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1 Introduction

It is by now well accepted that the gauge/gravity duality can provide important informa-

tion into the physics of strongly coupled systems where a perturbative analysis may not

be effective [1–3]. The gauge/gravity duality in its approximate form maps a theory of

classical gravity in AdS space to a strongly coupled conformal field theory, which lives at

the boundary of the AdS space in a lower dimension. This mapping has been quite useful

to understand and describe the physics of strongly coupled many body systems and there

are indications that realistic predictions might be acquired from it. Two of the most im-

portant applications of the gauge/gravity duality that have received wide attention, and

are a topic of this paper, are entanglement entropy and (the phase structure of) quantum

chromodynamics (QCD).

The gauge/gravity duality provides many important concepts and associated tools to

probe the properties of gauge theories at strong coupling. A key example of such concept

is the entanglement entropy. A holographic proposal for the entanglement entropy has

been conjectured in the milestone paper [4, 5], with more recent proofs of the conjecture,

generally applicable or not, in [6] or [7]. The proposal geometrizes the notion of entan-

glement entropy and has been extensively tested for a variety of systems. It has been the

subject of intense investigation during the last decade and has found applications in many

diverse areas of physics. For example, holographic entanglement entropy has been used to

study quantum quenches in strongly coupled systems [8–10], in black hole physics [11, 12],

to understand phase transitions in bulk and boundary theories [13–17], to study out of

equilibrium dynamics such as thermalization in quark-gluon plasma [18–23] etc. Indeed,

understanding the structure of (holographic) quantum entanglement has emerged as a fun-

damental question to address various novel emergent phenomena, ranging from many body
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complex quantum systems, to quantum phase transitions, to black holes. For reviews on

this topic, let us refer to [24–28].

Another important application of the gauge/gravity duality is that it provides access

to QCD at strong coupling [29]. Normally, the boundary field theory in the context of

gauge/gravity duality is subject to conformal invariance. However, it is also well known

that in order to describe realistic QCD from the gauge/gravity duality viewpoint, we need

to break this conformal symmetry as the non-zero running of the coupling constant in real

QCD generally breaks the conformal symmetry and via dimensional transmutation, a mass

gap is formed. Several gravity models, rooted in string theory, that explicitly break the

conformal symmetry have been constructed in the recent past and are commonly known

as “top down” AdS/QCD models [30–35].

In this work, we are interested in more phenomenological (“bottom-up”) models of

AdS/QCD where one constrains the gravity theory by hand as to reproduce the desirable

features of the boundary theory resembling QCD, without actually deriving them from a

consistent truncation of an underlying string theory [36–41]. In particular, we are interested

in the soft wall model description of AdS/QCD [42, 43]. In the soft wall models, one

introduces an additional dilaton field that explicitly breaks the conformal symmetry in

the IR regime. These models are quite useful in deriving many properties of real QCD,

such as a reasonable meson mass spectrum, linear Regge trajectories etc. These models

can also generate essential properties of chiral symmetry breaking and confinement, see

e.g. [36, 44–46].

However, they face a few drawbacks as well. For example, the soft wall models fail to

reproduce the area law of the Wilson loop expectation value [43], they fail to produce a

chiral condensate that is also non-zero for zero bare quark mass [44–46] or the dilaton is

added by hand, so the Einstein equations of motion are not explicitly satisfied. Although

it is reasonable to say that connections to real QCD via the gauge/gravity duality appear

to be limited in some aspects, it is even so important to explore this quest and further

our understanding towards the main aim of connecting to genuine QCD. In fact, more

involved wall models are on the market that remedy one or another of the aforementioned

shortcomings [37–40, 46–48].

The study of entanglement entropy in (confining) gauge theories has attracted a lot

of attention lately, both from holographic as well as from non-holographic point of view.

In holography, this question was first addressed in [49], which first generalised the entan-

glement entropy prescription of [4] to non-conformal field theories and then found that for

gravity backgrounds, which are holographically dual to confining gauge theories, the entan-

glement entropy shows a first order phase transition upon varying the size of the entangling

surface (a strip of length `). In particular, depending on the value of `, they found two

minimal surfaces for the entanglement entropy: a connected and a disconnected one. The

connected surface was found to have lower entanglement entropy below a certain critical

`crit while the disconnected one was favoured above that value. Importantly, it was shown

that the holographic entanglement entropy scales as N2 for small `, and as N0 for large

`. This resembles the expected characteristic features of (de)confining theories — with `

playing the role of the inverse temperature. Indeed, below the critical temperature the
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coloured (gluon) degrees of freedom are confined, counting for O(N0) degrees of freedom,

while above that temperature, the deconfined degrees of freedom count as O(N2). This

analysis therefore provides a strong indication for the entanglement entropy as a non-local

probe to diagnose confinement. Several authors then generalized this idea to a variety of

confining systems and found similar results [50–54]. It is also worthwhile mentioning that

the bulk Ryu-Takayanagi prescription relates to the replica trick to compute the boundary

entanglement entropy [7], whereof it was recently shown, at least for the Abelian case, that

this entanglement entropy definition corresponds to the extended Hilbert space definition.

Other (inequivalent) definitions exist, including one at the operational level which amends

to a measurable notion of entanglement in gauge theories, which do not give the same

results at the end, see [55, 56] and also [57]. The replica trick/extended Hilbert space

entanglement entropy is in itself a non-measurable quantity, nonetheless it was motivated

in [56] to be the correct definition after all. To end this paragraph, let us mention that the

main features of the holographic entanglement entropy of a confining gauge theory have

received numerical confirmation from the lattice papers [58–60].

Till now, to the best of our knowledge, all the works that have appeared in the literature

and which are probing confinement using the holographic entanglement entropy have been

carried out in the absence of background fields. However, it is by now well appreciated

that in particular a magnetic field plays an important role in the QCD realm, given its

creation during a non-central heavy ion collision and its ensuing appearance during the

early stages of the quark-gluon plasma phase [61–67]. We will model the magnetic field

as ~B = B~ez with B constant. Also confinement physics is quite sensitive to the magnetic

field, see in particular [45, 47, 68–77] for a few holographically oriented works, [78] for a

breakthrough lattice QCD study and [79, 80] for recent reviews and many more references.

For example, the critical temperature of the confinement/deconfinement phase transition

was found to decrease under the influence of a magnetic field in the hard wall model [73].

Later in [45, 47], the same result was shown to exist in the soft wall model. Similarly, inverse

magnetic catalysis is an important characteristic property of the QCD chiral transition.

Also, the magnetic field can strongly influence the meson spectrum [81–86]. For these

reasons, it is important to investigate the possible effects that a background magnetic field

might cause in the intertwinement of entanglement entropy and confinement. In this paper

we exactly initiate such study.

However, in order to do so we need to take into account the backreaction of the

magnetic field on the bulk geometry. Here we will rely on the results of [87, 88], where

a magnetised pure AdS background in the bulk was obtained after solving the Einstein-

Maxwell system in the limit of small constant magnetic field with asymptotic AdS boundary

conditions. Our strategy in this work is therefore to take the magnetized AdS background

of [87, 88], supplemented with a dilaton field put in by hand1 to model the soft wall

confinement phase and then use the prescription of [49] to study the entanglement entropy.

This strategy leads to multiple tunable parameters in our model by construction which,

as we will see later on, provides a far richer phase structure of the entanglement entropy

1This is nothing else than the magnetic version of the working hypothesis of the original soft wall

model [42], as proposed in [45].

– 3 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
1

compared to [49]. These parameters are the magnetic field B, the dilaton scale factor c and

an additional length parameter `c. The latter unavoidably enters in the magnetized AdS

background and leads to several non-trivial effects on the entanglement entropy. In fact,

the same parameter was already shown in [45] to play also a pivotal role in establishing

the inverse magnetic catalysis in the deconfinement phase transition via the Hawking-Page

analysis. It is interesting to remark here that the so-called “improved holographic QCD

models” of [89] recently saw an extension to the magnetic field case and also there, an

extra parameter is necessarily introduced to play a key role in the phase diagram for both

deconfinement and chiral transition. As the metric of [89] is a purely numerical construct,

we will not use it here to study the entanglement entropy, as this would technically be

rather challenging.

Importantly, in the presence of a magnetic field ~B, there are several possibilities to

choose the entangling surface. Clearly, we can thus expect to see an anisotropic footprint

in the corresponding entanglement entropies. This is interesting, as it will allow to see also

anisotropic features in the confinement properties of gauge theories. It is impossible to

discover such properties in the Polyakov loop expectation value, a standard order parame-

ter for the deconfinement transition which is insensitive to the direction of the (constant)

magnetic field ~B, it does depend however on its magnitude B. Though, interesting lattice

evidence in favour of sizeable anisotropies in the string tension between two heavy quarks

was provided for in [90, 91] by measuring expectation values of Wilson loops which, in

contrast with a Polyakov loop, can be given a relative and variable orientation with re-

spect to the magnetic field. The extracted string tension between heavy quarks becomes

dependent on the magnetic field (orientation), both at zero and finite temperature, an

observation that is of great phenomenological interest as the string tension is tightly corre-

lated with the properties of (heavy) quark bound states such as charmonium, and as such

the latter can be expected to be rather susceptible to the presence of a magnetic field,

a fact supported by various sources [71, 92–101]. As such, it is again clear that further

understanding confinement in an anisotropic setting is important, both from theoretical

as well as phenomenological viewpoint, see also [102, 103]. For the record, let us mention

that the effects of a magnetic field on the Wilson loop were also considered in [104], albeit

for the (naturally deconfined) N = 4 SYM case, while anisotropic entanglement entropy

has been studied in a different context in [105]. Some other general aspects of anisotropic

holographic quark-gluon plasmas have been studied in [106, 107].

For simplicity, we will choose the entangling surface in a direction either parallel or

perpendicular to the magnetic field. This entails the possibility of two critical lengths,

`
‖
crit and `⊥crit, in our model at which the entanglement entropy shows a first order phase

transition upon varying the size of the entangling surface. We find that this is indeed the

case. A qualitative dependence of `
‖
crit and `⊥crit on B, c and `c is shown in table 1. Our

main results are summarized as follows:

• There is a maximum length `max above which the connected solution does not exist,

only the disconnected surface remains. We find two such lengths, `
‖
max and `⊥max,

respectively for the parallel and perpendicular entangling strips. We find that both
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`
‖
max and `⊥max depend non-trivially on the model parameters B, c and `c. In partic-

ular, they can be a monotonic or non-monotonic function of the magnetic field and

`
‖
max can be larger or smaller than `⊥max, depending on the values of these parameters.

• With a background magnetic field, we again recover a first order phase transition

in the entanglement entropy. We find that the connected surface displays a lower

entanglement entropy below a certain critical length `crit while the disconnected con-

figuration shows lower entanglement entropy above that value. Again, we find two

such critical lengths, `
‖
crit and `⊥crit. The behaviour of these critical lengths with re-

spect to magnetic field depends again on the parameters c and `c. In particular,

we find that `
‖
crit and `⊥crit can increase or decrease or even show non-monotonic be-

haviour with respect to the magnetic field. Further, we find that `⊥crit can be larger or

smaller than `
‖
crit. In particular, we find that `⊥crit generally dominates `

‖
crit for large

`c whereas `
‖
crit can be larger than `⊥crit for very small values of `c .

• It is important to analyze similarities and differences between the critical temper-

ature Tcrit ≡ 1
`crit

and the critical temperature THP of confinement/deconfinement

phase transition obtained from the free energy analysis of the dual Hawking-Page

transition [41, 45]. We can report that for a fixed B and c, both T
‖
crit and T

‖
crit de-

crease for an increasing `c. This behaviour is similar to the THP result found in [45],

suggesting some kind of a close relationship between THP and Tcrit. However, there are

also some notable differences. We find that the magnitudes of c and `c at which THP

decreases with the magnetic field do not coincide very well with the corresponding

values in T
‖
crit (or T⊥crit).

• We also establish the ` dependence of the (parallel and perpendicular) entropic C-
functions [60]. Even with the background magnetic field, the C-functions show the

expected behaviour. In particular, we find that they decrease along the RG flow

from UV to IR as we increase the length of the entangling strip and that they vanish

at long distances. There is a sharp drop to zero when the critical lengths `
⊥,‖
crit are

approached, indicate of a phase transition.

The paper is organized as follows. In the next section, we will introduce our gravity model.

In section 3, we will first highlight the entanglement entropy prescription of [49] and briefly

discuss their results to set the stage. We will then derive the necessary formulae for the

entanglement entropy in the presence of a background magnetic field. The numerical results

of our computations for the entanglement entropy and entropic C-function are presented

and discussed in section 4. Finally, in section 5, we conclude this paper with an outlook to

future research.

2 Gravity setup

In this section, we will briefly review the gravity dual of a confining gauge theory with a

background magnetic field. We will follow the notation used in [45] and more details can
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thence be found there. We start from the Einstein-Maxwell action in the presence of a

negative cosmological constant,

SEM = − 1

16πG5

∫
d5x
√
−g
[
R+

12

L2
− FMNFMN

]
, (2.1)

where R is the Ricci scalar, L is the AdS length related to the negative cosmological

constant and FMN is the electromagnetic field strength tensor. G5 is the Newton constant

in five dimensions. The equations of motion obtained by varying eq. (2.1) are

RMN −
1

2
gMNR−

6

L2
gMN +

1

2
gMNFIJFIJ − 2FMIF

J
N = 0 (2.2)

and

∇MFMN = 0 . (2.3)

In order to solve eqs. (2.2) and (2.3) with constant magnetic field, one can choose the

following ansatz for the metric

ds2 =
L2

r2

(
−f(r)dt2 +

dr2

f(r)
+ h(r)(dx2 + dy2) + q(r)dz2

)
, (2.4)

with ~B = B~ez, which breaks the rotation symmetry in the z-direction. One can easily

check that a constant magnetic field configuration in the z-direction satisfies the Maxwell

equations. Here, r is the holographic radial coordinate and, in our notations, the asymptotic

boundary is at r = 0. Because of the complicated nature of the Einstein equations, which

are non-linear coupled differential equations, analytic solutions are very difficult to obtain.

However for small magnetic field, the Einstein equations can be solved perturbatively and

the results were presented in [87, 88]. For magnetized AdS, the solution up to order B2

can be written as2

f(r) = 1 +
2

3

B2r4

L2
ln

(
r

`c

)
+O(B4) ,

q(r) = 1 +
8

3

B2

L2

∫ 1/r

∞
dx

ln (L x)

x5
+O(B4) ,

h(r) = 1− 4

3

B2

L2

∫ 1/r

∞
dx

ln (L x)

x5
+O(B4) . (2.5)

In the language of the AdS/CFT correspondence, the above magnetized thermal AdS

solution is the gravity dual of the confined phase, up to a necessary modification. Indeed,

to mimic QCD, following the soft wall philosophy of [42], the action density appearing in

eq. (2.1) is modified by hand with a dilaton prefactor, e−
c
2
r2 ,3 to smoothly cut off the AdS

interior and to supplement the necessary scale breaking parameter c.

2In principle, the factor L present in the ln(Lx) terms can be replaced by a random other length scale

`Y as in [45], but it drops out of physical quantities as discussed there. So, we have immediately set it equal

to L here.
3It should be noted that the c in our notation differs from the c in [41, 42, 45] by a factor of 2, this for

later convenience.
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We will later use this magnetized soft wall AdS model to compute the holographic

entanglement entropy of the confining gauge theory. However, before going into that,

let us first briefly discuss a few silent features of eqs. (2.2)–(2.5). There is actually an-

other important solution to eq. (2.2), i.e. the one with a horizon and thus corresponding

to a black hole geometry. On the field theory side, this magnetized black hole solution

corresponds to the deconfined phase. As shown in [45], there can be a first order Hawking-

Page phase transition from the magnetized AdS to the black hole metric as we increase

the Hawking temperature. In particular, the free energy of the thermal AdS can become

smaller/larger than the free energy of the black hole phase at low/high temperatures. This

Hawking-Page phase transition on the field theory side corresponds to the famous confine-

ment/deconfinement phase transition [29]. Importantly, this transition was shown to exist

for both soft as well as hard wall AdS/QCD models [41, 108], including in the magnetic

field case [45, 73].

In eq. (2.5), we have introduced an additional length parameter4 `c in the geometry.

For any choice of `c, the above metric solves the Einstein equations up to order B2 and

therefore is a consistent solution of the Einstein equations. In [45], the magnitude of the

parameter `c was constrained by matching the T = 0 chiral condensate estimate with that

of the actual (lattice) QCD result which yields `c ≈ 1 GeV−1. It was also shown that

for `c ' 1 GeV−1, the critical temperature THP of the confinement/deconfinement phase

transition decreases with the magnetic field, which qualitatively agrees with the actual

QCD behaviour [78]. However for `c much smaller than 1 GeV−1, the critical temperature

was found to increase with the magnetic field. Clearly, `c is of physical relevance. It

would therefore be interesting to see whether similar kind of results can be captured by

the entanglement entropy. In particular, it would be instructive to compare the results of

THP with its analogue Tcrit, which appears in the entanglement entropy analysis.

3 The holographic entanglement entropy in confining backgrounds

We now proceed to study the entanglement entropy of the boundary confining gauge theory

in the presence of a background magnetic field. To compute the entanglement entropy we

will use the prescription of [49], which is the generalization of Ryu-Takayanagi conjecture

to non-conformal field theories. In this prescription, the EE between a spatial region A

and its complement is obtained by extremizing the following expression5

S =
1

4G10

∫
γ

d5Y d3σ e−φ
√
γind , (3.1)

where G10 is the ten-dimensional Newton constant and γind is the induced metric on the

bulk surface γ, which propagates from the asymptotic boundary to the bulk and shares the

same boundary ∂A of the subsystem A. In our notation, φ2 is the dilaton field and, as men-

tioned before, we will make the standard choice φ = cr2 for it throughout this paper. The

value of c can be fixed by matching the soft wall prediction for the lightest vector meson

4This `c is not to be confused with the critical length `crit of the entangling strip surface.
5A similar expression for the entanglement entropy previously also appeared in [5].
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on its experimental value, mρ = 0.776 GeV, leading to a value of c ' 0.3 GeV2. ~σ coor-

dinatizes the three-dimensional induced metric and ~Y coordinatizes the five-dimensional

internal space (apart from the five-dimensional AdS space of eq. (2.4)). The internal space

will not play any significant role here and will be suppressed from the text from here

on.6 The entanglement entropy is then computed by minimizing the above action over all

surfaces that approach to ∂A at the asymptotic boundary.

As was considered in [49], here too, we consider the subsystem A as a straight strip

of length `. However with a background magnetic field, there are separate possibilities

to select the subsystem A. We will either choose A parallel to or perpendicular to the

applied magnetic field. As we will see below, for both these configurations the equations

for entanglement entropy and length ` are different and will thus lead to different results.

However, before going to discuss each case separately, let us first briefly survey some

silent features of [49] for which parallel and perpendicular surfaces coincide. In [49], it was

shown that for a given ` there are two local minimal surfaces emerging from eq. (3.1): a

disconnected and a connected one. The disconnected surface consists of two lines which

are separated by distance ` while having lower entanglement entropy for larger values of

`. On the other hand, the connected surface resembles more of a tube connecting the

two endpoints of the strip and it has lower entanglement entropy for smaller values of `.

Importantly, it was found that the connected surface has no solution above a maximum

length `max and that there is a phase transition from connected to disconnected surfaces

as we steadily increase the length `. The phase transition was shown to occur at a critical

length `crit < `max, below (above) which connected (disconnected) surface have a smaller

entanglement entropy than the disconnected (connected) surface. This phase transition

between the two surfaces was interpreted as characteristic of confining gauge theories,

related to the aforementioned counting of relevant degrees of freedom at large N .

As mentioned before, due to the magnetic field, there are several additional relevant

parameters in the theory (next to B itself, also c and `c), and we will investigate how these

additional parameters influence the structure of the above mentioned phase transition. The

boundary theory will now possess two critical lengths: one for the parallel and one for the

perpendicular surface and they can non-trivially depend on these parameters.

3.1 Parallel entangling surface

In this case, we choose our subsystem A in the z-direction and the domain −`/2 ≤ z ≤ `/2,

0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly to define the strip geometry on the boundary. In order to

find the minimal area solution for the connected surface we parameterize the surface γ by

z = z(r), with inverse r = r(z). Now substituting eq. (2.4) into eq. (3.1), we get

S‖conn =
LxLyL

3

4G10

∫ `/2

−`/2
dz

e−φ(r)h(r)

r3

√
q(r) +

r′2

f(r)
. (3.2)

6One can think of eq. (3.1) as the entanglement entropy measured per unit of volume of the internal

space.
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As the corresponding Lagrangian L does not directly depend on z, the “Hamiltonian” H
is conserved, ∂

∂zH = ∂
∂z [r′ δLδr′ − L] = 0. This leads to the following equation,

eφ(r)

√
q(r) +

r′2

f(r)
= eφ(r∗)

r3∗
r3

q(r)h(r)

h(r∗)
√
q(r∗)

, (3.3)

where r∗ is the turning point of the minimal area surface at which r′(z)|r=r∗ = 0. Finally,

substituting eq. (3.3) into eq. (3.1), we obtained the expression for the entanglement entropy

for the connected surface as

S‖conn =
2LxLyL

3

4G10

∫ r∗

ε
dr

r3∗
r3

e−2φ(r)q(r)h2(r)√[
r6∗e
−2φ(r)q(r)h2(r)− r6e−2φ(r∗)q(r∗)h2(r∗)

]
f(r)q(r)

=
2LxLyL

3

4G10

(
S‖conn +

1

2ε2

)
, (3.4)

where r = ε defines the short distance UV cutoff. It is introduced to regularize the

entanglement entropy, which is diverging as “too many” UV degrees of freedom are living

near to the strip boundary. Since the finite part S⊥conn of the entanglement entropy is

independent of the cutoff, this is the quantity which is physically most relevant. However,

in most part of this paper we will deal with the difference in entanglement entropy anyhow

where the diverging parts trivially cancel out.

Correspondingly, the length of the strip surface for the connected solution as function

of r∗ is

`‖conn = 2

∫ r∗

ε
dr

e−φ(r∗)r3
√
q(r∗)h2(r∗)√[

r6∗e
−2φ(r)q(r)h2(r)− r6e−2φ(r∗)q(r∗)h2(r∗)

]
f(r)q(r)

, (3.5)

which is a finite quantity. Similarly, the entanglement entropy for the disconnected surface

is given by7

S
‖
disc =

2LxLyL
3

4G10

∫ ∞
ε

dr
e−φ(r)

r3

√
h2(r)

f(r)

=
2LxLyL

3

4G10

(
S‖disc +

1

2ε2

)
, (3.6)

which is independent of r∗ and therefore of `
‖
conn as well.

3.2 Perpendicular entangling surface

In this case, we can choose our subsystem A in the x-direction and the domain −`/2 ≤
x ≤ `/2, 0 ≤ y ≤ Ly and 0 ≤ z ≤ Lz to define the strip geometry on the boundary. In this

case, we parameterize the connected surface γ by x = x(r) and r = r(x) as inverse. Now

putting eq. (2.4) into eq. (3.1), we get

S⊥conn =
LyLzL

3

4G10

∫ `/2

−`/2
dx

e−φ(r)

r3

√
q(r)h(r)

[
h(r) +

r′2

f(r)

]
. (3.7)

7This can be obtained by formally taking the r∗ →∞ limit of the first line of eq. (3.4).
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Using the same method as for the parallel case, we get the following equation,

eφ(r)

√
q(r)h(r)

[
h(r) +

r′2

f(r)

]
= eφ(r∗)

r3∗
r3

q(r)h2(r)√
q(r∗)h2(r∗)

, (3.8)

where r∗ is the turning point of the minimal area surface at which r′(x)|r=r∗ = 0. Finally,

substituting eq. (3.8) into eq. (3.1), we obtain the expression for the entanglement entropy

for the connected surface as

S⊥conn =
2LyLzL

3

4G10

∫ r∗

ε
dr

r3∗
r3

e−2φ(r)q(r)h2(r)√[
r6∗e
−2φ(r)q(r)h2(r)− r6e−2φ(r∗)q(r∗)h2(r∗)

]
f(r)h(r)

=
2LyLzL

3

4G10

(
S⊥conn +

1

2ε2

)
. (3.9)

The length of the strip for the connected solution as function of r∗ is

`⊥conn = 2

∫ r∗

ε
dr

e−φ(r∗)r3
√
q(r∗)h2(r∗)√[

r6∗e
−2φ(r)q(r)h2(r)− r6e−2φ(r∗)q(r∗)h2(r∗)

]
f(r)h(r)

. (3.10)

Similarly, the entanglement entropy for the disconnected surface is given by

S⊥disc =
2LyLzL

3

4G10

∫ ∞
ε

dr
e−φ(r)

r3

√
q(r)h(r)

f(r)

=
2LyLzL

3

4G10

(
S⊥disc +

1

2ε2

)
, (3.11)

which is again independent of r∗ and `⊥conn.

4 Results

In this section, we will present our results for the entanglement entropy. Since analytic

results are hard to obtain for the connected surfaces, therefore, we will mainly focus on

the numerical results. In order to solve eqs. (3.4), (3.5), (3.9) and (3.10) numerically, it

turns out to be more convenient to use the coordinate ρ = 1
r to ensure stable numerics.

This being said, closed analytic expressions can be found for the disconnected surfaces but

these are cumbersome and not very illuminating after all.

4.1 Parallel entangling surface

Let us first analyze the entanglement entropy for a parallel entangling surface. The length

`‖ of the connected surface as function of ρ∗ for various values of the magnetic field B and

in decreasing order of c is plotted in figures 1–2. Here we have fixed `c = 1 GeV−1. In each

figure, (solid, black), (dot, red), (dash, green), (dot-dash, blue), (arrow-dot, brown) and

(arrow-dash, cyan) curves correspond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7 respectively. We

observe that there are two solutions for a given `: one for small ρ∗ and one for large ρ∗.
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Figure 1. `‖ as a function of ρ∗ for various B,

with `c = 1. Here c = 2 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.

Figure 2. `‖ as a function of ρ∗ for var-

ious B, with `c = 1. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

As we will see later, the one with larger ρ∗ corresponds to an actual local minimum of the

entanglement entropy whereas the one with smaller ρ∗ corresponds to a saddle point.

As in the case of B = 0, we see the occurrence of an `
‖
max above which the connected

solution does not exist. However for B 6= 0, we now see that `
‖
max depends quite non-

trivially on both B and c. For example, for c = 2 GeV2 (figure 1), `
‖
max increases with B

but as we decrease the value of c the pattern reverses and `
‖
max starts decreasing with B.

This behaviour can be clearly seen in figure 2, where we have used c = 0.3 GeV2. This

suggests that there might be an intermediate value of c, for which `
‖
max is not monotonic

as a function of B. This is indeed the case as can be observed from figures 3 and 4, where

the complete picture of the dependence of `
‖
max on B and c is shown. We see that for

c = 1 GeV2, `
‖
max first decreases and then increases with magnetic field, indicating the

non-monotonic behaviour of `
‖
max.

Now, we move on to discuss the entanglement entropy itself. In order to do so, it is more

convenient to consider the difference between connected and disconnected entanglement

entropies,8

∆S‖ = S‖conn − S
‖
disc . (4.1)

∆S‖ as function of `‖ for various values of B is shown in figures 5 and 6. In both these

figures, upper and lower lines correspond to smaller and larger branches of `‖ respectively

(see figure 1). We see that the latter branch always has a lower entanglement entropy

than the former one, indicating that it is a true minimum of the connected solution. In

both figures ∆S‖ can either be negative or positive depending on the value of `‖. The

former case occur for small values of `‖, implying that the connected surface is the relevant

8In the numerical results presented here the constant prefactor 2LxLy/4G10 in the entanglement entropy

expression has been suppressed.
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Figure 3. `
‖
max as a function of B for var-

ious c. Here `c = 1 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 4. `
‖
max as a function of B for c = 1. In

units GeV.

solution of eq. (3.1) whereas the latter case occurs for large values of `‖, implying that the

disconnected surface becomes relevant. This corresponds to a phase transition from the

connected to disconnected solution as we increase the strip length. The length at which this

phase transition occurs defines the critical length `
‖
crit. One can see that `

‖
crit is always less

that `
‖
max, suggesting that this phase transition always occurs and it is of first order. This

phase transition between the two solutions was suggested as characteristic for confining

theories in [49]. Here, we thus present evidence that a similar, albeit more intricate, phase

transition structure exists in the presence of a background magnetic field as well.

From figures 5 and 6, we see that `
‖
crit depends quite nontrivially on c. For higher

values of c, say c = 2 GeV2, `
‖
crit increases with the magnetic field. However for lower

values of c, it decreases with the magnetic field. A qualitative picture of the dependence

of `
‖
crit on B and c is shown in figure 7. We find that although, for a fixed c, `

‖
crit is a

monotonic function of B, it shows non-monotonic behaviour as we vary c.

Further, we find that the behaviour of ∆S‖ and `
‖
crit strongly depends on `c. The

magnitude and pattern of these quantities with respect to B and c can be different for

different `c. This can be clearly appreciated from figures 8–11, where ∆S‖ as a function

of `‖ for `c = 0.2 GeV−1 and `c = 2 GeV−1 is shown. Here, we have shown the results

for two different c’s. The dependence of `
‖
crit on B and c for these values of `c is shown

in figures 12 and 13. We find that for a fixed c and B, the increase in `c causes `
‖
crit to

increase, and therefore, T
‖
crit to decrease. This phenomenon is consistent with the con-

finement/deconfinement phase transition results obtained in [45], where THP was found to

decrease with `c. As we will see later on, this result remains valid even for the perpen-

dicular entangling surface. We will say more about this connection at the end of the next

subsection.
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Figure 5. ∆S‖ as a function of `‖ for various B,

with `c = 1. Here c = 2 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.

Figure 6. ∆S‖ as a function of `‖ for var-

ious B, with `c = 1. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 7. `
‖
crit as a function of B for various c. Here `c = 1 and (solid, red), (dot, green), (dash,

blue), (dot-dash, brown), (arrow-dot, cyan) and (arrow-dash, black) curves correspond to c = 3, 2,

1, 0.5, 0.3 and 0.15 respectively. In units GeV.

4.2 Perpendicular entangling surface

In this subsection we study the entanglement entropy for the perpendicular entangling

surface.9 The relevant expressions for the entanglement entropy and strip length are sum-

marized in eqs. (3.9)–(3.11).

Let us first discuss the `c = 1 GeV−1 case. The length `⊥ of the connected surface as

function of ρ∗ for various values of the magnetic field B, for c = 2 GeV2 and 0.3 GeV2, is

9Again, the constant prefactor 2LyLz/4G10 in the entanglement entropy expression has been dropped

from the numerical computation.
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Figure 8. ∆S‖ as a function of `‖ for var-

ious B, with `c = 0.2. Here c = 2 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 9. ∆S‖ as a function of `‖ for var-

ious B, with `c = 0.2. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 10. ∆S‖ as a function of `‖ for var-

ious B, with `c = 2. Here c = 2 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 11. ∆S‖ as a function of `‖ for var-

ious B, with `c = 2. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.
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Figure 12. `
‖
crit as a function of B for var-

ious c. Here `c = 0.2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 13. `
‖
crit as a function of B for var-

ious c. Here `c = 2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 14. `⊥ as a function of ρ∗ for various B,

with `c = 1. Here c = 2 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.

Figure 15. `⊥ as a function of ρ∗ for var-

ious B, with `c = 1. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

plotted in figures 14 and 15 respectively. The overall behaviour of `⊥ is same as was found

for `‖. However, there are some differences. Here, `⊥max decreases with magnetic field even

for c = 2 GeV2 which is opposite to the case of `
‖
max, which increases with magnetic field.

We find that `⊥max can be greater or less than `
‖
max depending on the values of B and c. An

overall behaviour is shown in figures 16 and 17.

The difference between connected and disconnected entanglement entropies is shown in

figures 18 and 19. Even with the perpendicular entangling surface, we find that ∆S⊥ can be
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Figure 16. `⊥max as a function of B for var-

ious c, with `c = 1. Here (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 17. `
‖
max−l⊥max as a function of B for for

various c, with `c = 1. Here (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

greater or less than zero and that a phase transition from connected to disconnected surface

occur as we increase the strip length `⊥. The critical length at which this phase transition

occur is now defined as `⊥crit. An important point to observe is that `⊥crit for c = 2 GeV2

decreases with the magnetic field in contrast with the case of `
‖
crit, which increases with

the magnetic field. The dependence of `⊥crit on B and c is shown in figure 20, which is quite

distinct compared to the behaviour of `
‖
crit (shown in figure 7), especially for smaller values

of c and larger values of B. The difference between `
‖
crit and `⊥crit is shown in figure 21. We

see that `
‖
crit > `⊥crit for larger values of c, however as we decrease the dilaton factor c to

near the QCD value (c = 0.3 GeV2), we find `
‖
crit < `⊥crit. This suggests that T

‖
crit > T⊥crit in

the boundary QCD theory. For B = 0, we find the expected result `
‖
crit = `⊥crit.

Of course the above analysis is also sensitive to the length scale `c. For two differ-

ent values of `c, the results for `⊥crit are shown in figures 22–25. One can clearly notice

the changes in the pattern of `⊥crit as we vary `c. In particular, we can notice that `⊥crit
shows monotonic behaviour with respect to c even for higher magnetic field as we make

`c larger and larger (figure 24). As in the case of `
‖
crit, here too we find that for a fixed

c and B, the increase in `c causes `⊥crit to increase. Similarly, `⊥crit can be greater or less

than `
‖
crit depending on the values of B and c. In particular, for larger `c, `

⊥
crit generally

dominates `
‖
crit.

It is interesting to connect our results of entanglement entropy with the free energy

results of [45] and analyze the similarities and differences between them. For this purpose,

a few points are in order:

• In [45], it was shown that the critical temperature THP of the Hawking-Page (i.e. the

dual of the confinement/deconfinement phase transition) decreases with `c. Consid-
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Figure 18. ∆S⊥ as a function of `⊥ for

various B, with `c = 1. Here c = 2 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 19. ∆S⊥ as a function of `⊥ for var-

ious B, with `c = 1. Here c = 0.3 and

(solid, black), (dot, red), (dash, green), (dot-

dash, blue), (arrow-dot, brown) and (arrow-

dash, cyan) curves correspond to B = 0, 0.1,

0.2, 0.3, 0.5 and 0.7 respectively. In units GeV.

Figure 20. `⊥crit as a function of B for var-

ious c. Here `c = 1 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 21. `
‖
crit − l⊥crit as a function of B for

various c. Here `c = 1 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.
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Figure 22. `⊥crit as a function of B for var-

ious c. Here `c = 0.2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 23. `
‖
crit− l⊥crit as a function of B for for

various c. Here `c = 0.2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 24. `⊥crit as a function of B for var-

ious c. Here `c = 2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.

Figure 25. `
‖
crit − l⊥crit as a function of B for

for various c. Here `c = 2 and (solid, red), (dot,

green), (dash, blue), (dot-dash, brown), (arrow-

dot, cyan) and (arrow-dash, black) curves cor-

respond to c = 3, 2, 1, 0.5, 0.3 and 0.15 respec-

tively. In units GeV.
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Figure 26. T⊥crit as a function of B for various

`c. Here c = 2 and (solid, red), (dot, green),

(dash, blue), (dot-dash, brown) and (arrow-dot,

cyan) curves correspond to `c = 0.2, 0.5, 1, 1.5

and 2 respectively. In units GeV.

Figure 27. T⊥crit as a function of B for various

`c. Here c = 0.3 and (solid, red), (dot, green),

(dash, blue), (dot-dash, brown) and (arrow-dot,

cyan) curves correspond to `c = 0.2, 0.5, 1, 1.5

and 2 respectively. In units GeV.

ering that the strip length of the entangling surface plays the role of inverse tempera-

ture, the corresponding critical temperature in the entanglement entropy also shows

the same feature. This is shown in figures 26 and 27, where one clearly see that for

any fixed B and c, T⊥crit decreases as the value of `c increases. As briefly mentioned

in the previous subsection, the same result is true for T
‖
crit as well.

• There are several differences between THP and T⊥crit as well, especially as a function

of B and c. THP can decrease or increase with magnetic field depending on the values

of c and `c. In [45], it was found that for c = 0.3 GeV2 (which in the notation of [45]

corresponds to c = 0.15 GeV2), THP increases with magnetic field for smaller `c, say

`c < 1 GeV−1, and decreases for larger `c. However, the same feature does not occur

with T⊥crit. This can be seen from figure 27, where we find that T⊥crit decreases with

magnetic field only for `c ' 1.7 GeV−1. Similar results hold for other values of c as

well. Therefore, it seems that the relation between T⊥crit and THP is rather complicated

and a straightforward one to one comparison between them is bit subtle.

• Analogous differences exist for T
‖
crit as well. Again, we do not find a straightforward

one to one relation between THP and T
‖
crit.

We end this subsection by presenting a qualitative summery of our results showing

how `
‖
crit and `⊥crit change with magnetic field for different values of the c and `c. This is

succinctly shown in table 1.

4.3 The entropic C-function

In this subsection, we briefly discuss our results for the entropic C-function, which on

general grounds is defined as [60, 109]

C(`) =
`3

Area(A)

∂S

∂`
, (4.2)
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c

`c
0.2 0.5 1 1.5 2

‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥
3 ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↑
2 ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↑
1 ↓ ↓ ↓ ↓ ↓ ↓ NM ↑ ↑ ↑

0.5 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ NM ↑

0.3 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑
0.15 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ NM

Table 1. A summary of the dependence of the entanglement entropy on the background magnetic

field for various values of c and `c. Symbols ‖ or ⊥ indicate results for parallel or perpendicular

entangling surfaces. Arrows ↑ or ↓ indicate whether `
‖
crit or `⊥crit increases or decreases as we increase

the magnetic field. Here NM stands for non-monotonic and indicates that the concerned quantity

first decreases and then increases with the magnetic field. The parameters c and `c at which the

holographic model in eq. (2.1) is best suitable to describe genuine QCD correspond to c ' 0.3 GeV2

and lc ' 1 GeV−1.

where Area(A) is the area of the subsystem A. By construction, eq. (4.2) is finite. In our

case, there can be two entropic C-functions depending on whether the entangling strip is

parallel or perpendicular to the magnetic field. The results for the parallel case are shown

in figures 28 and 29, where we have chosen c = 2 GeV2 and c = 0.3 GeV2 respectively.

We see that the magnitude of C‖ decreases monotonically as we increase the length of the

strip, i.e. from UV to IR. Since, `‖ is inversely related to the energy scale of the theory and

that C measures the degrees of freedom at that energy scale [109], this result is consistent

with the expected behaviour of C that it decreases under the RG-flow in a confining theory.

The C-function sharply drops to zero at `
‖
crit, indicative of a first order transition, and it

continues to vanish for higher `‖. This is precisely due to the reason that for `‖ > `
‖
crit, the

entanglement entropy of the connected surface dominates that of the disconnected surface

and that the entanglement entropy of the disconnected surface is independent of `‖.

The entropic C-function for a perpendicular entangling surface shows a similar be-

haviour and is shown in figures 30 and 31.

5 Outlook

We have set a next modest step in further unraveling the “entanglement” between confine-

ment and entanglement entropy, this to further understand the intricacies of confinement

in QCD when a magnetic field is introduced as a classic background. This is of phenomeno-

logical relevance to quark-gluon plasma physics, as advocated in many quoted papers, for

example to understand how (confined) heavy quark bound states will react if the temper-
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Figure 28. Entropic C-function for a parallel

entangling surface as a function of length `‖.

Here c = 2 and (solid, black), (dot, red), (dash,

green), (dot-dash, blue), (arrow-dot, brown)

and (arrow-dash, cyan) curves correspond to

B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7 respectively.

In units GeV.

Figure 29. Entropic C-function for a paral-

lel entangling surface as a function of length

`‖. Here c = 0.3 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.

Figure 30. Entropic C-function for a per-

pendicular entangling surface as a function of

length `⊥. Here c = 2 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.

Figure 31. Entropic C-function for a perpen-

dicular entangling surface as a function of length

`⊥. Here c = 0.3 and (solid, black), (dot,

red), (dash, green), (dot-dash, blue), (arrow-

dot, brown) and (arrow-dash, cyan) curves cor-

respond to B = 0, 0.1, 0.2, 0.3, 0.5 and 0.7

respectively. In units GeV.
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ature is sufficiently high and a strong magnetic field is present. The latter is presumably

generated due to the (non-central) heavy ion collision leading to the plasma phase.

We have given first evidence that the entanglement entropy feels the magnetic field
~B = B~ez in two ways: the critical lengths of the entangling strip surfaces become not only

B-dependent, indicating a phase transition that is B-dependent, but the critical length

depends also on the either parallel or perpendicular orientation of the surface with respect

to ~B. For definiteness, we did not consider a general angle θ between surface and ~B to

avoid having to deal with yet another parameter.

However, several questions remain. The most pertinent one would be to clarify the link

between the anisotropy in the confining behaviour, as signalled by the entanglement entropy

structure, and that signalled by the string tensions extracted from a Wilson loop [90, 91]

in a magnetic background. It is expected, at least from a holographic viewpoint, that

there is an intimate connection between the area law of the Wilson loop, viz. confinement,

and the behaviour of the entanglement entropy [50]. Though, to put this on a firmer

footing, we believe we need to first ensure that the necessary dilaton factor, with or without

magnetic field, is coupled to the theory in a self-consistent way, that is, by solving the

bulk Einstein equations of motion, while simultaneously ensuring the area law for the

holographic representation of the Wilson loop. Such approach can possibly also help to get

a better handle over the length parameter `c that enters the metric at finite B and which

connection to real QCD is still a bit mystified. Once this is done, we can move forward to

study the entanglement entropy in such improved setting. It will also allow to identify, even

for zero magnetic field, the rôle, if any, of entanglement entropy in the so-called entropic

destruction picture of the dissociation of a heavy quark bound state [110, 111]. We plan

to come back to these issues in future work.
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