where interference with the SM occurs.

The absolute values λVLQ
i can be determined via

|λd| =
√

ΛbdΛ
∗
sd

Λbs
, |λs| =

√
ΛbsΛsd

Λbd
, |λb| =

√
ΛbdΛ

∗
bs

Λsd
. (5.12)

One might expect the strongest constraints numerically to stem from s → d processes,

because of the strong suppression of the SM contribution by VtdV
∗
ts.

In a sense, as more explicitly seen in the next section, the flavour structure of VLQ

models has some parallels to the one in 331 models [37, 56, 57, 65]. However, in 331

models the NP contributions are dominated by Z ′ tree-level exchanges and once the

constraints from Bs,d observables are taken into account, NP effects in the K system

are found to be small, with the exception of ε′/ε. In the present analysis important Z
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boson contributions are present and this allows for more interesting NP effects than in 331

models in K+ → π+νν̄ and KL → π0νν̄. Furthermore, the partial decoupling of |∆F | = 1

and |∆F | = 2 processes due to the presence of important box diagram contributions

to |∆F | = 2 processes in VLQ models discussed above modifies the corresponding

correlations derived in ref. [35], increasing the impact of |∆F | = 2 constraints on |∆F | = 1

processes relative to the one found in [35]. The latter is also true for RG effects in GSM

models, specifically for RH scenarios, where the importance of ∆F = 2 can be drastically

enhanced. In table 7 we summarize the patterns discussed above.

6 Numerics

In this section we perform the numerical analysis of the VLQ models presented above. For

this purpose we start by constraining the VLQ couplings by the available flavour data and

if applicable also by data from other sectors. We proceed by presenting the predictions

for a number of key observables given these constraints, including their correlations where

they are sizeable. These fits are performed for different VLQ masses, in order to illustrate

the explicit mass dependence of flavour observables discussed in section 5.3.

Model-independent constraints on ψ2ϕ2D operators have been derived from Z- and W -

boson observables [66], which are applicable to GSM models. Although these constraints

are not entirely independent from other operators, in VLQ-models the latter are loop-

suppressed and can be neglected. The constraints on the modulus of the couplings are

weak and of the order |λi| .M/(1 TeV).14

More stringent constraints derive from |∆F | = 2, 1 flavour observables [11]. We con-

strain the five parameters |Λij | and ϕij (5.10) with the |∆F | = 2, 1 processes listed in

table 8. Master formulae used in these constraints are collected in appendix C. The SM

predictions in table 8 are based on the determination of CKM parameters from a tree-level

fit given in table 13. Some comments regarding the included observables are in order:

• The observable ∆MK does not provide constraints in GSM models and is omitted due

to too large uncertainties from long-distance contributions in G′SM(Φ) models. The

prospects for controlling this long-distance part by lattice calculations are good [67]

and in the future this constraint could play an important role.

• We find that huge NP effects in ε′/ε are not excluded by the constraints listed in

table 8 in GSM- and G′SM(Φ)-models, such that we impose bounds on the NP contri-

bution (ε′/ε)NP itself

(ε′/ε)NP ∈ [0, 20]× 10−4, (6.1)

in order to avoid showing predictions for other observables that are easily excluded

by ε′/ε, and to analyse its influence on the correlations of observables. This range

roughly corresponds to NP required assuming present predictions from lattice QCD.

We have checked that decreasing this range to [5, 10] × 10−4 as expected from the

14There is one tension from [ĉHd]33 = (−4.6± 1.6)× 10−2 [66] (A.9) for the VLQ representation QV .
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i → j observable measurement ref. SM (c.v. [95% CL])

s → d

εK 2.228(11)× 10−3 [72] (2.21 [1.57, 2.98])× 10−3

Br(K+ → π+νν̄) (17.3+11.5
−10.5)× 10−11 [73] (8.5 [7.3, 9.5])× 10−11

Br(KL → µµ̄)SD < 2.5× 10−9 [74] χSD : 1.81 [1.65, 1.94]

(ε′/ε)NP [0, 20]× 10−4 † 0× 10−4

b → d

∆Md [ps−1] 0.5055(20) [75] 0.62 [0.45, 0.78]

sin(2βd) 0.691(17)∗ [75] 0.734 [0.686, 0.796]

Br(B+ → π+µµ̄)[15,22] 3.29(84)× 10−9 [76] (5.0 [3.8, 7.2])× 10−9

b → s

∆Ms [ps−1] 17.757(21) [75] 19.0 [16.2, 21.9]

sin(2βs) −0.034(33)∗ [75] −0.040 [−0.044,−0.036]

Br(Bs → µµ̄) (2.8+0.7
−0.6)× 10−9 [77] (3.41 [3.01, 3.81])× 10−9

Br(B+ → K+µµ̄)[15,22] 8.47(50)× 10−8 [78] (11.0 [6.4, 15.6])× 10−8

Table 8. The list of |∆F | = 2, 1 flavour observables in i→ j down-type transitions that are used

to constrain the VLQ couplings. SM predictions are obtained with CKM parameters determined

from the tree-fit. †We impose this conservative range on the NP contribution of ε′/ε to avoid values

excluded by this observable in the predictions for other observables, see text for more details. ∗

Note that we neglect potential “penguin pollution” in b→ cc̄s transitions, which have been shown

in recent analyses to be at most of the size of the present experimental uncertainties [79–81].

dual approach to QCD [21, 45] would have only minor impact on the global fit as

what matters is the unique selection of the sign of the relevant phase required for the

enhancement of ε′/ε.

• Due to the sizeable experimental uncertainties, Br(Bd → µµ̄) does not constrain

the VLQ parameters further. It is thus omitted from the fit and we compare its

prediction in our models to the present measurement.

• A full analysis of B → K∗`¯̀ is beyond the scope of this work. We do therefore not

include the LHCb anomalies [68–71] in our fits. The analysis of b → s`¯̀ in G′SM(S)

models has been already presented in [9, 15] and we have nothing to add here. In

GSM models the shift in C9 is too small to be relevant, while in G′SM(Φ) models the

effects are only moderately interesting and we will not address them here.

The three sectors s→ d, b→ d and b→ s are not independent, due to relation (5.11).

In our analysis we show first the results separately for the three quark transitions and

demonstrate in a global fit that K-physics constraints have an impact on B physics but

not vice versa.
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6.1 GSM models

In GSM models the absence of additional scalars allows to vary the mass of the VLQ’s down

to about 1 TeV without violating the hierarchy (3.1). The fits of the Λij for the three types

of transitions j → i = {s → d, b → d, b → s} in GSM models are shown in figure 5 for

MVLQ = 10 TeV and in figure 6 for MVLQ = 1 TeV for the single-VLQ scenarios D and QV
with LH and RH couplings, respectively. The plots for LH scenarios Tu,d are qualitatively

similar to D whereas the RH scenario Qd is similar to QV . Quantitative differences arise

due to changes of the sign in couplings and a factor 1/2 for Td w.r.t. D and Tu, which

are shown in table 3. The statistical approach for these fits is detailed in appendix D. We

make the following observations:

• All included observables are compatible with the SM prediction at 95% CL. Corre-

spondingly also the global fit allows for the SM solution at 95% CL in all planes in

both scenarios, except for ΛQV
bd with MQV

VLQ = 1, 10 TeV, where the SM is slightly

outside that region. This is due to the slight tensions of ∆Md and Br(B+ → π+`¯̀)

with their SM predictions, which fortify each other in this case.

• For MVLQ = 10 TeV, |∆F | = 2 constraints are competitive to the |∆F | = 1 ones,

and their interplay determines the global fit regions. For MVLQ = 1 TeV the global

fit is almost completely determined by |∆F | = 1 processes in LH scenarios, but also

in RH scenarios for b → d, s. On the other hand, εK is a very powerful constraint

in RH scenarios also for 1 TeV, due to the RG effects discussed above. This is in

accordance with our previous discussion of the mass-dependence of these transitions.

Specifically for K+ → π+νν̄, large effects are excluded by εK in combination with

ε′/ε and KL → µµ̄. Without the RG contributions, enhancements up to the present

experimental limit would have been possible.

• In b → s, the |∆F | = 1 observables distinguish between scenarios with LH and RH

currents due to their different dependences on the corresponding Wilson coefficients,

most importantly C10 and C ′10,

Br(Bs → µµ̄) ∝ |C10 − C ′10|2, Br(B+ → K+µµ̄) ∝ |C10 + C ′10|2. (6.2)

The consequence is shown in figure 5 and figure 6 where allowed regions almost

overlap for LH scenarios, but intersect only around the SM for RH scenarios, thereby

diminishing the size of potential VLQ effects in other b → s observables. The same

observation holds for b → d transitions, which will help once Bd → µµ̄ is measured

more precisely. In figure 11 we illustrate how Br(Bd,s → µµ̄) can be used in a large

region of parameter space to discriminate between LH and RH models.

• In s → d transitions, the constraints from εK , (ε′/ε)NP and Br(KL → µµ̄)SD con-

strain the allowed values for ϕsd. This in combination with the slight tensions espe-

cially in b→ d leads to stronger constraints in the global fit compared to the fits for

the individual transitions in b→ d, s. As a consequence correlations between different
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Figure 5. Fits of Im(Λij) vs. Re(Λij) for ij = sd, bd, bs [upper, middle, lower] in GSM-scenarios

D [left] and QV [right] for MVLQ = 10 TeV. Constraints from single observables and the combined

fit for each separate sector [orange] are shown at 95% CL, the global fit [yellow] at 68% and 95%.

For ij = sd: εK [dark blue], Br(K+ → π+νν̄) [blue], Br(KL → µµ̄)SD [green], and (ε′/ε)NP [red].

For ij = bd: ∆Md [dark red], sin(2βd) [dark blue] and Br(B+ → π+µµ̄)[15, 22] [purple]. For ij = bs:

∆Ms [dark red], sin(2βs) [dark blue], Br(Bs → µµ̄) [green] and Br(B+ → K+µµ̄)[15, 22] [purple].
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Figure 6. Fits of Im(Λij) vs. Re(Λij) for ij = sd, bd, sd [upper, middle, lower] in GSM-scenarios

D [left] and QV [right] for MVLQ = 1 TeV. The colour scheme is as in figure 5.
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transitions arise, but at the moment they are not very strong yet. This would change

with significant measurements away from the SM for at least two of the transitions.

• The |∆F | = 2 CP-asymmetric observables εK and sin(2βd,s) impose constraints in

the complex Λij-planes, which are not limited along the direction corresponding to

the SM phase. Such a limit is provided by ∆Md,s, whereas in the case of s → d the

one from ∆MK is very weak and outside of the ranges shown.

• There is a complementarity in the constraints from Br(K+ → π+νν̄) and Br(KL →
µµ̄)SD for every VLQ representation. Thus an improved measurement of Br(K+ →
π+νν̄) by NA62, which will operate until the LHC shut down in 2018 and aims at

a 10% uncertainty [82, 83], will provide stronger cuts into the allowed parameter

space. On the other hand, while the constraints from (ε′/ε)NP and Br(KL → µµ̄)SD

are theoretically limited at present, they could become very powerful in the future if

theory improves.

Using the above constraints, we obtain allowed ranges for observables that are yet to be

measured (precisely), listed in table 9. We furthermore analyze patterns for each transition,

that will help to distinguish VLQ models from other NP scenarios, and different VLQs from

each other. In this respect we point out that models Qd and QV have the same experimental

signatures in down-type quark FCNC transitions and are hence indistinguishable. Such a

distinction might be possible after invoking additional constraints from up-type quark

FCNC transitions, where both models differ from each other as indicated in eq. (2.5). Still,

in QV models strong correlations between the up- and down-type sectors are not expected

due to the in principle independent up- and down-type Yukawa couplings.

In the Kaon sector, we make the following observations, see also figure 7:

• The VLQ models allow to enhance ε′/ε significantly, thereby addressing the apparent

gap between the SM prediction and data, at the expense of suppressing Br(KL →
π0νν̄). This suppression is significantly weaker for QV and Qd models (RH currents)

than for D, Td and Tu (LH currents), in accordance with the general study in [40].

Simultaneous agreement with the data for εK and ε′/ε can be obtained without

fine-tuning of parameters.

• While the impact of ε′/ε onKL → π0νν̄ is large as stated above, K+ → π+νν̄ and ε′/ε

are only weakly correlated. However, in RH models εK prevents large enhancements

of Br(K+ → π+νν̄), the maximal enhancement is about 50% of its SM value. In mod-

els with LH currents, a strong suppression is possible, and the SM value corresponds

to an upper bound in this case when a stricter bound from KL → µµ̄ is used. This im-

plies that a measurement of a significantly enhanced Br(K+ → π+νν̄), as presently

still allowed by data, could exclude all GSM models with a single VLQ representa-

tion, although in models with LH currents a more conservative bound from KL → µµ̄

would presently still allow the enhancement of Br(K+ → π+νν̄) up to a factor of two.

• In this context it should be again emphasized that the modes K+ → π+νν̄ and

KL → µµ̄ are strongly correlated in VLQ models, however, again differently so for
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SM measurement D Qd, QV Tu Td

1011 ×Br(KL → π0νν̄), 1011 ×Br(K+ → π+νν̄)

3.2 [2.5, 4.3] ≤ 2600 [84]
[0, 4.3]
[0, 4.3]

[1.3, 3.3]
[1.2, 3.5]

[0, 4.3]
[0, 4.3]

[0, 4.2]
[0, 4.2]

8.5 [7.3, 9.5] 17.3+11.5
−10.5 [84]

[0.8, 9.2]
[0.8, 9.2]

[7.7, 13.6]
[7.8, 13.0]

[0.7, 8.9]
[0.8, 9.2]

[0.7, 8.9]
[1.2, 9.2]

1010 ×Br(Bd → µµ̄)

1.14 [0.94, 1.32] ≤ 6.3 [85]
[0.0, 1.7]
[0.1, 1.8]

[1.2, 10.4]
[1.0, 4.0]

[0.0, 1.7]
[0.1, 1.9]

[0.0, 1.7]
[0.5, 1.7]

A∆Γ(Bs → µµ̄), S(Bs → µµ̄)

1 —
[−1.00, 1.00]
[ 0.12, 0.99]

[0.67, 1.00]
[0.87, 1.00]

[−1.00, 1.00]
[ 0.46, 1.00]

[−0.28, 1.00]
[ 0.86, 1.00]

0 —
[−1.00, 1.00]
[−0.99, 0.99]

[−0.63, 0.74]
[−0.41, 0.48]

[−1.00, 1.00]
[−0.87, 0.89]

[−1.00, 1.00]
[−0.49, 0.51]

102 ×A7, 8, 9(B → K∗µµ̄)[1,6]

< 0.1 4.5± 5.0 [86]
[−23.4, 23.3]
[−14.5, 14.1]

[−8.9, 7.4]
[−5.9, 5.0]

[−23.7, 23.7]
[−12.0, 11.9]

[−18.3, 17.3]
[−6.1, 5.8]

< 0.1 −4.7± 5.8 [86]
[−0.9, 0.9]
[−0.5, 0.5]

[−6.9, 5.8]
[−4.6, 3.9]

[−0.9, 0.8]
[−0.4, 0.4]

[−0.6, 0.6]
[−0.2, 0.2]

< 0.1 3.3± 4.2 [86] SM
[−3.5, 4.2]
[−2.4, 2.8] SM SM

102 ×A8, 9(B → K∗µµ̄)[15,19]

< 0.1 2.5± 4.8 [86] SM
[−5.2, 4.3]
[−3.5, 2.9] SM SM

< 0.1 −6.1± 4.3 [86] SM
[−7.8, 9.4]
[−5.2, 6.3] SM SM

RB→Kνν̄ , RB→K∗νν̄ , RFL
1 ≤ 4.3 [87]

[0.02, 1.10]
[0.63, 1.10]

[0.79, 1.24]
[0.78, 1.20]

[0.01, 1.10]
[0.65, 1.11]

[0.62, 1.11]
[0.71, 1.12]

1 ≤ 4.4 [88]
[0.02, 1.10]
[0.63, 1.10]

[0.87, 1.17]
[0.88, 1.17]

[0.01, 1.10]
[0.65, 1.11]

[0.62, 1.11]
[0.71, 1.12]

1 — SM
[0.92, 1.07]
[0.93, 1.07] SM SM

Table 9. Ranges still allowed for observables when taking the constraints from table 8 for the

individual s → d, b → d and b → s sectors into account, fitting at the time same CKM and

hadronic parameters. Upper and lower intervals are for MVLQ = 1 TeV and 10 TeV, respectively.

Entries denoted as “SM” have tiny or no deviations from the SM. Experimental upper bounds are

given at 90% CL.
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Figure 7. The correlations of observables in the Kaon sector in GSM scenarios at 95% CL for

the SM, as well as for MVLQ = 10 TeV [darker colours] and MVLQ = 1 TeV [lighter colours]. The

colours correspond to the SM prediction [Yellow] and the VLQ-representations D [Blue] and QV
[Red]; the results for Tu,d and Qd are very similar to the former and the latter, respectively. Dark

and light grey bands show experimental measurements at 1- and 2σ.

LH and RH currents. While for RH currents one can easily infer the allowed range in

one mode from a determination of the other, within the limited range allowed by ε′/ε

and εK , LH-current models are more strongly constrained from KL → µµ̄. Progress

for the latter mode depends solely on the capability to separate the long-distance

contributions to this mode from the short-distance ones, since the relevant data are

already very precise, see appendix C. Note that there is basically no correlation

between ε′/ε and KL → µµ̄, as they are governed by imaginary and real parts of the

corresponding couplings, respectively.

• The VLQ mass does not have a large impact on all these correlations, as can be seen

by comparing the lighter and darker areas in figure 7. The reason is in LH models

that |∆F | = 1 transitions are the dominant constraints at both masses, rendering the

allowed ranges for other |∆F | = 1 processes mass-independent. For RH models, the

same conclusion is reached by considering additionally the fact that εK is dominated

by RG-induced contributions which scale similarly to |∆F | = 1 ones.

Correlation plots for observables in b→ s processes are shown in figure 8. We observe

the following patterns:

• Since NP effects in all three quark transitions are governed by different parameters,

the slight tensions in |∆F | = 2 observables hinted at by new lattice data [61] can

easily be removed in VLQ models. This is in contrast to constrained-MFV models,

where εK prohibits large effects in ∆Md,s [62].

• Br(Bs → µµ̄) can be strongly suppressed below its SM value, as slightly favoured

by experiment, while still allowing for sizeable NP effects in sin(2βs), in particular

in the case of models with LH currents. For MVLQ = 1 TeV |∆F | = 1 observables

constrain the NP effects in φs to be smaller than for larger VLQ masses.
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Figure 8. The correlations of observables in the b → s sector in GSM-scenarios for MVLQ =

10 TeV [darker colours] and 1 TeV [lighter colours] within the 95% CL regions. The colours are for

VLQ-representations D [Blue] (similar to Tu,d), QV = Qd [Red]. Grey bands show experimental

measurements at 1- and 2σ and the yellow dots are the SM predictions.

• Sizeable deviations from the SM prediction are still possible for the mass-eigenstate

rate asymmetry A∆Γ(Bs → µµ̄) and the mixing-induced CP-asymmetry S(Bs →
µµ̄). Indeed, both can essentially vary in the full range [−1, 1] for LH models for

MVLQ = 1 TeV. For RH models, A∆Γ(Bs → µµ̄) ≥ 50% for MVLQ = 1 TeV, but still

|S(Bs → µµ̄)| can reach up to 80%. For MVLQ = 10 TeV, the former is restricted to

positive values in both LH and RH models, the latter slightly stronger constrained

in RH models, but not in LH ones. Of course, the experimental measurements are

very challenging for S(Bs → µµ̄). We note that to very good accuracy A2
∆Γ +S2 = 1,

since the direct CP-asymmetry C(Bs → µµ̄) is negligible.

• CP-violating quantities are almost 100% correlated in b → s transitions as long as

only one representation is considered. The reason is that the SM predictions are

tiny and all NP contributions therefore directly proportional to the imaginary part

of Λbs, which hence cancels in the ratio of two CP-violating quantities. For small

NP contributions, the asymmetries are simply proportional to each other, for larger

effects the relation depends on the normalisation of the asymmetry. These statements

hold not only in VLQ models, but in all models that provide only a single new phase

in b→ s transitions, only the proportionality constant changes in other models.
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• The imaginary parts of b→ sµµ̄ Wilson coefficients C9,9′,10,10′ can give rise to naive

T-odd CP-asymmetries A7,8,9 in B → K∗µµ̄ that are tiny in the SM.15 The rough

dependences on the Wilson coefficients are [89]

A7 ∝ Im
[
(C10 − C ′10)C∗7

]
, A8,9 ∝ Im

[
C9C

′∗
9 + C10C

′∗
10 + . . .

]
, (6.3)

where the dots indicate other numerically suppressed interference terms of C9,9′ with

C7 that are included in the numerical evaluation. The A7 remains tiny at high

dilepton invariant mass q2 [90]. These CP-asymmetries have been measured in various

q2-bins by LHCb [86] and we choose q2 ∈ [1, 6] and [15, 19] GeV2, which have smallest

experimental and theoretical uncertainties. As can be seen in table 9, the largest

VLQ-effects in A8,9 arise in RH GSM-scenarios Qd and QV , almost independent from

the VLQ mass and with a strong anti-correlation shown in figure 8. The potential size

of VLQ effects exceeds slightly the current experimental uncertainties, specifically for

the CP asymmetry A7 in LH scenarios, such that improved measurements will provide

additional bounds on VLQ couplings in the future, especially on their imaginary

parts. A7 is correlated with A8 and anti-correlated with A9 in RH scenarios, whereas

in LH scenarios A8,9 remain SM-like.

• The decays B → K(∗)νν̄ are also sensitive probes of LH and RH NP effects due to

Z-exchange and in order to exhibit these effects we consider the ratios [91]

ε =

√
|CL|2 + |CR|2
|CSM
L |

and η =
−Re(CLC

∗
R)

|CL|2 + |CR|2
, (6.4)

which are unity and zero in the SM, respectively, and which determine the observables

RB→K(∗)νν̄ =
Br(B → K(∗)νν̄)

Br(B → K(∗)νν̄)SM
, RFL =

FL(B → K∗νν̄)

FL(B → K∗νν̄)SM
(6.5)

via [92]

RB→Kνν̄ = (1− 2η)ε2, RB→K∗νν̄ = (1 + κηη)ε2, RFL =
1 + 2η

1 + κηη
, (6.6)

where κη is form-factor dependent and given in ref. [92]. The Belle II experiment

is expected to measure these branching ratios with 30% uncertainty [93] if they are

of the size as predicted in the SM. In RH scenarios large VLQ effects are excluded

due to the strong complementarity of the |∆F | = 1 constraints from Br(Bs → µµ̄)

and Br(B+ → K+µµ̄) as mentioned above. ε has to be larger than one in these

cases. The VLQ effects for MVLQ = 1 TeV can lead to a rather large suppression

in LH scenarios for ε while η = 0, leading to maximally correlated RB→K(∗)νν̄ . The

suppression is smaller for MVLQ = 10 TeV, whereas RFL = 1. The correlation plot is

shown in figure 9. It will be challenging to distinguish the small deviations from SM

predictions in RH scenarios; however, large (suppression) effects are possible and LH

and RH scenarios are well distinguishable. A measurement of ε significantly larger

than one would challenge all GSM scenarios with a single VLQ representation.

15Note that we use different convention of angles w.r.t. LHCb: A7,9 = −ALHCb
7,9 and A8 = ALHCb

8 .
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Figure 9. The correlations of the quantities η and ε, which determine the observables in the

b → sνν̄ sector in GSM-scenarios for MVLQ = 10 TeV [darker] and 1 TeV [lighter] within the 95%

CL regions. The colours are for VLQ-representations D [Blue] (similar to Tu,d), QV = Qd [Red].

Similar correlation plots exist for b → d processes; however, given the CKM suppres-

sion of these modes compared to b→ s, precision measurements in b→ d`¯̀ and significant

measurements of b → dνν̄ processes are not expected in the next couple of years. Never-

theless, we illustrate in figure 10 the impact of more precise measurements in this sector

exemplarily for Br(Bd → µµ̄). All |∆F | = 1 processes depend only on the combination

∆ij , see (3.9), of NP parameters; the allowed range predicted from one |∆F | = 1 process

for another is therefore mass-independent, in contrast to the prediction from |∆F | = 2

processes. The present measurement from the CMS and LHCb collaborations is about 2σ

larger than the SM prediction. As seen in figure 10 a confirmation of the present central

value with higher precision would exclude LH GSM scenarios and yield at least an upper

limit on MVLQ for the RH ones, in accordance with the discussion in section 5.3.

6.2 G′
SM(Φ) model

In G′SM(Φ) models |∆F | = 1 transitions are suppressed by tan β compared to GSM models,

such that |∆F | = 2 transitions dominate via the box contributions the constraints on VLQ

couplings. In our numerical analysis of G′SM(Φ) models we fix the parameters

g′ = 1.5, X = 1, MVLQ = 10 TeV, (6.7)

and choose two benchmark points BP1 and BP2:

BP1: tan β = 2, vS = 1.8 TeV, (6.8)

BP2: tan β = 3, vS = 1.3 TeV, (6.9)

in the lower range of possible values of tan β — see also figure 12 — from constraints de-

scribed in appendix A.2 to maximally enhance VLQ contributions in |∆F | = 1 transitions.
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Figure 10. Predictions for Br(Bd → µµ̄) for the LH GSM scenario D [left] and RH GSM scenario

QV [right], in dependence on the VLQ mass. In dark red the constraint from |∆F | = 2 processes

is shown, i.e. ∆Md and sin 2β, in purple the constraint from B+ → π+µµ̄, and in orange their

combination. The yellow band corresponds to the SM prediction, the grey one to the measurement

by the CMS and LHCb collaborations [77]. All constraints correspond to 95% CL, only inner darker

bands to 68% CL.
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Figure 11. Br(Bd → µµ̄) vs. Br(Bs → µµ̄) in GSM at 10 TeV [darker colours] and 1 TeV

(lighter colours), as well as G′SM(Φ) models at 10 TeV. The colours correspond to the representations

QV = Qd [red and pink for GSM and G′SM(Φ)] and D [similar to Tu,d, blue and cyan]. The orange

band corresponds to a scenario of constrained minimal flavour violation (CMFV) [92].
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Figure 12. The allowed 95% CL regions in the vS versus g′X plane for fixed tan β = 2, 3, 5, 10, 40

[Blue, Yellow, Green, Red, Purple] from the constraints MZ and partial widths Γ[Z → `¯̀] (` =

e, µ, τ), imposing MZ < MZ′ .

The corresponding Z and Z ′ masses and mixing angles are

BP1: MZ = 91.51 GeV, MZ′ = 1.36 TeV, ξZZ′ = 0.0037; (6.10)

BP2: MZ = 91.58 GeV, MZ′ = 0.98 TeV, ξZZ′ = 0.0035. (6.11)

The allowed regions of Λij in G′SM(Φ) models correspond to the regions allowed by

|∆F | = 2 constraints in GSM models given in figure 5. We find that |∆F | = 1 processes

in table 8 provide only tiny additional constraints in b → d, s and small ones in s → d,

allowing thus in G′SM(Φ) models much larger values for Λij compared to GSM models.

The ranges still allowed for different observables with |∆F | = 1, 2 transitions are

listed in table 10, obtained by varying Λij within the 95% CL regions, neglecting theory

uncertainties. For this purpose (ε′/ε)NP has been restricted as given in eq. (6.1) and we

used here Br(KL → µµ̄)SD < 2.5× 10−9. Notable features for the benchmark points are:

• ε′/ε can also be enhanced in G′SM(Φ) models and thereby decrease the tension with

the measurement. Especially in RH scenarios the constraint (6.1) is saturated, such

that even larger effects are possible. The enhancement of ε′/ε falls off fast for larger

values of tan β and vS than in the benchmark points.

• Whereas VLQ effects in Br(KL → π0νν̄) are small, Br(K+ → π+νν̄) can still be

enhanced over the SM prediction by a factor of two for LH and five for RH scenarios,

while even larger effects are excluded by the upper bound on Br(KL → µµ̄)SD.

Most notably, (∆MK)SD can also be enhanced by a factor of more than two, in

contradistinction to GSM models, where VLQ effects are tiny. The reason for this

enhancement is the absence of strong constraints from |∆F | = 1 on the real part

of Λsd. Thus large (∆MK)SD is independent of ε′/ε, since the latter is sensitive to

the imaginary part of Λsd. This effect is enhanced with decreasing VLQ effects in

|∆S| = 1 transitions as can be seen by comparing the results for BP1 and BP2.
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• The VLQ effects are small for Br(Bs,d → µµ̄) and A∆Γ(Bs → µµ̄), as can be seen from

figure 11 and table 10, respectively, but can be still sizeable for S(Bs → µµ̄). The CP

asymmetries A7,8,9(B → K∗µµ̄) can still be significantly enhanced over the SM to the

percent level, but are a factor 2-3 smaller for BP1 than in GSM models, see table 9.

• VLQ effects in B → K(∗)νν̄ in G′SM(Φ) models are smaller than in GSM models, at

the level of only (10− 20)% deviation from the SM predictions.

We provide a summary of enhancements and/or suppressions w.r.t. the SM predictions of

the observables discussed above due to VLQ effects in table 11.

7 Summary and conclusions

In this paper we have analysed flavour-violation patterns in the K and Bs,d sectors in

eleven models with vector-like quarks (VLQs). Five of them, called GSM-models, contain

only VLQs as new particles. Two of them, called G′SM(S)-models, have in addition a heavy

Z ′ and a scalar S. The final four of them, called G′SM(Φ)-models, contain a heavy Z ′, a

scalar S and a scalar doublet Φ. Our summary of patterns of flavour violation in these

models in section 5, accompanied by two DNA tables 6 and 7 and in particular our extensive

numerical analysis in section 6, see specifically tables 9 and 10, has shown that NP effects

in several of these models can be still very large and that simultaneous consideration of

several flavour observables should allow to distinguish between these models. This is also

seen in table 11, which shows that models with LH currents can be distinguished from

models with RH currents through several observables.

On the theoretical side our paper presents the first analysis of VLQ models in the

context of SMEFT, which allowed to include RG effects from the NP scale MVLQ down to

the electroweak scale, thereby identifying very important Yukawa enhancement of NP con-

tributions to |∆F | = 2 observables in the Kaon sector through the generation of left-right

operators with smaller, but significant effects in Bs,d observables. These RG effects, relevant

only in GSM-models, have been already identified in general Z models in [18], but in the

present paper they could be studied explicitly in concrete models. The relevant technology

is described in detail in [18] and in section 3, section 4 and appendix B of the present paper.

As our results have been systematically summarized in the previous section, we list

here only the main highlights. Most interesting NP effects are found in GSM-models, even

if they do not provide the explanation of the present LHCb anomalies. In particular

• Tree-level Z contributions to ε′/ε can be large, so that the apparent upward shift in

ε′/ε can easily be obtained, bringing the theory to agree with data.

• Simultaneously the branching ratio for K+ → π+νν̄ can be enhanced over its SM

prediction, but the size of the enhancement depends on whether RH currents or LH

currents are considered. In models with flavour-violating RH currents, the maximal

enhancement is limited to ∼ 50% of its SM value because of the strong constraint from

εK , caused by RG-enhanced contributions. In the LH current case an enhancement of

K+ → π+νν̄ is only possible if the present conservative bound on KL → µµ̄ is used.
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SM measurement D Qd Tu Td

104 × (ε′/ε)NP

(4.17), (4.18), (4.20) (4.19)
[0.0, 20.0]
[0.0, 20.0]

[0.0, 20.0]
[0.0, 19.9]

[0.0, 20.0]
[0.0, 20.0]

[0.0, 19.9]
[0.0, 20.0]

1011 ×Br(KL → π0νν̄), 1011 ×Br(K+ → π + νν̄)

3.2 [2.5, 4.3] ≤ 2600 [84]
[0.1, 3.2]
[0.1, 3.2]

[1.8, 3.2]
[1.8, 3.2]

[0.1, 3.2]
[0.1, 3.2]

[0.1, 3.2]
[0.9, 3.2]

8.5 [7.3, 9.5] 17.3+11.5
−10.5 [73]

[1.5, 15.4]
[1.6, 15.4]

[3.9, 45.4]
[3.9, 45.4]

[1.5, 15.4]
[1.6, 15.4]

[1.5, 15.4]
[1.6, 15.4]

109 ×Br(KL → µµ̄)SD

≤ 2.5 [74]
[0.0, 2.5]
[0.0, 2.5]

[0.0, 2.5]
[0.0, 2.5]

[0.0, 2.5]
[0.0, 2.5]

[0.0, 2.5]
[0.0, 2.5]

104 × (∆MK)SD [ps−1]

52.93± 0.09 [72]
[46.0, 58.8]
[44.7, 95.7]

[46.4, 71.1]
[46.1, 144.9]

[45.9, 61.9]
[44.2, 105.9]

[44.2, 105.9]
[44.5, 161.0]

1010 ×Br(Bd → µµ̄)

1.14 [0.94, 1.32] ≤ 6.3 [85]
[0.74, 1.32]
[0.90, 1.21]

[0.90, 1.34]
[0.97, 1.19]

[0.77, 1.30]
[0.92, 1.19]

[0.92, 1.20]
[1.00, 1.13]

A∆Γ(Bs → µµ̄), S(Bs → µµ̄)

1 —
[0.88, 1.00]
[0.97, 1.00]

[0.95, 1.00]
[0.98, 1.00]

[0.91, 1.00]
[0.98, 1.00]

[0.97, 1.00]
[0.99, 1.00]

0 —
[−0.47, 0.46]
[−0.25, 0.25]

[−0.34, 0.34]
[−0.18, 0.18]

[−0.43, 0.42]
[−0.22, 0.22]

[−0.22, 0.22]
[−0.11, 0.11]

102 ×A7, 8, 9(B → K∗µµ̄)[1, 6]

< 0.1 4.5± 5.0 [86]
[−5.0, 5.1]
[−2.6, 2.7]

[−3.7, 3.7]
[−1.9, 1.9]

[−4.5, 4.6]
[−2.4, 2.4]

[−2.4, 2.4]
[−1.2, 1.2]

< 0.1 −4.7± 5.8 [86]
[−0.6, 0.5]
[−0.5, 0.4]

[−3.0, 2.9]
[−1.6, 1.6]

[−0.5, 0.5]
[−0.4, 0.4]

[−0.3, 0.2]
[−0.2, 0.2]

< 0.1 3.3± 4.2 [86] SM
[−1.7, 1.7]
[−0.9, 0.9] SM SM

102 ×A8, 9(B → K∗µµ̄)[15, 19]

< 0.1 2.5± 4.8 [86] SM
[−2.4, 2.4]
[−1.4, 1.4] SM SM

< 0.1 −6.1± 4.3 [86] SM
[−4.4, 4.4]
[−2.4, 2.5] SM SM

RB→Kνν̄ , RB→K∗νν̄ , RFL
1 ≤ 4.3 [87]

[0.78, 1.13]
[0.88, 1.09]

[0.87, 1.15]
[0.93, 1.08]

[0.80, 1.13]
[0.89, 1.08]

[0.90, 1.08]
[0.95, 1.05]

1 ≤ 4.4 [88]
[0.78, 1.13]
[0.88, 1.09]

[0.91, 1.10]
[0.95, 1.05]

[0.80, 1.13]
[0.90, 1.08]

[0.90, 1.08]
[0.95, 1.05]

1 — SM
[0.95, 1.04]
[0.97, 1.02] SM SM

Table 10. Ranges still allowed for observables when varying Λij of G′SM(Φ) models in the 95% CL

ranges for individual s→ d, b→ d and b→ s sectors for benchmark points BP1/BP2 [upper/lower].

Moreover (ε′/ε)NP is restricted as given in eq. (6.1). Entries denoted as “SM” have tiny or no

deviations from the SM. Experimental upper bounds are given at 90% CL.
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GSM G′SM(Φ)

D QV,d Td Tu D Qd Td Tu

∆MK ⇑ ⇑ ⇑ ⇑

ε′/ε ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

K+ → π+νν̄ ⇓ ⇑ ⇓ ⇓ m m m m

KL → π0νν̄ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Br(Bd → µµ̄) m m m m

Br(Bs → µµ̄) m m m m

A∆Γ(Bs → µµ̄) ⇓ ⇓ ⇓ ⇓

S(Bs → µµ̄) m m m m m m m m

A7(B → K∗µµ̄)[1,6] m m m m m m m m

A8, 9(B → K∗µµ̄)[1,6] m m

A8, 9(B → K∗µµ̄)[15,19] m m

RB→Kνν̄ ⇓ m ⇓ ⇓

RB→K∗νν̄ ⇓ m ⇓ ⇓

RFL ⇓

Table 11. Summary of allowed VLQ effects in GSM- and G′SM(Φ)-models in flavour observables

after the fit using experimental measurements of table 8. Possible enhancement, suppression or both

w.r.t. SM predictions are indicated by according ⇑, ⇓ or m. Empty space means that the given model

does not predict sizeable effects in that observable. Note that (ε′/ε)NP has been restricted (6.1),

affecting other s→ d observables.

With the stricter bound only suppression of K+ → π+νν̄ is possible. On the other

hand the positive shift in ε′/ε implies uniquely the suppression of the KL → π0νν̄

branching ratio.

• Potential tensions between ∆Ms,d and εK can be easily removed in these models,

since no MFV relation is imposed on the couplings.

• Significant suppressions of the Br(Bs → µµ̄) and of A∆Γ(Bs → µµ̄), in particular

in models with LH currents, are possible. As far as Br(Bd → µµ̄) is concerned,

significant enhancements, in particular in the RH current scenarios, are still possible,

as seen in figure 10 and figure 11. While such effects are also possible in 331 models,

they cannot be as large as in VLQ models.
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• CP-violating effects for a given quark transition are strongly correlated in all of theses

models, as long as only one representation is present, specifically for b → s, where

CP violation in the SM is tiny.

Having the LHCb anomalies in mind we have considered also VLQ models with a

heavy Z ′ related to U(1)Lµ−Lτ symmetry. Our finding are as follows:

• The G′SM(S)-models, considered already in ref. [9], can explain the LHCb anomalies

by providing sufficient suppression of the coefficient C9, but NP effects in Bs,d → µµ̄

and KL → µµ̄ are absent, those in b→ sνν̄ transitions small and the ones in K+ →
π+νν̄ and KL → π0νν̄ much smaller than in GSM-models. Most importantly these

models fail badly in explaining the ε′/ε anomaly.

• In the G′SM(Φ)-models, the explanation of LHCb anomalies is more difficult than in

G′SM(S)-models, but this time, due to the presence of Z contributions, interesting

effects in other observables can be found.

• In particular, in contrast to GSM-models, the parametric suppression of Z couplings

by tanβ allows for increased values of Yukawa couplings that are this time mainly

bounded by |∆F | = 2 transitions.

• We find that NP effects in ε′/ε and K+ → π+νν̄ can be large, the latter in contrast

to GSM-models, and also the corresponding effects in ∆MK can be significantly larger

than in GSM-models. This could appear in contradiction with the pattern in table 7

and is the result of weaker constraints in these models. In particular if in the future

the ∆MK constraint will be improved, such large enhancements of Br(K+ → π+νν̄)

are likely to be excluded. On the other hand NP effects in KL → π0νν̄, KL → µµ̄,

B → K(K∗)νν̄ and Bd,s → µµ̄ are very small and beyond the reach of even presently

planned future facilities. While effects in the CP asymmetries A7,8,9(B → K∗µµ̄) are

smaller than in GSM models, they might be still within reach of LHCb.

Thus if NP will be found in Bs,d → µµ̄ and the ε′/ε-anomaly will be confirmed by fu-

ture lattice data, GSM-models would offer the best explanation among VLQ models. If, on

the other hand, the LHCb anomalies will be confirmed in the future and no visible NP will

be found in rare K decays, G′SM(S)-models and G′SM(Φ)-models would be favoured over

GSM-models. A large enhancement of Br(K+ → π+νν̄) would uniquely select RH G′SM(Φ)

models subject to the future status of ∆MK , although LH GSM and G′SM(Φ) models could

provide a moderate enhancement, in case of the latter depending on the theoretical treat-

ment of KL → µµ̄. On the other hand, a large enhancement of Br(B → K(∗)νν̄) would

disfavour all considered models, at least with only one VLQ representation. Also the con-

firmation of all anomalies in combination with sizeable effects in e.g. Br(Bd,s → µµ̄) would

force us to extend the models analyzed by us by considering several VLQ representations

simultaneously. We have also pointed out that in G′SM(Φ)-models significant NP effects in

∆MK can be found, larger than in GSM and G′SM(S)-models.

While the discovery of VLQs at the LHC would give a strong impetus to the models

considered by us, non-observation of them at the LHC would not preclude their importance
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for flavour physics. In fact, as we have shown, large NP effects in flavour observables can

be present for MVLQ = 10 TeV and in the flavour-precision era one is sensitive to even

higher scales. In this context we have pointed out that the combination of |∆F | = 2 and

|∆F | = 1 observables in a given meson system generally allows to determine the masses of

VLQs in a given representation independently of the size of Yukawa couplings.
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A Scalar sectors of G′
SM-models

A.1 G′
SM(S) models

The scalar sector in G′SM(S)-models with one complex scalar S(1, 0, X) and the SM doublet

H(2,+1/2, 0) is given by

L = |DµH|2 + |DµS|2 − V (A.1)

with the potential

V = m2H†H +
λ

2

(
H†H

)2
+
b2
2
|S|2 +

d2

4
|S|4 +

δ

2
H†H|S|2. (A.2)

We parametrise the SM Higgs doublet and the complex scalar as

H =

(
H+

H0

)
=

(
G+(

v + h0 + iG0
)
/
√

2

)
, S =

(vS +R0 + iI0)√
2

. (A.3)

The neutral mass-eigenstates are given by (h,H)T ' (h0, R0)T with approximate masses

m2
h ≈ v2

(
λ− δ2

2d2

)
, m2

H ≈ v2
S

d2

2
, (A.4)

up to terms O(v2/v2
S). The general expressions can be found in [95].

Kinetic mixing of Z and Z ′ is caused by VLQ-exchange and depends on the VLQ

masses M and the U(1)Lµ−Lτ -gauge coupling. It will be neglected in the following, see

ref. [9]. Mass mixing does not occur in G′SM(S) models.
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A.2 G′
SM(Φ) models

The scalar sector in G′SM(Φ)-models with one complex scalar S(1, 0, X/2) and the two

doublets Φ1 ≡ Φ(2,+1/2, X) and Φ2 ≡ H(2,+1/2, 0) is given by

L = |DµΦ1|2 + |DµΦ2|2 + |DµS|2 − V, (A.5)

with the potential

V = m2
aΦ
†
aΦa +

λa
2

(
Φ†aΦa

)2
+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+
b2
2
|S|2 +

d2

4
|S|4 +

δa
2

Φ†aΦa|S|2 −
δ3

4

[
Φ†1Φ2S

2 + Φ†2Φ1(S∗)2
]
.

(A.6)

We neglect kinetic mixing and parametrise the mass mixing viaẐµ
Ẑ ′µ

 =

cos ξZZ′ − sin ξZZ′

sin ξZZ′ cos ξZZ′

 Zµ
Z ′µ

 . (A.7)

After partial diagonalization of the neutral gauge boson system, the Z and Z ′ masses and

their mass mixing are given by [96]

M̂2
Z = g2

Z

v2

4
, M̂2

Z′ = (g′X)2 v
2
S

4

(
1 + 4c2

β

v2

v2
S

)
, ∆2 = −gZ g′Xc2

β

v2

2
, (A.8)

with e =
√

4πα = g2ŝW = g1ĉW = gZ ŝW ĉW . The Z − Z ′ mixing angle

tan 2 ξZZ′ =
2∆2

M̂2
Z − M̂2

Z′

= c2
β

4Xg′

gZ

M̂2
Z

(M̂2
Z′ − M̂2

Z)
(A.9)

is small unless X becomes large. The diagonalisation of the neutral gauge boson mass

matrix gives mass eigenvalues

M2
Z,Z′ =

1

2

[
M̂2
Z′ + M̂2

Z ∓
√

(M̂2
Z′ − M̂2

Z)2 + 4∆4

]
, (A.10)

which differ from the ones in eq. (A.8) by terms O(v2/v2
S). Note that we present only the so-

lution for which MZ < MZ′ , i.e. throughout we will implicitly impose that the lighter mass

eigenstate couples predominantly SM-like to quarks and leptons. As a consequence a lower

bound on g′ will be obtained. On the other hand, the decoupling limit g′ → 0 is not ex-

cluded, but it will lead to MZ′ < MZ , i.e. that the heavier mass-eigenstate couples predom-

inantly to SM-like fermions. The tan β dependence of MZ′ becomes irrelevant once vS &
0.5 TeV. The mixing angle ξZZ′ can be suppressed with large tan β and MZ′ , since we work

in the part of the parameter space, where the other possibility of g′ → 0 is not an option.

In G′SM(Φ)-models we make use of the fact that photon- and W±-interactions to leptons

are SM-like in order to determine the values of the fundamental gauge couplings g1,2 and

the VEV v from αe(MZ), GF and the W -boson pole mass MW . As the remaining free

parameters we choose tan β, g′, X and vS , whereas dependent parameters are MZ,Z′ and
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ξZZ′ . Note that the latter depend only on the product g′X, such that there are effectively

only three parameters. We will restrict this parameter space to

0.3 ≤ tanβ ≤ 40, 0 ≤ g′X ≤ 3, 0 TeV ≤vS ≤ 2 TeV. (A.11)

The lower bound on tan β guarantees perturbativity of the top-quark Yukawa coupling [64],

whereas vS is bounded from above by the requirements (3.1) and yields MZ′ . 1.5 TeV

within the above limits. Constraints on these parameters arise from the measured value of

MZ , which we impose with an error of δMZ = 5 GeV to account for the use of tree-level

relations only. Further constraints come from the partial widths of Z → `¯̀ (` = e, µ, τ ),

constraining the new physics contributions of the Z-lepton couplings (3.11) that depend on

the ξZZ′ and g′ due to gauge mixing. We find a small mixing angle ξZZ′ . 0.1 in the above

specified parameter space of tan β, g′X and vS if we impose the bound on new physics

contributions to the partial widths of Z → `¯̀ from LEP [24], allowing for 5σ deviations

from the measured central values, together with the bound on MZ . This justifies the

expansion in the small mixing angle as done in table 4.

B VLQ decoupling and RG effects

This appendix contains results of the Wilson coefficients of ψ2ϕ2D and ψ2ϕ3 operators in

G
(′)
SM-EFTs after the tree-level decoupling of VLQs at the scale µM . We provide further

the relations to flavour-changing Z and Z ′ couplings (3.7) and (3.8) after spontaneous

symmetry breaking at the scale µEW (neglecting self-mixing).

B.1 ψ2ϕ2D operators

The matching in GSM models at the scale µM of order of the VLQ mass yields nonvanishing

contributions for

D : [C(1)
Hq]ij = [C(3)

Hq]ij = −1

4

λ∗iλj
M2

,

Td : [C(1)
Hq]ij = −3 [C(3)

Hq]ij = −3

8

λ∗iλj
M2

,

Tu : [C(1)
Hq]ij = 3 [C(3)

Hq]ij =
3

8

λ∗iλj
M2

,

Qd : [CHd]ij = −1

2

λiλ
∗
j

M2
,

QV : [CHd]ij =
1

2

λVdi λ
Vd∗
j

M2
, [CHu]ij = −1

2

λVui λVu∗j

M2
, [CHud]ij =

λVui λVd∗j

M2
,

(B.1)

in agreement with [3], and analogously for G′SM(Φ) models with H → Φ. The matching of

G′SM(S) models for VLQs D and QV yields nonvanishing Wilson coefficients

D : [CSd]ij = −1

2

λiλ
∗
j

M2
, QV : [CSq]ij = −1

2

λ∗iλj
M2

. (B.2)

The flavour-changing Z and Z ′ couplings (3.7) and (3.8) after spontaneous symmetry

breaking are given in terms of the Wilson coefficients at the scale µEW. In the case of
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GSM-models, the tree-level calculation of the process f̄ifjZµ from GSM-EFT (3.2) yields

∆
uiuj
L (Z) = FH

[
[C(1)
Hq],ij − [C(3)

Hq],ij

]
, ∆

didj
L (Z) = FH

[
[C(1)
Hq],ij + [C(3)

Hq],ij

]
,

∆
uiuj
R (Z) = FH [CHu],ij , ∆

didj
R (Z) = FH [CHd],ij ,

(B.3)

with FH ≡ −2M2
Z/gZ and generation indices i, j = 1, 2, 3. The variant of G′SM(S)-models

with the scalar sector of S and H generates only non-zero couplings to Z ′. We find for

G′SM(S)-models

∆
uiuj , didj
L (Z ′) = FS [CSq],ij , ∆

uiuj
R (Z ′) = FS [CSu],ij , ∆

didj
R (Z ′) = FS [CSd],ij , (B.4)

with the EFT-coefficients Ci given in (B.1) and FS ≡ m2
Z′/(g

′X). The variant of G′SM(Φ)-

models with the scalar sector of S, H and Φ generates non-zero couplings to Z ′ and Z.

The results for G′SM(Φ) models are similar to GSM models, with the difference that they

involve Z − Z ′ mixings:

∆
uiuj
L (V ) = FΦ(V )

[
[C(1)

Φq ],ij − [C(3)
Φq ],ij

]
, ∆

didj
L (V ) = FΦ(V )

[
[C(1)

Φq ],ij + [C(3)
Φq ],ij

]
,

∆
uiuj
R (V ) = FΦ(V ) [CΦu],ij , ∆

didj
R (V ) = FΦ(V ) [CΦd],ij ,

(B.5)

where V = Z, Z ′ and

FΦ(Z) ≡ −2
M2
Z

gZ
c2
β

[
cos ξZZ′ − r′ sin ξZZ′

]
,

FΦ(Z ′) ≡ +2
M2
Z

gZ
c2
β

[
sin ξZZ′ + r′ cos ξZZ′

]
.

(B.6)

B.2 ψ2ϕ3 operators

We define the SM Yukawa couplings of quarks as in [26]

−LYuk = q̄L YdH dR + q̄L Yu H̃ uR + h.c.. (B.7)

Nonvanishing Wilson coefficients are generated also for ψ2ϕ3 operators (see table 2 for

definitions) as a consequence of the application of equations of motion (EOM) in the tree-

level decoupling of VLQs in section 3.1. Due to the application of EOMs, these Wilson

coefficients scale with the corresponding Yukawa coupling as

[CuH ]ij =
[
Yu C†HuD + (C(1)

HqD − C
(3)
HqD)Yu

]
ij
,

[CdH ]ij =
[
Yd C†HdD + (C(1)

HqD + C(3)
HqD)Yd

]
ij
.

(B.8)

Note the matrix multiplications w.r.t. the generation indices of Yu,d with the respective

coefficients CHψD inside the brackets.
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The tree-level matching in GSM-models gives nonvanishing contributions at µM to

D : [C(1)
HqD + C(3)

HqD]ij =
1

2

λ∗iλj
M2

, [C(1)
HqD − C

(3)
HqD]ij = 0,

Td : [C(1)
HqD + C(3)

HqD]ij =
1

4

λ∗iλj
M2

, [C(1)
HqD − C

(3)
HqD]ij =

1

2

λ∗iλj
M2

,

Tu : [C(1)
HqD + C(3)

HqD]ij =
1

2

λ∗iλj
M2

, [C(1)
HqD − C

(3)
HqD]ij =

1

4

λ∗iλj
M2

,

Qd : [CHdD]ij =
1

2

λiλ
∗
j

M2
,

QV : [CHdD]ij =
1

2

λVdi λ
Vd∗
j

M2
, [CHuD]ij =

1

2

λVui λVu∗j

M2
,

(B.9)

in agreement with [3]. Analogous Wilson coefficients in G′SM(Φ) are found by H → Φ.

In G′SM(S) models analogous relations

[CuS ]ij =
[
Yu C†SuD + CSqD Yu

]
ij
, [CdS ]ij =

[
Yd C†SdD + CSqD Yd

]
ij

(B.10)

hold with nonvanishing

D : [CSdD]ij =
λiλ
∗
j

M2
, QV : [CSqD]ij =

λ∗iλj
M2

. (B.11)

B.3 Top-Yukawa RG effects

This appendix collects the ADM entries of the GSM-EFT proportional to the up-type quark

Yukawa coupling Yu from [28], i.e. neglecting contributions from Yd,e. We list them only for

operators that receive leading logarithmic contributions at the scale µEW from the initial

Wilson coefficients at the scale µM of ψ2H2D and ψ2H3 operators in the 1stLLA via direct

mixing, see footnote 3. For convenience of the reader we keep here also CHu and CHud,
which are absent in the VLQ models D,Tu, Td, Qd, but contribute in QV for λVu 6= 0.

The H6-operator OH = (H†H)3 receives direct leading logarithmic contributions16

ĊH ≡ (4π)2µ
dCH
dµ

= −12 Tr
[
CuH Y †uYuY †u + YuY

†
uYu C†uH

]
, (B.12)

via CuH 6= 0 in models VLQ = Tu, Td. The Wilson coefficent CH changes the Higgs potential

and leads to a shift of the VEV [29].

The H4D2-operators OH� = (H†H)�(H†H) and OHD = (H†DµH)∗(H†DµH) receive

leading logarithmic contributions in LH models VLQ = D,Tu, Td via C(1,3)
Hq :

ĊH� = 6 Tr
[(
C(1)
Hq − 3C(3)

Hq

)
YuY

†
u − CHuY †uYu

]
, (B.13)

ĊHD = 24 Tr
[
C(1)
HqYuY

†
u − CHuY †uYu

]
. (B.14)

Their Wilson coefficients contribute to the Higgs-boson mass and the electroweak precision

observable T = −2πv2(g−2
1 + g−2

2 ) CHD [29].

16Note that if the generation indices are not given explicitly on Yukawa couplings and Wilson coefficients

then a matrix multiplication is implied.
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The ψ2H3-operators (see table 2)

ĊuH = −12 Tr
[
C(3)
HqYuY

†
u ]Yu − 2 C(1)

HqYuY
†
uYu + 2YuY

†
uYuCHu (B.15)

+ 6 Tr
[
CuHY †u

]
Yu + 9 Tr

[
YuY

†
u

]
CuH + 5 CuHY †uYu +

11

2
YuY

†
u CuH ,

ĊdH = −12 Tr
[
C(3)
HqYuY

†
u ]Yd + 6 C(3)

HqYuY
†
uYd − 2YuY

†
uYuCHud (B.16)

+ 6 Tr
[
YuC†uH

]
Yd − 2YuC†uHYd − CuHY †uYd + 9 Tr

[
YuY

†
u

]
CdH −

3

2
YuY

†
u CdH ,

ĊeH = −12 Tr
[
C(3)
HqYuY

†
u ]Ye + 6 Tr

[
YuC†uH

]
Ye (B.17)

have self-mixing for CuH,dH , and CuH mixes also into CdH,eH . They receive also contributions

from Cψ2H2D. The Cψ2H3 enter fermion-mass matrices (3.4) and lead also to fermion-Higgs

couplings that are in general flavour-off-diagonal.

The ψ2H2D-operators (see table 2)

Ċ(1)
Hq = 6 Tr

[
YuY

†
u ]C(1)

Hq + 2
(
YuY

†
u C(1)

Hq + C(1)
HqYuY

†
u

)
, (B.18)

− 9

2

(
YuY

†
u C(3)

Hq + C(3)
HqYuY

†
u

)
− YuCHuY †u ,

Ċ(3)
Hq = 6 Tr

[
YuY

†
u ]C(3)

Hq + YuY
†
u C(3)

Hq + C(3)
HqYuY

†
u −

3

2

(
YuY

†
u C(1)

Hq + C(1)
HqYuY

†
u

)
, (B.19)

ĊHd = 6 Tr
[
YuY

†
u ]CHd , (B.20)

ĊHu = −2Y †u C(1)
HqYu + 6 Tr[YuY

†
u ]CHu + 4

(
Y †uYuCHu + CHuY †uYu

)
, (B.21)

ĊHud = 6 Tr[YuY
†
u ]CHud + 3Y †uYuCHud (B.22)

show a mixing pattern among C(1,3)
Hq as well as C(1)

Hq and CHu. The latter implies that the

LH scenarios D,Tu, Td will generate via mixing also a RH coupling CHu via C(1)
Hq, which is

however a one-loop effect compared to the effects of C(1)
Hq. Both CHd and CHud have only

self-mixing.

In the case of ψ4-operators there are (LL)(LL) operators

[Ċ(1)
qq ]ijkl = +

1

2

(
[YuY

†
u ]ij [C(1)

Hq]kl + [C(1)
Hq]ij [YuY

†
u ]kl

)
, (B.23)

[Ċ(3)
qq ]ijkl = −1

2

(
[YuY

†
u ]ij [C(3)

Hq]kl + [C(3)
Hq]ij [YuY

†
u ]kl

)
, (B.24)

the (LL)(RR) operators

[Ċ(1)
qu ]ijkl = [YuY

†
u ]ij [CHu]kl − 2[C(1)

Hq]ij [Y
†
uYu]kl, (B.25)

[Ċ(1)
qd ]ijkl = [YuY

†
u ]ij [CHd]kl, (B.26)

and the (RR)(RR) operators

[Ċuu]ijkl = −[Y †uYu]ij [CHu]kl − [CHu]ij [Y
†
uYu]kl, (B.27)

[Ċ(1)
ud ]ijkl = −2[Y †uYu]ij [CHd]kl, (B.28)
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of which the ones relevant for |∆F | = 2 are given in (3.14) and (3.15). Hence there are

two additional operators [O(1)
ud ]ijkl = [ūiRγµu

j
R][d̄kRγ

µdlR] and [O(1)
qu ]ijkl = [q̄iLγµq

j
L][ūkRγ

µulR]

under the assumption CHu = 0.

C Master formulae for K and B decays

C.1 |∆F | = 2

The effective Lagrangian for neutral meson mixing in the down-type quark sector (dj d̄i →
d̄jdi with i 6= j) can be written as [34]

Hij∆F=2 = Nij
∑
a

Cija O
ij
a + h.c., (C.1)

where the normalisation factor and the CKM combinations are

Nij =
G2
F

4π2
M2
W

(
λ

(t)
ij

)2
, (C.2)

with ij = sd for kaon mixing and ij = bd, bs for Bd and Bs mixing, respectively. The set

of operators consists out of (5 + 3) = 8 operators [34],

OijVLL = [d̄iγµPLdj ][d̄iγ
µPLdj ],

OijLR,1 = [d̄iγµPLdj ][d̄iγ
µPRdj ], OijLR,2 = [d̄iPLdj ][d̄iPRdj ],

OijSLL,1 = [d̄iPLdj ][d̄iPLdj ], OijSLL,2 = −[d̄iσµνPLdj ][d̄iσ
µνPLdj ],

(C.3)

which are built out of colour-singlet currents [d̄αi . . . d
α
j ][d̄βi . . . d

β
j ], where α, β denote colour

indices. The chirality-flipped sectors VRR and SRR are obtained from interchanging PL ↔
PR in VLL and SLL. Note that the minus sign in QSLL,2 arises from different definitions of

σ̃µν ≡ [γµ, γν ]/2 in ref. [34] w.r.t. σµν = iσ̃µν used here. The ADM’s of the 5 distinct sectors

(VLL, SLL, LR, VRR, SRR) have been calculated in refs. [33, 34] at NLO in QCD, and nu-

merical solutions are given in ref. [97]. The NLO ADM’s are also available for an alternative

basis [98] with colour octet operators QSLL,2 = [d̄αi PLd
β
j ][d̄βi PLd

α
j ] and analogous QSRR,2.

In the SM only

CijVLL(µEW)|SM = S0(xt), S0(x) =
x(4− 11x+ x2)

4 (x− 1)2
+

3x3 lnx

2 (x− 1)3
(C.4)

is non-zero at the scale µEW, depending on the ratio xt ≡ m2
t /M

2
W of the top-quark and

W -boson masses.

The |∆F | = 2 observables of interest ∆MK,Bd, Bs , εK and sin(2βd,s) derive all from

the complex-valued off-diagonal elements M ij
12 of the mass-mixing matrices of the neutral

mesons [99, 100]. For the latter we use the full higher-order SM expressions in combination

with the LO new physics contributions. In particular for Mds
12 , we make use of NLO and

in part NNLO QCD corrections ηcc, tt, ct collected in table 13 and for the hadronic matrix

element of |∆S| = 2 operators the value of B̂K . Concerning |∆B| = 2, we include the NLO

QCD corrections ηB to the SM and use for the hadronic matrix elements the latest results

for FBd,s

√
B̂Bd,s [61]. The hadronic matrix elements of |∆S,B| = 2 of left-right operators

are given in table 14.

– 55 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
9

C.2 dj → diνν̄

The effective Lagrangian for dj → diνν̄ (i 6= j) is adopted from ref. [91],

Ld→dνν̄ =
4GF√

2

αe
4π

λ
(t)
ij

∑
a

∑
ν

Cij,νa Oij,νa + h.c., (C.5)

where the sums extend over a = {L,R} and neutrino flavour ν = {e, µ, τ}

Oij,νL (R) = [d̄iγµPL (R)dj ][ν̄γ
µ(1− γ5)ν]. (C.6)

In the SM only

Cij,νL

∣∣
SM

=
4B − C
s2
W

≡ −X0

s2
W

(C.7)

has non-vanishing contribution at the scale µEW, whereas CνR = 0. The functions B and

C depend on the ratio xt ≡ m2
t /M

2
W of the top-quark and W -boson masses and enter as

the gauge-independent linear combination X0(xt) ≡ C(xt)− 4B(xt) [101, 102],

X0(x) =
x

8

(
x+ 2

x− 1
+

3x− 6

(x− 1)2
lnx

)
. (C.8)

It is given by

X0 → XSM
L = 1.481± 0.009, (C.9)

when including higher order QCD and electroweak corrections [103–106] as extracted in

ref. [107] from original papers.

The theoretical predictions for b → sνν̄ observables defined in eq. (6.5) are based

on formulae given in ref. [92]. These expressions account for the lepton-non-universal

contribution of VLQ’s w.r.t. the neutrino flavour in G′SM models. However, the particular

structure of the gauged U(1)Lµ−Lτ (2.1) leads to a cancellation of the numerically leading

interference contributions of the SM and new physics [9].

The Br(K+ → π+νν̄) receives in the SM the numerically leading contribution from

the “top”-sector, when decoupling heavy degrees of freedom at µEW, which yields directly

the local Osd,νL operator (ν = e, µ, τ). Further, a non-negligible “charm”-sector arises from

double-insertions of hadronic and semi-leptonic |∆S| = 1 operators when decoupling the

charm quark at µc ∼ mc, which is enhanced due to the strong CKM hierarchy (λ
(t)
sd ∝

λ5) � (λ
(c)
sd ∝ λ2), where λ = |Vus| is the Cabibbo angle. This is usually expressed in the

effective Hamiltonian of the SM as [108]

Heff = N
∑
ν

[
λ

(c)
sdX

ν
c + λ

(t)
sdX

SM
L

]
Osd,νL , (C.10)

with N = GFαe/(2
√

2πs2
W ), where Xe

c = Xµ
c 6= Xτ

c .

The NP contributions in VLQ-models cannot compete with the SM contribution to the

tree-level processes entering the “charm”-sector, since they are suppressed by an additional

factor (MW /MVLQ)2. In consequence, NP contributes to the “top”-sector only

XSM
L → Xν

t = XSM
L +Xsd,ν

L +Xsd,ν
R ≡ XSM

L +Xν
NP, (C.11)
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with Xsd,ν
L,R given in eq. (4.8), such that the top-sector becomes neutrino-flavour dependent.

The experimental measurement averages over the three neutrino flavours,

Br(K+ → π+νν̄)=
κ+(1+∆EM)

λ10

1

3

∑
ν

[
Im2

(
λ

(t)
sdX

ν
t

)
+Re2

(
λ

(c)
sdX

ν
c +λ

(t)
sdX

ν
t

)]
, (C.12)

with the assumption that λ
(c)
sdX

ν
c is real. The NNLO QCD results of the functions Xν

c [108]

together with long distance contributions [109] are combined into

Pc =
1

λ4

(
2

3
Xe
c +

1

3
Xτ
c

)
=

(
0.2252

λ

)4

(0.404± 0.024), (C.13)

where λ = 0.2252 has been used in ref. [107]. The factor

κ+ = rK+
3α2(MZ)λ8

2π2s4
W

Br(K → πeν̄e) = 0.5173(25)× 10−10

[
λ

0.225

]8

(C.14)

contains the experimental value Br(K → πeν̄e) and the isospin correction rK+ and has

been evaluated in ref. [110] (table 2) including various corrections. Further ∆EM = −0.003

for Eγmax ≈ 20 MeV [110]. If one takes into account the different value of s2
W = 0.231 taken

in ref. [110] compared to our value in table 13, then κ+ = 0.5150× 10−10 (λ/0.225)8.

The sum (C.12) contains the SM contribution and further the interference of SM×NP

and NP×NP. Besides Pc at NNLO in the SM contribution, the NLO numerical values

Xe
c = 10.05× 10−4, Xτ

c = 6.64× 10−4, (C.15)

for µc = 1.3 GeV are used for the interference of SM×NP.

The branching fraction of KL → π0νν̄ is obtained again by averaging over the three

neutrino flavours

Br(KL → π0νν̄) =
κL
λ10

1

3

∑
ν

Im2
(
λ

(t)
sdX

ν
t

)
, (C.16)

with

κL = κ+
rKL
rK+

τKL
τK+

= 2.231(13)× 10−10

[
λ

0.225

]8

. (C.17)

The numerical value is from ref. [110] (table 2) and it decreases to κL = 2.221 ×
10−10 (λ/0.225)8 when rescaling with our value of s2

W .

C.3 dj → di `¯̀

The effective Lagrangian for dj → di`¯̀ (i 6= j) is adopted from ref. [111],

Ld→d`¯̀ =
4GF√

2

αe
4π

λ
(t)
ij

∑
a

∑
`

Cij,`a Oij,`a + h.c., (C.18)

were the sum over a extends over the |∆F | = 1 operators

Oij,`9 (9′) = [d̄iγµPL (R)dj ][¯̀γ
µ`], Oij,`10 (10′) = [d̄iγµPL (R)dj ][¯̀γ

µγ5`], (C.19)

– 57 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
9

whereas scalar O`S,P(S′,P′) and tensorial operators O`T(T5) are not generated in the context

of VLQ models. In the SM the only non-zero Wilson coefficients,

Cij,`9

∣∣
SM

=
1

s2
W

[
(1− 4s2

W )C −B − s2
WD

]
≡ Y0

s2
W

− 4Z0, (C.20)

Cij,`10

∣∣
SM

=
1

s2
W

(B − C) ≡ − Y0

s2
W

, (C.21)

are lepton-flavour universal and also universal w.r.t. down-type quark transitions, as the

CKM elements have been factored out. All other Wilson coefficients vanish at the scale

µEW. The functions B,C,D depend again on the ratio xt ≡ m2
t /M

2
W of the top-quark and

W -boson masses and give two gauge-independent combinations Y0(xt) ≡ C(xt) − B(xt)

and Z0(xt) ≡ C(xt) +D(xt)/4, that are given in the SM as

Y0(x) =
x

8

(
x− 4

x− 1
+

3x lnx

(x− 1)2

)
, (C.22)

Z0(x) =
18x4 − 163x3 + 259x2 − 108x

144(x− 1)3
+

32x4 − 38x3 − 15x2 + 18x

72(x− 1)4
lnx− 1

9
lnx. (C.23)

In the predictions of Br(Bd,s → µµ̄) and the mass-eigenstate rate asymmetry

A∆Γ(Bd,s → µµ̄) we include for the SM contribution the NNLO QCD [112] and NLO

EW [39] corrections, whereas NP contributions are included at LO. The values of the

decay constants FBd,s are collected in table 13.

The branching fractions Br(B+ → (π+, K+)µµ̄) at high dilepton invariant mass q2

are predicted within the framework outlined in refs. [113–115]. We neglect contributions

from QCD penguin operators, which have small Wilson coefficients and the NLO QCD

corrections to matrix elements of the charged-current operators [116, 117], but include the

contributions ∼ VubV ∗ud(s). The form factors and their uncertainties are adapted from lattice

calculations [118, 119] for B → π and [120] for B → K with a summary given in [121]. We

add additional relative uncertainties of 15% for missing NLO QCD corrections and 10%

for possible duality violation [114] in quadrature.

The predictions for observables of B → K∗µµ̄ are based on refs. [89] and [122] for low-

and high-q2 regions, respectively. The corresponding results for B → K∗ form factors in

the two regions are from the LCSR calculation [123] and the lattice calculations [124, 125].

The measurement of Br(KL → µµ̄) provides important constraints on its short-

distance (SD) contributions, despite the dominating long-distance (LD) contributions in-

ducing uncertainties that are not entirely under theoretical control. In particular there

is the issue of the sign of the interference of the SD part χSD of the decay amplitude

of KL → µµ̄ with the LD parts. Allowing for both signs implies a conservative bound

|χSD| ≤ 3.1 [74]. Relying on predictions of this sign based on the quite general assumptions

stated in [74, 126, 127] one finds −3.1 ≤ χSD ≤ 1.7 which we employ in most of this work.

Note, however, that a different sign is found17 in [126, 128], implying −1.7 ≤ χSD ≤ 3.1.

In light of this situation, we comment on the impact of the more conservative choice where

appropriate, which includes both sign choices.

17We thank G. D’Ambrosio and J-M. Gérard for the discussion on this point.
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a p
(0)
a p

(6)
a p

(8)
a Pa

3 7.45 −3.40 −3.50 2.85

5 1.70 30.62 −18.74 4.91

7 −102.02 −1.32 2040.38 1447.91

9 36.72 4.42 −21.28 23.06

Table 12. Values of the coefficients entering the semi-numerical formula of ε′/ε in eq. (C.29). The

last column gives Pa for B
(1/2)
6 = 0.57 and B

(3/2)
8 = 0.76.

C.4 dj → di qq̄ and ε′/ε

The effective Lagrangian for dj → diqq̄ (i 6= j) is adopted from ref. [129], where the

definition of the operators can be found and here we restrict ourselves to s̄ → d̄, i.e.

ij = sd. At the scale µEW (Nf = 5) it reads

Ld→dqq̄ = −GF√
2
λ

(u)
sd

{
(1− τ)

[
z1(O1 −Oc1) + z2(O2 −Oc2)

]
+

10∑
a=3

(τva + vNP
a )Oa +

10∑
a=3

v′aO
′
a

}
+ h.c.,

(C.24)

where O
(c)
1,2 denote current-current operators. The sum over a extends over the QCD- and

EW-penguin operators and we included their chirality-flipped counterparts O′a = Oa[γ5 →
−γ5]. Thereby we assume that VLQ contributions to other operators are strongly sup-

pressed. The Wilson coefficients are denoted as za, v
(NP)
a and v′a, taken at the scale µEW.

For the SM-part, CKM unitarity was used,

τ ≡ λ(u)
sd

/
λ

(t)
sd , (C.25)

and we introduced a new physics contribution vNP
a as shown above, which is related to the

VLQ-contribution (4.13) as

vNP
a = Csda , v′a = Csda′ . (C.26)

The RG evolution at NLO in QCD and QED leads to the effective Hamiltonian at a

scale µ . µc ∼ mc (Nf = 3)

Hd→dqq̄ =
GF√

2
λ

(u)
sd

{
z1O1 + z2O2 +

10∑
a=3

[za + τya + vNP
a ]Oa +

10∑
a=3

v′aO
′
a

}
+ h.c., (C.27)

after decoupling of b- and c-quarks at scales µb,c [129], where ya ≡ va − za and all Wilson

coefficients are at the scale µ.

The contributions of new physics can then be accounted for in ε′/ε by the replacement

ya(µ)→ ya(µ) +
vNP
a (µ)− v′a(µ)

τ
, (C.28)
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where the minus sign is due to 〈(ππ)I |Oa|K〉 = −〈(ππ)I |O′a|K〉 for the pseudo-scalar pions

in the final state [130]. For the readers convenience we provide a semi-numerical formula

for ε′/ε with initial conditions of Wilson coefficients from new physics in QCD- and EW-

penguins a = 3(′), 5(′), 7(′), 9(′) at the electroweak scale µEW:

ε′

ε
=
[
−2.58 + 24.01B

(1/2)
6 − 12.70B

(3/2)
8

]
× 10−4 +

∑
a

Pa Im(vNP
a − v′a)[µEW]. (C.29)

The coefficients are

Pa = p(0)
a + p(6)

a B
(1/2)
6 + p(8)

a B
(3/2)
8 (C.30)

with p
(n)
a given in table 12, where the last column gives Pa for B

(1/2)
6 (µ) = 0.57 and

B
(3/2)
8 (µ) = 0.76. For this purpose µEW = MW , µb = mb(mb), µc = 1.3 GeV and µ =

1.53 GeV have been used. The central value of the SM prediction is (ε′/ε)SM = 1.5× 10−4

compared to 1.9× 10−4 in [20] due to different numerical inputs.

D Statistical approach and numerical input

The input quantities included in our analysis are collected in table 13 and table 14. The

CKM parameters have to be determined independently of contributions from the VLQs.

The “tree-level” fit carried out by the CKMfitter collaboration achieves such a determina-

tion, taking only measurements into account that are unaffected in our NP scenarios, i.e.

(semi-)leptonic tree-level decays, tree-level determinations of γ and B → ππ, πρ, ρρ, used

as a constraint on γ. The results of this fit are again quoted in table 13.

As a statistical procedure, we choose a frequentist approach. The fits include as param-

eters of interest the VLQ couplings and in addition nuisance parameters, which constitute

theoretical uncertainties. The nuisance parameters are listed in table 13 and consist of

• CKM parameters from a “tree-level” fit;18

• hadronic parameters: decay constants, form factors, |∆F | = 2 hadronic matrix ele-

ments.

The 1- and 2-dimensional confidence regions (CL) of parameters are obtained by profil-

ing over the remaining parameters, i.e. maximisation of the likelihood function over the

subspace of remaining parameters for a fixed value of the (pair of) parameter(s) of in-

terest. Similarly, correlation plots for pairs of observables are obtained by profiling over

all parameters and imposing in addition the specific values for the pair observables. The

2-dimensional 68% and 95% confidence regions are determined then for two degrees of

freedom. The SM predictions of observables are found in the same way by setting VLQ

contributions to zero and profiling only over the CKM and hadronic nuisance parameters.

18We thank Sebastien Descotes-Genon for providing us an update of a tree-level CKM fit from CKMfit-

ter [94].
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general [72]

MW = 80.385(15) GeV MZ = 91.1876(21) GeV

GF = 1.16638(1)× 10−5 GeV−2 s2
W ≡ sin2θW = 0.23126(13)

α(MZ) = 1/127.9 αs(MZ) = 0.1185(6)

quark masses

md(2 GeV) = 4.68(16) MeV [131]

ms(2 GeV) = 93.8(24) MeV [131] mc(mc) = 1.275(25) GeV [72]

mb(mb) = 4.18(3) GeV [72] mt(mt) = 163(1) GeV [132]

CKM

λ = 0.22544(+33
−28) A = 0.8207(7)(13)

ρ̄ = 0.125(+30
−18) η̄ = 0.382(+22

−18)

Kaon

mK = 497.614(24) MeV [72] κε = 0.94(2) [133, 134]

FK/Fπ = 1.194(5) [72] Fπ = 130.41(20) MeV [72]

B̂K = 0.750(15) [131, 135] ηtt = 0.5765(65) [136]

ηct = 0.496(47) [137] ηcc = 1.87(76) [138]

B-meson

mB± = 5279.29(15) MeV [72] τB± = 1.638(4) ps [75]

mBd = 5279.61(16) MeV [72] τBd = 1.520(4) ps [75]

mBs = 5366.79(23) MeV [72] τBs = 1.505(4) ps [75]

FBd = 190.5(42) MeV FBs = 227.7(45) MeV [131]

FBd(B̂Bd)
1/2 = 229.4(93) MeV FBs(B̂Bs)

1/2 = 276.0(85) MeV [61]

ρ
(
FBs , FBd

)
= 61.7%∗ ρ

(
FBs(B̂Bs)

1/2, FBd(B̂Bd)
1/2
)

= 95.1%∗∗

ηB = 0.55(1) [136, 139] ∆Γs/Γs = 0.124(9) [75]

Table 13. Values of the experimental and theoretical quantities used as input parameters as of

March 2016. ∗ : Calculated by demanding that the uncertainty of the ratio of the decay constants

given above should equal the uncertainty given explicitly for the ratio, also given in ref. [131]. ∗∗ :

Calculated from information given in ref. [61]. Note that their assumption for the SU(3) breaking

from the charm sea contribution corresponds to the assumption of a 91.8% correlation for this

uncertainty between Bd and Bs.
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ij µlow [GeV] Nf rχ Bij
1 Bij

4 Bij
5

sd 3.0 3 30.8 0.525(16) 0.920(20) 0.707(45)

F 2
Bj
Bij

1 F 2
Bj
Bij

4 F 2
Bj
Bij

5

bd 4.18 5 1.6 0.0342(30) 0.0390(29) 0.0361(36)

bs 4.18 5 1.6 0.0498(32) 0.0534(32) 0.0493(37)

Table 14. Scale settings and number of flavours, Nf , as well as numerical inputs of bag factors

entering M ij
12, see [61] and [140] for correlations. For the Kaon system threshold crossings to

Nf = 4 and Nf = 3 have been chosen as 4.18 GeV and 1.4 GeV. The chirality-factor is given as

rijχ = (MMij/(mi(µlow) +mj(µlow))2. See also [18] for more details on M ij
12.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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