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1 Introduction and the main idea

Stochastic quantization [1, 2] based on complex Langevin equations [3, 4] has attracted

again a new wave of interest. This was caused by reported lately progress in simulating

lattice QCD at finite chemical potential [5, 6]. At the same time the old issues [7–9], the ap-

proach suffered with, resurfaced again [10, 11] only to emphasize the difficulty with theoret-

ical foundations of the method. The latters are much more satisfactory nowadays [12, 13],

revealing quite complicated nature of the problem.

In this article a positive representation [14], equivalent to the complex gaussian distri-

bution in the complex Langevin approach, is studied in detail. The problem is not new and

its classic, by now, solution is known for a long time [7]. The novelty of the present result

is that it provides, an independent of any stochastic process, positive representation for

an arbitrary, complex value of the inverse dispersion parameter σ, while the original one

applies for Re σ > 0 only. In particular the new solution works also for purely imaginary

σ.1 This opens a possibility of a positive representation for Feynman path integrals directly

in the Minkowski time — the quest which still awaits its resolution.

1Somewhat different solution of the general complex gaussian model exists in the literature [15]. It is

entangled with the particular modification (kernel method) of the stochastic process for a general complex σ.

Consequently the analytic solution quoted there depends on the kernel employed. Present solution does

not refer to any stochastic process, hence it is independent of any additional parameters.
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Indeed, by the direct extension the one degree of freedom trick, it is shown that such a

description is possible. It is constructed and applied to few quantum mechanical textbook

cases. Noteworthy, the construction covers also the path integral description of a particle

in a constant magnetic field — a problem which does not have a positive representation

after the Wick rotation.

In 2002 Weingarten [16] has addressed analogous question in more general terms and

has proved that the positive densities actually exist for a wide class of complex probabilities.

Nevertheless no practical construction of such distributions was attempted even for the

gaussian case (see however [17, 18]). Moreover, the continuum limit was explicitly not

discussed. As will be seen below, existence of the continuum limit plays an essential role

in the present solution.

To begin with, we illustrate the main trick for a single integral. In general, quantum

averages result from weighting observables with complex functions ρ(x) ≡ e−S(x), rather

than with positive probabilities. The complex Langevin approach can in principle address

this difficulty by replacing a complex average with the statistical average over the complex

stochastic process determined by a complex action S(x)∫
f(x)e−S(x)dx∫
e−S(x)dx

=

∫ ∫
f(x+ iy)P (x, y)dxdy∫ ∫

P (x, y)dxdy
, (1.1)

with P (x, y) being the distribution of the above process at large Langevin time. While

this idea works well and has been proven for real actions, it still rises some theoretical

questions and encounters practical difficulties in the complex case, even though a much

more complete theoretical understanding of the problem has been achieved lately [12, 13].

Instead we have constructed P (x, y) directly using (1.1) as a starting point and avoid-

ing any reference to stochastic processes and associated Fokker-Planck equations. The

derivation works as follows. Introduce two independent, complex variables

z = x+ iy, z̄ = x− iy, (1.2)

and rewrite (1.1) as ∫
R f(x)ρ(x)dx∫
R ρ(x)dx

=

∫
Γz
f(z)ρ(z)dz∫
Γz
ρ(z)dz

=∫
Γz

∫
Γz̄
f(z)P (z, z̄)dzdz̄∫

Γz

∫
Γz̄
P (z, z̄)dzdz̄

=

∫
R2 f(x+ iy)P (x, y)dxdy∫

R2 P (x, y)dxdy
. (1.3)

Contours Γz and Γz̄ are such that the integrals exists. Above equations will be satisfied

provided we find P (z, z̄) such that

ρ(z) =

∫
Γz̄

P (z, z̄)dz̄. (1.4)

This is the key relation of the new approach. On one side it provides a simple connection

between a complex weight ρ and P , while on the other leaves us a freedom to satisfy

positivity and normalizability of P (z, z̄) restricted to R2 by (1.2).
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The paper is organized as follows: in the next section we apply above construction to

the gaussian case thereby generalizing solution of ref. [7] to an arbitrary complex inverse

dispersion parameter σ. Section 4 contains a first nontrivial application to the nonlinear

action showing that the approach is not necessarily restricted to the linear systems. In

section 5 we extend the gaussian case with purely imaginary σ to arbitrary number of

variables, apply it to the Minkowski path integrals and derive conditions for the existence of

the continuum limit. Section 6 contains concrete applications to three quantum mechanical

problems thereby constructing for the first time positive representations for Minkowski path

integrals. Finally we end with summary and the outlook in section 7.

2 Single integral — gaussian case

For the gaussian action we take

P (z, z̄) =
i

2
exp

(
−(a∗z2 + 2bzz̄ + az̄2)

)
, a = α+ iβ, b = b∗, (2.1)

or in terms of x and y,

P (x, y) = exp
(
−2
(
(b+ α)x2 + 2βxy + (b− α)y2

))
, (2.2)

which is positive and normalizable for |a| < b. Corresponding complex density follows

from (1.4)2

ρ(z) =

∫
Γz̄

P (z, z̄)dz̄ =
1

2

√
π

−a
exp

(
−σz2

)
, σ =

|a|2 − b2

a
,

and indeed is given by a gaussian with arbitrary complex σ.

It is a simple exercise to confirm eq. (1.3) for power-like observables, e.g. by calculating

the generating function in both representations.

For Re σ > 0 the contour Γz can be rotated into the real axis and eq. (1.1) established.

However (2.2) is more general than the original solution [7] since it provides the positive

representation for arbitrary complex a, or equivalently σ ∈ C. For some σ, for example

σ ∈ R, σ < 0, the contour Γz cannot be rotated back into the real axis. Then eq. (2.2)

gives the positive and normalizable representation for the averages along the allowed Γz,

or in another words, for the analytic continuation of the divergent, along the real axis,

expressions.

To conclude this section we discuss two interesting special cases.

For real and negative σ, the complex density blows up along the real axis. On the

other hand the distribution P (x, y) is positive and normalizable at α > 0 and β = 0

producing the correct average over the “divergent” distribution ρ. This explains a “striking

example” observed in the literature [19], namely that, upon change of variables, the complex

Langevin simulation based on old solution of ref. [7] actually has the correct fixed point also

for negative Re σ (where the distribution is non-normalizable). The answer is that their

2For Γz̄ one can choose a straight line contained in a wedge determined by a phase of a.
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positive distribution used until now is part of a richer structure (2.2), which accommodates

negative Re σ as well.

Similarly, the complex density ρ(z) for purely imaginary σ is readily represented by the

positive distribution P (x, y), which is perfectly well defined at α = 0 and arbitrary β, as

long as |β| < b. This opens an exciting possibility of positive representations for Feynman

path integrals directly in the Minkowski time, which is explored in detail in this paper.

In both cases the original density [7] does not exists.

3 Single integral — nonlinear case

Another possible solution of (1.1) obtains if we start from the action

S4(z, z̄) = (a∗z2 + 2bzz̄ + az̄2)(c∗z2 + 2dzz̄ + cz̄2),

with complex a and c and real b ≷ |a| and d ≷ |c|. The density P (x, y) is again positive

and normalizable on the x, y plane. To derive ρ(z) introduce an arbitrary shift parameter

e and change the variables. This gives

S4(z, z̄ = u− ez) = A0z
4 +A1z

3u+A2z
2u2 +A3zu

3 +A4u
4,

with

A4 = ac,

A3 = 2(ad+ bc)− 4ace,

A2 = a∗c+ c∗a+ 4bd− 6e(ad+ bc) + 6ace2,

A1 = 2(bc∗ + a∗d)− 2e(a∗c+ ac∗ + 4bd) + 6e2(bc+ ad)− 4e3ac,

A0 = (a∗ − 2be+ ae2)(c∗ − 2de+ ce2).

Now choose e such that A3 = 0. The coefficients become

A4 = ac,

A2 =
1

2ac

(
2a2(|c|2 − d2) + 2c2(|a|2 − b2)− (ad− bc)2

)
,

A1 =
1

a2c2
(ad− bc)

(
a2(|c|2 − d2)− c2(|a|2 − b2)

)
,

A0 =
1

16a3c3

(
4c2(|a|2 − b2) + (ad− bc)2

) (
4a2(|c|2 − d2) + (ad− bc)2

)
.

Then A1 can be also eliminated setting

c =
d

b
a,

which essentially reduces S4(z, z̄) to a square. Remaining coefficients simplify

A4 =
d

b
a2,

A2 = 2
d

b

(
|a|2 − b2

)
,

A0 =
d

b

(
|a|2 − b2

)2 1

a2
.

– 4 –



J
H
E
P
0
4
(
2
0
1
6
)
1
4
6

The complex density ρ4(z) can be then obtained in a closed form as

ρ4(z) =
i

2

∫
Γz̄

dz̄e−S4(z,z̄)

=
i

2
exp

(
−A0z

4
) ∫

Γu

du exp
(
−A4u

4 −A2z
2u2
)

(3.1)

=
i

2

(
b

2da2

) 1
4

exp
(
−σz4

) (
σz4
) 1

4 K 1
4

(
σz4
)
,

with an arbitrary complex

σ =
d(b2 − |a|2)2

2ba2
.

As before all contours (here and below) are such that the integrals exists. Again one can

choose straight lines with slopes determined by the phase of a.

It is a simple exercise to show that normalization of both densities is the same:

∫
Γz

ρ4(z)dz =
i

2

(
b

2da2

) 1
4
∫

Γz

exp
(
−σz4

) (
σz4
) 1

4 K 1
4

(
σz4
)

=

π
3
2

4

√
b

d(b2 − |a|2)
=

∫
R2

dxdye−4 d
b ((b+α)x2+2βxy+(b−α)y2)

2

=

∫
R2

dxdyP4(x, y).

The difference however, being that while on the l.h.s. the density ρ is in general complex,

and contour Γz has to be adjusted depending on a phase of σ, the integral on the r.h.s. is

always over R2 and the density P4(x, y) is positive and normalizable for all complex σ.

The same applies to higher moments:∫
Γz

znρ4(z)dz =

∫
R2

dxdy(x+ iy)nP4(x, y).

In fact the construction works for a larger range of parameters that in the gaussian case

since the condition |a| < b can be released.

The density (3.1) has the simple leading asymptotics

ρ4(z) ∼ e(−2σz4), z −→∞,

and therefore might be of some practical interest (e.g. in optimizing some reweighting al-

gorithms). The main point of this example is however, that the original idea, namely con-

structing positive representations with the aid of a second variable, applies not only to the

gaussian cases, therefore it may indicate the existence of some unexplored yet structures.

Obviously there is a lot of freedom in choosing an initial action. It remains to be

seen to what extent this freedom allows to derive complex densities of wider physical

interest. In present approach, the freedom results from the nonuniqueness in inverting the

relation (1.4). It would be interesting to study if it is connected with the one present in

other approaches based directly on stochastic processes [19]
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4 Many variables

For the action we take N copies of (2.1) and add the nearest neighbour couplings, with

periodic boundary conditions in zi and z̄i: zN+1 = z1, z̄N+1 = z̄1, z0 = zN , z̄0 = z̄N ,

a, c ∈ C, b ∈ R,

SN (z, z̄) =
N∑
i=1

az̄2
i + 2bz̄izi + 2cz̄izi+1 + 2c∗ziz̄i+1 + a∗z2

i . (4.1)

The complex density ρ(z) results from integrating PN (z, z̄) over all z̄ variables

ρ(z) =

∫ N∏
i=1

dz̄iP (z, z̄) =

(
i

2

)N ∫ N∏
i=1

dz̄i exp (−SN (z, z̄)).

The integration is elementary and one obtains for the effective action

SρN ≡ − log

{(
−4a

π

)N
2

ρ({z})

}
=

N∑
i=1

B

2a

(
z2
i + 2

2b(c+ c∗)

B
zizi+1 + z2

i+1

)
+

2cc∗

a

(
zi−1zi+1 − z2

i

)
, B = b2 + (c+ c∗)2 − |a|2. (4.2)

If we set c to be real and require

2c = 2γ = −b+ |a|, (4.3)

the effective action simplifies to

− SρN (z) = A
N∑
i=1

(zi − zi+1)2 − r (zi−1 − zi+1)2 , A =
b(b− |a|)

a
, r =

b− |a|
4b

. (4.4)

This is reminiscent of the discretized Feynman action for a free particle. The second

term however, even though similar to the first one, requires further attention and will be

discussed shortly.

Leaving this for a moment let us check now the positivity and normalizability of the

corresponding probability density PN (x, y) on R2N . In terms of real and imaginary parts

of zi the action (4.1) reads

SN (x, y) = 2

N∑
i=1

(b+ α)x2
i + 2βxiyi + (b− α)y2

i + 2γ(xixi+1 + yiyi+1). (4.5)

Hence

PN (x, y) = exp (−SN (x, y)) (4.6)

is obviously positive. With γ given by (4.3), all 2N eigenvalues are non-negative — there

are no divergent directions. There is one zero mode associated with the translational

invariance, however this is usual and can be dealt with by standard means.
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5 The continuum limit

5.1 A free particle

The action (4.4) does not agree with the standard, discretized action of a free particle

Sfree
N =

im

2~ε

N∑
i=1

(zi+1 − zi)2, (5.1)

except at r = 0. To see better the effect of the next-to-nearest (nn) term, we analyze in

detail the large N behaviour of, e.g., the propagator

KN (zN , z1) = e−A(zN−z1)2
IN (zN , z1) = e−A(zN−z1)2

∫
dz2 . . . dzN−1e

−SρN (z1,...,zN ). (5.2)

For simplicity we shall work in the “exponential accuracy”, i.e. ignore all prefactors. They

can be dealt with by usual methods and do not affect any conclusions drawn here. We

also rescale temporarily all variables Az2
i → z2

i to further simplify all expressions. The

integral (5.2) can be calculated recursively, k = 2, 3, . . . , N − 1,

I
(N)
k (zN , z1; v, w) =

∫
duI

(N)
k−1(zN , z1;u, v)e(u−v)2−r(u−w)2

,

with the initial condition

I
(N)
1 (zN , z1, u, v) = exp

(
(z1 − u)2 − r(z1 − v)2 − r(zN − u)2

)
. (5.3)

The propagator obtains after N − 2 steps

IN (zN , z1) = I
(N)
N−1(zN , z1;u, v)

∣∣
(u,v)−>(zN ,z1) .

It is straightforward to derive recursion relations for the exponents of I
(N)
k . Define

Wk(u, v) = log I
(N)
k (zN , z1;u, v) = aku

2 + 2bkuv + ckv
2 + 2dku+ 2ekv + fk,

then

ak+1 = 1 + ck +
2bk − b2k − 1

1− r + ak
, bk+1 =

r − rbk
1− r + ak

,

ck+1 = 1− 1

1− r + ak
, dk+1 = ek +

dk − bkdk
1− r + ak

,

ek+1 =
−rdk

1− r + ak
, fk+1 = fk −

d2
k

1− r + ak
,

with the initial conditions implied by (5.3)

a1 = 1− r, b1 = 0, c1 = −r,
d1 = −z1 + rzN , e1 = rz1, f1 = z2

1 − rz2
1 − rz2

N .

– 7 –
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Results are the following: WN (zN , z1) is quadratic and depends only on the difference

WN (zN , z1) = σN (r)(zN − z1)2,

as required by the translational invariance. The coefficient σN is the ratio of two

polynomials

σN (r) =
PN (r)

QN (r)
,

and can be expanded for large N as

σN (r) = v0(r) +
v1(r)

N
+
v2(r)

N2
+ . . . (5.4)

At r = 0, all coefficients vi vanish except of v1(0) = 1. This is the standard Feynman case

without the nn term, cf. (4.4), (5.1). For r 6= 0 however all vi do not vanish, in particular

v0 6= 0. This precludes existence of the continuum limit

N →∞, Nε fixed, (5.5)

which requires

AσN (r)→ const. A ∼ 1

ε
,

as follows from (5.1). In principle one might consider renormalizing the divergent term

away — the possibility which should be looked at in more detail. However we choose here

a simpler solution. Both constraints, namely

A =
b(b− |a|)

a
→ im

2~ε
, and r =

b− |a|
4b

→ 0,

can be satisfied in the limit (referred from now on as lim1)

|a|, b→∞, b− |a| = m

2~ε
= const. ≡ d, a = −i|a|. (5.6)

This completes the construction of the positive representation for the path integral of a

free particle directly in the Minkowski time.

All quantum averages can now be obtained by weighting suitable, i.e. complex in

general, observables with the positive and normalizable distribution (4.6), and then taking

the limit (5.6) followed by the continuum limit (5.5). Subsequent applications illustrate

how this works in practice.

5.2 A harmonic oscillator

Interestingly this case is also covered by the action (4.1), (4.5). The only difference lies in

the scaling laws imposed during the first limiting transition (5.6). To see this consider the

first term in eq. (4.2), for real c = γ,

Dz2
i + 2Ezizi+1 +Dz2

i+1, D =
b2 + 4γ2 − |a|2

2a
, E =

2bγ

a
.

– 8 –
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Rewrite it as

−E
(

(zi+1 − zi)2 −
(
D

E
+ 1

)
(z2
i + z2

i+1)

)
,

and compare with an analogous term in the discretization of the Minkowski action of a

harmonic oscillator
im

2~ε

(
(x1 − x2)2 − ω2ε2

2
(x2

1 + x2
2)

)
.

Therefore, the general positive distribution (4.5) in 2N real variables describes a harmonic

oscillator if we identify

− 2bγ

a
=
im

2~ε
,

b2 + 4γ2 − |a|2

4bγ
+ 1 =

ω2ε2

2
. (5.7)

Similarly to the free particle case, the nn terms will vanish for large |a| and b. However

the limit has to be taken along the trajectory (5.7). A possible parametrization in terms

of one independent variable ν, is

a = −i|a|, b =
µ

ν
, |a| = µ

ν
ζ(ν, ρ), 2γ = −µζ(ν, ρ), (5.8)

where

ζ(ν, ρ) =

√
1− 2ν2ρ+ ν2ρ2 − ν(1− ρ)

1− ν2
,

and µ and ρ depend on N and parameters of the harmonic oscillator in the continuum

ρ =
ω2T 2

2(N − 1)2
, µ =

m(N − 1)

2~T
.

Vanishing of the nn term is achieved by taking ν → 0.

This is the main modification compared to the free particle case. With the first limit

taken along the trajectory (5.8) the action (4.5) provides a positive representation for

Minkowski path integral of a one-dimensional harmonic oscillator.

However now one eigenvalue of (4.5) becomes “weakly negative” and the procedure

requires additional care. This is the familiar zero eigenvalue encountered before, which for

general γ and imaginary a reads

λ0 = 2(b− |a|+ 2γ),

with the corresponding eigenvector having all equal components. In the free particle

case (4.3) λ0 = 0 reflecting the translational symmetry. Along the new trajectory (5.8)

however, λ0 does not vanish and is negative. Moreover, after the first limit

lim
ν→0

λ0 = − mω2T

4~(N − 1)
,

and tends to zero with N → ∞. The eigenvector remains the same for arbitrary γ and

becomes the true zero mode in the continuum limit. That is why the mode was called

“weakly negative”. Therefore one can treat it similarly to the usual zero modes, e.g. fix

it. In fact, a negative mode is simpler than the zero mode since moments of divergent

distributions can be defined by the analytic continuation which provides a regularization

of the divergent integral. Both ways do not affect the continuum limit as will be seen in

the following applications.
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N σN (−i(b− d), b) lim1

5 id(16b2+28bd−19d2)
8(8b−3d)(b−d) id4

8 id(16b4+40b3d−70b2d2+23bd3−d4)
(b−d)(112b3−120b2d+30bd2−d3)

id7

11 id(1024b5+3328b4d−9472b3d2+6832b2d3−1700bd4+109d5)
(b−d)(1280b4−2304b3d+1344b2d2−280bd3+15d4)

i d10

Table 1. The slope of the free propagator (6.2) and its limiting value for few discretizations.

6 Applications

6.1 A free particle

First, we shall calculate the free propagator integrating explicitly the new representa-

tion (4.5). The discretized kernel (5.2) reads

KN (zN , z1) = e−A(z1−zN )2

∫
dz̄1

N−1∏
j=2

dxjdyjdz̄N exp
(
−XTMX

)
. (6.1)

The first factor takes away an additional contribution hidden in SN (4.5) due to the periodic

boundary conditions as explicitly seen in (4.4). Since z1 and zN are fixed, the first and

the last integrals have to be done over z̄1 and z̄N and not over the real coordinates. This

is part of the construction: only complete traces are represented by integrals of positive

distributions over the real variables, while deriving quantum amplitudes at fixed end-point

requires integration over the corresponding complex, barred variables. Consequently X is

the vector of all variables, XT = (z1, z̄1, x2, y2, x3 . . . , yN−1, zN , z̄N ), and M is the matrix

of (4.5) in this mixed representation. Gaussian integration is simple and one obtains up to

a prefactor

KN (zN , z1) ∼ exp
(
σN (a, b)(zN − z1)2

)
, (6.2)

with σN (a, b) given in table 1 for few values of N , and

a = −i|a|, |a| = b− d, d =
m

2~ε
.

Results after the first limit (5.6) are given in the third column. Indeed, as discussed in

section 3, the v0 term (cf. (6.2)) does not survive and the limiting σN has the appropriate

large N behaviour

lim
b→∞

σN (−i(b− d), b) =
id

N − 1
,

which assures the correct and well known form for the Feynman kernel.

lim
N→∞

KN ∼ exp

(
im

2~
(zN − z1)2

T

)
.

This can be analytically continued to the real axes.

As a second example we calculate the average 〈x2(t)〉 with the new representation.

Physically this is the dispersion of a Minkowski path of a free particle at time t. The
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particle is constrained to start from, and return to, the origin after time T. The continuum

result,

〈x2(t)〉 =

∫
dxK(0, x;T − t)x2K(x, 0; t)

K(0, 0;T )
=
i~
m

t(T − t)
T

, (6.3)

is purely imaginary and shows the famous statistical broadening of quantum paths as we

move away from the fixed initial/final end points.

In our case this is again covered by (6.1), with M replaced by its reduction R which

does not involve z1 and zN . KN (0, 0) ≡ Z provides the normalization. Appropriate

average reads

〈z2
k〉
∣∣
z1=zN=0

=

∫
dz̄1dx2dy2 . . . dyN−1dz̄N (xk + iyk)

2 exp
(
−XTRX

)
/Z

=
1

2

(
R−1

2k−2,2k−2 + i(R−1
2k−2,2k−1 +R−1

2k−1,2k−2)−R−1
2k−1,2k−1

)
, (6.4)

and can be easily calculated. After the first limit (5.6) it simplifies to

lim1〈z2
k〉 =

i

2d

(k − 1)(N − k)

N − 1

N→∞−→ i~
m

t(T − t)
T

,

which is just the discretized version of (6.3), since

(N − 1)ε = T, (k − 1)ε = t.

Again the weight is not entirely positive because of the integration over two complex (but

2N − 4 real) variables. As said above this is the consequence of the zero mode and how

it was fixed. It remains to be seen if other ways of dealing with translational symmetry

could change that.

The next applications is free of this problem.

6.2 A harmonic oscillator

There is no zero mode here, therefore we define now the average over all periodic

trajectories,

〈x2(T )〉 = 〈x2(0)〉 =

∫
dxx2K(x, x;T )∫
dxK(x, x;T )

,

which measures the width of a periodic Minkowski trajectory with the length T . This is

the different observable than was considered in the free particle case. With

K(xb, xa;T ) ∼ exp

{
i

~
mω

2 sinωT

(
(x2
a + x2

b) cosωT − 2xaxb
)}
,

one easily obtains

〈x2(T )〉 = − i~T
4m

cot ωT2
ωT
2

. (6.5)

In our framework, and upon the discretization, this is given by the straightforward average

over the positive distribution (4.5) of 2N real variables XT = (x1, y1, . . . , xN , yN )

〈z2
1〉 =

1

Z

∫ N∏
j=1

dxjdyj(x1 + iy1)2 exp
{
−XTMX

}
. (6.6)
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N PN (x)/QN (x)

5 (x2−2x−4)(x2+2x−4)
x2(x4−20x+80)

8 7(128x8−12544x6+384160x4−3764768x2+5764801)
32x2(x2−49)(2x2−49)(8x4−392x2+2401)

11 5(x5−5x4−100x3+375x2+1875x−3125)(x5+5x4−100x3−375x2+1875x+3125)
2x2(x10−275x8+27500x6−1203125x4+21484375x2−107421875)

Table 2. Dispersion of a Minkowski trajectory calculated from the positive representation (6.6)

for few discretizations.

0 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

ΩT�2

i m

ÑT
Xz1

2\

exact

N=15

N=10

N=5

Figure 1. Convergence of (6.7) to (6.5).

Gaussian average is again given by the same combination of matrix elements as in (6.4) but

with the original matrix M . In particular 〈z2
k〉 is independent of k due to the invariance

under time shifts.

The explicit expression for (6.6) in terms of a, b and oscillator parameters is somewhat

messy. However upon taking the first limit along the trajectory (5.8) it simplifies to

lim
ν→0
〈z2

1〉 = − i~T
m

PN (ωT/2)

QN (ωT/2)
. (6.7)

The first few polynomials PN (x) and QN (x), x = ωT/2, are listed in table 2. They

gradually build up cot(x)/4x with increasing N , cf. figure 1, and one readily recovers the

continuum result (6.5) at N →∞.

The transition from (6.7) to (6.5) is of course well known since the classic works by

Feynman [20, 21]. The novel element here is that (6.7) was obtained as the probabilistic

average of a suitable (i.e. complex) observable over the positive distribution (4.6).

On the other hand, at finite N , the action (4.5) has one negative mode as discussed

in section 3. Nevertheless the inverse matrix exists meaning that the divergent integral

over the negative mode is defined by the analytic continuation. This analytic continuation

provides a regularization of the divergence and leads finally to the correct result. Moreover,

by applying the original trick [14] for a second time, and to the negative mode only, one

could construct the positive and normalizable distribution which would allow for statistical

calculation of the above and other averages.
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6.3 Charged particle in a constant magnetic field

This is again the textbook problem in elementary path integrals. It is also the simplest

example where Wick rotation does not render the positive Boltzmann factor. Since the

action is again quadratic, it should be possible to construct the corresponding positive

density PN (x, y) similarly to the previous examples. Here we shall follow the simpler

approach. It is known since the time of Landau that the problem can be reduced to that

of a shifted harmonic oscillator. To use this observation we need to establish the Landau

reduction on the level of Feynman propagators. Begin with the phase space path integral

KB(~xb, ~xa, T ) =

∫
D~p(t)D~x(t) exp

{
i

~

(
~p.~̇x−H(~p, ~x)

)}
. (6.8)

In the gauge used by Landau ( ~A = B(0, x, 0)) the Hamiltonian reads

H =
1

2m
p2
x +

1

2m

(
py −

eB

c
x

)2

,

and one readily obtains from (6.8), O = cpy/Be,

KB(~xb, ~xa;T ) =

∫
dO exp

{
i

~
mωO(yb − ya)

}
KHO
O (xb, xa;T ), (6.9)

whereKHO
O (xb, xa;T ) is the kernel for the one dimensional (in x) harmonic oscillator located

at x0 = O. The integral is again gaussian and is saturated by the classical position of the

center of oscillations

Ox =
1

2
(xa + xb) +

1

2
cot

ωT

2
(yb − ya).

Consequently the propagator reads

KB(~xb, ~xa;T ) ∼ exp

{
i

~
mωOx(yb − ya)

}
KHO
Ox (xb, xa;T ).

This (a) corresponds exactly to the Landau solution of the Schrödinger equation by sep-

aration of variables and (b) after a simple algebra reproduces the Feynman result in the

gauge employed by Landau

KLG ∼ exp

{
im

2~

(
ω

2
cot

ωT

2

(
(xb − xa)2 + (yb − ya)2

)
+ ω(xa + xb)(yb − ya)

)}
.

Now the reduction (6.9) can be used to extend our positive representation (4.6) also

to the case of an external magnetic field. Take as an example the average position of a

quantum particle at time 0 < t < T assuming that at t = 0 and t = T it was at ~xa and ~xb
respectively

〈~x〉B =

∫
d2xK(~xb, ~x;T − t)~xK(~x, ~xa; t)/K(~xb, ~xa;T ) = xclxa,xb,T (t). (6.10)
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Since the problem is gaussian the well known, gauge invariant, answer is just the classical

trajectory which satisfies above conditions. To see how our representation works in this

case one can use (6.9) to rewrite (6.10) as harmonic oscillator averages

〈x(t)〉B = 〈x(t)〉O=Ox , (6.11)

〈y(t)〉B = 〈y(t)〉O=Oy .

The second line is derived in yet another gauge where the magnetic field problem reduces

to the oscillator along the y direction with the analogous classical expression for the center

of y oscillations.

To complete the construction we only need to extend the positive density (4.6) such

that it describes a shifted harmonic oscillator. This is done by simply adding linear terms

to the action

SN (z, z̄)→ SN (z, z̄) +
∑
i

e∗zi + ez̄i (6.12)

or by just shifting z → zi − zc and z̄ → z̄i − z∗c . The new density PN remains positive and

normalizable as before.

Calculation of the appropriate averages in the new representation is now a simple

exercise and proceeds analogously to previous applications, e.g. (6.3). To avoid a confusion

with the primordial cartesian coordinates x and y in (6.11), we have renamed the real and

imaginary parts of their complex extensions zk, i.e. zk = uk + ivk, z̄k = uk − ivk. Since

the end-points are again fixed the averages are taken over 2N −4 “positive” variables ui, vi
and two complex z̄1 and z̄N . Compared to (6.1) there is an additional source term in the

action caused by the shift (6.12). The final result obtains after taking the scaling limit

(lim1) defined in (5.8) followed by the usual continuum limit.

〈x(t)〉 = lim
N→∞

lim
ν→0
〈zk〉 = lim

N→∞
lim
ν→0
〈uk + ivk〉PN (z̄1,u′s,v′s,z̄N ).

In figure 2 a sample of averages, after taking the first limit, is shown and compared with the

two corresponding classical trajectories, which differ by the choice of the ωT . Convergence

with N is satisfactory and not surprising. The main point, however, is that the averages are

calculated over the new, positive in the fully inclusive case, distribution and they converge

in the first limit to the standard Feynman discretization.

7 Summary and conclusions

Problems with complex solutions of the Langevin equations can be avoided by the direct

construction of pairs of corresponding complex and positive densities, without any reference

to complex stochastic processes or Fokker-Planck equations. This is done in sections 3

and 4 for the gaussian model and for its simple nonlinear modification.3 As a byproduct

the well known solution of the gaussian model was generalized, thereby providing a positive

representation for an arbitrary complex dispersion parameter. In particular it works also

for the purely imaginary slope.

3See [14] for some details.
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N= 5, 7, 9; ΩT�2Π = 0.4, 0.7

Figure 2. Two classical trajectories of a charged particle in a constant magnetic field (solid lines).

Points represent the first limit of averages (6.11) calculated with shifted positive density (4.6), (6.12)

for finer and finer discretizations.

In is also noteworthy that the method works successfully in a nonlinear case as shown

in section 4. Hence it is more general than could have been inferred from the gaussian

applications only.

In the sequel the gaussian solution is generalized to many variables and used to con-

struct the positive representation for gaussian path integrals directly in the Minkowski

time. For the infinite number of degrees of freedom existence of the continuum limit is

not trivial and is discussed in some details. In particular the couplings appearing in the

new representation have to be tuned in a well defined way to assure the existence of the

continuum limit.

The procedure is then successfully applied to the three textbook quantum mechanical

problems: a free particle, a harmonic oscillator and a particle in a constant, external

magnetic field. The latter is the simplest prototype of a Wilson loop and is known for its

lack of a positive weight after the Wick rotation. Consequently the present construction

provides the first positive representation for this important physical problem.

Many questions remain open, even in the context of above simple cases. For example,

how fast is the first limit achieved in practice, how this depends on N , is there a more

optimal way to combine the first limit with the continuum limit, etc.

Obviously one would like to generalize the present scheme to non-gaussian systems.

The nonlinear example solved in section 4 shows, that the new structure is not necessarily

restricted to the gaussian case. A simple generalizations of this model to higher degrees of
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nonlinearity can be constructed. An example is given by the action being a higher than

two (but even) power of the exponent of (2.1). At the same time we point out that the

general proofs of the positive representations exist in the literature [16, 18]. Hence the

above example may be thought of as providing the concrete realization of these general

principles.

Related with this is a mathematical problem to what extent can the sum rule (1.4), to-

gether with positivity and normalizability conditions, determine P from a complex weight

ρ. A possible strategy to attack this question might be based on the continuity and/or

deformation principle: for gaussian case the corresponding densities are known explicitly.

A small deformation of the complex density should result in a small change of the corre-

sponding P . It is conceivable that repeating this procedure many times would lead to the

final P representing the more general, also non-gaussian ρ.

Certainly all above questions should be studied more systematically and separately.

At the same time the very fact that the present formulation provided for the first time the

positive representation of Minkowski path integrals for some simple, yet concrete physical

systems4 is nontrivial and interesting.

Barring above, a host of further problems and applications suggests itself: generaliza-

tion to compact integrals, nonlinear and nonabelian couplings, fermionic integrals, as well

as extensions to the field theory, are only few examples. We are looking forward to study

some of them.

Finally, an intriguing analogy may be enjoyed. Basically the positivity is achieved by

duplicating the number of variables. In these variables, Minkowski weights become positive

as long as boundary conditions for Feynman paths are not specified, i.e. when only traces

of evolution operators (and/or their moments) are required. Moreover, path integrals in

above variables involve a new limiting transition, which may lead, via the saddle point

mechanism, to the dominance of a concrete class of trajectories. All this resembles to some

extent the celebrated history of hidden variables. At the same time we strongly emphasize

that none of the sacred principles of quantum mechanics is violated. The standard, complex

quantum amplitudes emerge upon suitable integrations over half of above variables with

the usual fixed boundary conditions. Therefore the quantum interference is not violated

in any way. Similarly, even though some couplings between new variables indeed have to

tend to infinity in the first limit, there are others which remain constant and are in fact

O(1/~), hence they drive the usual quantum fluctuations of a system.

Interestingly ref. [16] concludes with similar considerations, which however are more

hypothetical due to the lack of the continuum limit analysis. It will be very interesting to

study how the existence of the latter restricts some scenarios mentioned there.

It remains to be seen if the new structure of quantum amplitudes exposed in this article

turns out to be of general interest only, if it is more fundamental (in the sense of the closing

speculations of ref. [16]), or last but certainly not least, if it can be generalized to more

complicated systems.

4Notably including a motion of a particle in an external magnetic field — the problem which did not

have positive representation even after the Wick rotation.
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