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1 Introduction

Black holes are the simplest and yet the most mysterious objects of general relativity that

are still far from being fully understood. Research in the theory of black holes has brought

to light strong hints of a very deep and fundamental relationship between thermodynamics,

gravitation and quantum theory. Although, full understanding of quantum description of

black hole spacetime is still lacking, however a lot of progress has been made in understand-

ing its thermodynamic properties using semi-classical approach. It has been long known

that black holes are thermal objects, possessing entropy and temperature, and can undergo

phase transitions like the typical thermodynamical systems in condensed matter physics [1].

For example, Schwarzschild black holes in asymptotically flat space are thermodynamically

unstable, whereas asymptotically anti-de Sitter (AdS) ones can be in thermal equilibrium

with their own radiation.

The recent developments in string theory and in particular the gauge/gravity dual-

ity [2]–[4] have attracted a lot of interest in black hole solutions in AdS spaces. The idea

that the gauge/gravity duality can be potentially useful to understand strongly coupled

field theory at finite temperature have generated a new and interesting field of application

for these solutions. Various thermodynamic properties of AdS black holes have been worked

out and their interpretation in the dual boundary field theory side have been given. For

instance, Hawking-Page phase transition [1] from AdS-Schwarzschild black hole to thermal

AdS is shown to be dual to the confinement/deconfinement transition in the boundary field

theory [5]. The generalization to U(1) charged AdS black hole was done in [6, 7], where

a novel first order phase transition, analogous to the Van der Waals liquid-gas system,
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between small and large black holes was found in the fixed charge ensemble. This was then

extended into other charged AdS black holes, in higher dimensions, with higher curvature

gravity (see [8]–[16]).

Apart from being theoretically important, there are a number of reasons to study

charged black holes in AdS spaces. From the gauge/gravity duality point of view, per-

haps, the most important reason is that they provide a natural way to introduce chemical

potential in the boundary system, which then can be used to model realistic strongly cou-

pled condensed matter systems through holography. In this regard, it will be of great

importance from practical view point if more exact analytic charged black hole solutions

can be obtained. In particular, it might be more useful if charged black hole solutions

can be obtained with additional parameters, as these additional parameters might provide

non-trivial physics in the boundary theory and can enhance our understanding of strongly

coupled systems.

On the other hand, Quasinormal modes (QNMs) describe the perturbations in the

surrounding geometry of a black hole. These are the solution of linearized wave equation

about the black hole background, subject to the boundary condition that they are ingoing

at the horizon. Since the perturbation can fall into a black hole and decay, the QNM

frequencies are complex. The real and imaginary part of the QNM frequencies describe

oscillation and damping time of the perturbation respectively and are uniquely characterize

by the black hole parameters. These QNMs are, therefore, believed to be the characteristic

sounds of black holes and could be potentially detected in the gravitational wave detector

in the near future. For review on this topic see [17]–[18].

Because of its astrophysical interest, QNMs in the asymptotically flat and di-Sitter

black hole backgrounds have been extensively studied in the literature. However, with the

advent of gauge/gravity duality, the QNMs of AdS black holes have attracted a lot of at-

tention of late [19]. In [20], QNMs of the scalar field perturbation in the AdS-Schwarzschild

black hole background were calculated and physical interpretation of these QNMs, as the

timescale to approach the thermal equilibrium, in dual boundary field theory was given.

Similar analysis were then performed in RN-AdS background [21]–[24] as well as in higher

derivative AdS black hole background [25].

In the light of above discussion, it is a natural question to ask whether the dynamical

perturbation in the black hole background can probe its different thermal phases. Indeed,

appealing investigations have recently started concerning probing of black hole phase tran-

sition using QNMs. This question was first addressed in [26], where they found that the

QNMs of electromagnetic perturbation show distinct behavior in the MTZ black hole with

scalar hair phase [27] compared to the vacuum topological black hole phase. Signature of

this phase transition in the QNMs was further established in [28], where QNMs of scalar

perturbation were studied. QNMs of electromagnetic and gravitational perturbations in

the backgrounds of charged topological/AdS black holes were studied in [29], which again

showed contrasting behavior in different black hole phases. See [30, 31] for similar discus-

sions on BTZ black hole phase transitions and [32, 33] for discussions on superconductor-

metal/insulator phase transitions. In [34], Scalar QNMs in RN-AdS black hole background,

near the first order transition line, were studied and found that QNMs show distinct pat-
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tern in small and large black hole phases — both for the isobaric and isothermal phase

transition processes. They clearly provided some evidence of the black hole phase tran-

sition in the QNMs behavior. However, there still remains few subtle issues in probing

“small-large” black hole phase transition through the scalar QNMs near the second order

critical point, which were not discussed in [34] and will be pointed out later in the text.

All the above mentioned work probing black hole phase transition through QNMs

concerned with Einstein gravity with only two derivative terms in the action. However,

it is also well known that higher derivative interaction terms can arise in the quantum

gravity corrections to classical general relativity or in the low energy effective action of the

string theory. In holography, higher derivative interaction terms are known to produce non-

trivial results in the bulk as well as in the field theory. For example, a non-trivial relation

between the causality and viscosity bound for Gauss-Bonnet gravity was found in [35],

and in [36, 37] it was shown that ratio of the energy gap to the critical temperature in

holographic superconductors can be changed substantially by inclusion of higher derivative

terms. Another important reason to consider higher derivative terms is that they provide

extra tuneable coupling parameters in the system that might modify the physics non-

trivially. Therefore, one can naturally think of studying black hole thermodynamics and

quasinormal modes, and its implications on the dual boundary theory, in the presence of

higher derivative interaction terms. In this work we will undertake such an analysis.

We will consider a class of four derivative interaction terms, over and above the two

derivative Einstein-Maxwell terms, that couple U(1) gauge field to spacetime curvature.

In general a large number of such terms can be consistently added, however, the action

can be considerably simplified by choosing particular linear combination of the coupling

constants [38, 39]. To be more precise here we will consider four derivative Weyl coupling

correction, see the next section for more detail, to Einstein-Maxwell action. In recent

years, the effects of this term have been thoroughly studied in literature. For example,

corrections to the diffusion constant and conductivity due to Weyl coupling constant γ

have been considered in [40, 41] and its effects in the process of holographic thermalization

were studied in [42].1

The aim of this work is fourfold. The first will be to find charged AdS black hole

solution with Weyl correction in general D spacetime dimensions. Since exact solution

is difficult to find, here we will try to find the solution perturbatively by treating the

Weyl coupling constant γ as a small perturbative parameter. In four dimensions, linear

order solution in γ was found in [43] and main purpose here is to find the solution for all

spacetime dimensions. Our second aim is to find the black hole solution in higher order in

γ and show that the corrections due to higher order are small, and that the linear order

analysis is trustable.2 Here, we will explicitly calculate γ2 corrected black hole solution.

Our third aim here is to calculate various thermodynamic variables and show that the first

law of black hole thermodynamics is satisfied in Weyl corrected black holes in all spacetime

dimensions, not only at the leading order but also at the subleading order in γ. We will

1See also [44]–[47], for the discussion of Weyl coupling on other holographic studies.
2To our knowledge only the leading order corrections due to Weyl coupling have been obtained in the

literature and this is the first time that calculation at the nonleading order is shown.
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then study its thermodynamical properties in fixed charged ensemble and will show the

existence of familiar analogous Van der Waals like phase transition in it i.e., first order

phase transition line terminating at the second order critical point. And finally our fourth

aim here is to study the quasinormal modes of the massless scalar field perturbation in

Weyl corrected black hole backgrounds. We will show that, here too, QNMs can be a good

measure to probe the black hole phase transition. However, certain subtleties near the

second order phase transition point will also be pointed out.

The paper is organized as follows: in section 2, we introduce the action and construct

the black hole solution up to linear order in γ. The black hole solution at next to leading

order is shown in appendix A. In section 3, we analyze the black hole thermodynamics

in detail and explain the resemblance with Van der Waals-Maxwell liquid-gas system. In

section 4, we numerically compute the quasinormal modes of the massless scalar field

perturbation and relate to the black hole phase transition of section 3. We conclude by

summarizing our main results in section 5.

2 Black hole solution with Weyl correction

In this section, we first introduce the action and then construct a black hole solution in

general D dimensions by solving Einstein-Maxwell equations in the presence of negative

cosmological constant. We consider D dimensional action in which gravity is coupled to

U(1) gauge field by two and four derivative interaction terms in the following way:

S =
1

16πGD

∫
dDx
√
−g

[
R− 2Λ− 1

4
FµνFµν + L2(a1RµνρλFµνFρλ

+a2RµνFµρF
νρ + a3RFµνF

µν)

]
, (2.1)

Here, Λ is the negative cosmological constant related to AdS length scale L as Λ = −(D−
1)(D−2)/2L2, Fµν is the field strength tensor of U(1) gauge field A and GD is the Newton

constant in D dimension. a1, a2 and a3 are the dimensionless coupling constants of four

derivative interaction terms between gauge field and spacetime curvature tensor.

The above action can be greatly simplified if we consider a certain linear combination

of the four derivative coupling constants. Following [38, 39] and as elaborated in [42], we

can write the action by choosing a specific combination of a1, a2 and a3 as

S =
1

16πGD

∫
dDx
√
−g

[
R+

(D − 1)(D − 2)

L2
− 1

4
FµνFµν + γL2CµνρλFµνFρλ

]
, (2.2)

where, γ represents the effective coupling for four derivative interaction terms and Cµνρλ

is the Weyl tensor which in D spacetime dimensions is given by,

Cµνρλ = Rµνρλ +
1

(D − 2)
(gµλRρν + gνρRµλ − gµρRλν − gνλRρµ)

+
1

(D − 1)(D − 2)
(gµρgνλ − gµλgρν)R. (2.3)

In this paper we will refer γ as the ‘Weyl coupling’.
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Now by varying the action, we find the equation of motion (EOM) for the gauge field as

∇µ(Fµλ − 4γL2CµνρλFνρ) = 0. (2.4)

On the other hand, the Einstein equation reads

Rµν −
1

2
gµνR−

(D − 1)(D − 2)

2L2
gµν − Tµν = 0 , (2.5)

Where, the energy-momentum tensor Tµν is given by,

Tµν =
1

2

(
gαβFµαFνβ −

1

4
gµνF

2

)
+ γL2

[
1

2
gµνCδσρλF

δσF ρλ − 3gδµRνσρλF
δσF ρλ

−∇β∇ρ(FµβFν ρ)−∇ρ∇β(Fµ
βFν

ρ) +
2

D − 2

(
∇2(Fµ

ρFνρ) + gµν∇σ∇δ(F δρF σρ)

−∇ρ∇µ(FνβF
ρβ)−∇ρ∇ν(FµβF

ρβ)

)
+

4

D − 2

(
RµρF

ρβFνβ+RνρF
ρβFµβ+RρβFµ

βFν
ρ

)
− 2

(D − 1)(D − 2)

(
RµνF

2 + 2RFµρFν
ρ + gµν∇2F 2 − 1

2
(∇µ∇ν +∇ν∇µ)F 2

)
(2.6)

In the above equation, notations F 2 = FαβF
αβ and ∇2 = ∇ρ∇ρ have been used.

Now, we will construct a black hole solution in D dimensions by solving eqs. (2.4)

and (2.5) simultaneously. A solution in four spacetime dimensions has been con-

structed [43], however, here we will construct a black hole solution in general D dimension.

We will concentrate on the horizon with spherical topology, as the horizon with planner

topology can be straightforwardly generalized. In order to solve eqs. (2.4) and (2.5), we

consider the following ansatz for the gauge field and metric:

A = φ(r)dt . (2.7)

ds2 = −f(r)e−2χ(r)dt2 +
1

f(r)
dr2 + r2dΩ2

D−2 , (2.8)

where, dΩ2
D−2 is the metric on D − 2 dimensional sphere.

The presence of γ in Einstein and Maxwell equations make them extremely difficult

to solve exactly. Hence, we will try to solve them perturbatively in linear order in γ.

Form a string theory perspective, these higher derivative interaction terms are expected to

arise as quantum corrections to two derivative action, and therefore our assumption seems

reasonable. In order to further justify the perturbative analysis, in appendix A, we will

solve the Einstein and Maxwell equations in next to leading order in γ. There we will

explicitly show that, for small values of γ, the γ2 corrections are small and that the leading

order analysis is trustworthy.

With this assumption in mind, we now proceed to find gauge field and metric in leading

order in γ. For this purpose, we consider the following ansatz for φ(r), χ(r) and f(r)

φ(r) = φ0(r) + γφ1(r),

χ(r) = χ0(r) + γχ1(r)
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f(r) = f0(r)
(
1 + γF1(r)

)
(2.9)

where φ0(r), χ0(r) and f0(r) are the zeroth order solutions representing a Reissner-

Nordström black hole solution in AdS space with,

φ0(r) =

√
2(D − 2)

(D − 3)
q

(
1

rD−3
h

− 1

rD−3

)
,

χ0(r) = 0 ,

f0(r) = 1− m

rD−3
+

q2

r2D−6
+
r2

L2
, (2.10)

here rh is the radius of the event horizon and m is an integration constant related to the

ADM mass (M) of the black hole, to be examined in detail in the next section. The other

integration constant q is related to the total charge Q of the black hole.

In eq. (2.9): φ1(r), χ1(r) and F1(r) are the linear order corrections. Expressions for

these quantities can be obtained by solving eqs. (2.4) and (2.5) while keeping the terms up

to linear order in γ. We find the solution of these correction terms as,

χ1(r) = k2 − 2
(D − 3)3

(D − 1)

L2q2

r2D−4
(2.11)

φ1(r) =
2(7D2 − 30D + 31)

√
2(D − 2)(D − 3)3

(3D − 7)(D − 1)

L2q3

r3D−7

−2
√

2(D − 2)(D − 3)3
L2mq

r2D−4
−

√
2(D − 2)

(D − 3)

k4q

rD−3
+ k3 (2.12)

F1(r) =
1

f0(r)

[
−8(D − 2)(2D − 5)(D − 3)2

(3D − 7)(D − 1)

L2q4

r4D−10
− 8(D − 3)3

(D − 1)

L2q2

r2D−4

+
2(3D − 7)(D − 3)2

(D − 1)

L2mq2

r3D−7
− 8(D − 2)(D − 3)2

(D − 1)

q2

r2D−6

+
2k4q

2

r2D−6
+
k1r

D−1
h

L2rD−3
+

2q2k2

r2D−6

]
(2.13)

where k1, k2, k3 and k4 are dimensionless integration constants. These constants can

be determined by imposing certain constrains [38]. For example, near the asymptotic

boundary r →∞, the metric behave as

ds2|r→∞ = −(fe−2χ)∞dt
2 + r2(dθ2 + sin2 θ dφ2). (2.14)

where, (fe−2χ)∞ = limr→∞ f(r)e−2χ(r). The metric in eq. (2.14) represents the background

metric where the dual boundary theory lives. In order to fix the speed of light to unity in

the boundary theory, we demand that (fe−2χ)∞ = r2

L2 , which in turn gives k2 = 0.

Similarly, in order to determine k4 we impose the constraint that the charge density

q remains unchanged. Note that, we can recast the Maxwell equation (2.4) in the form

∇µXµλ = 0, where Xµλ is an antisymmetric tensor. Hence, the dual of (∗X)θ1...θD−2
, where

θ1 . . . θD−2 are the coordinates of D− 2 sphere, is a constant and it is convenient to choose

– 6 –
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this constant to be the fixed charge density q, i.e., (∗X)θ1...θD−2
= q. Since the quantity

(∗X)θ1...θD−2
does not depend on radial coordinate r, we demand

lim
r→∞

(∗X)θ1...θD−2
= q. (2.15)

On the other hand, computation of this quantity in the r →∞ limit gives,

lim
r→∞

(∗X)θ1...θD−2
= lim

r→∞

[
rD−2ωd−2e

χ(r)
(
Frt − 8γL2Crt

rtFrt
)]

=
(
1 + γk4

)
q. (2.16)

where ωD−2 is the volume of the unit (D − 2) sphere. A comparison of equations (2.15)

and (2.16) yields, k4 = 0.

The constant k3 can be determined by demanding φ(r) to be vanished at the horizon.

This is imposed to have a well defined one-form for the gauge field. After imposing

φ(rh) = 0, we get

k3 = −
2(7D2 − 30D + 31)

√
2(D − 2)(D − 3)3

(3D − 7)(D − 1)

L2q3

r3D−7
h

+2
√

2(D − 2)(D − 3)3
L2mq

r2d−4
h

(2.17)

Similarly, the remaining constant k1 can be determined by fixing the position of the

event horizon, i.e. f0(r)F1(r)|r=rh = 0. We get

k1 =
L2

r2
h

[
8(D − 2)(2D − 5)(D − 3)2

(3D − 7)(D − 1)

L2q2

r4D−10
h

+
8(D − 3)3

(D − 1)

L2q2

r2D−4
h

−2(3D − 7)(D − 3)2

(D − 1)

L2mq2

r3D−7
h

+
8(D − 2)(D − 3)2

(D − 1)

q2

r2D−6
h

]
(2.18)

Now we have determined all the constants. Below we write down the final expressions for

φ1(r), χ1(r) and F1(r) for completeness,

χ1(r) = −2
(D − 3)3

(D − 1)

L2q2

r2D−4
(2.19)

φ1(r) = 2
√

2(D − 2)(D − 3)3

[
(7D2 − 30D + 31)

(3D − 7)(D − 1)

(
L2q3

r3D−7
− L2q3

r3D−7
h

)
−L2mq

(
1

r2D−4
− 1

r2D−4
h

)]
(2.20)

F1(r) =
(D − 3)2

(3D − 7)(D − 1)f0(r)

[
−8(D − 2)(2D − 5)L2q4

r4D−10
+

2(3D − 7)2L2mq2

r3D−7

−8(D − 3)(3D − 7)L2q2

r2D−4
− 8(D − 2)(3D − 7)q2

r2D−6
+

2(5D2 − 22D + 25)m

rD−3

−2(D − 3)2L2m2

rD−3rD−1
h

−
8(2D − 5)(D − 3)rD−3

h

rD−3
−

8(D2 − 7D + 11)L2rD−5
h

rD−3
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+
2(5D2 − 34D + 53)L2m

rD−3r2
h

−
8(D − 2)2rD−1

h

L2rD−3

]
(2.21)

The Hawking temperature of the black hole is given by,

T =
κ

2π
=

(
f0(r)(1 + γF1(r))

)′
e−γχ1(r)

4π

∣∣∣
r=rh

(2.22)

where κ is the surface gravity.

Before proceeding, a word about the next to leading order corrections to metric and

gauge field is in order. Above we have explicitly shown how to calculate linear order correc-

tions to metric and gauge field, due to Weyl coupling, perturbatively by solving Einstein and

Maxwell equations at linear order in γ. This perturbative analysis can in principle be gen-

eralized to calculate higher order corrections. However, this will amount to solve Einstein

and Maxwell equations at higher order in γ which is a daunting task. Nevertheless, using

the perturbative analysis we are able to solve them at next to leading order. In appendix

A, we have explicitly calculated metric and gauge field corrections at order γ2. There,

we have shown the calculation only for four dimensions but our analysis can be straight-

forwardly extended to higher dimensions. In subsequent sections, when we will discuss

black hole thermodynamics and QNMs, we will consider only those values of γ for which

γ2 corrections are small and do not change the leading order analysis significantly. Small

corrections at γ2 order will further justify and substantiate our results at the leading order.

3 Black hole thermodynamics with Weyl correction

We now proceed to study thermodynamics of the linear order D dimensional Weyl corrected

black hole geometry obtained in the last section. For this purpose, we first need to construct

the on-shell action. A straightforward calculation in D dimensions yields,

Son−shell =
1

16πGD

∫
dDx
√
−g
[
FµνF

µν

2(D − 2)
+

2(D − 1)

L2
−

4γCµνρλF
µνF ρλ

(D − 2)

]
(3.1)

Son−shell
r→∞−−−→ βωD−2

8πGD

(
rD−1 − q2

rD−3
h

− rD−1
h

)
+
βωD−2(D − 3)2γq2

4πGD

(
1

rD−3
h

− (D − 3)2q2

(3D − 7)(D − 1)r3D−7
h

)
(3.2)

Here, β = 1
T is the inverse temperature and we have set AdS radius L = 1. We will use

this unit throughout the paper. It can be seen from the 1st term of eq. (3.2) that the

on-shell action is diverging in the r →∞ limit. In order to remove this divergent part we

add Gibbons-Hawking (GW) and counter term(CT) at the boundary [48].3 The standard

forms of these quantities are

SGH = − 1

8πGD

∫
dD−1x

√
−σΘ (3.3)

3In [49], it was shown that the terms in eqs. (3.3) and (3.4) can also be derived from the addition of a

single topological invariant term (Euler term) for any even dimension.
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SCT =
1

16πGD

∫
dD−1x

√
−σ
[
2(D − 2) +

RD−1

D − 3

+
1

(D − 5)(D − 3)2

(
RabRab −

(D − 1)R2
D−1

4(D − 2)

)
+ . . .

]
(3.4)

Here, σ is the induced metric on the boundary and Θ is the trace of the extrinsic curvature.

RD−1 is the Ricci scalar constructed from D − 1 dimensional boundary metric and Rab
is the corresponding Ricci Tensor. With these additional terms the total action STotal =

Son−shell + SGH + SCT is now divergence-less, which is given by,

STotal =
ωD−2β

16πGD

(
rD−3
h − rD−1

h − q2

rD−3
h

)
+
ωD−2βγq

2(D − 3)2

8πGD

(
1

rD−3
h

− D − 5

(D − 1)rD−1
h

− q2(D − 3)2

(3D − 7)(D − 1)r3D−7
h

)
(3.5)

For odd number of dimensions there also appears a constant Casimir energy term which

we have neglected here, as this term is immaterial for the discussion of black hole thermo-

dynamics. We will identify STotal times the temperature, using the gauge/gravity duality,

as the free energy of the system.

3.1 First law of Weyl corrected black hole thermodynamics

In this section, we will establish the first law of black hole thermodynamics for linear

order Weyl corrected black hole geometry constructed in the previous section. In [43], we

had verified first law in four dimensions and the main aim of this section is to show that

this law is satisfied in all dimensions. In appendix A, we will go a step further and show

that the first law of thermodynamics is also satisfied in next to leading order. In order

to establish the first law, we first need to calculate the mass of the black hole. For this

purpose, we use Ashtekar-Magnon-Das (AMD) prescription4 which gives a mechanism to

calculate conserved quantity C[K] in an asymptotically AdS spacetime associated with a

Killing field K as5

C[K] =
1

8π(D − 3)GD

∮
ε̃µνK

νdΣ̃µ (3.6)

Here Kν is the conformal killing vector field, ε̃µν = ΩD−3ñρñσC̃µρνσ, C̃µρνσ is the Weyl

tensor constructed from ˜ds2 = Ω2ds2 with Ω = 1/r and ñρ is the unit normal vector. dΣ̃µ

is the D − 2 dimensional area element of the transverse section of the AdS boundary. For

a timelike killing vector, we get the following form for the conserved mass

C[K] = M =
ωD−2

8π(D − 3)GD
Ω3−D(ñΩ)2C̃t ΩtΩ (3.7)

4For detail analysis, we refer readers to [50].
5For higher derivative theories, one should instead use the formalism of [51] to calculate conserved

charges in asymptotically AdS spaces. However, in appendix B, we will show that these two formalism

coincide in Weyl corrected geometries.
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substituting the form of C̃t ΩtΩ and converting back to r = 1/Ω coordinate, we get the

following form for the black hole mass M,

M = − ωD−2

8πGD

rD−1

(D − 1)

(
grrg

′′
tt

2gtt
− grrg

′2
tt

4g2
tt

+
g′rrg

′
tt

4gtt
− grrg

′
tt

2rgtt
− g′rr

2r
− (1− grr)

r2

)
(3.8)

where

gtt = f0(r)(1 + γF1(r))e−2γχ1(r), grr = f0(r)(1 + γF1(r))

and ′ denotes the derivative with respect to r. Now, substituting the forms of f0(r), F1(r)

and χ1(r), we get

M =
(D − 2)ωD−2

16πGD

(
q2

rD−3
h

+ rD−3
h + rD−1

h

)
(3.9)

+
ωD−2γq

2(D − 2)(D − 3)2

8πGD

(
(5−D)

(D − 1)rD−1
h

− 1

rD−3
h

+
q2(D − 3)2

(3D − 7)(D − 1)r3D−7
h

)
From eq. (3.9), we note that the expression of M in γ = 0 limit reduces to that of stan-

dard ADM mass of RN-AdS black hole in D dimensions. Now, we proceed to calculate

the entropy of the black hole. For higher derivative gravity, one need to calculate Wald

entropy [52] which is given as

SWald = −2π

∫
dD−2x

√
h

∂L
∂Rµνρλ

εµνερλ (3.10)

Here h is the determinant of the matrix of D − 2 dimensional killing horizon, L is the

Lagrangian and εµν is the binormal killing vector normalized by εµνεµν = −2. For our

system (eq. (2.2)), we get

SWald = − 1

8GD

∫
dD−2x

√
h

[(
1 +

2γFµνF
µν

(D − 1)(D − 2)

)
gµρgνλεµνερλ

+γFµνF ρλεµνερλ +
4γ

(D − 2)
gµνF σρF λ

ρ εσµελν

]
=
ωD−2r

D−2
h

4GD
− ωD−2γq

2

rD−2
h GD

(D − 2)(D − 3)2

(D − 1)
(3.11)

For completeness, let us also note the expressions of conserved charge (Q) and potential

(Φ)

Q =

√
(D − 2)(D − 3)

2

qωD−2

8πGD

Φ =

√
2(D − 2)

(D − 3)

q

rD−3
h

+ 2γ
√

2(D − 2)(D − 3)3

[
L2mq

r2D−4
h

−(7D2 − 30D + 31)

(3D − 7)(D − 1)

L2q3

r3D−7
h

]
(3.12)

Finally, we get the Gibbs free energy as,

G = M − TSWald −QΦ =
ωD−2

16πGD

(
rD−3
h − rD−1

h − q2

rD−3
h

)
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Figure 1. β as a function of horizon radius for γ = 0.001 in four dimensions. Red, green, blue,

brown and cyan curves correspond to 1
10 , 1

9 , 1
8 , 1

7 and 1
6 respectively.

+
ωD−2γq

2(D − 3)2

8πGD

(
1

rD−3
h

− (D − 5)

(D − 1)rD−1
h

− q2(D − 3)2

(3D − 7)(D − 1)r3D−7
h

)
(3.13)

which is nothing but G = STotal/β. This essentially implies that the first law black hole

thermodynamics is satisfied in all dimensions for the linear order Weyl corrected geometry.

3.2 Thermodynamics

After establishing the 1st law of black hole thermodynamics for Weyl corrected black

hole geometry now, in this section, we proceed to discuss its thermodynamic properties.

Here, we will mostly focus on the fixed charged ensemble, as this is the ensemble which

exhibits many interesting features. Similar study for the fixed potential ensemble can be

straightforwardly generalized, but we will not discuss it here.

Let us first note the expression of Helmholtz free energy at the leading order in γ:

F = G+QΦ =
ωD−2

16πGD

(
rD−3
h − rD−1

h +
(2D − 5)q2

rD−3
h

)
+

(
(2D − 3)

rD−3
h

+
(2D2 − 7D + 9)

(D − 1)rD−1
h

− (D − 3)(8D2 − 31D + 29)q2

(3D − 7)(D − 1)r3D−7
h

)
ωD−2γq

2(D − 3)2

8πGD
(3.14)

Below, for computational purposes, we set ωD−2 = 1.

Based on eqs. (2.22) and (3.14), we will discuss the phase structure of Weyl corrected

black hole geometries. Let us first consider the thermodynamics in D = 4 dimension. The

influence of charge on the phase structure for a fixed γ = 0.001 is shown in figure 1, where

variation of inverse Hawking temperature with respect to horizon radius is plotted. Here

red, green, blue, brown and cyan curves correspond to q = 1
10 , 1

9 , 1
8 , 1

7 and 1
6 respectively.

Apparently, the phase structure is similar to that of the RN-AdS black hole. For small value

of q, say q = 1/10, there exist three black hole branches. Two of these branches, which occur

at small and large black hole radii, have negative slope and are stable. Where as the other

branch, which has positive slope, corresponds to intermediate black hole and is unstable.

– 11 –
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Figure 2. Free energy as a function of temperature for γ = 0.001 in four dimensions. Red, green,

blue, brown and cyan curves correspond to 1
10 , 1

9 , 1
8 , 1

7 and 1
6 respectively.

The presence of two stable black hole branches which are connected by a unstable

intermediate branch suggests a possible first order phase transition from a small black hole

to a large black hole as we increase the temperature. This is indeed the case as can be seen

from figure 2, where free energy as a function of temperature is plotted. Here, we have

used the same coding as in figure 1. The swallow tail like behavior of the free energy, which

is a characteristic feature of first order phase transition, is apparent for q = 1/10. A black

vertical line, whose upper point terminates at the kink of the swallow tail, indicates the

critical temperature (T∗) where free energy of the large black hole becomes smaller than

the small black hole. For γ = 0.001 and q = 1/10, we find T∗ ' 0.283.

However, the scenario changes as we increase the values of q. With increase in q, the

structure of swallow tail start decreasing in size and completely disappear above a certain

critical charge qc. At qc, the small and the large black hole merge into one and forms a

single black hole which is stable at all the temperatures. This can be seen from cyan curve

of figures 1 and 2 where q = 1/6 is considered. We see that black holes endowed with

different q′s have different free energy behavior. For small q, there is an unstable black

hole interpolating between stable small and stable large black hole whereas for larger q′s

this situation is absent.

Also, We find that the specific heat at constant charge defined by

Cq = T (∂SWald/∂T )

diverges at qc. The divergence of Cq implies that the phase transition at qc is of second

order. Therefore, our whole analysis indicate a line of first order phase transition between

black holes of different sizes which terminates at the second order critical point. This is

analogous to the classic Van der Waals liquid-gas phase transition in black holes which

was first discovered in [6]. In order to find the critical exponent of Cq, we perform a series

expansion of T (SWald) at q = qc. After a little bit of algebra, we find that

Cq(T ) = T

(
∂SWald

∂T

)
∝ (T − Tc)−

2
3 . (3.15)
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Numerical results for qc at order γ

γ D=4 D=5 D=6 D=7

0 0.1667 0.0861 0.0571 0.0424

0.0001 0.1663 0.0858 0.0568 0.0421

0.001 0.1628 0.0835 0.0546 0.0399

0.002 0.1592 0.0811 0.0524 0.0377

0.003 0.1559 0.0789 0.0505 0.0359

0.004 0.1528 0.0769 0.0487 0.0343

0.005 0.1498 0.0750 0.0472 0.0329

Numerical results for qc at order γ2

γ D=4 D=5 D=6 D=7

0 0.1667 0.0861 0.0571 0.0424

0.0001 0.1663 0.0858 0.0568 0.0421

0.001 0.1626 0.0833 0.0543 0.0395

0.002 0.1585 0.0806 0.0512 0.0363

0.003 0.1544 0.0778 0.0485 0.0333

0.004 0.1503 0.0749 0.0455 0.0306

0.005 0.1463 0.0721 0.0428 0.0279

Table 1. Numerical results for qc for different values of the Weyl coupling γ and spacetime dimen-

sion D. Top and bottom part of the table show results for qc at γ and γ2 order respectively.

which shows that the critical exponent of the specific heat in our Weyl corrected black hole

geometry is same as in RN-AdS black hole case.

Now a word regarding the dependence of qc on γ is in order. In order to find qc, we note

that qc defines an inflection point in the β − rh plane. Therefore, at this point, following

two conditions must be satisfied simultaneously:(
∂β

∂rh

)
q=qc,rh=rch

= 0,

(
∂2β

∂r2
h

)
q=qc,rh=rch

= 0 (3.16)

By solving eq. (3.16), we can find qc and critical horizon radius rch. However, due to

complicated nature of our black hole geometry, we find it hard to get the analytical result.

Nevertheless, it is straightforward to solve them numerically. In table 1, we have shown

numerical results for qc for different values of γ. We find that higher value of γ reduces

the magnitude of qc. It shows that higher value of γ makes the line of first order phase

transition between black holes of different sizes shorter. Of course in the γ → 0 limit, we

get back qc for RN-AdS black hole.

In order to justify and further validate our result for qc at linear order in γ, it will be use-

ful if we can find change in qc when the next to leading order corrections due to γ are taken

– 13 –
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Figure 3. β as a function of horizon radius for q = 0.15 in four dimensions. Red, green, blue and

brown curves correspond to γ = 0.001, 0.002, 0.003 and 0.005 respectively.
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Figure 4. Free energy as a function of temperature for q = 0.15 in four dimensions. Red, green,

blue and brown curves correspond to γ = 0.001, 0.002, 0.003 and 0.005 respectively.

into account. In table 1, we have provided results for qc at γ2 order. We see that deviation

of qc from leading order is at third decimal or, at most, is at second decimal place. These

small corrections at γ2 order further justify and substantiate our perturbative analysis at

the leading order. In the next section, we will also show that even the QNMs of scalar field

perturbation do not change significantly when γ2 order corrections are taken into account.

To complete our analysis for four dimensions, in figures 3 and 4, we have shown β vs

rh and F vs T plots for fixed q = 0.15. Here red, green, blue and cyan curves correspond

to γ=0.001, 0.002, 0.003 and 0.005 respectively. For small value of γ, say γ = 0.002, we

again find first order like phase transition which disappears at higher values. This is again

consistent with our earlier findings and also suggests that for a fixed q, γ can equivalently

control the nature of the black hole phase transition.

Having thoroughly studied the phase structure of Weyl corrected black hole geometry

in four dimensions, we now proceed to discuss its properties in higher dimensions. This is
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Figure 5. Free energy as a function of temperature for q = 1/20 and γ = 0.001 in various

dimensions. Red, green, blue and brown curves correspond to D = 4, 5, 6 and 7 respectively.
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Figure 6. Free energy as a function of temperature for q = 1/20 and γ = 0.004 in various

dimensions. Red, green, blue and brown curves correspond to D = 4, 5, 6 and 7 respectively.

shown in figures 5 and 6, where free energy as a function of temperature, for two different

values of γ, is shown for higher spacetime dimensions. Here we choose q = 1/20 with red,

green, blue and brown curves correspond to D=4, 5, 6 and 7 respectively.

We find that the overall phase structure of Weyl corrected black hole in higher dimen-

sions is identical to that of the four dimension. We again find qc below which first order

phase transition from small to large black hole takes place as we increase the temperature.

However, the magnitude of qc decreases as we increase the number of spacetime dimensions.

This can be see from figure 5 where for D = 7 we do not find swallow tail structure in

free energy, as opposed to D < 7. As in four dimensions, here again, qc decreases with γ.

An overall dependence of qc on the number of spacetime dimensions is shown in table 1.

Moreover, in table 1, we have also presented results with γ2 corrections. We again find

only small change in the magnitude of qc when γ2 order corrections are considered.
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4 Scalar perturbation, QNMs and phase transition

In this section, we will study the dynamics of massless scalar field perturbation in the

background geometry of Weyl corrected black hole in various dimensions. We will work

in the probe limit, where backreaction of scalar field on the background geometry will be

neglected. The main aim of this section is to see whether the signature of thermodynamical

phase transition of Weyl corrected black hole, explored in the previous section, can be

reflected in the quasinormal modes of massless scalar field.

We start with the Klein-Gordon equation

∂µ

[√
−g∂µΨ

]
= 0

writing Ψ = ψ(r)e−iωtY [θ, φ] and using eq. (2.8), we get

ψ′′(r) + ψ′(r)

[
D − 2

r
+
f ′(r)

f(r)
− χ′(r)

]
+

(
ω2e2χ

f(r)2
− l(l +D − 3)

r2f(r)

)
ψ(r) = 0 (4.1)

We need to solve eq. (4.1) with proper boundary conditions. One natural choice is to

impose ingoing wave boundary condition at the horizon. This is mathematically equivalent

to requiring ψ ∝ (r − rh)−iω/4πT . In order to impose this boundary condition, we use

ψ(r) = ψ(r)e
−iω

∫
dr

f(r)e−χ(r)

where, one can easily show that e
−iω

∫
dr

f(r)e−χ(r) approaches (r−rh)−iω/4πT near the horizon.

We can now rewrite eq. (4.1) as

ψ′′(r) + ψ′(r)

[
D − 2

r
+
f ′(r)

f(r)
− 2iωeχ

f(r)
− χ′(r)

]
−
(

(D − 2)iωeχ

rf(r)

+
l(l +D − 3)

r2f(r)

)
ψ(r) = 0 (4.2)

We impose second boundary condition at the asymptotic boundary r → ∞, where we

demand ψ(r → ∞) = 0. With these boundary conditions, we numerically solve eq. (4.2)

and find frequencies of the quasinormal modes. For numerical calculations we use the

shooting method.6

In figure 7, we have shown the variation of real and imaginary part of the quasinormal

frequencies, with γ = 0.001 and l = 0, for different temperatures in the small black hole

phase.7 Here red, green and blue curves correspond to q= 1/10, 1/9 and 1/8 respectively.

The black arrow indicates the direction of increase of black hole temperature (or rh) and

points S1 indicate temperature just below the critical temperature T∗. We see that with

increase in temperature the Re(ω) decreases, whereas the absolute value of Im(ω) increases.

This implies that slope in the Re(ω)-Im(ω) plane is negative.

6A Mathematica code is available upon request.
7Quasinormal modes for various perturbations in small Schwarzschild Anti-de Sitter black hole were

calculated in [53, 54].
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Figure 7. QNMs in the small black hole phase. Here γ = 0.001 and red, green and blue curves

correspond to q=1/10, 1/9 and 1/8 respectively. The black arrow indicates the direction of increase

of black hole horizon radius.
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Figure 8. QNMs in the large black hole phase. here γ = 0.001 and red, green and blue curves

correspond to q=1/10, 1/9 and 1/8 respectively. The black arrow indicates the direction of increase

of black hole horizon radius.

However, the nature of quasinormal modes changes completely in the large black hole

phase. This is shown in figure 8, where slope in the Re(ω)-Im(ω) plane is now positive.

Here, same color coding as in figure 7 have been used and points L1 indicate temperature

just above T∗. We see that here, as contrast to small black hole phase, with increase in

temperature both Re(ω) and absolute value of Im(ω) increases. It shows that dynamical

perturbation of massless scalar field around black hole horizon does behave differently in

different black hole phases, and therefore, corresponding quasinormal frequencies can be a

good measure to probe different phases of the black hole.

In table 2, we have shown numerical values of the quasinormal frequencies. The left

part, the middle part and right part of the table correspond to q = 1/10, q = 1/9 and

q = 1/8 respectively. In all cases, the lower part below the horizontal line is for large
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q = 1/10

T rh ω

0.233 0.135 2.38486-0.34667I

0.256 0.140 2.38092-0.35837I

0.273 0.145 2.38049-0.35982I

0.278 0.146 2.38007-0.36130I

0.281 0.147 2.37964-0.36282I

0.284 0.761 2.54150-2.03209I

0.285 0.765 2.54515-2.04292I

0.289 0.800 2.57799-2.13761I

0.302 0.900 2.67987-2.40712I

0.312 1.000 2.79214-2.67552I

q = 1/9

T rh ω

0.227 0.150 2.34385-0.41094I

0.245 0.155 2.34215-0.41723I

0.260 0.160 2.34056-0.42416I

0.271 0.165 2.33908-0.43175I

0.276 0.167 2.33852-0.43497I

0.280 0.720 2.50248-1.92299I

0.283 0.750 2.52893-2.00424I

0.286 0.780 2.55660-2.08533I

0.289 0.800 2.57568-2.13931I

0.302 0.900 2.67807-2.40842I

q = 1/8

T rh ω

0.246 0.180 2.29733-0.50611I

0.255 0.185 2.29654-0.51364I

0.263 0.190 2.29589-0.52172I

0.269 0.195 2.29534-0.53033I

0.273 0.199 2.29496-0.53758I

0.275 0.675 2.46067-1.80426I

0.277 0.700 2.48131-1.87194I

0.288 0.800 2.57245-2.14170I

0.302 0.900 2.67555-2.41027I

0.317 1.000 2.78870-2.67796I

Table 2. Numerical results for quasinormal modes in D = 4 for γ = 0.001. The left part of the

table corresponds to q = 1/10, middle part corresponds to q = 1/9 and the right part corresponds

q = 1/8. In all cases the lower part, below the horizontal line, is for the large black hole phase,

while the upper part is for the small black hole phase.

black hole phase, while the upper part is for small black hole phase. We find that as we

decrease rh in small black hole phase the Re(ω) increases whereas the absolute value of

Im(ω) decreases.8 For large black hole phase temperature increases with rh. In this phase

both Re(ω) and absolute value of Im(ω) increases with rh. One can clearly observe change

in the pattern of ω near the critical temperature.

8The decrease in Im(ω) as we decrease rh is expected on the general ground, since the absorption of

the scalar field is caused by presence of the black hole horizon. Therefore as we decrease horizon radius we

expect less absorption and hence less Im(ω) [34].
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Figure 9. QNMs for small black hole with γ = 0.001 and q=1/7. The black arrow indicates the

direction of increase of black hole horizon radius. The brown dot indicates temperature just below

the critical temperature.
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Figure 10. QNMs for large black hole with γ = 0.001 and q=1/7. The black arrow indicates the

direction of increase of black hole horizon radius. The brown dot indicates temperature just above

the critical temperature.

The contrasting nature of the quasinormal modes in small and large black hole phases

does illustrate its effectiveness to probe the black hole phase transition. However, there is

one subtle point which needs to be mentioned. We find that as q approaches the second

order critical point qc, quasinormal modes are not as much effective to probe the black

hole phase transition as in the case when q � qc. This is shown in figures 9 and 10,

where we clearly see that for q = 1/7, Re(ω)-Im(ω) plane does not show different slope in

small and large black hole phases near the critical temperature. The quasinormal modes

in large black hole phase continues to have same characteristic feature as in the previous

case, however now, in small black hole phase they have positive slope near the critical

temperature. Although, we do get negative slope (or change in slope) in small black hole

phase but it appears well below the critical temperature. The same story exists for γ = 0
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Figure 11. QNMs for small black hole in D = 5 with γ = 0.002. Red, green and blue curves

correspond to q=1/40, 1/35 and 1/30 respectively. The black arrow indicates the direction of

increase of black hole horizon radius.
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Figure 12. QNMs for large black hole in D = 5 with γ = 0.002. Red, green and blue curves

correspond to q=1/40, 1/35 and 1/30 respectively. The black arrow indicates the direction of

increase of black hole horizon radius.

case too, which corresponds to RN-AdS black hole, and therefore are not special to Weyl

corrected black holes.9

In the light of above discussion an important question which naturally arises is to find

a condition which allows quasinormal modes to effectively probe the phase transition. Cur-

rently we don’t have any concrete answer for this condition. However, from our preliminary

analysis, it appears to us that the condition should be related to separation between rhL1

and rhS1 . For example, we see that as q approaches qc the distance rhL1
− rhS1 decreases

and becomes zero at qc. In order for quasinormal modes to effectively probe the phase tran-

sition one would physically expect that some conditions like rhL1
− rhS1 > Abs[ω] should

9In there analysis, [34] did not mention these subtle points.
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Figure 13. QNMs for small black hole in D = 6 with γ = 0.002. Red, green and blue curves

correspond to q=1/100, 1/85 and 1/75 respectively. The black arrow indicates the direction of

increase of black hole horizon radius.
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Figure 14. QNMs for large black hole in D = 6 with γ = 0.002. Red, green and blue curves

correspond to q=1/100, 1/85 and 1/75 respectively. The black arrow indicates the direction of

increase of black hole horizon radius.

satisfy. Numerically, we checked that in our system if the condition

(rhL1
− rhS1 )−

(Abs[ω|rhS1 ]rhS1

Abs[ω|rhL1
]rhL1

)
& 0.3 (4.3)

is satisfied then quasinormal modes do show different slope in small and large black hole

phases.10 Here, ω|rhS1 (ω|rhL1
) are ω values evaluated at rh = rhS1 (rhL1

). We have checked

the criteria of eq. (4.3) for several values of γ and q (provided it is less than qc) and

found consistent results. However, apart from this numerical analysis we do not have

any substantial justification of eq. (4.3) and therefore more detailed and careful study of

quasinormal modes near the second order critical point is required.

10We introduce rh in the second term of eq. (4.3) in order to make it dimensionless. For fixed q and L,
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q = 1/40

T rh ω

0.297 0.190 3.72421-0.23785I

0.437 0.205 3.71849-0.25624I

0.443 0.206 3.71811-0.25766I

0.450 0.207 3.71772-0.25911I

0.456 0.208 3.71733-0.26058I

0.462 0.209 3.71695-0.26207I

0.466 0.920 4.41734-2.32192I

0.467 0.930 4.43698-2.35116I

0.468 0.935 4.44686-2.36577I

0.469 0.945 4.46673-2.39498I

0.477 1.000 4.57857-2.55515I

0.716 2.000 7.06844-5.39070I

q = 1/35

T rh ω

0.145 0.190 3.70846-0.26873I

0.370 0.210 3.70308-0.28874I

0.436 0.220 3.70013-0.30246I

0.452 0.223 3.69928-0.30702I

0.457 0.224 3.69900-0.30859I

0.462 0.225 3.69873-0.31018I

0.465 0.915 4.40749-2.30749I

0.466 0.920 4.41725-2.32212I

0.467 0.930 4.43690-2.35135I

0.470 0.950 4.47664-2.40975I

0.477 1.000 4.57850-2.55530I

0.716 2.000 7.06844-5.39071I

q = 1/30

T rh ω

0.228 0.210 3.68666-0.32664I

0.321 0.220 3.68462-0.33698I

0.438 0.240 3.68082-0.36447I

0.453 0.244 3.68023-0.37100I

0.457 0.245 3.68100-0.37268I

0.460 0.246 3.67996-0.37438I

0.463 0.900 4.37828-2.26390I

0.464 0.905 4.38793-2.27854I

0.465 0.915 4.40735-2.30780I

0.470 0.950 4.47652-2.41002I

0.477 1.000 4.57841-2.55552I

0.716 2.000 7.06843-5.39072I

Table 3. Numerical results for quasinormal modes in D = 5 for γ = 0.002. The left part of the

table corresponds to q = 1/40, middle part corresponds to q = 1/35 and the right part corresponds

q = 1/30. In all cases the lower part, below the horizontal line, is for the large black hole phase,

while the upper part is for the small black hole phase.
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q = 1/100

T rh ω

0.275 0.240 4.83858-0.20046I

0.437 0.250 4.83610-0.21062I

0.552 0.260 4.83356-0.22303I

0.604 0.266 4.83215-0.23148I

0.619 0.268 4.83171-0.23446I

0.627 0.269 4.83150-0.23598I

0.633 0.975 5.93952-2.27731I

0.634 0.985 5.96694-2.30681I

0.635 0.990 5.98072-2.32156I

0.637 1.000 6.00841-2.35101I

0.756 1.500 7.56677-3.79247I

0.915 2.000 9.33354-5.19484I

q = 1/85

T rh ω

0.397 0.260 4.82734-0.24396I

0.510 0.270 4.82555-0.25612I

0.592 0.280 4.82407-0.27035I

0.611 0.283 4.82371-0.27501I

0.617 0.284 4.82361-0.27660I

0.623 0.285 4.82350-0.27821I

0.631 0.960 5.89873-2.23303I

0.632 0.970 5.92587-2.26258I

0.633 0.980 5.95320-2.29210I

0.637 1.000 6.00841-2.35104I

0.756 1.500 7.56677-3.79247I

0.915 2.000 9.33354-5.19484I

q = 1/75

T rh ω

0.392 0.270 4.82111-0.27500I

0.497 0.280 4.81991-0.28680I

0.573 0.290 4.81911-0.30114I

0.598 0.294 4.81894-0.30743I

0.609 0.296 4.81889-0.31069I

0.619 0.298 4.81886-0.31402I

0.631 0.965 5.91228-2.24785I

0.632 0.970 5.92587-2.26262I

0.633 0.985 5.95320-2.29213I

0.637 1.000 6.00841-2.35107I

0.760 1.500 7.56677-3.79248I

0.915 2.000 9.33354-5.19484I

Table 4. Numerical results for quasinormal modes in D = 6 for γ = 0.002. The left part of the

table corresponds to q = 1/100, middle part corresponds to q = 1/85 and the right part corresponds

q = 1/75. In all cases the lower part, below the horizontal line, is for the large black hole phase,

while the upper part is for the small black hole phase.
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Now, we move on to discuss quasinormal modes for higher dimensional black holes. The

results are shown in figures 11–14. The overall characteristic features of the quasinormal

modes are found to be same as in the four dimensions, and therefore we will be very brief

here. We again found change in the slope of quasinormal modes (as long as we are away from

the critical charge) as we decrease the temperature below the critical temperature. The

numerical values of the quasinormal modes are given in table 3 and 4, where dependence of

quasinormal modes on charge and spacetime dimensions are established. We found that, for

fixed (q, γ and rh), as we increase the number of spacetime dimensions the Re(ω) increases

whereas the absolute value of Im(ω) decreases. It implies that for fixed γ and q, the

damping time (τ ∝ 1/Im(ω)) increases with dimensions. According to the gauge/gravity

duality, this means that in higher dimensions, it will take more time for the quasinormal

ringing to settle down to the thermal equilibrium.

5 Conclusions

In this section, we summarize the main results of our work. We have studied thermody-

namics and quasinormal modes of scalar field perturbation for D dimensional charged black

hole in the presence of Weyl coupling. We started with AdS gravity which couples to the

gauge field through two and four derivative interaction terms. We treated coefficient γ of

four derivative interaction term as a perturbative parameter and solved Einstein-Maxwell

equations order by order in γ. We first explicitly constructed charged black hole solution

in D dimensions at linear order in γ and further outlined the necessary steps for black hole

solution at γ2 order (in appendix A).

We then used the black hole solution to construct various thermodynamic quantities

and showed that the first law of black hole thermodynamics is satisfied in all spacetime

dimensions, not just at the leading order but also at the subleading order in γ. Then, we

studied black hole thermodynamics in the fixed charge ensemble and found the analogous

Van der Waals liquid-gas type phase transition in it. We found a line of first order phase

transition between small and large black hole phases which terminates at the second order

critical point. We also established the dependence of critical charge on γ and showed

that γ can be a control parameter which can tune the order of the phase transition. We

then explicitly showed that the our linear order analysis is trustable as nonlinear order

corrections are small.

We then reexamined the argument of QNMs could be a probe of the black hole phase

transition in our Weyl corrected black hole geometry. We determined the QNMs of mass-

less scalar field perturbation around small and large black hole phases, and found that

QNMs changes differently in small and large black hole phases as we increase the horizon

radius. Our results strengthen the claim made in [26]–[33] that the QNMs can be used as a

dynamical tool to probe the black hole phase transition. However, we have also highlighted

some issues near the second order critical point where QNMs are not as much as effective

to probe the phase transition as away from the critical point, and therefore, more detailed

and careful study of QNMs near the critical point is called for.

the only remaining scale in the system is horizon radius rh.
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We conclude here by pointing out some problems which would be interesting to in-

vestigate in the future. It would be interesting to analyze the QNMs of eletromagnetic

and gravitational perturbation in our system. However, since eletromagnetic and gravita-

tional perturbation will source other components of the gauge field and metric, their QNMs

calculation might be substantially more complicated. We leave this issue for a future work.
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A Black hole solution with γ2 correction

Here, we present the details of our calculations for correction in metric and gauge field

at γ2 order. We present the calculations only for four dimensions as the calculations for

higher dimensions can be straightforwardly generalized. We start with the following ansatz

for φ(r), χ(r) and f(r)

φ(r) = φ0(r) + γφ1(r) + γ2φ2(r),

χ(r) = χ0(r) + γχ1(r) + γ2χ2(r)

f(r) = f0(r)
(
1 + γF1(r) + γ2F2(r)

)
(A.1)

The forms of zeroth order solution ( φ0(r), χ0(r) and f0(r)) and the first order solution

(φ1(r), χ1(r) and F1(r)) are obtained in section 2. The aim of this appendix is solve

Einstein and Maxwell equations at γ2 order and find the forms of second order solutions i.e

φ2(r), χ2(r) and F2(r). The Maxwell and the (tt), (rr) components of Einstein equations

at order γ2 give solution for χ2(r), φ2(r) and F2(r) as

χ2(r) = C2 −
1280mq2L4

21r7
+

1448L4q4

9r8
(A.2)

φ2(r) = −2596L4q5

45r9
+

1696mq3L4

21r8
− 128qm2L4

7r7
− 128q3L4

7r7

−128L2q3

5r5
− C4q

r
+

4qr3
hk1

r4
+ C3 (A.3)

F2(r) =
1

f0(r)

[
10240L4q6

27r10
− 554mL4q4

r9
+

3328m2q2L4

21r8
+

27392L4q4

63r8
(A.4)

−512mq2L4

3r7
+

7936L2q4

15r6
− 640mq2L2

3r5
−

10q2r3
hk1

3r5
+
q2C4

r2
+

2q2C2

r2
+
C1r

3
h

L2r

]
where C1, C2, C3 and C4 are dimensionless integration constants. These constants can

again be determined by imposing similar constrains as in section 2. We omit the interme-

diate steps here and simply write the final answer

χ2(r) = −1280mq2L4

21r7
+

1448L4q4

9r8
(A.5)
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Figure 15. Comparison between free energy at order γ (dotted red) with free energy at order γ2

(dashed green). Here γ = 0.001 and q = 1/10.
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Figure 16. Comparison between free energy at order γ (dotted red) with free energy at order γ2

(dashed green). Here γ = 0.002 and q = 1/10.

φ2(r) = −2596L4q5

45r9
+

1696mq3L4

21r8
− 128qm2L4

7r7
− 128q3L4

7r7
− 128L2q3

5r5
+

136mqL2

15r4
(A.6)

+
2596L2q5

49r9
h

− 1696mq3L4

21r8
h

+
1976qm2L4

105r7
h

+
128q3L4

7r7
h

+
8mqL4

5r6
h

− 32qL4

15r5
h

+
128q3L2

5r5
h

−136mqL2

15r4
h

+
32qL2

5r3
h

− 8qm2L4

15r4r3
h

− 8mqL4

5r4r2
h

+
128q

15rh
+

32qL4

15r4rh
− 32L2qrh

5r4
−

128qr3
h

15r4

F2(r) =
1

f0(r)

[
10240L4q6

27r10
− 554mL4q4

r9
+

3328m2q2L4

21r8
+

27392L4q4

63r8
(A.7)

−512mq2L4

3r7
+

7936L2q4

15r6
− 1988mq2L2

9r5
+

11086m

45r
+

2990m3L4

189rr6
h

− 1612m2L4

21rr5
h

+
7450mL4

63rr4
h

+
4m2q2L4

9r5r3
h

− 10832L4

189rr3
h

− 37636m2L2

315rr3
h

+
4mq2L4

3r5r2
h

+
38284mL2

105rr2
h

−16q2L4

9r5rh
− 81056L2

315rrh
+

16q2L2rh
3r5

− 35984rh
105r

+
64q2r3

h

9r5
−

19264r3
h

135L2r

]
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q = 1/6, γ = 0.001

rh ω (with γ) ω (with γ2)

0.6 2.38326 - 1.61749 I 2.38334 - 1.61749 I

0.8 2.56044 - 2.15069 I 2.56047 - 2.15069 I

1.0 2.78126 - 2.68328 I 2.78128 - 2.68328 I

1.5 3.45627 - 4.01266 I 3.45628 - 4.01266 I

2.0 4.23132 - 5.34181 I 4.23132 - 5.34181 I

3.0 5.91476 - 8.00177 I 5.91476 - 8.00177 I

q = 1/20, γ = 0.002

rh ω (with γ) ω (with γ2)

0.6 2.42728 - 1.58306 I 2.42731 - 1.58305 I

0.8 2.58534 - 2.13225 I 2.58535 - 2.13225 I

1.0 2.79670 - 2.67230 I 2.79671 - 2.67230 I

1.5 3.46219 - 4.00870 I 3.46219 - 4.00870 I

2.0 4.23412 - 5.33999 I 4.23412 - 5.33999 I

3.0 5.91567 - 8.00119 I 5.91567 - 8.00119 I

Table 5. Comparison between quasinormal modes at the order γ with order γ2. The left table

corresponds to (q = 1/6, γ = 0.001) and the right table corresponds (q = 1/20, γ = 0.002).

Using the methodology given in section 3, one can easily compute the black hole mass

M , Wald entropy S and potential Φ at γ2 order. From these we can calculate total on-shell

action, Gibbs and Helmholtz free energies

STotal =
ω2β

16πG4

(
rh − r3

h −
q2

rh

)
+
ω2βq

2γ

8πG4

(
1

rh
+

1

3r3
h

− q2

15r5
h

)
+
ω2βq

2γ2

πG4

(
1495q4

1512r9
h

− 421q2

504r7
h

− 3781q2

804r5
h

+
8

21r5
h

+
80

21r3
h

+
24

7rh

)
(A.8)

G =
ω2

16πG4

(
rh − r3

h −
q2

rh

)
+
ω2q

2γ

8πG4

(
1

rh
+

1

3r3
h

− q2

15r5
h

)
+
ω2q

2γ2

πG4

(
1495q4

1512r9
h

− 421q2

504r7
h

− 3781q2

804r5
h

+
8

21r5
h

+
80

21r3
h

+
24

7rh

)
(A.9)

F =
ω2

16πG4

(
rh − r3

h +
3q2

rh

)
+
ω2q

2γ

8πG4

(
5

rh
+

13

3r3
h

− 11q2

5r5
h

)
+
ω2q

2γ2

πG4

(
691q4

1512r9
h

− 1185q2

504r7
h

− 313q2

40r5
h

+
8

3r5
h

+
176

21r3
h

+
40

7rh

)
(A.10)

We can again see that G = STotal/β even at γ2 order. It implies that the first law

thermodynamics is also satisfied at γ2 order for the Weyl corrected black hole geometry.
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In figures 15 and 16, Helmholtz free energy at order γ and at order γ2 are plotted. We see

that corrections due to γ2 order are indeed very small, which again crudely justifies our

choice of “smallness” of the values of γ and the validity of the linear order expansion used

in our calculations.

In a similar manner, QNMs at order γ2 show very small change in magnitude

compared to the QNMs at order γ. This is shown in table 5, where we see that change

in the QNM value occurs at fourth or fifth decimal place when γ2 correction is taken into

account. snfcjksdvfnk nvjk

B AMD mass for higher derivative gravity

In this appendix, we show that one can use AMD prescription to calculate conserved

charges in our Weyl corrected models.

In [51], it was shown that the definition of conserved charges in AdS spaces based on

the conformal completion technique of [50] should be modified in higher derivative theories.

Here, we will briefly mention the silent features of this paper and refer the reader to [51]

for detail analysis, definitions of various tensors and notations (which are different form

the notations that we have used throughout this paper). The main idea of [51] is that

one should impose an additional condition on Ricci tensor on the top of Weyl tensor to

consistently define AdS boundary in higher derivative theories. For a gravity theory with

gravitational field equation of the form

E
(g)
ab = 8πGDTab (B.1)

one can construct a relation

Ω−(D−3)(∇[ePa]b)n̂
en̂bξa =

n− 2

2
8πGDτabn̂

bξa (B.2)

where the tensor Pab is given by

Pab = E
(g)
ab −

1

D − 1
gabE

(g)
cd g

cd (B.3)

In general, the leading fall off of (∇[ePa]b)n̂
en̂bξa is of the order ΩD−3 and therefore one can

use eq. (B.2) to construct conserved charges. Similar to Einstein gravity, eq. (B.2) will gives

a conservation equation in higher derivative theories if the left hand side of it can be written

into a form of divergence of some vector at the boundary. Indeed using this equation, [51]

has shown that for f(R) and quadratic curvature gravity the conserved charges can again

be expressed as an electric part of the Weyl tensor but with multiplication factor that

depends on the the form of the action. For our model in eq. (2.2), by computing Pab, we

find that the leading fall off of ∇[ePa]b near the boundary is

∇[ePa]b = ΩD−3

(
−D − 2

D − 3

)
∇̂cKeabc (B.4)
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here, we have used the fact that the nonlinear terms in Riemann tensor and gauge field

strength tensor fall off faster than ΩD−3 and hence does not make a contribution in

eq. (B.4). Now, using eq. (B.2) we can obtain a conservation law at the boundary as

D̂c(ε̂cdξ
d) = −8πGD(D − 3)τabn̂aξ

b (B.5)

This gives the equation for conserved charges as

Qξ[C] =
−1

8πGD(D − 3)

∮
ε̂cdξ

ddΣ̃c (B.6)

which is of the same form as eq. (3.6), that we have used to calculate black hole mass

in section 3. Therefore, definition of conserved charge in higher derivative theory [51]

coincides with AMD definition in our model.

Here, we also like to give another argument which may justify the correctness of our

black hole mass expression. The Weyl term in our model is covariant and falls in the covari-

ant gravity definition of Wald. Therefore, one would physically expect that the first law of

black hole thermodynamic should be satisfied here. Considering this point and equating the

free energy expression (calculated separately from on-shell action without using any con-

served charge prescription) to M−TSWald−QΦ, will provide another definition of M . Sub-

stituting the forms of T , SWald, Q and Φ one can obtained the expression of M and, for our

model, one can explicitly check that this matches with the result from AMD prescription.
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