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Abstract: The gauge sector of three-dimensional higher spin gravities can be formulated

as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a

flat connection with suitable holonomy (smoothness) conditions which are consistent with

the properties of a generalized thermal ensemble. Building on these ideas, we discuss a

definition of black hole extremality which is appropriate to the topological character of 3d

higher spin theories. Our definition can be phrased in terms of the Jordan class of the

holonomy around a non-contractible (angular) cycle, and we show that it is compatible

with the zero-temperature limit of smooth black hole solutions. While this notion of

extremality does not require supersymmetry, we exemplify its consequences in the context

of sl(3|2)⊕sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions

preserve supersymmetries. Remarkably, we find in addition that the higher spin setup

allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our

results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-

Simons theory and two-dimensional CFTs with W(3|2) symmetry, the simplest higher spin

extension of the N = 2 super-Virasoro algebra. In particular, we compute W(3|2) BPS

bounds at the full quantum level, and relate their semiclassical limit to extremal black hole

or conical defect solutions in the 3d bulk. Along the way, we discuss the role of the spectral

flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds

in general N = 2 two-dimensional CFTs with extended symmetry algebras.
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1 Introduction

Higher spin theories provide a framework to explore non-linear and non-local features that

are expected to arise in quantum gravity. In a sense, a higher spin theory is characterized

by “too many” gauge symmetries; not only does this feature introduce novel interactions

among the fields, but it also calls for a refinement of standard geometrical notions such as

causal structure and curvature, which are not invariant under the higher spin symmetries

that extend diffeomorphisms. As a consequence, gauge-invariant definitions of concepts

such as black hole spacetime become not only desirable, but necessary. In spite of these

challenges, holography has provided a useful way to organize our understanding of grav-

itational higher spin theories and their field theory duals. In particular, the higher spin

AdS3/CFT2 correspondence relates two-dimensional conformal field theories (CFTs) with

W-symmetry algebras and three-dimensional higher spin theories with generalized anti-de

Sitter (AdS) boundary conditions, and has proven to be a fruitful arena to explore higher

spin holographic dualities and tackle the associated issues.

An important example of such dualities is the original proposal of Gaberdiel and

Gopakumar [1, 2], which entails a correspondence between WN minimal model coset CFTs

in the large central charge limit and the interacting Prokushkin-Vasiliev higher spin the-

ory [3, 4]. The latter includes matter fields that couple to the 3d higher spin fields, but a

consistent truncation where the matter representations decouple is possible. In this trun-

cation the pure higher spin sector becomes a three-dimensional Chern-Simons theory based

on two copies of the infinite-dimensional Lie algebra known as hs[λ] , which holographically

describes the conserved currents in a CFT with W∞[λ] as the chiral algebra. A further

truncation to λ = N with N an integer is possible, in which the bulk gauge algebra be-

comes sl(N)⊕sl(N) Chern-Simons theory, describing the conserved currents of a CFT with

WN symmetry. From an AdS/CFT perspective, these are rather natural generalizations of

the well-known fact that 3d Einstein-Hilbert gravity with negative cosmological constant,

which displays two copies of the Virasoro algebra as asymptotic symmetries [5], can be

formulated as an sl(2)⊕ sl(2) Chern-Simons theory [6, 7].

In the above class of holographic dualities, the semiclassical regime of the CFT maps to

classical Chern-Simons theory in the bulk, and the latter provides a powerful framework to

address the problems alluded to above. Indeed, in this setup one can easily capture various

local and non-local CFT observables by studying flat connections with suitable boundary

conditions. One can, for example, describe a finite-temperature ensemble carrying higher

spin charges in the boundary by constructing higher spin black hole solutions in the bulk.

Naturally, a gauge-invariant definition of a black hole spacetime is crucial for any further

progress along this line.1 Fortunately, the situation is under control for 3d higher spin

theories, precisely because of the existence of a Chern-Simons formulation.

In the seminal work of Gutperle and Kraus [12] it was proposed that a suitable defini-

tion of 3d higher spin black holes consist of a flat connection with trivial holonomy around

1On account of these difficulties, an unambiguous definition of higher spin black holes and their ther-

modynamics in 4d higher spin theories [8–10] remains elusive; see [11] however for an interesting attempt.
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the Euclidean time cycle.2 This is an abstraction of the familiar notion of smoothness of

a Euclidean horizon in the metric formulation, and it leads in fact to consistent thermo-

dynamics. Moreover, it was later argued [14] that when these smoothness conditions are

satisfied, there is precisely one representative in the gauge orbit of a given black hole flat

connection whose associated metric displays a smooth horizon in the usual sense. While

the original work focused on the sl(3) ⊕ sl(3) theory, the definition of higher spin black

hole was later extended to the hs[λ] case [15] and the corresponding partition function (free

energy) was shown to match a perturbative CFT calculation [16]. Building on the work

in [17], which studied the thermodynamics of higher spin black holes from the Euclidean

action perspective, general expressions for the higher spin black hole entropy, free energy

and associated first law casted solely in terms of the Chern-Simons connections and their

holonomies were derived in [18].

What all the developments described above have in common is that they exploit the

topological formulation of the bulk theory and the power of Chern-Simons theory in order

to set up and perform calculations that are quite challenging3 using solely field-theoretical

techniques. In this light, it is natural to ask for a topological definition of extremal higher

spin black holes, namely one that is phrased in terms of holonomies of flat connections

in Chern-Simons theory, without reference to metric or geometric concepts which are not

natural once we go beyond pure gravity. This is the problem we address in the present

paper. In particular, we will advocate that the natural definition of extremality in higher

spin theories involves the Jordan class of the holonomy around the non-contractible cycle

which characterizes three-dimensional black hole topologies.

More precisely, we will find that the zero-temperature limit of smooth black hole

solutions generically results in non-diagonalizable connections, whose structure moreover

encode relations between the charges which often saturate higher spin BPS bounds in

supersymmetric setups. Quite interestingly, we will find as a by-product that a large enough

superalgebra with non-linear symmetry transformations allows for finite-temperature black

hole solutions that carry globally-defined Killing spinors, in stark contrast with the usual

gravitational theories where supersymmetry implies extremality.

The full-fledged higher spin holographic correspondences involving CFTs with infinite-

dimensional chiral algebras such as W∞[λ] have a rich and complex structure. Moreover,

the latter have been recently shown to make an appearance in the tensionless limit of

string theory on AdS3×S3×T4 [21, 22]. The simpler versions of these dualities considered

here, which involve only finite-dimensional algebras, provide a useful arena to study and

test various aspects of higher spin holographic dualities. An example that has proven

particularly fruitful is the correspondence between sl(N) ⊕ sl(N) Chern-Simons theory

and WN CFTs. In this spirit, we will mostly focus on examples involving the pure gravity

theory (N = 2) and the bosonic spin-3 higher spin theory (N = 3), as well as their N =

2 supersymmetric generalizations dual to super-Virasoro and W(3|2) CFTs, respectively.

2In the context of three-dimensional Einstein-Hilbert gravity formulated as a Chern-Simons theory, such

a definition of black hole had appeared long ago in [13].
3Or even beyond the scope of the existent CFT technology, such as the non-perturbative result for

entanglement entropy in W3 CFTs deformed by sources reported in [19, 20].
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While our definition of extremality applies straightforwardly in any finite-N theory, we

hope that it will provide guidance in the case of dualities based on infinite-dimensional

algebras as well.

The rest of the paper is organized as follows. In section 2 we introduce our definition

of extremal higher spin black holes and exemplify it in the bosonic N = 2 (pure gravity)

and N = 3 (spin-3) theories. In section 3 we discuss black hole and smooth conical

defect solutions in sl(3|2)⊕sl(3|2) Chern-Simons theory and their supersymmetries, whose

number depend on the precise Jordan normal form of the connection. Quite surprisingly,

we find a class of finite-temperature black hole solutions which preserves supersymmetry.

In section 4 we compute quantum higher spin BPS bounds from the CFT point of view, and

relate their semiclassical limit to the holonomies of bulk solutions admitting Killing spinors.

In particular, we find that while not all extremal black holes preserve supersymmetries, the

ones that do carry charges which fulfill relations that saturate BPS bounds. Furthermore,

we provide a conjecture for the generic form of the semiclassical BPS bounds in any N = 2

CFT with an extended symmetry algebra which can be obtained from Drinfeld-Sokolov

reduction. We discuss our findings in section 5 and compare them with some previous

results in the literature. The appendices contain a brief discussion of the W(3|2) algebra as

well as other useful formulae and conventions.

A complete discussion of the N = 2 super-W3 holographic dictionary will appear in a

separate note [23]; for the sake of brevity and clarity, we shall henceforth limit ourselves

to quoting the corresponding results which are directly relevant for the present discussion.

2 Extremal higher spin black holes

Our aim is targeted towards black hole solutions of three-dimensional Chern-Simons theory.

The relevant Euclidean action is

ICS =
ikcs
4π

∫
M

Tr
[
CS(A)− CS(Ā)

]
, (2.1)

where A and Ā are valued in the same algebra (or superalgebra) g ,

CS(A) = A ∧ dA+
2

3
A ∧A ∧A (2.2)

is the Chern-Simons form, and Tr denotes the trace (or supertrace) in the chosen repre-

sentation. In Euclidean signature the connections are generically complex-valued, with

A† = −Ā . (2.3)

This condition ensures reality of the action and physical observables. In Lorentzian sig-

nature one works instead with two independent connections A and Ā, each valued in an

appropriate real form of the gauge algebra. In particular, all parameters such as charges

and their conjugate potentials are then real in both sectors.
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We will as usual exploit the gauge freedom of Chern-Simons theory to “gauge-away”

the radial dependence of the connection4

A(ρ, z, z̄) = b−1(ρ)
(
a(z, z̄) + d

)
b(ρ) , Ā(ρ, z, z̄) = b(ρ)

(
ā(z, z̄) + d

)
b−1(ρ) , (2.4)

and focus on the “boundary connections” a(z, z̄) and ā(z, z̄) . Here, the boundary coordi-

nates (z, z̄) parameterize either the plane, cylinder or torus, or more generally an arbitrary

Riemann surface, depending on the topology of the solution under consideration.

As we will review later on, in the absence of sources one has az̄ = āz = 0 and the

remaining components az(z) and āz̄(z̄) are respectively holomorphic and anti-holomorphic,

so they can be thought of as parameterizing Kac-Moody currents for the algebra g . Fur-

ther restrictions on the form of these 2d flat connections that result in W-symmetry via

Hamiltonian (Drinfeld-Sokolov) reduction of current algebras were discussed long ago in

e.g. [25–32] and more recently in [33–37] in the context of the AdS/CFT correspondence,

where they were understood as boundary conditions that result in W-algebras as asymp-

totic symmetries. We will generically refer to the latter as Drinfeld-Sokolov boundary

conditions.

2.1 Non-extremal higher spin black holes and their thermodynamics: a brief

review

We will now briefly review some key features of non-extremal higher spin black holes and

their thermodynamics. Further details can be found in e.g. [12, 14, 18, 38–40].

In order to discuss finite-temperature black hole solutions, one compactifies the Eu-

clidean time direction so the 3d manifold has the topology of a solid torus. The boundary

coordinates (w, w̄) are then subject to the identifications w ' w + 2π ' w + 2πτ where τ

is the modular parameter of the boundary torus, which has volume Vol(T 2) = 4π2Im(τ)

in our conventions.5 In terms of the inverse temperature β and the angular velocity of the

horizon Ω one has

τ =
iβ

2π

(
1 + Ω

)
, τ̄ =

iβ

2π

(
−1 + Ω

)
, (2.5)

as seen from the canonical relation

2πiτ
(
L0 −

c

24

)
− 2πiτ̄

(
L̄0 −

c

24

)
= −β

(
H + ΩJ

)
, (2.6)

where H = L0 + L̄0− c
12 is the CFT Hamiltonian and J = L0− L̄0 the angular momentum.

The angular potential Ω, and concomitantly the angular momentum J , should be continued

to purely imaginary values in order to have a real Euclidean section.

In this language, the BTZ black hole solution [41, 42] is a constant sl(2) ⊕ sl(2) flat

connection and reads

a =

(
0 L
1 0

)
dw , ā = −

(
0 1

L̄ 0

)
dw̄ . (2.7)

4In a purely gravitational setup, this possibility can be understood as the familiar fact that in 3d the

Fefferman-Graham expansion truncates after a finite number of terms in the radial coordinate ρ [24].
5Equivalently, one may use coordinates with fixed periodicity w ' w+ 2π ' w+ 2πi , in which case the

modular parameter appears explicitly in the connection components.
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Via the usual AdS3/CFT2 dictionary (see [43] for a review), the Chern-Simons level k is

given by k = `/(4G3) in terms of the AdS length ` and the three-dimensional Newton’s

constant G3 , and c = 6k is the central charge in the dual CFT [5]. Then, kL = h− k
4 and

kL̄ = h̄ − k
4 are seen to correspond to the eigenvalues of the zero modes of the left- and

right-moving stress tensor acting on the CFT state dual to the black hole.6 In terms of

the black hole mass M and angular momentum J one then has

h− c

24
=

1

2

(
M`− J

)
, h̄− c

24
=

1

2

(
M`+ J

)
. (2.8)

As usual, demanding smoothness of the horizon implies a relation between the black

hole’s charges and potentials, namely

τ =
i

2

√
1

L
, τ̄ = − i

2

√
1

L̄
, (2.9)

so the black hole is in thermodynamic equilibrium and satisfies the first law of thermody-

namics. In Chern-Simons language, these relations imply that the holonomy of the black

hole connection around the Euclidean time circle CE becomes trivial7

P exp

(∮
CE
a

)
= e2π(τaw+τ̄aw̄) = e2πiL0 = −12×2 , (2.10)

and similarly in the barred sector, where L0 denotes the Cartan element of sl(2) .

In the original work [12] of Gutperle and Kraus it was proposed that the definition of

higher spin black hole consists of promoting the smoothness condition (2.10) to the higher

spin case, namely to demand

Eigen
(
acontract

)
= Eigen

(
τaw + τ̄ aw̄

)
= Eigen

(
iL0

)
(2.11)

in the general case as well. Here, acontract denotes the component of the connection along

the cycle of the boundary torus which becomes contractible in the bulk, and the definition

is clearly appropriate to the topological setup. We also stress that (2.11) requires the

identification of an sl(2) subalgebra embedded in the gauge algebra. Different embeddings

result in different theories, with different symmetry algebras (see e.g. [14, 44]).

It is worth pausing at this point to emphasize the general philosophy we follow through-

out the remainder of the paper. Upon solving the smoothness conditions in Euclidean

signature, we will always continue back to the Lorentzian solution where all the charges

and potentials are manifestly real, and smoothness is interpreted as a particular relation

between these parameters (which were a-priori independent). The rationale behind this

choice is that both the notions of extremality and supersymmetry are properly discussed in

6The shift is due to the mapping from the cylinder to the plane: (h, h̄) are the eigenvalues of the Virasoro

zero modes (L0, L̄0) on the plane, while the combinations in (2.7) are related to the eigenvalues of the zero

modes (L0 − c/24, L̄0 − c/24) on the cylinder/torus for the corresponding state.
7Where by trivial we mean that it belongs to the center of the gauge group [44]. In the expression below

L0 denotes the Cartan element of the sl(2) algebra, and not the zero mode L0 of the CFT stress tensor

on the plane. We hope that the meaning is clear from the context, and that no confusion arises from this

slight abuse of notation.

– 6 –
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Lorentzian signature. Therefore, we will endeavor to cast the conditions defining extremal

and/or supersymmetric solutions as further constraints on the aforementioned set of real

charges and potentials.

Going back to the general structure of the black hole connections, following the Hamil-

tonian reduction procedure one finds that sources for the CFT currents are incorporated

in the aw̄ and āw components of the Drinfeld-Sokolov connections, the insight being that

the CFT Ward identities in the presence of sources should be equivalent to flatness of the

gauge connections. In the pure gravitational (sl(2) ⊕ sl(2)) case one can choose to incor-

porate the spin-2 sources in the modular parameter of the boundary torus, in a way that

aw̄ = āw = 0 still vanish as in the BTZ connection above. However, as soon as one goes

beyond sl(2) and incorporates higher spin currents it is in general necessary to turn on the

aw̄ and āw components in order to account for the corresponding sources. The question

then becomes whether the currents (or their zero modes, the charges) are incorporated in

the holomorphic components aw and āw̄ as in the absence of sources, or in aφ = aw + aw̄
and āφ = āw + āw̄ instead.

From the bulk perspective, it was argued in [17, 45–47] that choosing to incorporate the

charges in the angular components aφ and āφ was consistent with usual canonical notions

in gravitational theories. It was then shown in [40], which we follow here, that the choice

aφ vs. aw (and similarly in the barred sector) for the expectation values (charges) amount

to different boundary conditions that map to different partition functions in the CFT side.

More precisely, by a careful analysis of Ward identities it was shown in [40] that the aφ
choice corresponds to deformations of the CFT Hamiltonian of the form

H = HCFT +

∮
dφ
∑
s

µsJs +

∮
dφ
∑
s

µ̄sJ̄s , (2.12)

while the aw choice corresponds instead to deformations of the CFT action

I = ICFT +

∫
d2w

∑
s

µsJs +

∫
d2w

∑
s

µ̄sJ̄s + . . . . (2.13)

Here Js and J̄s denote conserved currents of weight (s, 0) and (0, s), respectively, µs and

µ̄s the corresponding sources, and the sums run over the particular spectrum of the theory

under consideration. The dots in (2.13) signify that, for non-chiral deformations, the action

requires corrections to all orders in the sources in order for the associated partition function

to realize the symmetry [48]. On the other hand, no such higher order terms are required in

the Hamiltonian case (2.12) [40, 49]. It is important to notice that the Legendre transform

that connects these two pictures is highly non-trivial for higher spin theories,8 so a careful

choice of boundary conditions is essential.

In the present paper we will be mostly concerned with black holes which describe en-

sembles dual to Hamiltonian deformations of the form (2.12), because they have a straight-

8In particular, the currents and sources in (2.12) and (2.13) are in fact not the same (as the naive

notation could suggest), and are instead related to one another in a non-trivial way.

– 7 –
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forward interpretation in terms of the canonical CFT partition function

Zcan [τ, αs, ᾱs] = TrH exp 2πi

[
τ
(
L0 −

c

24

)
− τ̄
(
L̄0 −

c

24

)
+
∑
s

(
αsJ

(s)
0 − ᾱsJ

(s)
0

)]
(2.14)

on the torus. Here, J
(s)
0 and J

(s)
0 denote the zero modes of the corresponding currents. The

thermal sources αs , ᾱs are related to the µs, µ̄s introduced above by [40]

µs =
iαs

Im(τ)
, µ̄s = − iᾱs

Im(τ)
. (2.15)

Since we are interested in thermodynamics, or alternatively stationary Euclidean black

holes, for the remainder of this section we will restrict ourselves to constant connections

on the cylinder/torus, which corresponds to constant sources µs, µ̄s and constant charges

(the latter being the eigenvalues of the zero-modes J
(s)
0 and J

(s)
0 ).

It is perhaps worth emphasizing that there exist several ways to compute the entropy of

higher spin black holes, all giving the same result. This caused some confusion initially and

we take this opportunity to compare and clarify the different approaches. In a Hamiltonian

slicing of spacetime, the entropy of a black hole is defined as the contribution to the on-

shell action coming from the boundary term at the horizon.9 Such a term is necessary

since the time foliation is singular at r = r+ . In order to make sense of the action and

its variation, a small disk is excised (introducing an artificial boundary) where suitable

boundary conditions must be imposed. Alternatively, one can evaluate the on-shell action

using an angular foliation, which is regular everywhere and no horizon boundary term is

required. In either case, additional boundary terms at infinity must be added so as to

have a well defined variational principle. By comparing the angular vs. time quantization

schemes and paying attention to orientation issues, it was first shown in [17] that the

boundary terms at infinity and at the horizon are related by

B∞ −B+ = −B∞ ⇒ B+ = 2B∞ =
kcs
2π

∫
Tr [AtAφ] . (2.16)

This can be understood as the Smarr relation between the charges and the entropy. A

direct calculation of the boundary term at the horizon was later performed in [39], yielding

concordant results.

The same expression can be arrived at by demanding validity of the first law of ther-

modynamics, as argued in [50] for the case of sl(3) . Moreover, the entropy can also be

understood as the on-shell value of the appropriate action functional in a microcanonical

ensamble, where the charges at infinity are held fixed. In this context, as first shown in [18],

the entropy of a higher spin black hole is given in full generality by

S = −2πikcsTr
[
(aw + aw̄) (τaw + τ̄ aw̄)− (āw + āw̄) (τ āw + τ̄ āw̄)

]
. (2.17)

9This definition stems from identifying the on-shell value of the Hamiltonian action IHam = bulk+B∞−
B+ with the Helmholtz free energy βF , and interpreting the boundary term at infinity as the internal energy

βE . The factors of β come from integration along the compact time direction. Since the bulk contribution

vanishes due to the constraints, we find β (E − TS) = βE −B+ ⇒ B+ = S.

– 8 –
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Evaluated on a black hole solution, (2.17) yields

S = −2πi

(
2τ
(
h− c

24

)
+
∑
s

s αsQs

)
+ other sector , (2.18)

where Qs denotes the expectation value of the dimension-s charge J
(s)
0 . More interestingly,

one can exploit the holonomy conditions to cast the entropy directly as function of the

charges only. Using the smoothness conditions (2.11) one finds that (2.17) can be written

equivalently as [18]

S = 2πkcsTr
[(
λφ − λ̄φ

)
L0

]
, (2.19)

where λφ and λ̄φ are diagonal matrices containing the eigenvalues of the angular component

of the connection, which carries the expectation values of the charges. It is worth emphasiz-

ing that (2.17) and (2.19) are completely general and valid for any algebra and embedding,

depending only on the choice (2.11) of holonomy condition along the thermal cycle.

2.2 Extremal higher spin black holes

In conventional gravitational theories, the notion of extremality is tied to the confluence of

two horizons. This feature generically implies that the Hawking temperature of the black

hole is zero. We could declare that extremality in higher spin theories is simply defined as

a solution at zero temperature. However, our aim is to propose a definition that is along

the lines of confluence (degeneration) of the parameters of the solution and that relies only

on the topological formulation of the theory, yielding in particular the zero-temperature

condition as a consequence.

In this spirit, we propose that a 3d extremal higher spin black hole is a solution of

Chern-Simons theory corresponding to flat boundary connections a and ā satisfying the

following conditions:

1. They obey Drinfeld-Sokolov boundary conditions,

2. Their components are constant, and therefore correspond to stationary solutions,

3. They carry charges (expectation values) and chemical potentials (sources), which are

manifestly real in the Lorentzian section,

4. The angular component of at least one of a and ā, say aφ , is non-diagonalizable.

Naturally, the key point of the definition is the non-diagonalizability of the aφ com-

ponent. The rationale behind this requirement is as follows. Suppose both the aφ and

āφ components were diagonalizable. Since the boundary connections are assumed to be

constant, by the equations of motion the (Euclidean) time components of the connection

commute with the angular components, and can be diagonalized simultaneously with them.

It is then possible to solve (2.11) and find a non-zero and well-defined temperature and

chemical potentials as function of the charges. On the other hand, if at least one of aφ
and āφ is non-diagonalizable then acontract will be non-diagonalizable as well. If we insist
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upon (2.11), then both features are compatible if we take a zero temperature limit, because

the smoothness condition becomes degenerate as well. This is consistent with the usual

notion that the solid torus topology of the finite-temperature black hole should change at

extremality.

We emphasize that it is quite convenient to define extremality in terms of the angular

component of the connection, because as explained above the latter carries the charges

under canonical boundary conditions, and does not involve the sources. Therefore, the

conditions for extremality will be cleanly expressed as relations between the charges car-

ried by the black hole, with no “contamination” from the sources. This will be particularly

important later on when we compare extremality conditions with BPS conditions in the

CFT, because the latter are derived directly from the operator algebra and indeed involve

the charges only. Furthermore, the non-diagonalizability of the connection can be conve-

niently encoded in terms of the Jordan class of the angular component of the connection,

or equivalently the angular holonomy, and we will do so throughout the paper. Moreover,

because the analysis involves the angular component of the connection, the classification of

holonomies extends rather straightforwardly to other solutions which are not black holes

and do not include sources, such as conical defects. As we will comment in due course, the

only change lies in the reality properties of the eigenvalues of the connection.

A final technical note: while for a general connection the degeneration of eigenvalues

does not imply non-diagonalizability, the special form of the flat connections dictated by

the Drinfeld-Sokolov boundary conditions will guarantee that if two eigenvalues of aφ are

degenerate, then the connection is non-diagonalizable. From this perspective, we could

interpret that equating eigenvalues of aφ is in a sense analogous to the confluence of horizons

for extremal black holes in general relativity.

2.3 Non-supersymmetric examples: extremal BTZ and sl(3) black holes

We will now exemplify our definition for two simple but important solutions: the BTZ black

hole and the sl3 higher spin black hole, which are respectively solutions of sl(2)⊕sl(2) and

sl(3)⊕ sl(3) Chern-Simons theory.

Let us start with the BTZ black hole as given in (2.7). At finite temperature, us-

ing (2.19) and the relation c = 6k we easily recover the standard results for the BTZ black

hole entropy

S = 2π

√
c

6

(
h− c

24

)
+ 2π

√
c

6

(
h̄− c

24

)
. (2.20)

The angular holonomy of the connection (2.7) is (up to conjugation)

Holφ(a) ∼ e2πaφ =

 cosh
(

2π
√
L
) √

L sinh
(

2π
√
L
)

1√
L sinh

(
2π
√
L
)

cosh
(

2π
√
L
)  , (2.21)

and similarly for āφ ; recall that L = h
k −

1
4 . For generic values of L, the angular holonomy

has two unequal eigenvalues, given by

λh1 = e2π
√
L , λh2 = e−2π

√
L . (2.22)
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Now, a necessary condition for non-diagonalizability is that both eigenvalues are equal,

which implies

extremality condition: λh1 = λh2 ⇒ L = 0 . (2.23)

From the smoothness conditions (2.9) we immediately see that the non-diagonalizability

condition implies that the temperature goes to zero. Moreover, in this limit the holonomy

becomes

extremal holonomy: Holφ(a) ∼

(
1 0

2π 1

)
. (2.24)

The important observation is that precisely at the extremality point the Jordan class of

the holonomy changes: while the finite-temperature holonomy lies on a hyperbolic conju-

gacy class of SL(2), the extremal black hole holonomy belongs to a parabolic conjugacy

class [42, 51, 52].

Let us now move on to the spin-3 black hole of [12]. We will focus on the unbarred

sector for concreteness. Using canonical boundary conditions, the boundary connections

are given by

aφ = aw + aw̄ =

 0 1
2L −

2
γW

1 0 1
2L

0 1 0

 , (2.25)

iatE + aφ = 2aw̄ = − γµ

2

−
1
6L −

2
γW

1
4L

2

0 1
3L − 2

γW

1 0 −1
6L

 , (2.26)

where kcsL and kcsW denote, respectively, the expectation values of the zero modes of the

stress tensor T and the dimension-3 current W on the cylinder. The normalization constant

γ takes the value γ2 = 8/5, which gives canonical OPE relations on the plane [40]. Here µ

denotes the source for the weight-3 current, and we emphasize that we have not added an

explicit source for the stress tensor in the connection, because the modular parameter τ is

included explicitly in the coordinate identifications.

Applying (2.17) to this solution we get

S = − 2πikcs
(
2τL+ 3αW

)
+ other sector , (2.27)

where the thermal spin-3 source α is related to the spin-3 chemical potential µ as in (2.15):

µ =
2α

τ̄ − τ
. (2.28)

As pointed out above we can write the entropy as a function of the charges only. In order

to achieve this, we will find it convenient to trade the charges (L,W) for the eigenvalues

of aφ [18, 20], which we parameterize as Eigen(aφ) = (λ1, λ2,−λ1 − λ2), so that

L = λ2
1 + λ1λ2 + λ2

2 , W =
γ

2
λ1λ2 (λ1 + λ2) , (2.29)
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with analogous expressions in the barred sector. In Lorentzian signature the eigenvalues

(λi, λ̄i) are independent, and real when one chooses the connection to be valued in sl(3;R) .

In Euclidean signature, we have λ∗i = −λ̄i, which implies that L∗ = L̄ and W ∗ = −W̄ .

Equation (2.19) then gives us immediately the entropy as a function of the charges

S = 2πkcs
(
λ1 − λ3

)
+ other sector

= 2πkcs
(
2λ1 + λ2

)
+ other sector , (2.30)

with λ1 and λ2 obtained by inverting (2.29) and choosing the branch of the solution that

connects smoothly to the BTZ black hole as one turns off the W charge.

Next, in order to obtain the potentials as a function of the charges we solve the smooth-

ness conditions (2.10). This gives

τ = i
2λ2

1 + 2λ1λ2 − λ2
2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
, (2.31)

α = − 6i

γ

λ2

(λ1 − λ2) (2λ1 + λ2) (λ1 + 2λ2)
. (2.32)

In Euclidean signature, (τ̄ , ᾱ) are the complex conjugate of the above expressions. When

continuing back to Lorentzian signature, the charges and potentials in the two sectors are

no longer related to each other by complex conjugation, but are instead each real and

independent. Upon performing this continuation, it is convenient to trade the parameters

(τ, τ̄) for the inverse temperature β and the (real, Lorentzian) angular velocity Ω via (2.5)

(which remains true in the higher spin case). We then note that the above relations imply

µ = 6γ
(
1 + Ω

)( λ2

2λ2
1 + 2λ1λ2 − λ2

2

)
(2.33)

µ̄ = − 6γ
(
1− Ω

)( λ̄2

2λ̄2
1 + 2λ̄1λ̄2 − λ̄2

2

)
. (2.34)

With these explicit relations we can now implement our definition of extremality. Re-

quiring that aφ should be non-diagonalizable gives as a necessary condition

extremality condition: λ1 = λ2 ≡ λ ⇒ L = 3λ2 , W = γλ3 . (2.35)

As a consequence, while the finite-temperature angular holonomy is diagonalizable, in the

extremal limit we obtain

extremal holonomy: Holφ(a) ∼

 e−4πλ 0 0

0 e2πλ 1

0 0 e2πλ

 , (2.36)

exhibiting the expected non-trivial Jordan normal form. We emphasize that the extremal

limit of the spin-3 higher spin black hole was first discussed in [12]: their bound was found

as the maximal value of W for a given L such that the entropy is real, and it agrees

with (2.35).
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Turning now our attention to the potentials, from (2.31)–(2.34) and (2.5) we see in

particular that in this limit

extremal potentials: β →∞ , µ→ 4
γ

λ
, Ω→ 1 , µ̄→ 0 , (2.37)

so the temperature is zero as expected. The spin-3 chemical potential µ remains finite and

becomes a simple homogeneous function of the charges, whereas the corresponding thermal

source α scales with the inverse temperature and blows up. On the other hand, the barred

sector spin-3 potential µ̄ goes to zero because the thermal source ᾱ remains unconstrained

and in particular finite, as no condition is imposed on the barred charges.

Several comments are now in order.

1. Jordan decomposition versus zero temperature: a valid concern is to wonder if our

definition of extremality implies zero temperature and vice-versa. From (2.31) it is

clear that there are 3 combinations of λ1 and λ2 that achieve β →∞ . The additional

other branches also give non-trivial Jordan forms, since they just correspond to dif-

ferent pairings of eigenvalues that are degenerate. For this reason, all these cases are

captured by (2.35): any pairing λi = λj with i 6= j implies the extremality bound

L3 = 27γ−2W 2.10 At least for N = 2, 3, a non-trivial Jordan decomposition implies

zero temperature and vice-versa. And from the heuristic argument in section 2.2, we

expect this to always be the case.

2. Other Jordan classes: for λ ≡ λ1 = λ2 6= 0, aφ has only 2 linearly independently

eigenvectors. If take first λ2 = 0 and then λ1 = 0, the holonomy of aφ belongs to a

different Jordan class where there is only one eigenvector; this case corresponds to

extremal BTZ within sl(3)⊕ sl(3) Chern-Simons theory.

3. Finite entropy: we have a continuous family of extremalW3 black holes parametrized

by λ, and from (2.30) the contribution of the extremal (unbarred) sector to the total

entropy is

Sext = 2πkcs λ =
π

3

√
c

2

(
h− c

24

)
=
π

2

(
c q3

9γ

)1/3

, (2.38)

where c = 24kcs and we casted the answer in terms of the charges (h, q3) on the

plane, related to (L,W) by kcsL = h − c
24 and kcsW = q3 . The answer is clearly

finite. This should be contrasted with extremal BTZ, where the contribution of the

extremal sector vanishes. It would be interesting to derive such bound and residual

entropy in a CFT with W3 symmetry.

4. Extremality vs. unitarity: the extremality condition we have discussed can be thought

of as a bound
64

5c

(
h− c

24

)3
≥ 9q2

3 (2.39)

10Different pairings of eigenvalues conflict with the ordering of eigenvalues used in (2.30), but this is

easily fixed by reordering the eigenvalues appropriately.
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on the charges of a spin-3 black hole. On the other hand, in a theory with W3

symmetry, the unitary bound in the semiclassical limit is [53]11

64

5c

(
h3 − c

32
h2
)
≥ 9q2

3 . (2.40)

It is clear that (2.39) and (2.40) do not agree. However, theW3 unitarity bound (2.40)

encloses the bulk extremality bound (2.39), indicating that all sl(3) black holes are

dual to states allowed by unitarity in the dual CFT.

5. Conformal invariance: in two-derivative theories of gravity in D = 4, 5 all extremal

black holes contain an AdS2 factor in its near horizon geometry [54, 55]. The enhance-

ment of time translations to conformal transformations is non-trivial and unexpected

a priori; moreover, it is key to build microscopic models of extremal black holes. Here

we have not investigated this feature explicitly, but we do expect that the connection

at the extremal point is invariant a larger set of gauge transformations relative to the

non-extremal connection. It would be interesting to quantify these symmetries and

understand its role in the dual CFT.

Having described the general framework to study extremal higher spin black holes, in

the remainder of the article we will focus on the interplay between extremality and super-

symmetry. Furthermore, we will analyze our results from the perspective of the holographic

duality between Chern-Simons supergravities and CFTs with super-W symmetry algebras.

3 Supersymmetric higher spin backgrounds

Extremality can be understood as the saturation of certain inequalities involving conserved

charges, and it is natural to contrast these inequalities with BPS bounds that appear in

supersymmetric setups. It is well known that in two-derivative theories of supergravity

these two types of conditions are intimately related: supersymmetry always implies zero

temperature and therefore extremality in the context of BPS black holes. The lore behind

this is as simple as noticing that on a contractible circle fermions are anti-periodic whereas

bosons are periodic, making finite temperature incompatible with symmetries which relate

the two kinds of fields.12

In this section we will explore the relation between extremality and supersymmetry

for AdS3 higher spin black holes. There is an arbitrarily long list of supersymmetric

higher spin theories with AdS3 as its vacuum configuration. Here we will focus on one

representative, namely the sl(3|2)⊕ sl(3|2) Chern-Simons theory. This example contains a

11The quantum (finite-c) unitarity bound reported in [53] is

64

22 + 5c
h2

(
h− 1

16
− c

32

)
− 9q2

3 ≥ 0 .

12Another way to motivate this relation in a purely gravitational context is via the attractor mecha-

nism [56–59], which shows that the BPS equations in N = 2 supergravity in D = 4, 5 have a fixed point

which is responsible for the AdS2 factor in the near horizon geometry.
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spin-3 supermultiplet in its spectrum, thus providing new features that have no counterpart

in standard N = 2 supergravity. Since the latter theory is included in the higher spin model

as a consistent truncation to sl(2|1) ⊂ sl(3|2), we will also use our results to review some

known features of supersymmetric BTZ black holes cast in Chern-Simons language. For

completeness, we shall also study supersymmetric smooth conical defects. The discussion

in this section focuses on the AdS3 (bulk) properties of the solutions. In section 4 we will

compare our findings with the CFT dual.

3.1 sl(3|2) solutions

We will now study non-perturbative solutions of sl(3|2)⊕ sl(3|2) Chern-Simons supergrav-

ity. For simplicity, we will refer to these backgrounds as ‘sl(3|2) black holes’ or ‘sl(3|2)

smooth conical defects.’

Let us begin by summarizing a few facts about the relevant superalgebra. In the

principal embedding of sl(2|1) in sl(3|2) [60, 61], the even-graded sector of the superalgebra

is decomposed into the sl(2) generators (Li), a spin 0 element (J), one spin 1 multiplet

(Ai), and one spin 2 multiplet (Wm). All together, they span the bosonic sub-algebra

sl(3)⊕ sl(2)⊕ u(1). The odd-graded elements consist of two spin 1/2 multiplets (Hr and

Gr) and two spin 3/2 multiplets (Ts and Ss). By “spin” we mean the sl(2) spin S, so

within each multiplet the indices range from −S to S. The spin of the corresponding 3d

bulk field carrying the representation is then S + 1 . Now, in order to fully determine the

bulk Lorentzian theory, one must additionally specify the real form under consideration in

this case. The complex superalgebra sl(3|2;C) has several real forms, as listed in e.g. [62],

and in this paper we will deal with su(2, 1|1, 1) . This choice is intimately linked to the dual

W(3|2) symmetry. In particular, su(p, 3−p|q, 2−q) is the only real form that has a compact

Abelian generator.13 We refer to [23] for a further discussion of this subtle yet important

point. We also encourage the reader to visit appendix A for a more detailed discussion of

the sl(3|2) and su(2, 1|1, 1) superalgebras, as well as the matrix representation we employ.

Several results in this section pend on some of the specifics outlined therein.

Our aim is to characterize a wide class of solutions supported by the even-graded sector

of the su(2, 1|1, 1) superalgebra, which includes black holes and smooth conical defects.

Following the discussion in section 2.1, we will incorporate the higher spin sources so as to

realize the boundary conditions that are naturally described by a Hamiltonian formulation

of the dual CFT2 . Simply put, after gauge fixing the radial dependence of the connection,

the charges will be carried by the the angular component aφ. In particular, we write

aφ = L1 − LL−1 − iQ1J −Q2A−1 − iQ3W−2 , (3.1)

where L, Q1, Q2 and Q3 are all taken to be constant and real so that (given our realization

of the generators in terms of purely real matrices) aφ lies on the real form su(2, 1|1, 1).14

Similar expressions hold for āφ, which we will omit for the rest of the section.

13We thank J. de Boer for bringing this issue to our attention.
14This was implicitly done in [63] where appropriate factors of i were introduced to obtain the usual

Hermiticity relations among the fields, and in particular the right sign of the kinetic terms in the Lagrangian

for the (2, 0) supergravity truncation.
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In (3.1) we have also made a choice of Drinfeld-Sokolov decomposition for the connec-

tion. This is motivated by the holographic dictionary used to map these configurations

to states in a CFT2 with W(3|2) symmetry algebra [23]. We will elaborate more on this

dictionary below. For the time being, we mention that the parameters appearing in aφ are

related to the zero modes of the W-symmetry generators on the plane as follows:15

L =
6

c

(
h− c

24
− 3

2c
q2 +

1

2
κq2

)
,

Q1 = −3

c
q ,

Q2 = − 9

5c
κq2 ,

Q3 =
3

5c
κ

(
q3 −

6

c
qq2

)
.

(3.2)

In the conventions of appendix B, h denotes the zero mode of the stress tensor T , q is that

of the U(1) current J , q2 is the zero mode of the dimension 2 primary V , and q3 corresponds

to the dimension 3 operator W . The constant κ is fixed in terms of the central charge as

in (B.20), and the large-c limit is understood in the above expressions (cf. (B.29)). Due to

the Hermiticity properties of the operators on the plane, we note that h, q, κq2 and κq3

are real numbers, implying that L, Q1, Q2 and Q3 are also real.

Much like in the non-supersymmetric examples in section 2, we will find it convenient

for our purposes to redefine the charges in terms of the eigenvalues of aφ + iQ1J , which we

label as

eigen (aφ + iQ1J) =

[
λ1,−λ1 + λ2,−λ2,

1

2
λ3,−

1

2
λ3

]
. (3.3)

For notational simplicity, we have substracted the U(1) piece from the connection since it

commutes with the rest of the generators and is already diagonal. Notice that the matrix

aφ + iQ1J is traceless and super-traceless, hence the above parametrization. Being block-

diagonal, its characteristic polynomial factorizes into a cubic part and quadratic part,

namely,

det
(
λ− aφ − iQ1J

)
=
(
λ3 − 4 (L+Q2)λ+ 8iQ3

) (
λ2 − L+Q2

)
= (λ− λ1) (λ+ λ1 − λ2) (λ+ λ2)

(
λ− 1

2
λ3

)(
λ+

1

2
λ3

)
. (3.4)

The respective discriminants are

∆3 = 64
(

4 (L+Q2)3 + 27Q2
3

)
= (2λ1 − λ2)2 (2λ2 − λ1)2 (λ1 + λ2)2 , (3.5)

and

∆2 = 4 (L −Q2)

= λ2
3 . (3.6)

15We note that the expression for the CFT stress tensor in terms of the bulk charges differs from that

in [64, 65].
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Since L, Q2 and Q3 are real, the eigenvalues λ1, −λ1+λ2 and −λ2 are purely imaginary

when ∆3 < 0, whereas for ∆3 > 0 two of the eigenvalues are minus complex conjugates of

each other and the third, being minus the sum of the previous two, is purely imaginary.

Analogously, we have that λ3 is imaginary when ∆2 < 0 and real when ∆2 > 0. We will

later see that black holes and smooth conical defects fall into the following sectors:

sl(3|2) solutions ∆3 ∆2

Black holes ≥ 0 ≥ 0

Smooth conical defects < 0 < 0

. (3.7)

In this paper we will not explore the remaining possibilities ∆3 < 0, ∆2 ≥ 0 and ∆3 ≥ 0,

∆2 < 0 . As we will discuss momentarily, extremal black holes correspond to the cases

where either ∆3 = 0 or ∆2 = 0 . Hence, the classification of the connections in terms of ∆3

and ∆2 is a natural generalization of the familiar classification of pure gravity solutions in

terms of hyperbolic, parabolic and elliptic conjugacy classes in SL(2) .

It follows from the above formulae that

L =
1

8

(
λ2

1 + λ2
2 − λ1λ2 + λ2

3

)
,

Q2 =
1

8

(
λ2

1 + λ2
2 − λ1λ2 − λ2

3

)
,

Q3 = − i
8

(−λ1 + λ2)λ1λ2 .

(3.8)

As expected, the charges are symmetric polynomials in the eigenvalues. We have chosen the

relative normalization in (3.3) such that the sl(2|1) theory corresponds to λ1 = λ2 = λ3 ,

for which

L =
1

4
λ2

1 , Q2 = 0 , Q3 = 0 , (3.9)

and

∆3 = 4λ6
1 , ∆2 = λ2

1 . (3.10)

Notice that there are other values of λi that give Q2 = Q3 = 0; these are perfectly

admissible and will not be discarded in our discussion. However, they lead to non-vanishing

chemical potentials in the higher spin sector (see (3.21) below), which implies that they

are not a solution of the sl(2|1) truncation.

As pointed out in section 2.2, our definition of extremality involves the diagonalizability

of the angular component of the connection. It is easy to see that in this example aφ is

diagonalizable if and only if ∆3 6= 0 and ∆2 6= 0, in which case there exists a similarity

matrix V that brings it to the form

V −1aφV = aDφ , (3.11)

where

aDφ =
1

4
(λ1 + λ2 + 2λ3)L0 +

1

4
(λ1 + λ2 − 2λ3)A0 +

3

4
(λ1 − λ2)W0 − iQ1J (3.12)
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lies in the Cartan subalgebra of sl(3|2), as appropriate. If aφ is not diagonalizable, and

hence extremal according to our definition, then either ∆3 = 0 or ∆2 = 0 and the Jordan

decomposition becomes

V −1aφV = aDφ + aNφ , (3.13)

where aDφ is the same diagonal matrix as above and aNφ is a nilpotent matrix commuting

with aDφ . The precise form of aNφ depends on the class of matrix under consideration,

determined by the number of repeated eigenvalues, i.e. the multiplicity of zeros of ∆3 and

∆2 . Generically, it can be written as a matrix with a few non-zero off-diagonal elements,

and it is unique up to similarity transformations that leave aDφ invariant. We will come

back to this point in the next section.

To summarize, a general sl(3|2) Drinfeld-Sokolov connection can reside in any of the

ten classes:

Eigenvalues (3× 3) ∆3

λ1 = λ2 = 0 = 0

λ2 = 2λ1 6= 0 = 0

λ1 = 2λ2 6= 0 = 0

λ1 = −λ2 6= 0 = 0

2λ2 6= λ1 6= −λ2 6= −2λ1 6= 0

⊗ Eigenvalues (2× 2) ∆2

λ3 = 0 = 0

λ3 6= 0 6= 0

.

This classification is further refined by looking at the signs of ∆3 and ∆2. Let us high-

light some important properties. First, the U(1) charge, Q1, while important for other

considerations, does not play a role in the characterization of the Jordan class. Second, the

form (3.13) of the connection does not necessarily take values in the real form su(2, 1|1, 1)

of sl(3|2;C), just like the diagonal form of a (diagonalizable) real matrix is not necessarily

real. This is equivalent to saying that the similarity matrix V that accomplishes (3.13)

does not axiomatically belong to the supergroup SU(2, 1|1, 1). The Jordan form of the

connection does, nonetheless, belong to sl(3|2;C). Also, given the reality properties of

the eigenvalues in the black hole and smooth conical defect sectors, which we shall derive

momentarily, some of the classes will not be relevant for what follows. In particular, we

will see that there are only six non-empty classes for black holes solutions while smooth

conical defects can only exist when aφ is diagonalizable.

3.1.1 Black holes and their thermodynamics

In the absence of a metric formulation, one resorts to the Euclidean description in or-

der to define higher spin black holes via appropiate smoothness conditions on the solid

torus [12]. In Chern-Simons language, the continuation from Lorentzian to Euclidean sig-

nature is achieved by letting the two connections A and Ā become complex, thus valued in

sl(3|2;C), with the constraint Ā = −A† . Consequently, the charges and chemical potentials

introduced below become complex numbers. After defining the Euclidean solutions and

studying their thermodynamic properties, we will translate back to Lorentzian signature

and demand that the gauge fields lie in the correct real form.
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Borrowing from notions well understood for the BTZ black hole, a Euclidean higher

spin black hole is defined by a smooth connection on the solid torus that carries charges

as well sources (chemical potentials). As mentioned above, the charges have already been

incorporated in the highest weight components of aφ , so the sources that support the

background will be added in the lowest weight components of iatE + aφ . The Euclidean

black hole connection then reads

aφ = L1 − LL−1 − iQ1J −Q2A−1 − iQ3W−2 , (3.14)

iatE + aφ = iν0J + ν̃−1

(
A1 −

5

3
L1

)
+ iν−2W2

−
(

4Q3ν2 +

(
Q2 −

5

3
L
)
ν̃−1

)
L−1 −

(
4Q3ν2 +

(
L − 5

3
Q2

)
ν̃−1

)
A−1

− 2i (L+Q2)µ−2W0 + i

(
(L+Q2)2 ν−2 +

2

3
Q3ν̃−1

)
W−2 . (3.15)

The higher weight components of iatE +aφ, namely the last two lines in (3.15), are fixed in

terms of the charges L, Q1, Q2 and Q3, and sources ν0, ν̃1 and ν−2 by the flatness condition

[atE , aφ] = 0. Analogous expressions follow for the other sector ā = −a†.
A few comments are in order. First, black hole solutions correspond to constant (and

purely bosonic) connections defined on the boundary cylinder, which after proper identi-

fications becomes a torus. For ease of comparison with CFT variables, however, we have

chosen to map the charges appearing in aφ to the zero-modes of the W-symmetry genera-

tors on the plane. This map is given in (3.2). Secondly, it is important to emphasize that,

just as in the bosonic W3 example (2.26), the source for the stress tensor has already been

incorporated as the modular parameter τ of the boundary torus and need not be intro-

duced in the connection. That is why we have only turned on a source for the combination(
A1 − 5

3L1

)
, which implies a chemical potential for the dimension-2 primary V in the CFT,

but not the stress tensor [23]. Also, the parameters ν0, ν̃−1 and ν−2 are not particularly

meaningful, but their relation to the CFT sources can be obtained by analyzing the CFT’s

Ward identities [23]. This gives

ν0 = µ1 +
6

c
µ3q2 ,

ν̃−1 = −3κ

10

(
µ̃2 +

6

c
qµ3

)
,

ν−2 = −3κ

10
µ3 .

(3.16)

The above redefinitions are such that

kcs sTr
[
(iatE + aφ) aφ

]
= µ1q + 2µ̃2q2 + 3µ3q3 , (3.17)

which correctly identifies (µ1, µ̃2, µ3) as the potentials conjugate to (q, q2, q3), respectively.

Let us now solve the smoothness condition for the Euclidean black hole along the lines

of (2.11). As in the bosonic examples, demanding that the holonomy of the connection

around the thermal cycle be trivial fixes the chemical potentials in terms of the charges.
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In supersymmetric theories, however, there is an important new ingredient that is worth

highlighting. The center of the bosonic sub-algebra sl(3)⊕ sl(2)⊕ u(1) ⊂ sl(3|2) is

Γ± ≡

(
13×3 0

0 ±12×2

)
, (3.18)

where the upper and lower blocks correspond to the centers of sl(3) and sl(2), respectively.16

Notice though that Γ− anti-commutes with the odd generators of sl(3|2), so the actual

center of the superalgebra is just Γ+ = 15×5 . For this reason, one might naively think that

the appropriate smoothness condition is to set the holonomy to Γ+. This, however, is wrong.

The novel feature here is that the choice of sign reflects upon whether the fermions present

in the theory satisfy periodic or anti-periodic boundary conditions, i.e. the spin structure

of the manifold. Indeed, it is easy to convince oneself that under a gauge transformation

Γ+ remains invariant when the fermionic components of the transformation parameter are

periodic, while Γ− does so for anti-periodic fields. Since a contractible cycle allows only

for the latter possibility, we shall adopt

HCE ≡ Pe
∮
CE

a
= Γ− (3.19)

as the correct holonomy condition for the thermal direction. In addition, e2πiL0 = Γ−,

which agrees with (2.11). Hence, the smoothness requirement translates to

V −1 (τaw + τ̄ aw̄)V = iL0 , (3.20)

where V is the same matrix that diagonalizes aφ . We could have used a different element

of the Cartan sub-algebra to cast Γ−, one that involves a suitable combination of L0, W0,

A0 and J . The choice in (3.20) is the simplest one that accommodates the BTZ black

hole. The interpretations of other choices are discussed in [66, 67]. It is worth pointing out

that we can still have periodic or anti-periodic fields in the φ coordinate, which defines a

non-contractible cycle in a black hole topology.

It is now a straightforward task to solve the smoothness conditions, obtaining

τ =
i

3

(
4
λ1 (2λ2 − λ1) + λ2 (2λ1 − λ2)

(2λ1 − λ2) (2λ2 − λ1) (λ1 + λ2)
− 1

λ3

)
,

γ0 = Q1τ ,

γ1 =
i

2

(
λ1 (2λ2 − λ1) + λ2 (2λ1 − λ2)

(2λ1 − λ2) (2λ2 − λ1) (λ1 + λ2)
− 1

λ3

)
,

γ2 =
3

2

−λ1 + λ2

(2λ1 − λ2) (2λ2 − λ1) (λ1 + λ2)
,

(3.21)

where we have introduced the thermal sources for the chemical potentials as in (2.15), i.e.

γ0 =

(
τ̄ − τ

2

)
ν0 , γ1 =

(
τ̄ − τ

2

)
ν̃−1 , γ2 =

(
τ̄ − τ

2

)
ν−2 . (3.22)

16Technically, there is also an arbitrary U(1) element in the center of the bosonic sub-algebra. However,

it does not commute nor anti-commute with the fermionic elements.
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Naturally, we can also use (3.16) in order to write down the solution to the smoothness

conditions for the dual CFT chemical potentials. Notice that γ1 and γ2 vanish for λ1 =

λ2 = λ3 while the modular parameter becomes τ = i/(2
√
L), reproducing (2.9) for the

BTZ solution.

All of the above considerations take place in Euclidean time. When switching back to

Lorentzian signature, we should demand that the chemical potentials are real so that the

connection lies in su(2, 1|1, 1). This forces the eigenvalues to satisfy

λ1 = λ∗2 , λ3 = λ∗3 , (3.23)

implying that ∆3 ≥ 0 and ∆2 ≥ 0, as previously advertised. We also see that the diagonal

form (3.97) takes values in su(2, 1|1, 1), a fact which was not obvious a priori. And last,

but by no means least, the entropy of an sl(3|2) black hole is

S = 2πkcs

(
λ1 + λ2 −

λ3

2

)
+ other sector , (3.24)

which follows from applying (2.17) to (3.14). It is important to highlight that due to (3.23)

the entropy in each sector is real, as it should be. Also, the U(1) charge does not make an

explicit appearance, it only enters indirectly via (3.2). The reason is rather simple: Q1 is

ambigous since its value can be changed by a smooth U(1) gauge transformation, whereas

(L, Q2, Q3) are invariant under any such symmetry. As we will see in section 4, in the dual

CFT this nicely ties to the fact that (L, Q2, Q3) are spectral flow invariants (a property

that we expect the entropy to respect).

We take the reality conditions (3.23) as part of the definition of the Lorentzian black

hole solution. Notice that these imply that the four Jordan classes with λ2 = 2λ1 6= 0 and

λ1 = 2λ2 6= 0 are actually empty. This is a consequence of our ordering of the eigenvalues

and the choice of smoothness condition in (3.20); see comment 3 at the end of section 2.3.

There are then only six possible Jordan classes for black hole solutions, five of which are

extremal:
Class Eigenvalues (∆3,∆2) Extremal?

I λ1 = λ2 = 0 λ3 = 0 (= 0,= 0) Yes

II λ1 = −λ2 6= 0 λ3 = 0 (= 0,= 0) Yes

III λ1 6= −λ2 λ3 = 0 (> 0,= 0) Yes

IV λ1 = λ2 = 0 λ3 6= 0 (= 0, > 0) Yes

V λ1 = −λ2 6= 0 λ3 6= 0 (= 0, > 0) Yes

VI λ1 6= −λ2 λ3 6= 0 (> 0, > 0) No

.

The sl(2|1) theory lives in the subsector λ1 = λ2 = λ3 of class VI and in class I. In

particular, class I describes the extremal charged BTZ solution. For class VI we could

further restrict 2(λ1 + λ2) > λ3 > 0. This ensures that the black hole solutions within

this class are smoothly connected to BTZ and that the contribution from this sector to

the entropy (3.24) is positive. However, there is nothing in principle pathological about

solutions with λ3 < 0 given the criteria used here; actually it seems like a more natural

choice for class IV and V to take λ3 negative rather than positive.
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We emphasize that the table displayed above only implements our definition extremal-

ity, and other smoothness and/or stability conditions might further restrict the λi’s or even

eliminate a whole class. For instance we could in addition demand that the entropy (3.24)

is positive; note that this includes both sectors so it is one inequality for λi and λ̄i. There

are additional criteria one could use, e.g., thermodynamical stability of the solutions. One

could as well study Lorentzian properties which could probe if the solutions has closed

timelike curves. These additional properties will not be discussed here and will not impact

further conclusions we draw from these solutions; we leave these issues as future directions.

3.1.2 Smooth conical defects

Smooth conical defects are solutions of the Lorentzian theory that have trivial holonomy

along the cycle φ ∼ φ + 2π [68]. Triviality of the holonomy takes the same meaning as it

did for black holes along the thermal direction, that is,

Hφ ≡ Pe
∮
aφdφ = Γ± . (3.25)

Since the topology of these backgrounds is assumed to be the same as for AdS3 , where the

φ cycle is contractible, smoothness of fermionic fields at the origin would require Hφ = Γ− .

Notwithstanding this consideration, and for the purpose of comparing with the dual CFT

in section 4, we will allow for the possibility of periodic fermions, i.e. Hφ = Γ+. Of course,

this introduces a sigularity at the origin, interpreted as a delta function source, the presence

of which we can not justify from the bulk perspective without coupling the theory to matter

in a UV complete fashion.

The above holonomy conditions immediately imply that the eigenvalues of aφ are purely

imaginary, putting these solutions in the sector ∆3 < 0 and ∆2 < 0 . The most general set

of eigenvalues that satisfy (3.25) reads

λ1 = i

(
n1 +

1

3
n

)
, λ2 = i

(
n2 −

1

3
n

)
, λ3 = i (2n3 + n) , Q1 =

1

6
n , (3.26)

where n1, n2 and n are integers. The parameter n3 labels whether the solution supports

periodic or anti-periodic fermions. If n3 ∈ Z we have that Hφ = Γ+, whereas for n3 ∈ Z+ 1
2

the holonomy becomes Hφ = Γ−. At this stage, the bulk Chern-Simons theory gives us

no obvious further restrictions on (ni, n) other than requiring that the eigenvalues be

non-degenerate. However, comparison with the dual W(3|2) CFT2 will impose additional

constrains on these parameters.

3.2 Supersymmetry

In a supersymmetric Chern-Simons theory, a solution is said to be BPS if there exists

a gauge transformation supported by odd elements of the gauge group that leaves the

connection invariant. Having surveyed sl(3|2) solutions in detail, our task in this section

will be to explore under what conditions these backgrounds are BPS, and identify the

precise fermionic symmetries they preserve. We will then compare the supersymmetry

constraints with our definition of extremality. Only one sector of the sl(3|2) ⊕ sl(3|2)

Chern-Simons theory will be considered here. Analogous results follow for the other sector.

– 22 –



J
H
E
P
0
4
(
2
0
1
6
)
0
7
7

Prior work on supersymmetric black holes in higher spin gravity include [61, 63–65].

The logic we follow here is most closely related to [65], where the role of the odd roots of

the superalgebra and the eigenvalues of the connection was emphasized. The main novelty

is that we purposefully allow for the possibility that the connection be non-diagonalizable,

in accordance with our definition of extremality. Moreover, we use Hamiltonian boundary

conditions while most of the literature focuses on a holomorphic description along the lines

of (2.13). The advantage of this setup is that comparison with BPS states in the dualW(3|2)

theory becomes clear and unambiguous. The recent work [69] does implement boundary

conditions analogous to ours, with one important distinction being that the superalgebra

considered in [69] is osp(1|4) instead of sl(3|2), and consequently the theory displays so-

called hypersymmetry as opposed to supersymmetry. Further comparisons with [69] will

be discussed in section 5.

Let us now proceed to analyse the conditions for supersymmetry in Chern-Simons

theory. Having eliminated the radial dependence, the residual gauge transformations acting

on the boundary connection take the familiar form

a→ a′ = e−ε a eε + dε , (3.27)

where ε is an arbitrary element of the gauge superalgebra, in this case, su(2, 1|1, 1). As

mentioned above, a given background is deemed supersymmetric if a′ = a for an odd

transformation parameter. Thus, in infinitesimal form, the BPS conditions read

∂tε+ [at, ε] = 0 , ∂φε+ [aφ, ε] = 0 . (3.28)

The number of independent solutions to these equations determines the amount of su-

persymmetry preserved by the background. We will refer to these equations as “Killing

equations” and label its solutions as “Killing spinors”, in analogy with standard supergrav-

ity nomenclature.

Locally, Killing spinors exist for arbitrary connections and fermionic generators. In

fact, since we are only focusing on backgrounds with constant at and aφ, the integrability

condition [at, aφ] = 0 allows us to write the general solution to (3.28) as

ε(t, φ) = e−att−aφφ ε0 e
att+aφφ . (3.29)

Here ε0 is a constant odd element of su(2, 1|1, 1). The admissible, globally defined solutions,

however, are only those that possess the correct periodicity in φ. Namely, the spinors can

be anti-periodic in the Neveu-Schwarz sector or periodic in the Ramond sector.17 This

imposes constraints on both aφ and ε0 . Most of the discussion in this section focuses

on the φ-dependence of ε(φ) ≡ ε(0, φ). In the last portion we will comment on the time

dependence.

For the purpose of explicitly displaying the global solutions to the Killing equations, let

us bring aφ to its Jordan normal form as in (3.13). The important properties to remember

17Recall that the φ-cycle is non-contractible for a black hole, hence we can allow for both NS and R

boundary conditions.
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are that aNφ is nilpotent and commutes with aDφ , obviously vanishing for diagonalizable

connections. In this decomposition we have18

ε(φ) = e−a
D
φ φe−a

N
φ φ ε0 e

aDφ φea
N
φ φ , (3.30)

where

ε(φ) ≡ V −1 ε(φ)V , ε0 ≡ V −1 ε0 V , (3.31)

and V is the constant (φ-independent) matrix defined in (3.13). We stress again that aDφ
and aNφ , as well as the spinors ε and ε0 , need not belong to su(2, 1|1, 1) . This requisite

must be imposed only upon reverting the transformation that takes the connection to its

Jordan form. It will also prove convenient to work in the EIJ basis of sl(3|2) generators

introduced in appendix A, where aDφ takes the form

aDφ = λ1 (E11 − E22) + λ2 (E22 − E33) +
1

2
λ3 (E44 − E55) + iQ1 (E11 + E22 + E33) , (3.32)

and aNφ can be written as a linear combination of E12, E13, E23 and E45 , depending on

the Jordan class under consideration. This basis has the advantage that it diagonalizes the

adjoint action of the Cartan elements. In particular,

[aDφ , EIJ ] = ωIJEIJ , (3.33)

where

ωIJ =
(
aDφ
)
II
−
(
aDφ
)
JJ

. (3.34)

More generally, as pointed out in [65] the frequencies ωIJ = −ωJI are determined by

the roots of the superalgebra and the holonomy of the connection. In order to exhibit this

relation in a general and representation-independent way, let αj denote a root of the bulk

gauge superalgebra, and let aDφ denote the diagonal piece of the Jordan normal form of the

Drinfeld-Sokolov connection aφ appropriate to the boundary symmetries being described.

Since aDφ belongs to the Cartan subalgebra C, we can associate an element ~Λφ ∈ C∗ of the

root space with it. Using the isomorphism between C and the root space C∗, we may also

associate a Cartan element Hj with the root αj . Then, using the bilinear form 〈· , ·〉 on

C∗ induced in the usual way by the Killing form, i.e.
〈
α, β

〉
= Tr

[
adjHα adjHβ

]
, we can

write the frequencies (3.33)–(3.34) in a representation-independent way as

ωj =
〈
~Λφ , αj

〉
. (3.35)

The precise form of the frequencies ωj will of course depend on the concrete algebra under

consideration and encodes the semiclassical symmetries of the boundary CFT (via the

Drinfeld-Sokolov boundary conditions). In the case at hand, since we are interested in

fermionic symmetries only, the odd frequencies are given explicitly by

ω14 = λ1 −
λ3

2
+ iQ1 , ω15 = λ1 +

λ3

2
+ iQ1 ,

ω24 = −λ1 + λ2 −
λ3

2
+ iQ1 , ω25 = −λ1 + λ2 +

λ3

2
+ iQ1 ,

ω34 = −λ2 −
λ3

2
+ iQ1 , ω35 = −λ2 +

λ3

2
+ iQ1 .

(3.36)

18Notice the use of ε versus ε. Apologies to the reader for the inconvenience.
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Finally, the constant element ε0 can be expanded into U(1) eigenstates as

ε0 = ε−0 + ε+
0 , (3.37)

where

ε−0 =
∑
i,j̄

εij̄Eij̄ , ε+
0 =

∑
ī,j

εījEīj , (3.38)

with i = (1, 2, 3) and ī = (4, 5). There are in total 12 complex parameters εij̄ and εīj .

However, only half of them are independent because of the reality constraint satisfied by

elements of su(2, 1|1, 1), which ties the two U(1) sectors by complex conjugation. Since the

number of real independent coefficients allowed by a background quantifies the amount of

preserved supersymmetries, a fully supersymmetric solution will permit a total of 12 real

parameters, a 1/2-BPS one will preserve 6 of them, a 1/3-BPS background will have 4 free

real coefficients, etc. Of course, this counting neglects the other sector ā .

We are now in a position to study the conditions under which any given sl(3|2) solution

will be invariant under a supersymmetric transformation. First, notice that because aNφ

is nilpotent, the series expansion of ea
N
φ φ in (3.30) will be truncated at some finite order.

To avoid a polynomial φ-dependence in the Killing spinor, which is neither periodic nor

anti-periodic, we must require that

[aNφ , ε0] = 0 . (3.39)

This condition restricts the number of independent coefficients εij̄ and εīj appearing

in (3.38). The remaining φ-dependence of ε(φ) is controlled by [aDφ , ε0] . By means of (3.33)

and the Baker-Campbell-Hausdorff formula, we find that (3.30) becomes

ε(φ) = ε−(φ) + ε+(φ) , (3.40)

with

ε−(φ) =
∑
i,j̄

εij̄Eij̄e
−ωij̄φ , ε+(φ) =

∑
ī,j

εījEīje
−ωījφ . (3.41)

These expressions imply that the frequencies ωij̄ = −ωj̄i must be quantized into integer

or half-integer imaginary values in order for the solution to comply with the required

periodicity:

ωij̄ ∈

{
iZ R sector

iZ + i
2 NS sector

. (3.42)

This requirement is in general not fulfilled automatically. The quantization conditions

translate into constraints over the charges carried by the background, which may or may

not be possible to satisfy, further restricting the number of preserved supersymmetries.

Once one finds the Killing spinor ε(φ) explicitly, it is a simple matter to undo the

similarity transformation and express the solution ε(φ) in the form (3.29). We will display

our results by writing the supercharges in the language of asymptotic symmetries. As
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shown in [23], the general fermionic gauge parameter that preserves the Drinfeld-Sokolov

form of the connection is

ε(t, φ) = ε+− 1
2

(t, φ)H 1
2

+ ε−− 1
2

(t, φ)G 1
2

+ ε+− 3
2

(t, φ)T 3
2

+ ε−− 3
2

(t, φ)S 3
2

+ h− 1
2
(t, φ)H− 1

2
+ g− 1

2
(t, φ)G− 1

2
+ t− 3

2
(t, φ)T− 3

2
+ s− 3

2
(t, φ)S− 3

2

+ t− 1
2
(t, φ)T− 1

2
+ s− 1

2
(t, φ)S− 1

2
+ t 1

2
(t, φ)T 1

2
+ s 1

2
(t, φ)S 1

2
,

(3.43)

where the higher weight terms are fixed algebraically in terms of the lowest weight

components:

h− 1
2

= −∂φε+− 1
2

− iQ1ε
+
− 1

2

+ 2Q2ε
+
− 3

2

,

g− 1
2

= −∂φε−− 1
2

+ iQ1ε
−
− 1

2

− 2Q2ε
−
− 3

2

,

t 1
2

= −∂φε+− 3
2

− iQ1ε
+
− 3

2

,

s 1
2

= −∂φε−− 3
2

+ iQ1ε
−
− 3

2

,

t− 1
2

=
1

2
∂2
φε

+
− 3

2

+ iQ1∂φε
+
− 3

2

− 1

2

(
3L+Q2 +Q2

1

)
ε+− 3

2

, (3.44)

s− 1
2

=
1

2
∂2
φε
−
− 3

2

− iQ1∂φε
−
− 3

2

− 1

2

(
3L+Q2 +Q2

1

)
ε−− 3

2

,

t− 3
2

= −1

6
∂3
φε

+
− 3

2

− 1

2
iQ1∂

2
φε

+
− 3

2

+
1

3
∂2
φε

+
− 1

2

+
1

2

(
7

3
L −Q2 +Q2

1

)
∂φε

+
− 3

2

+
2

3
iQ1∂φε

+
− 1

2

+
1

2
iQ1

(
7

3
L −Q2 +

1

3
Q2

1

)
ε+− 3

2

−
(

1

3
L+Q2 +

1

3
Q2

1

)
ε+− 1

2

,

s− 3
2

= −1

6
∂3
φε
−
− 3

2

+
1

2
iQ1∂

2
φε
−
− 3

2

− 1

3
∂2
φε
−
− 1

2

+
1

2

(
7

3
L −Q2 +Q2

1

)
∂φε
−
− 3

2

+
2

3
iQ1∂φε

−
− 1

2

−1

2
iQ1

(
7

3
L −Q2 +

1

3
Q2

1

)
ε−− 3

2

+

(
1

3
L+Q2 +

1

3
Q2

1

)
ε−− 1

2

.

Notice that ε ∈ su(2, 1|1, 1) implies ε−− 1
2

= iε̄+− 1
2

and gr = ihr, as well as ε−− 3
2

= −iε̄+− 3
2

and

ss = −its . Since a Killing spinor corresponds to a particular class of gauge transformations

where the bosonic parameters vanish, we will express our findings by specifying ε+− 1
2

and

ε+− 3
2

. One reason why it is worth writing the remaining components explicitly is to

illustrate how the fermionic generators are concatenated. For instance, if a global Killing

spinor has ε+− 3
2

= 0 , it does not necessarily imply that the corresponding background

preserves a supercharge lying only within the graviton multiplet, i.e. the sl(2|1) truncation.

Indeed, from (3.44) it is clear that ε+− 1
2

by itself can induce components in ε(φ) that are

supported by generators belonging to the higher spin multiplet.

Lastly, we point out that one could, in principle, find the Killing spinors by directly

solving the resulting (sixth-order) differential equations for (ε+− 3
2

, ε+− 1
2

) without ever having

to resort to the Jordan form of aφ . It would still be necessary, however, to distinguish

between the different classes of extremal and non-extremal solutions, a task that is far

from trivial in the Drinfeld-Sokolov form of the connection, especially when written in

terms of the charges instead of eigenvalues. The Jordan form method outlined above is

equivalent and it simply presents the φ dependence in a different manner.
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3.2.1 Black holes

We will now go through an exhaustive analysis of the above supersymmetry conditions for

each Jordan class in the black hole sector; these classes are listed at the end of section 3.1.1.

Recall that for black hole solutions (and not for smooth conical defects) the diagonal part

of the connection (3.97) automatically lies in su(2, 1|1, 1) due to the reality properties of

the eigenvalues. In what follows, we will make sure that the nilpotent piece in (3.13)

also takes values in this superalgebra and that the similarity transformation that puts

aφ in its Jordan form belongs to the corresponding supergroup. While this is not strictly

necessary, it will ensure that the Killing spinors we find always live in the correct real form,

regardless of the basis we use to describe them. Since the parameters in (3.37) are then

tied by ε±0
†

= −Kε∓0 K so that ε0 = ε−0 + ε+
0 ∈ su(2, 1|1, 1) (see appendix A), it suffices to

perform the analysis for ε−0 only.

Class I: λ1 = λ2 = 0, λ3 = 0. As our first example, we will show in detail the

construction of Killing spinors for solutions in class I, which captures the supersymmetric

sector of the sl(2|1) truncation that maps to N = 2 supergravity (this truncation is further

discussed in section 3.3). We denote these backgrounds as “BPS charged BTZ black holes”.

The other classes follow in an analogous manner.

In this class the charges are given by

L = 0 , Q2 = 0 , Q3 = 0 , (3.45)

leading to a Jordan decomposition (3.13) where

aDφ = iQ1 (E11 + E22 + E33) , aNφ = − (E12 + E23 + E45) . (3.46)

The choice for aNφ is not unique; any other matrix related to this one by a similarity

transformation will yield equivalent results. Using the expansion (3.38), we find that

[aNφ , ε
−
0 ] = −ε24E14 + (ε14 − ε25)E15 − ε34E24 + (ε24 − ε35)E25 + ε34E35 . (3.47)

As argued above, this commutator must vanish, which sets

ε14 = ε25 , ε24 = ε34 = ε35 = 0 . (3.48)

This leaves two independent complex coefficients, ε25 and ε15. Hence, within class I,

solutions can preserve at most 4 real supercharges. Additionally, we need to ensure that

the Killing spinors have the correct periodicity. From (3.36) and (3.41) we have

ε−(φ) = (ε25 (E14 + E25) + ε15E15) e−iQ1φ . (3.49)

Therefore,

−Q1 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

, (3.50)

i.e. the U(1) charge must be quantized appropriately.
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After undoing the similarity transformation that puts aφ in its Jordan form and casting

the resulting generators as in (3.43), we find that the transformation parameters read

ε+− 1
2

(φ) = ε+− 1
2

(0)ei(η+ 1
2)φ , ε+− 3

2

(φ)= ε+− 3
2

(0)ei(η+ 1
2)φ , (3.51)

where we have exchanged the coefficients ε15 and ε25 for ε+− 1
2

(0) and ε+− 3
2

(0). Since all other

components in (3.44) vanish, the Killing spinor is simply

ε(φ) = ε+− 1
2

(φ)H 1
2

+ iε̄+− 1
2

(φ)G 1
2

+ ε+− 3
2

(φ)T 3
2
− iε̄+− 3

2

(φ)S 3
2
. (3.52)

Class II: λ1 = −λ2 6= 0, λ3 = 0. The charges carried by this class are

L =
3

8
λ2

1 , Q2 =
3

8
λ2

1 , Q3 = − i
4
λ3

1 , (3.53)

with λ1 being purely imaginary. The Jordan form of the connection reads

aDφ = λ1 (E11 − 2E22 + E33) + iQ1 (E11 + E22 + E33) , aNφ = − (±iE13 + E45) , (3.54)

where the choice of sign depends on the phase λ1 = ±i|λ1|. The condition [aNφ , ε
−
0 ] = 0

then sets

ε14 = ±iε35 , ε24 = ε34 = 0 . (3.55)

The free parameters are εi5, and from (3.36) combined with (3.41) we see that the Killing

spinors are

ε−(φ) = (ε15E15 + ε35 (E35 ± iE14)) e−i(−iλ1+Q1)φ + ε25E25e
−i(2iλ1+Q1)φ . (3.56)

An interesting feature here is that there are two different exponentials for which we

need to demand periodicity. Depending on the quantization conditions imposed on the

charges, different supersymmetries are preserved. By requiring

iλ1 −Q1 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

, (3.57)

we will preserve 4 supercharges, which in the notation of (3.43) read

ε+− 1
2

(φ) = ε+− 1
2

(0)ei(η+ 1
2)φ , ε+− 3

2

(φ) = ε+− 3
2

(0)ei(η+ 1
2)φ . (3.58)

Instead, demanding that

−2iλ1 −Q1 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

(3.59)

leads to the two supersymmetries

ε+− 1
2

(φ) = λ1ε
+
− 3

2

(φ) , ε+− 3
2

(φ) = ε+− 3
2

(0)ei(η+ 1
2)φ . (3.60)
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While for (3.57) we can smoothly recover the results for class I by taking λ1 = 0, the

quantization condition (3.59) is disconnected from the previous case due to the relations

in (3.60).

It is also possible that (3.57) and (3.59) are satisfied simultaneously. This occurs when

λ1 =
i

3
(η2 − η1) and Q1 = −1

3
(2η1 + η2)− 1

2
, (3.61)

a scenario which preserves six supersymmetries. This demonstrates explicitly that charged

BTZ black holes are not the most supersymmetric black hole configurations in the higher

spin theory, as one might have naively expected. At the level of the entropy, all solutions

within classes I and II have S = 0+other sector, according to (3.24). One would generically

expect that the most symmetric configuration minimizes the entropy, but this argument

would not distinguish between the two classes.

Class III: λ1 6= −λ2, λ3 = 0. The charges carried by this class are

L =
1

8

(
λ2

1 + λ2
2 − λ1λ2

)
,

Q2 =
1

8

(
λ2

1 + λ2
2 − λ1λ2

)
,

Q3 = − i
4

(−λ1 + λ2)λ1λ2 ,

(3.62)

with the connection being

aDφ = λ1 (E11 − E22) + λ2 (E22 − E33) + iQ1 (E11 + E22 + E33) , aNφ = −E45 . (3.63)

The condition [aNφ , ε
−
0 ] = 0 then sets

ε14 = ε24 = ε34 = 0 , (3.64)

leaving εi5 as free parameters. The putative supercharges are then

ε−(φ) = ε15E15e
−(λ1+iQ1)φ + ε25E25e

−(−λ1+λ2+iQ1)φ + ε35E35e
−(−λ2+iQ1)φ . (3.65)

It is easy to see that ε15 and ε35 cannot be preserved: by definition λ1 6= −λ2 within

this class, a fact which coupled to the reality condition λ1 = λ∗2 does not allow for λ1 or λ2

to be purely imaginary. Therefore, we have ε15 = ε35 = 0 and the quantization condition

−i(λ1 − λ2)−Q1 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

(3.66)

as requisites for the existence of Killing spinors. All in all this class can only preserve two

real supercharges, which are

ε+− 1
2

(φ) =
1

2
(λ1 − λ2) ε+− 3

2

(φ) , ε+− 3
2

(φ) = ε+− 3
2

(0)ei(η+ 1
2)φ . (3.67)

Notice that the entropy (3.24) is always non-vanishing. Also, setting λ2 = −λ1 we smoothly

recover one of the quantization conditions in class II.
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Class IV: λ1 = λ2 = 0, λ3 6= 0. The Jordan form of the connection is

aDφ =
1

2
λ3 (E44 − E55) + iQ1 (E11 + E22 + E33) , aNφ = − (E12 + E23) . (3.68)

This class does not contain any supersymmetric solutions since the exponential dependence

of the Killing spinor always has a non-zero real part.

Class V: λ1 = −λ2 6= 0, λ3 6= 0. In this case we have

aDφ = λ1 (E11 − 2E22 + E33) +
1

2
λ3 (E44 − E55) + iQ1 (E11 + E22 + E33) , aNφ = ∓iE13 .

(3.69)

Again, this class does not contain any supersymmetric solutions since the exponential

dependence of the Killing spinor always has a non-zero real part.

Class VI: λ1 6= −λ2, λ3 6= 0. In this class all charges are generically independent,

corresponding to diagonalizable connections whose Jordan form is

aDφ = λ1 (E11 − E22) + λ2 (E22 − E33) +
1

2
λ3 (E44 − E55) + iQ1 (E11 + E22 + E33) , (3.70)

aNφ = 0 . (3.71)

Note that, according to our definition, solutions in this class are therefore not extremal.

Since aNφ is trivial, (3.39) is automatically satisfied. Still, we need to ensure that ε−(φ)

in (3.41) is single or double-valued along the φ cycle by adjusting the frequencies ωij̄
in (3.36). For convenience, we reproduce them here:

ω14 = λ1 −
λ3

2
+ iQ1 , ω15 = λ1 +

λ3

2
+ iQ1 ,

ω24 = −λ1 + λ2 −
λ3

2
+ iQ1 , ω25 = −λ1 + λ2 +

λ3

2
+ iQ1 ,

ω34 = −λ2 −
λ3

2
+ iQ1 , ω35 = −λ2 +

λ3

2
+ iQ1 .

(3.72)

Taking into account the reality condition (3.23) together with λ1 6= −λ2 and λ3 6= 0,

it is straightforward to check that ω24 and ω25 cannot be purely imaginary in this class.

However, if we set

λ3 = λ1 + λ2 and
i

2
(λ1 − λ2)−Q1= η +

1

2
∈

{
Z R sector

Z + 1
2 NS sector

, (3.73)

then ω14 and ω35 are properly quantized. The coresponding global Killling spinor is

ε−(φ) = (ε14E14 + ε35E35) ei(η+ 1
2)φ , (3.74)

which has 4 real independent parameters. Alternatively, we can impose

λ3 = −(λ1 + λ2) and
i

2
(λ1 − λ2)−Q1= η +

1

2
∈

{
Z R sector

Z + 1
2 NS sector

, (3.75)
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for which ω15 and ω34 are quantized and the fermionic symmetry generator is

ε−(φ) = (ε15E15 + ε34E34) ei(η+ 1
2)φ . (3.76)

This solution preserves 4 real supercharges as well. In either case we find

ε+− 1
2

(φ) = ε+− 1
2

(0)ei(η+ 1
2)φ , ε+− 3

2

(φ)= ε+− 3
2

(0)ei(η+ 1
2)φ . (3.77)

The conditions (3.73) and (3.75) exhaust all possible supersymmetric configurations

within this class. Since (3.8) is unaffected by the sign of λ3, the corresponding bosonic

charges always read

L =
1

8

(
2λ2

1 + 2λ2
2 + λ1λ2

)
,

Q2 = −3

8
λ1λ2 ,

Q3 = − i
8

(−λ1 + λ2)λ1λ2 .

(3.78)

However, from (3.24), we see that the entropy is sensitive to the choice λ3 = ±(λ1 + λ2):

S = 2πkcs

(
1∓ 1

2

)
(λ1 + λ2) + other sector

= 4πkcs

(
1∓ 1

2

)√
L −Q2 + other sector . (3.79)

The chemical potentials (3.21) are also affected by the sign of λ3 . Recall from the discussion

at the end of section 3.1.1 that λ3 > 0 is slightly preferred since within this branch one

could reach the BTZ solution.

There is something disconcerting about our findings. The above analysis shows that

setting λ3 = ±(λ1 + λ2) allows for supersymmetry within the class of diagonalizable con-

nections, which according to our general definition are not extremal. Indeed, since the

temperature as defined in (3.21) remains finite, we come to the conclusion that we have

successfully constructed globally defined Killing spinors for non-extremal black hole solu-

tions!. This finding seems to go against the conventional wisdom regarding supersymmetric

theories. To make the reader (and ourselves) at ease with this undoubtedly peculiar fea-

ture, let us highlight some properties of these black hole configurations that should be

taken into account before discarding them:

1. So far, we have focused exclusively on the φ-dependence of the Killing spinors. One

could suspect that there exists some incurable illness along the thermal cycle. Naively

at least, this does not seem to be the case. It is easy to check, using (3.29) and the

fact that the holonomy of acontract is equal to Γ−, that the spinor ε(t, φ) is indeed anti-

periodic around the contractible direction, as expected for a smooth fermionic field.

Recall that Γ− anti-commutes with the odd generators of the algebra. This property

is only relevant for class VI where the topology of the solutions is a solid tours,

whereas for the other classes the topology changes due to the vanishing temperature.
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2. The BPS conditions for class VI do not allow for solutions in the sl(2|1) truncation.

The well-known folklore regarding supersymmetric BTZ black holes remains safe in

the higher spin setup.

3. The supercharges preserved by solutions with (3.73)–(3.77) are a non-trivial mixture

of fermionic generators in the spin-2 and spin-3 multiplets, as reflected by (3.44)

and (3.77). Moreover, the corresponding variations of the charges involve non-linear

relations among the bosonic and fermionic fields, which is explicitly seen when study-

ing the asymptotic symmetry group [23]. We suspect that these non-linearities are

allowing for the solution to balance anti-periodic fermions and periodic bosons on

a topology with a contractible cycle. This feature is clearly absent in standard su-

pergravity where BPS conditions always involve relations which are linear in the

fermionic fields.

4. A powerful reason to take these solutions seriously is that we will able to reproduce

the BPS bounds (3.73)–(3.75) from a calculation of the Kac determinant in a CFT

with W(3|2) symmetry. We postpone this aspect of the discussion until section 4.3.

3.2.2 Smooth conical defects

We now move on to the supersymmetry analysis of smooth conical defects, which is signifi-

cantly simpler than that for black holes. This is mainly because in this case the smoothness

condition immediately implies that the connection is diagonalizable. Otherwise it would

not have trivial holonomy. We need only look at the periodicity of the Killing spinors

dictated by the frequencies (3.36), which upon using (3.26) read

ω14 = i (n1 − n3) , ω15 = i (n1 + n3 + n) ,

ω24 = −i (n1 − n2 + n3 + n) , ω25 = i (−n1 + n2 + n3) ,

ω34 = −i (n2 + n3) , ω35 = i (−n2 + n3 + n) .

(3.80)

Recall that n1, n2 and n are integer numbers, whereas n3 can be an integer of half-integer,

determining the periodicity of ε(φ). Since all the frequencies are automatically quan-

tized by the smoothness requirement, we see that these solutions are always maximally

supersymmetric, preserving all 12 real supercharges. The Killing spinors are simply given

by (3.40)–(3.41).

3.2.3 Summary: supersymmetry versus extremality

The supersymmetries preserved by sl(3|2) black holes are summarized in table 1. In terms

of the eigenvalues of the connection aφ , we can group the BPS conditions into two familes,

depending on the number of preserved supercharges. The first has

λ3 = ± (λ1 + λ2) and
i

2
(λ1 − λ2)−Q1 = η +

1

2
, (3.81)

and implies the existence of four independent Killing spinors. It is accessible only to

solutions in classes I, II and VI. Depending on the choice of sign, this is equivalent to
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Class Eigenvalues Extremal? Quantization conditions # of supersymmetries

I λ1 = λ2 = 0 λ3 = 0 Yes −Q1 = η + 1
2 4 1

3 -BPS

II λ1 = −λ2 6= 0 λ3 = 0 Yes
iλ1 −Q1 = η + 1

2 4 1
3 -BPS

−2iλ1 −Q1 = η + 1
2 2 1

6 -BPS

III λ1 6= −λ2 λ3 = 0 Yes −i (λ1 − λ2)−Q1 = η + 1
2 2 1

6 -BPS

IV λ1 = λ2 = 0 λ3 6= 0 Yes None 0 Not BPS

V λ1 = −λ2 6= 0 λ3 6= 0 Yes None 0 Not BPS

VI λ1 6= −λ2 λ3 6= 0 No
i
2 (λ1 − λ2)−Q1 = η + 1

2 , 4 1
3 -BPS

λ3 = ± (λ1 + λ2)

Table 1. Supersymmetries of sl(3|2) (or more properly su(2, 1|1, 1)) black holes. The eigenvalues

of the connection are parametrized as eigen (aφ + iQ1J) =
[
λ1,−λ1 + λ2,−λ2, 12λ3,−

1
2λ3
]
, with

the reality conditions λ∗1 = λ2, λ∗3 = λ3. The charges carried by the solution are given by (3.8).

The quantization parameter η + 1
2 is an integer in the Ramond sector and a half-integer in the

Neveu-Schwarz sector.

demanding

iω14 = iω35 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

, (3.82)

or

iω15 = iω34 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

. (3.83)

The second kind, which gives rise to two supersymmetries, imposes

λ3 = 0 and − i (λ1 − λ2)−Q1 = η +
1

2
, (3.84)

and can occur in classes II and III, which are extremal. Consonantly,

iω24 = iω25 = η +
1

2
∈

{
Z R sector

Z + 1
2 NS sector

. (3.85)

Both families of BPS conditions can intersect in class II, producing and enhancement to

six supercharges. Class I also allows in fact for both scenarios, but no enhancement occurs

in that case because the two conditions coincide.

The first relation in (3.81) implies that the charges carried by the backgrounds satisfy

4

(
L+

5

3
Q2

)
Q2

2 + 9Q2
3 = 0 . (3.86)

The converse, however, is not true, as can be seen by setting the eigenvalues to the sl(2|1)

truncation in class VI. Keeping this caveat in mind, we can relate this BPS condition with
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extremality by noticing that

4

(
L+

5

3
Q2

)
Q2

2 + 9Q2
3 =

1

3

(
1

64
∆3 −∆2 (L+ 2Q2)2

)
. (3.87)

It is clear that vanishing of the above combination of charges does not necessarily imply

∆3 = 0 or ∆2 = 0. Notice also that the second relation in (3.81) can be expressed as

−
(

3

2

Q3

Q2
+Q1

)
= η +

1

2
, (3.88)

where the first term is absent for Q2 = 0. The other BPS condition, equation (3.84), is

always linked to extremality since λ3 = 0 implies ∆2 = 0 and vice versa. In terms of the

charges this constraint translates simply to

L −Q2 = 0 . (3.89)

All in all, there are three notable results we would like to highlight. First, there are

solutions in class II that preserve more supersymmetries than the charged BTZ black holes

in class I. Second, the intricacies of the sl(3|2) algebra allowed us to build non-extremal

supersymmetric solutions in class VI. This establishes that extremality is not a necessary

condition for supersymmetry as one might have naively suspected. Third, supersymmetric

solutions, extremal or not, generically carry residual entropy, which up to a numerical

coefficient we find to be

SSUSY−BH ∼ 2πkcs(λ1 + λ2) + other sector . (3.90)

3.3 N = 2 supergravity truncation

In the last portion of this section we will take the opportunity to review some aspects of

black holes and conical defects in AdS3 N = 2 supergravity. Historically, this is one of

the first theories to be described in Chern-Simons language [6, 7]. Given that sl(2|1) is a

subalgebra of sl(3|2), and with the intention of avoiding further cluttering, we will simply

truncate our results for the sl(3|2) theory. More background on this topic can be found in

e.g. [70, 71] and references therein. For a discussion of the theory in metric formulation

see e.g. [72–74].

In this case the appropriate gauge superalgebra in Lorentzian signature turns out to be

osp(2|2;R)⊕ osp(2|2;R). This is the choice of real form of sl(2|1;C)⊕ sl(2|1;C) that gives

the usual Hermiticity properties for the metric fields. The even-graded sector decomposes

into the sl(2) generators (Li) and a spin 0 element (J); the bosonic sub-algebra is thus

sl(2) ⊕ u(1). The odd-graded elements consist of two spin 1/2 multiplets (Hr and Gr).

The non-vanishing commutators of sl(2|1) ⊂ sl(3|2) can be found in appendix A.

As for sl(3|2), one can gauge fix the radial dependence of the connection and define

the charges by the highest weight components of aφ. In particular, a black hole connection

now reads

aφ = L1 − LL−1 − iQ1J , iatE + aφ = iν0J , (3.91)

– 34 –



J
H
E
P
0
4
(
2
0
1
6
)
0
7
7

with similar expressions for the components of ā . These configurations can be interpreted

as states in a theory with N = 2 super-Virasoro symmetry by using the map

L =
6

c

(
h− c

24
− 3

2c
q2

)
, Q1= −3

c
q . (3.92)

Here, h is the zero mode of the stress tensor T on the plane, and q is that of the U(1) current

J ; ν0 is the source for the U(1) charge. In Euclidean signature, the topology is taken to

be that of a solid torus and the source for T is introduced as the modular parameter τ of

the boundary two-torus. All parameters are then complex.

The thermodynamics follows as before. Imposing the holonomy condition

Pe
∮
CE

a
= Γ− , (3.93)

one finds that

τ =
i

2
√
L
, ν0 = iQ1

τ

Im(τ)
. (3.94)

Recall that Γ−, given in (3.18), is the central element of the bosonic sub-group that is

compatible with anti-periodic fermions along the thermal cycle. The entropy carried by

the solution is then

S = 2π

√
c

6

(
h− c

24
− 3q2

2c

)
+ 2π

√
c

6

(
h̄− c

24
− 3q̄2

2c

)
. (3.95)

In Lorentzian signature, demanding reality of the entropy restricts L > 0. This equivalent

to stating that aφ has real eigenvalues. Solutions with L < 0 are conical defects, to be

expanded on below. In the metric formulation, these backgrounds correspond to BTZ black

holes carrying topological U(1) charge (i.e. Abelian Wilson loops). See [43, 74, 75] for the

explicit solutions.

Within this theory there are only two Jordan classes of connections, one where aφ
diagonalizable and another one where it is not. A simple calculation shows that the only

way to have degenerate eigenvalues, and therefore a non-diagonalizable matrix, is to set

L = 0.19 According to section 2.2, this defines extremal charged BTZ black holes. Slightly

adapting the machinery developed in section 3.1, the Jordan form of the connection can

be cast as

V −1aφV = aDφ + aNφ , (3.96)

where

aDφ = 2
√
LL0 − iQ1J , aNφ =

{
0 if L 6= 0

L−1 if L = 0
. (3.97)

Notice that [aDφ , a
N
φ ] = 0, as appropriate.

As is clear from (3.94), our notion of extremality is again compatible with the zero

temperature limit. Moreover, the contribution from aφ to the entropy in (3.95) vanishes,

19Recall that the sl(2|1) truncation is obtained by setting λ1 = λ2 = λ3 so that L = 1
4
λ2

1 and Q2 = Q3 = 0

throughout the sl(3|2) analysis.
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while the barred sector remains unchanged. Following the classification exposed in sec-

tion 3.1.1, extremal charged BTZ black holes fall into class I and non-extremal charged

BTZ solutions belong in (the non-supersymmetric subsector of) class VI. In terms of CFT

variables the extremality condition reads

extremal charged BTZ: h =
3q2

2c
+

c

24
. (3.98)

We can also characterize the supersymmetric solutions in the sl(2|1) truncation, in

particular, BPS black holes. The details of the analysis were carried out above, the per-

tinent results being those for class I in section 3.2.1. We found that in order to have a

supersymmetric background we need

L = 0 , Q1 ∈

{
Z R sector

Z + 1
2 NS sector

. (3.99)

The Killing spinor is then

ε(φ) = ε+− 1
2

(0)e−iQ1φH 1
2

+ iε̄+− 1
2

(0)eiQ1φG 1
2
, (3.100)

where ε+− 1
2

(0) is a free complex parameter, which implies that a BPS black hole can preserve

2 supercharges (half-BPS). The introduction of a U(1) charge makes it possible to find

supersymmetric solutions in both the NS and R sectors, as seen from the periodicity of the

corresponding Killing spinors. This is in contrast to the uncharged case (neutral BTZ),

where the Killing spinors carry no dependence on the angular coordinate φ so BPS black

holes lie in the R sector only [76]. In CFT language (3.99) translates to

BPS charged BTZ


R:

(
6h

c
,

6q

c

)
=

(
n2 +

1

4
, 2n

)
, n ∈ Z

NS:

(
6h

c
,

6q

c

)
=

(
r2 +

1

4
, 2r

)
, r ∈ Z + 1

2

. (3.101)

It is also interesting to discuss smooth conical defects in N = 2 supergravity. These

are a subset of the solutions constructed for the sl(3|2) theory in section 3.1.2, which have

L = −1

4
(2n3 + 3n)2 , Q1 =

1

2
n . (3.102)

Since the topology is that of AdS3, it must be that n ∈ Z in order to achieve a trivial

holonomy along the contractible cycle φ ∼ φ+ 2π. Additionally, n3 ∈ Z, which allows for

periodic fermions (R), or n3 ∈ Z + 1
2 , implying anti-periodic boundary conditions (NS).

The corresponding connection is always diagonalizable and the solutions are maximally

supersymmetric, preserving all four supercharges. The bulk theory imposes no further

constraints on n3 and n besides L 6= 0.

In this case, the CFT charges of the defects are

h = − c
6

(n3 + n) (n3 + 2n) +
c

24
, q = − c

6
n . (3.103)
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It follows that

h− 3q2

2c
= − c

6

(
n3 +

3n

2
+

1

2

)(
n3 +

3n

2
− 1

2

)
, (3.104)

which is the spectral flow invariant combination. As we will review in section 4.1, the semi-

classical unitarity bound of the N = 2 algebra demands that this quantity be positive. This

only allows for

−1

2
≤ n3 +

3n

2
≤ 1

2
. (3.105)

From here we have two options: L = −1
4 , which corresponds to global AdS3 supported by a

U(1) Chern-Simons field, or L = 0, condition which yields a non-diagonalizable connection

with-nontrivial holonomy and must therefore be discarded (it is, in fact, an extremal black

hole). The unitary BPS smooth conical defects then have

BPS smooth conical defects


R:

(
6h

c
,

6q

c

)
=

((
n+

1

2

)2

, 2n+ 1

)
, n ∈ Z

NS:

(
6h

c
,

6q

c

)
=

((
r +

1

2

)2

, 2r + 1

)
, r ∈ Z + 1

2

.

(3.106)

Here we have set 2n3 + 3n = 1 and relabeled n→ −(2n+ 1) or n→ −(2r + 1).

Before closing this section, some comments regarding the periodicity of Killing spinors

are in order. In the black hole case the boundary circle parameterized by the angular

coordinate φ is not contractible in the bulk because of the finite size of the horizon. As

a consequence, this cycle supports both periodic and anti-periodic spinors and there exist

BPS black holes in both the Neveu-Schwarz and Ramond sectors. For smooth conical

defects, on the other hand, the boundary spatial cycle becomes contractible in the bulk,

which implies that there is only one admissible spin structure, namely, the one that extends

from the circle to the disk. Only anti-periodic Killing spinors are then allowed, making

n3 ∈ Z+ 1
2 the reasonable choice. For n3 ∈ Z the bulk solution is singular, which is evident

both in metric and Chern-Simons formulations [72, 73]. However, if we insist on having

periodic fermions along φ, we will get an agreement between the charges of supersymmetric

states in the R sector of the dual CFT2 and the charges carried by a smooth conical defect.

Since these solutions have a dual interpretation, it is believed that the singularity will be

resolved in string theory by either α′ corrections or the inclusion of additional directions

(KK modes from the three dimensional perspective). These corrections should fatten the

contractible cycle and hence allow for periodic fermions.

4 Higher spin BPS bounds and holography

In holography one expects the subset of black hole solutions that admit globally-defined

Killing spinors to correspond to states that saturate BPS bounds in the dual CFT. We

will now confirm this expectation in the context of the duality between sl(3|2) ⊕ sl(3|2)

Chern-Simons theory, whose black hole solutions and corresponding Killing spinors were

studied in the previous section, and CFTs withW(3|2) symmetry. This setup is of particular
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interest because the latter theories are based on the simplest higher spin extension of the

familiar N = 2 super-Virasoro algebra. In the process we will compute BPS bounds for the

W(3|2) algebra. Moreover, we will manage to compute these bounds at the full quantum

level (i.e. at finite values of the central charge c) and show that their semiclassical limit is

indeed saturated by the subset of supersymmetry-preserving extremal black hole solutions

in classical Chern-Simons supergravity.

Before proceeding with the higher spin case, we will review the problem in the pure

N = 2 super-Virasoro case. These considerations will clarify a number of issues, especially

in relation to the role of the U(1) charge and the spectral flow automorphism of N = 2

superconformal algebras.

4.1 Warmup: super-Virasoro BPS bounds and N = 2 supergravity back-

grounds

In our conventions the N = 2 super-conformal algebra is given by (B.1)–(B.4), and we

shall assume the standard Hermiticity properties of the generators on the plane

(Ln)† = L−n, (Jn)† = J−n ,
(
G+
r

)†
= G−−r . (4.1)

In the Ramond (R) sector the fermionic generators G±r are integer-modded (r ∈ Z), while

in the Neveu-Schwarz (NS) sector they are half-integer-modded (r ∈ Z + 1
2).

Quite importantly for our purposes, the N = 2 superconformal algebra is invariant

under a continuous family of deformations of the generators, the so-called spectral flow

automorphism [77]:

Ln → L′n = Ln + ηJn +
η2

6
cδn,0 (4.2)

Jn → J ′n = Jn +
c

3
ηδn,0 (4.3)

G±r → G±
′

r = G±r±η . (4.4)

Here η is a continuous parameter; for η ∈ Z + 1/2 the flow interpolates between the NS

sector and the R sector, while for η ∈ Z it maps the R and NS sector to themselves.

The zero modes L0 and J0 commute, and super-primary states |h, q〉 are labeled by

the eigenvalues h and q of these operators, namely,

L0|h, q〉 = h|h, q〉 , J0|h, q〉 = q|h, q〉 . (4.5)

They further satisfy the usual highest-weight conditions

G±r
∣∣h, q〉 = 0 , r > 0 (4.6)

Ln
∣∣h, q〉 = Jn

∣∣h, q〉 = 0 , n > 0 . (4.7)

In the NS sector of the Hilbert space of an N = 2 SCFT, it is useful to define (left-)chiral

and (left-)anti-chiral20 states to be those which, in addition to (4.6)–(4.7), satisfy

G+
− 1

2

|h, q〉 = 0 , (4.8)

20Here, “left” refers to the fact that both definitions involve generators in the holomorphic sector of the

algebra, while “right” would denote generators in the second, anti-holomorphic, copy of the algebra (i.e.

the “barred” sector).
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and

G−− 1
2

|h, q〉 = 0 , (4.9)

respectively. Using the mode algebra one easily proves (see e.g. [78]) that |h, q〉 is an N = 2

(anti-)chiral primary if and only if h = q/2 (h = −q/2). As usual, chiral representations

correspond to short supermultiplets, i.e. BPS states in the NS sector.

The full Kac determinant for the N = 2 superconformal algebra was given in [79]. In

the NS sector, the set of unitarity constraints includes a family of BPS bounds which are

linear in the U(1) charge q,

NS sector (quantum): h ≥ rq +
(c− 3)

24

(
1− 4r2

)
, r ∈ Z + 1

2 , (4.10)

as well as a family of quadratic conditions of the form h ≥ f(c, q2) . The latter are not

very important for our purposes, as they are not associated with multiplet shortening and

supersymmetric states. In other words, they are unitarity bounds, but not BPS bounds.

The semiclassical limit of (4.10) is of particular interest to us, for it is that version of the

bounds that we expect to see reflected in the bulk physics. As reviewed in appendix B.2,

such limit is realized by scaling h → h/~, q → q/~, c → c/~ and sending ~ → 0 while

keeping the leading terms only. In this way one finds

NS sector (semiclassical): h ≥ rq +
c

24

(
1− 4r2

)
, r ∈ Z + 1

2 . (4.11)

The level-1/2 bound, obtained by setting r = 1/2 in either (4.10) or (4.11), corresponds to

the usual BPS condition h ≥ |q|2 saturated by chiral primaries.

It is worth emphasizing that while the quantum bound (4.10) is derived by requiring

positivity of the norm for all states at a given level r, the semiclassical rendering (4.11)

comes from doing so only for states of the form G±−r|h, q〉 (with r a positive half-integer). In

passing, we also mention that the most stringent of the quadratic restrictions h ≥ f(c, q2)

becomes simply h ≥ 3q2

2c in the semiclassical limit. It is interesting to note that this bound

can also be obtained from positivity of the norm of level-1 states in the purely bosonic

Virasoro ⊕ U(1) Kac-Moody algebra. As mentioned above, h ≥ 3q2

2c is a semiclassical

unitarity condition, but not a proper BPS bound.

Let us now consider Ramond sector representations. In this sector there is also a family

of BPS bounds which are linear in the R-charge q [79], namely

R sector (quantum): h ≥ nq +
c

24

(
1− 4n2

)
+
n(n− 1)

2
, n ∈ Z , (4.12)

which are in fact obtained from the corresponding NS sector expressions (4.10) by perform-

ing a half unit of spectral flow (η = 1/2) and setting r = n− 1/2 . Taking the semiclassical

limit as before we get

R sector (semiclassical): h ≥ nq +
c

24

(
1− 4n2

)
, n ∈ Z . (4.13)

The level-0 bound, obtained by taking n = 0 in either (4.12) or its semiclassical ver-

sion (4.13), yields the usual Ramond sector constraint h ≥ c/24 . In particular, it is easy
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to see that the Ramond ground states
∣∣h = c

24 , q
〉

are related to chiral primaries in the NS

sector by spectral flow:∣∣∣h =
q

2
, q
〉

NS
−−−−→
η=1/2

∣∣∣h′ = c

24
, q′ = q − c

6

〉
R
. (4.14)

Due to the presence of fermionic zero modes, in the Ramond case there are in fact

two isomorphic irreducible representations of different chirality. One may then fix the

ambiguity by demanding e.g. G+
0 |h, q〉 = 0 as part of the definition of the highest weight

state. Besides this generic condition, Ramond ground states satisfy G−0
∣∣h = c

24 , q
〉

= 0

as well. Just as for chiral primaries in the NS sector, the corresponding shortening of the

representation is tied to a BPS bound being saturated. One also notes that the level-n

semiclassical bound (4.13) can be obtained by performing n (integer) units of spectral flow

on the level-0 bound h ≥ c/24 .

We are now in a position to relate the semiclassical BPS bounds to the supersymmetric

solutions in the osp(2|2;R)⊕osp(2|2;R) supergravity truncation studied in section 3.3. As

we saw there, these correspond to extremal BTZ black holes and smooth conical defects

whose CFT-translated charges satisfy

BPS black holes


R:

(
6h

c
,

6q

c

)
=

(
n2 +

1

4
, 2n

)
, n ∈ Z

NS:

(
6h

c
,

6q

c

)
=

(
r2 +

1

4
, 2r

)
, r ∈ Z + 1

2

. (4.15)

and

BPS smooth conical defects


R:

(
6h

c
,

6q

c

)
=

((
n+

1

2

)2

, 2n+ 1

)
, n ∈ Z

NS:

(
6h

c
,

6q

c

)
=

((
r +

1

2

)2

, 2r + 1

)
, r ∈ Z + 1

2

.

(4.16)

Recall that black hole solutions are defined by a natural (extremality) bound relating h

and q which comes from the demand that the entropy be real and positive. For conical

defects, however, the bulk Chern-Simons theory imposes no obvious restrictions on h and

q other than not being a black hole. In anticipation to the upcoming discussion, (4.16)

considers only those backgrounds that comply with the CFT unitarity condition h ≥ 3q2

2c .

This excludes the conical surpluses L < −1
4 , which can certainly be supersymmetric.

In order to compare bulk versus CFT calculations, in figures 1 (R sector) and 2 (NS

sector) we have plotted the bounds for the conformal weight h as a function of the U(1)

charge q . Since the spectrum and bounds are symmetric under q → −q , we have included

positive charges only for ease of visualization. The blue straight lines in figure 1 correspond

to the semiclassical R sector BPS bounds (4.13) for n = 0, 1, 2, 3 , while those in figure 2

represent the NS semiclassical BPS restrictions (4.11) for r = 1/2, 3/2, 5/2 . The red

parabola is the locus of extremal charged black hole states h = 3q2

2c + c
24 (L = 0), below

which solutions cease to be black holes and become conical defects. The orange parabola
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24
(1-4n2)

Figure 1. Semiclassical unitarity and BPS bounds in the R sector of the N = 2 super-Virasoro

algebra. The blue dots correspond to the BPS charged BTZ black holes in (4.15). The red dots

denote the BPS smooth conical defects in (4.16).

corresponds to the level-0 unitarity bound h = 3q2

2c (L = −1
4). Both curves are spectral

flow-invariant. The shaded area is the region allowed by unitarity.

One notices that the quadratic constraint h ≥ 3q2

2c is generically not the most stringent

one. Therefore, in the semiclassical regime, the unitary domain is determined solely by the

BPS bounds. We also note that black hole states, for any value of the temperature, are

always allowed by unitarity. As mentioned above, there exist conical defects (surpluses)

which lie outside the shaded region and are being omitted from the analysis.

The blue dots in figures 1 and 2 correspond to the extremal supersymmetric black holes

in (4.15). It is clear that they fall on the lines that describe BPS states in the semiclassical

limit of the CFT. From figure 1, it is also evident that all such solutions in the Ramond

sector are connected via integer units of spectral flow to the neutral extremal BTZ black

hole, which is the uncharged Ramond sector ground state |h = c
24 , q = 0〉 and is represented

by the large blue dot. The NS black hole configurations in figure 2 are reached from this

state by performing half-integer units of spectral flow.

Supersymmetric smooth conical defects are marked by red points in figures 1 and 2.

In the R sector, all these states are connected by integer units of spectral flow to the

maximally charged Ramond ground states |h = c
24 , q = ± c

6〉 , labeled by the large red dot

in figure 1. By the same token, the supersymmetric smooth conical defects in the NS
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Figure 2. Semiclassical unitarity and BPS bounds in the NS sector of the N = 2 super-Virasoro

algebra. The blue dots correspond to the BPS charged BTZ black holes in (4.15). The red dots

denote the BPS smooth conical defects in (4.16).

sector are obtained from the NS vacuum |h = 0, q = 0〉, dual to global AdS3 with vanishing

U(1) charge, by performing integer units of spectral flow. This state is the large red dot

in figure 2. In metric variables all these solutions correspond to a global AdS3 metric

with a constant Abelian gauge field whose holonomy supports the U(1) charge [43, 74] and

controls the periodicity of the Killing spinors.

A more refined analysis shows that the number of null states that appear when the

BPS bounds are saturated is exactly the same as the one predicted by the study of Killing

spinors in the bulk. We will omit this calculation for the case of N = 2 Super-Virasoro

as it will be done in detail below in the context of the duality between sl(3|2) ⊕ sl(3|2)

Chern-Simons theory and W(3|2) CFTs.

4.2 Higher spin BPS bounds

Having reviewed the super-Virasoro case in detail, we will now show that among the ex-

tremal higher spin black holes and higher spin smooth conical defects studied in section 3,

those admitting Killing spinors correspond to states saturating BPS bounds of the N = 2

super-W3 algebra. To our knowledge the unitarity and BPS bounds for the W(3|2) algebra
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have not been derived in the literature, so we will start by computing some of these bounds

at the full quantum level (finite c), and then studying their semiclassical limit. It is worth

noticing that the structure of highest weight representations in the R sector of the W(3|2)

algebra is rather involved due to the increased number of fermionic zero modes with respect

to the super-Virasoro case. Consequently, our strategy here will consist on computing the

BPS bounds in the NS sector and then obtain their R sector counterparts by performing

half-integer units of spectral flow. As we shall see below, the bounds thusly obtained, while

by no means exhaustive, will suffice for our purposes.

As before, we will assume the standard Hermiticity properties (4.1) for the N = 2

superconformal generators. The structure of the normal-ordered composites in the OPE

algebra then requires the following Hermiticity conditions for the fields in the higher spin

multiplet:

(Wn)† = εW−n , (Vn)† = εV−n ,
(
U+
r

)†
= εU−−r , (4.17)

with

ε =

{
+1 if κ ∈ R (−6 < c < 1 ∪ 3

2 < c < 15)

−1 if κ is imaginary (e.g. c > 15)
(4.18)

and κ defined as in (B.20). Notice that the rescaled operators κVn, κWn and κU±r satisfy

the usual Hermiticity conditions, and one can rewrite the whole algebra in terms of these

operators if desired. This implies in particular that κV0 and κW0 are Hermitian for any

value of the central charge.

Constraints on the allowed values of the central charge that follow from unitarity

considerations were discussed in [80]. It is important to emphasize that the semiclassical

limit implies c→∞, which lies outside the unitarity window. One might be concerned that

this will hinder the holographic interpretation. We will see, however, that the semiclassical

limit of the unitarity bounds is exactly saturated by the relevant bulk solutions, and that

the geometric (or rather topological) description of the theory in terms of the gravitational

dual remains sensible in this limit.21

4.2.1 NS sector highest weight representations of the W(3|2) algebra

Let us now briefly investigate the highest weight representations of the W(3|2) algebra in

the NS sector. The zero modes are given by L0, J0, V0 and W0 , and both {L0, J0, V0}
and {L0, J0,W0} are sets of mutually commuting operators. However, V0 and W0 do not

commute identically, as can be seen from (B.13)22

[V0,W0] = C
[4]
0 . (4.19)

One may then worry that it is not consistent to label the highest weight states by simul-

taneous eigenvalues of the full set {L0, J0, V0,W0} , but this expectation is not correct. In

21Whether this remains true after taking quantum corrections into account is of course a separate issue

that goes beyond the scope of the present paper.
22As usual for finitely-generated W-algebras, this feature comes about because of the requirement of

closure of the algebra including a finite number of currents only, which forces the appearance of composite

operators and the ensuing non-linearity.
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order to see this explicitly, we will start by constructing a highest weight representation of

the set {L0, J0, V0} only.

Consider primary states |h.w.〉 = |h, q, q2〉 obeying the usual highest weight conditions

Ln |h.w.〉 = Jn |h.w.〉 = Vn |h.w.〉 0 , n > 0 ,

G±r |h.w.〉 = 0 , r > 0 . (4.20)

The mode algebra then implies23

U±r |h.w.〉 = 0 for r > 0 and Wn |h.w.〉 = 0 for n > 0 . (4.21)

Next, define the state |φW 〉 ≡W0 |h.w.〉 . It is easy to see that it satisfies L0 |φW 〉 = h |φW 〉
and J0 |φW 〉 = q |φW 〉, as well as Ln |φW 〉 = Jn |φW 〉 = 0 for n > 0 . Similarly, G±r |φW 〉 = 0

for r > 0 follows from (4.21). The action of the Vn and Wn modes on |φW 〉 for n > 0 is

sightly more complex. From (B.12)–(B.13) we have

[Vn,W0] = C [4]
n + 2nC [3]

n + n(n2 − 1)C [1]
n ,[

Wn , W0

]
= nB[4]

n + 2n(n2 − 4)B[2]
n . (4.22)

Since Vn>0 and Wn>0 annihilate the highest weight state |h.w.〉, these equations trans-

late into

Vn>0 |φW 〉 =
(
C [4]
n + 2nC [3]

n + n(n2 − 1)C [1]
n

)
|h.w.〉 ,

Wn>0 |φW 〉 =
(
nB[4]

n + 2n(n2 − 4)B[2]
n

)
|h.w.〉 . (4.23)

Furthermore, since |h.w.〉 is annihilated by the positive modes of all the currents, it follows

that C
[1]
n |h.w.〉 = C

[3]
n |h.w.〉 = C

[4]
n |h.w.〉 = B

[2]
n |h.w.〉 = B

[4]
n |h.w.〉 = 0 for all n > 0,

so that

Vn |φW 〉 = Wn |φW 〉 = 0 ∀ n > 0 . (4.24)

The last step is to check the action of the zero mode V0 on |φW 〉. The complete mode

expansion of C [4] in the NS sector is given in (B.43), and one easily verifies C
[4]
0 |h.w.〉 = 0 .

Hence,

V0 |φW 〉 = C
[4]
0 |h.w.〉+ q2 |φW 〉 = q2 |φW 〉 . (4.25)

Using the above results, combined with
[
G±r , V0

]
= ∓U±r , gives U±r |φW 〉 = 0 for r > 0.

Summarizing, we have shown that in the NS sector the state |φW 〉 = W0 |h.w.〉 car-

ries the same quantum numbers h, q, q2 and satisfies all the same highest weight condi-

tions (4.20)–(4.21) as |h.w.〉 itself. It follows that |φW 〉 must be proportional to |h.w.〉
for the representation to be irreducible. In other words, if we start with a highest weight

representation built from {L0, J0, V0} in the NS sector, it will automatically be a highest

weight representation of the full set {L0, J0, V0,W0} as well.

23Since
[
G±r , V0

]
= ∓U±r , the highest-weight conditions V0 |h.w.〉 = v |h.w.〉 and G±r |h.w.〉 = 0 for

r > 0 imply U±r |h.w.〉 = 0 for r > 0 . Using the latter condition and taking
{
G±n−t, U

∓
t

}
|h.w.〉 =

(±(3n− 4t)Vn + 2Wn) |h.w.〉 with t = 1
2

and n > 0 yields U∓1
2

G±
n− 1

2

|h.w.〉 = 2Wn |h.w.〉 . Since in the

NS sector G±
n− 1

2

|h.w.〉 = 0 for n > 0, we conclude Wn |h.w.〉 = 0 for n > 0 as well.
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Given the above analysis, from now on the NS primary |h.w.〉 will be taken to be the

highest weight state |h.w.〉 = |h, q, q2, q3

〉
satisfying

L0 |h.w.〉 = h |h.w.〉 J0 |h.w.〉 = q |h.w.〉 (4.26)

V0 |h.w.〉 = q2 |h.w.〉 W0 |h.w.〉 = q3 |h.w.〉 (4.27)

with

Ln |h.w.〉 = Jn |h.w.〉 = Vn |h.w.〉 = Wn |h.w.〉 = 0 , n > 0 (4.28)

G±r |h.w.〉 = U±r |h.w.〉 = 0 , r > 0 . (4.29)

4.2.2 W(3|2) BPS bounds and their semiclassical limit

Having discussed the highest weight representations in the NS sector, we will now compute

the basic BPS bound. At level 1/2 we find fermionic descendants

level 1/2 :
∣∣α±〉 ≡ G±−1/2 |h.w.〉 and

∣∣β±〉 ≡ U±−1/2 |h.w.〉 . (4.30)

Since states with different U(1) charges are orthogonal, we will focus on the charge q + 1

sector for concreteness. The matrix of inner products at level 1/2 is then

K(1/2) =

(
〈α+|α+〉 〈α+|β+〉
〈β+|α+〉 〈β+|β+〉

)
=

(
2h− q 2(q3 − q2)

2ε(q3 − q2) ε
〈
D

[4]
0 −D

[3]
0 − 2D

[2]
0 + 2D

[1]
0

〉) , (4.31)

where the brackets in the right hand side indicate expectation value in the highest weight

state |h.w.〉 satisfying (4.26)–(4.29) and ε is defined as in (4.18). The explicit expressions

for the composite operators D [1],D [2],D [3],D [4] as well as their action on a highest weight

state are given in appendix B.3. All in all we find that the level-1/2 BPS bound reads

detK(1/2) = ε
[
(2h− q)

〈
D

[4]
0 −D

[3]
0 − 2D

[2]
0 + 2D

[1]
0

〉
− 4 (q3 − q2)2

]
≥ 0 , (4.32)

with〈
D

[1]
0

〉
=
q

4
,〈

D
[2]
0

〉
=

5c− 3

10(c− 1)
h+

κ

5
q2 −

3

10(c− 1)
q2 ,〈

D
[3]
0

〉
= 3γ

(
2(5c2 + 9)qh− 3(4c+ 3)q3 +

1

2
(c− 3)(13c− 6)

q

3

)
+

2κ

5c− 12

(
21qq2 − (c+ 6)q3

)
,〈

D
[4]
0

〉
= 6γ

(
9c(c− 1)h

(
h+

1

5

)
+

1

4

(
5c2 − 51c+ 18

)(7h

5
− q

2

)
+ 3(4c+ 3)q2

(
1

3
− h
)

+
1

4
(c2 − 53c+ 66)

q2

5

)
+

6κ

(c+ 3)(5c− 12)

(
18(c− 1)q2

(
h+

1

5

)
+

32

5
(4c+ 3)q2 − 2(c− 15)qq3

)
.

It is worth emphasizing that equation (4.32) is the fully quantum (finite-c) level-1/2 bound.
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An associated family of quantum BPS bounds at higher Virasoro levels can be obtained

by spectral flow, i.e. replacing

h→ h′ − ηq′ + η2

6
c

q → q′ − c

3
η

q2 → q′2

q3 → q′3 − 2ηq′2

(4.33)

in (4.32), with the choice η ∈ Z resulting in an NS bound and η ∈ Z + 1
2 resulting in

a Ramond sector bound. We do not expect such a bound to be the most stringent one

at the corresponding level, however, because in the quantum regime it is necessary to

consider all descendant states at any given level in order to obtain the full set of unitarity

constraints. Nevertheless, in analogy with the super-Virasoro case, in the semiclassical

limit we anticipate the spectral-flowed bound to capture all the relevant information. As

we will see momentarily, this expectation is indeed confirmed via holography: all the bulk

solutions admitting Killing spinors saturate the semiclassical spectral-flowed BPS bound

which we present below.

In the semiclassical limit described in B.2, the expectation value of the normal-ordered

composites becomes〈
D

[1]
0

〉
semiclassical

=
q

4
,〈

D
[2]
0

〉
semiclassical

=
h

2
+
κ

5
q2 −

3

10c
q2 ,〈

D
[3]
0

〉
semiclassical

=
15

c
q

(
h− 6

5

q2

c

)
− 2

5
κ
(
w − 21

q

c
q2

)
,〈

D
[4]
0

〉
semiclassical

=
27

c
h

(
h− 4q2

3c

)
+

3q2

20c
+

12κ

5c
(9hq2 − qq3) ,

(4.34)

and in particular〈
D

[4]
0 −D

[3]
0 − 2D

[2]
0 + 2D

[1]
0

〉
semiclassical

=
27

2c
(2h− q)

(
h− 4q2

3c
− 1

18

(
q +

2c

3

))
(4.35)

+
2κ

5c

(
c (q3 − q2) + 54hq2 − 3q(2q3 + 7q2)

)
.

Consequently, the semiclassical limit of the matrix of inner products at level 1/2 is

K
(1/2)
semiclassical =

(
K

(1/2)
1,1 K

(1/2)
1,2

K
(1/2)
1,2 K

(1/2)
2,2

)
, (4.36)

where

K
(1/2)
1,1 = 2h− q ,

K
(1/2)
1,2 = 2 (q3 − q2) ,

K
(1/2)
2,1 = εK

(1/2)
1,2 ,

K
(1/2)
2,2 = ε

[
27ε

2c
K

(1/2)
1,1

(
1

2
K

(1/2)
1,1 +

4κ

5
q2 −

1

27c
(c− 6q)2

)
+
κ

5c
(c− 6q)K

(1/2)
1,2

]
.

(4.37)
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Performing now η units of spectral flow, the matrix elements become

K
(η+1/2)
1,1 = 2h− q (1 + 2η) +

c

3
η (η + 1) ,

K
(η+1/2)
1,2 = 2

(
q3 − q2 (1 + 2η)

)
,

K
(η+1/2)
2,1 = εK

(η+1/2)
1,2 ,

K
(η+1/2)
2,2 = ε

[
27

2c
K

(η+1/2)
1,1

(
1

2
K

(η+1/2)
1,1 +

4κ

5
q2 −

1

27c
(c (1 + 2η)− 6q)2

)

+
κ

5c

(
c (1 + 2η)− 6q

)
K

(η+1/2)
1,2

]
.

(4.38)

All in all, the associated level-(η + 1/2) semiclassical bound reads24

0 ≤ ε

[
6

c

(
h+

c

6
η(η + 1)−

(
η +

1

2

)
q

)2 [
9h−

(
η +

1

2

)
q − 12q2

c
+
c

6

(
η2 + η − 2

)]
+

4κ

5c

(
h+

c

6
η (η + 1)−

(
η +

1

2

)
q

)[
q2

(
54h− 21q(2η + 1) + 5η(η + 1)c− c

)
(4.39)

+ q3

(
(2η + 1) c− 6q

)]
− 4
(

(2η + 1) q2 − q3

)2
]
.

When written in terms of the bosonic zero modes of the CFT generators on the plane,

the BPS bound (4.39) does not look particularly illuminating. Fortunately, we will see

that the bulk perspective provides an extremely elegant way of repackaging the information

contained in (4.39) in terms of the holonomy of the Drinfeld-Sokolov Chern-Simons connec-

tions. Furthermore, will use the resulting expression to conjecture the generic form of the

relevant semiclassical BPS bound in any N = 2 higher spin algebra. To this end, we first

recall the holographic dictionary between the CFT zero modes and bulk charges in (3.2):

h =
c

6

(
L+

5

3
Q2 +Q2

1 +
1

4

)
,

q = − c
3
Q1 ,

κq2 = −5c

9
Q2 ,

κq3 =
5c

3

(
Q3 +

2

3
Q1Q2

)
,

(4.40)

which we have further reparameterized in terms of the eigenvalues of the Drinfeld-Sokolov

connection (i.e. in terms of its holonomy data) as in (3.8). In terms of these eigenvalues

24It is worth emphasizing that this bound can be also obtained by taking the semiclassical limit directly

in the spectral-flowed quantum bound obtained by replacing (4.33) into (4.32). In this sense, spectral flow

and the semiclassical limit can be said to commute.
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and the bulk U(1) charge Q1, the BPS bound (4.39) nicely factorizes as

0 ≤ εc2

2304

[
λ2

3 +
(

1 + 2η − 2i (λ1 + iQ1)
)2
][
λ2

3 +
(

1 + 2η + 2i
(
λ2 − iQ1

))2
]

×
[
λ2

3 +
(

1 + 2η − 2i
(
λ2 − λ1 + iQ1

))2
]
. (4.41)

The final step consists in recognizing that the above expression for the semiclassical BPS

bound simplifies even further when written in terms of the frequencies (3.36) that control

the periodicity of the Killing spinors in the bulk:

0 ≤ detK
(η+1/2)
semiclassical =

εc2

36

[
iω14 −

(
η +

1

2

)][
iω15 −

(
η +

1

2

)][
iω24 −

(
η +

1

2

)]
×
[
iω25 −

(
η +

1

2

)][
iω34 −

(
η +

1

2

)][
iω35 −

(
η +

1

2

)]
(4.42)

or more tersely

0 ≤ detK
(η+1/2)
semiclassical =

εc2

36

∏
i,j̄

(
iωij̄ −

(
η +

1

2

))
(4.43)

where we recall that η ∈ Z leads to a NS bound, while η ∈ Z + 1
2 results in a Ramond

sector bound. Equation (4.43) is one of our main results: it makes clear, from a CFT

perspective, what are the conditions satisfied by bulk solutions saturating BPS bounds,

namely the quantization of the frequencies (3.36) associated with the holonomy of the

Drinfeld-Sokolov boundary connection. We reiterate that the relevance of this quantization

had been anticipated in [64, 65] from the point of view of the bulk. Here we have recovered

it from a CFT computation, which is reassuring and argues in favor of the consistency of

the construction.

Since the derivation of (4.42) relied solely on the N = 2 structure of the chiral algebra

(the spectral flow automorphism in particular) and the properties of the Drinfeld-Sokolov

connection, we can provide a conjecture for the form of the general semiclassical BPS

bounds in any N = 2 higher spin CFT whose chiral symmetries can be obtained via

Hamiltonian reduction of current algebras. Using the notation introduced in (3.35), quite

naturally we expect the generalization of (4.42) to be

semiclassical BPS bounds: 0 ≤ −c2
∏

αodd
j ∈ {odd roots}

[〈
~Λφ , α

odd
j

〉
+ i

(
η +

1

2

)]
(4.44)

where the precise form of the holonomy ~Λφ and odd roots αodd
j will of course depend on

the concrete algebra under consideration and encodes the semiclassical symmetries of the

boundary CFT (via Drinfeld-Sokolov reduction).

4.3 Supersymmetric sl(3|2) backgrounds from a CFT perspective

Above we have shown that the saturation of theW(3|2) semiclassical BPS bounds yields ex-

actly the same quantization conditions on the frequencies ωij̄ as the study of Killing spinors
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for the higher spin backgrounds introduced in 3.1.1 [64, 65]. The comparison between the

two descriptions can be taken one step further by arguing that for each configuration pre-

serving a supercharge in the bulk there corresponds a null state in the CFT with the same

quantum labels. To this end we shall consider the matrix of inner products

K
(η+1/2)
semiclassical =

(
K

(η+1/2)
1,1 K

(η+1/2)
1,2

K
(η+1/2)
2,1 K

(η+1/2)
2,2

)
, (4.45)

whose entries are given by (4.38), and count the number of non-trivial eigenvectors with

eigenvalue zero that appear when its determinant (4.42) vanishes. We emphasize that

this matrix does not capture all states at level η + 1/2. It only includes states created

by acting with the fermionic generators G+
−η−1/2 and U+

−η−1/2 on a highest weight vector.

Nevertheless, we will see that analyzing this subsector is sufficient for our purposes.

Supersymmetric sl(3|2) black holes. Recall that black hole solutions have ∆3 ≥ 0

and ∆2 ≥ 0, property which is implemented by the reality conditions λ1 = λ∗2 and λ3 = λ∗3
on the eigenvalues of the connection. From the CFT perspective, this implies that the

determinant (4.42) is manifestly semi-positive or semi-negative definite depending on the

sign of ε. Indeed, realizing that the frequencies in (3.36) satisfy

ω14 = −ω35 , ω15 = −ω34 , ω24 = −ω25 (4.46)

identically in this sector, we find that

detK
(η+1/2)
semiclassical =

εc2

36

∣∣∣∣iω14 −
(
η +

1

2

)∣∣∣∣2 ∣∣∣∣iω15 −
(
η +

1

2

)∣∣∣∣2 ∣∣∣∣iω24 −
(
η +

1

2

)∣∣∣∣2 . (4.47)

The fact that ε = −1 in the semiclassical regime is clearly tied to the theory not being

unitary for large values of the central charge c . However, this issue does not affect the

classification of null states, namely the zeroes of the determinant, which is what we matched

onto our bulk results. Up to this issue, the fact that the determinant has nicely factorized

in the black hole regime suggests that black holes are always allowed in the unitary regime

of the dual CFT, and that the remanent of this fact as we push past the unitary regime is

the overall sign in the determinant. For the sl(2|1) theory, this is clearly seen in figure 1 and

figure 2 by noticing that the red parabola, which corresponds to the extremality bound

h = 3q2

2c + c
24 (∆3 = ∆2 = 0), always lies above the orange parabola representing the

unitarity condition h = 3q2

2c and the blue lines that yield BPS bounds.

In the general case, vanishing of the above determinant allows for three possibilities:

1. First, the condition iω14 = η + 1
2 implies

λ1 + λ2 − λ3 = 0 ,
i

2
(λ1 − λ2)−Q1 = η +

1

2
, (4.48)

where we used (3.36) to cast wIJ in terms of the eigenvalues of the sl(3|2) connec-

tion. It turns out that the matrix of inner products (4.45) is identically zero under
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these conditions. This means that there are 4 supersymmetric states at level η + 1
2 ,

corresponding to the 1
3 -BPS solutions in class I, II and VI.25

2. The second possibility, iω15 = η + 1
2 , is equivalent to the first with λ3 → −λ3 and

leads to the same conclusions.

3. The last alternative is iω24 = η + 1
2 , which requires

λ3 = 0 , −i (λ1 − λ2)−Q1 = η +
1

2
. (4.49)

In this case the inner product matrix reduces to

K
(η+1/2)
semiclassical =

c

36
(2λ1 − λ2) (2λ2 − λ1)

(
4 2 (λ1 − λ2)

2ε (λ1 − λ2) ε (λ1 − λ2)2

)
. (4.50)

It is easy to check that this matrix always has only one non-trivial eigenvector with

zero eigenvalue, corresponding to two supersymmetric states. These are the 1
6 -BPS

solutions in classes II and III.

Finally, notice that conditions 1 and 3 overlap when iω14 = η1 + 1
2 and iω24 = η2 + 1

2 , or

λ1 =
i

3
(η2 − η1) , λ2 = −λ1 , λ3 = 0 , Q1 = −1

3
(2η1 + η2)− 1

2
. (4.51)

The corresponding matrix (4.45) shows the emergence of 4 null states at level η = η1 and

two null states at level η = η2. This scenario describes the extremal 1
2 -BPS black holes

in class II.

Supersymmetric smooth conical defects. For smooth conical defects, the eigenvalues

of the connection aφ and the corresponding odd frequencies are given in (3.26) and (3.80),

respectively. Contrary to what happens for black hole solutions, the determinant (4.42)

does not have a definite sign in the conical defect sector ∆3 < 0, ∆2 < 0. Unitarity

should then discard some of the backgrounds. This is already true in the Super Virasoro

case, where conical surpluses do not satisfy the constraint L ≥ −1
4 . For theories with

W(3|2) symmetry, however, this interpretation is further complicated by the overall sign of

the semiclassical determinant as we discussed above, so we will avoid making any further

claims. Still, we can use our results to track null states in the CFT which one can argue

are protected by supersymmetry.

The above configurations obviously make the determinant in (4.42) vanish provided

we set iωij̄ = η + 1
2 . Fixing the parameters (ni, n), there are six possible values of η that

make this happen, one for each frequency. Each of these values generically results in a

matrix (4.45) which has only one non-trivial null eigenvector. There are therefore 12 BPS

states, two at each level. For particular choices of ni and n, e.g. the sl(2|1) truncation

25At each level, the vector space of states has complex dimension 2. When we count the number of

supercharges we mean the number real parameters, hence the doubling. This only includes one U(1)-

charged sector. However, there is no additional doubling when considering the charge conjugate states.
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n1 = 2n3 + 2
3n, n2 = 2n3 + 4

3n, it could be that some of the frequencies wij̄ coincide. This

reduces the number of levels where BPS states may appear. It is easy to check, however,

that in this case there are still 12 states with vanishing norm, albeit with the degenerate

levels displaying 4 instead of 2 of them. Notice that for black holes the reality conditions

limit the number of independent frequencies to three, allowing such solutions to carry at

most 6 supercharges.

This concludes our search for null vectors in the CFT. The results are in perfect

agreement with the analysis of Killing spinors in the sl(3|2) Chern-Simons theory; we can

account for all supersymmetric solutions in terms of dual BPS states.

5 Discussion

The purpose of this work was manifold. Our first goal was to provide a definition of extremal

black holes in three-dimensional Chern-Simons higher spin gravity that is in harmony with

the topological nature of the theory and valid for any gauge algebra, including purely

bosonic as well as supersymmetric cases. Secondly, in order to test the proposed notion

and some of its consequences, we set out to compare under which conditions extremality

implies supersymmetry (and vice-versa) in a theory of higher spin gravity that admits a

Chern-Simons formulation. Our third objective was to understand the latter restrictions

from the holographic perspective in a theory with N = 2 super-W3 symmetry, the simplest

higher spin extension of the familiar N = 2 super-Virasoro algebra. This implied, in

particular, the necessity to compute certain W(3|2) BPS bounds which, to the extent of our

knowledge, were absent from the literature.

Our main results can be summarized as follows:

1. A general definition of extremal black hole solutions was given in section 2, which

involves as its main ingredient the non-diagonalizability of the angular component of

the connection aφ. We argued that extremality, as expressed in terms of non-trivial

Jordan classes, is compatible with the notion of zero Hawking temperature of the

solution. In particular, this definition was illustrated in theories based on two copies of

the sl(2) and sl(3) gauge algebras, as well as their N = 2 supersymmetric extensions

sl(2|1) and sl(3|2). Furthermore, we identified the appropriate real forms of the

algebra for the corresponding Lorentzian theories in each case, namely osp(2|2;R) and

su(2, 1|1, 1) respectively. One interesting feature is that, unlike the zero-temperature

BTZ solution, in higher spin gravity extremal black holes carry residual entropy in

the extremal sector.

2. To further study the consequences of our definition of extremality, in section 3.1 we

provided a classification of sl(3|2) backgrounds in terms of the Jordan class of the

connection. Here, the discriminants ∆3 and ∆2 of the factorized characteristic poly-

nomial of aφ played a crucial role, allowing us to generalize the notion of hyperbolic,

parabolic and elliptic conjugacy classes in SL(2). In particular, we asserted that black

holes solutions must have ∆3 ≥ 0 and ∆2 ≥ 0 in order for the sources to be real. In

contrast, smooth conical defects have ∆3 < and ∆2 < 0 . The limiting cases ∆3 = 0

and ∆2 = 0 correspond to extremal black holes.
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3. An exhaustive survey of supersymmetric sl(3|2) solutions was carried out in sec-

tion 3.2. The objective was to contrast the conditions imposed by extremality vs.

supersymmetry on the charges carried by the background. Most, but not all, su-

persymmetric solutions in sl(3|2)⊕ sl(3|2) fall within the class of extremal solutions

(see point 6 below). In contrast, all supersymmetric solutions in the sl(2|1)⊕ sl(2|1)

truncation are extremal. Also, we found that the extremal charged BTZ black holes

are not the most supersymmetric black hole solutions in the higher spin theory; that

title goes to solutions belonging to a different Jordan class. Supersymmetric conical

defects were also analyzed for completeness.

4. We derived novel BPS conditions in theories with W(3|2) symmetry, for any value of

the central charge. Futhermore, in the semiclassical limit (~→ 0, c→∞) we provided

a conjecture for the BPS bounds in a generic W-algebra with N = 2 supersymmetry.

5. Supersymmetry is generically unaffected by strong coupling regimes, and hence it is

natural to ask if the supersymmetric solutions in the bulk can be mapped to BPS

states in a CFT with W(3|2) symmetry. In the semiclassical limit we find perfect

agreement between the bulk and boundary BPS conditions. The non-linearities of

the W(3|2) algebra are responsible of the non-trivial structure of the bounds, whereas

in the bulk the Killing spinor conditions is governed by algebraic properties of sl(3|2)

generators. The agreement among the two is non-trivial.

6. As alluded to above, most notably, we showed that there exist non-extremal solutions

in the class of diagonalizable connections that posses 4 independent Killing spinors.

This is, within the sl(3|2) theory, we managed to construct a smooth higher spin

black hole that is both at finite temperature and BPS. We described the features

of this solution in section 3.2.1. In addition to its well behaved bulk features, this

solution is physical because we can identify an appropriate chiral primary in the CFT

that carries the same charges.

Let us now comment on a few implications of our results and compare them with the

existing literature. Firstly, the study of extremality and supersymmetry in higher spin

gravity made a feature rather evident: supersymmetry does not require extremality. This

goes against our intuition in conventional supergravity, nevertheless our results are explicit

and well founded. This decoupling between extremality and supersymmetry is evident

when we compare them in sl(3|2): this is clear from our BPS conditions require (3.86) to

vanish, whereas extremality is a condition that the discriminants ∆2,3 vanish.

Our definition of extremality is motivated and inspired by geometrical properties of

black holes and in particular BTZ. However, in a holographic context, it is also interesting

to compare and contrast unitarity bounds in the CFT versus extremal limits in the bulk.

For N = 2 super-Virasoro the unitarity region (blue shaded region in figure 1 and 2) shows

that the extremal bound for the charged BTZ black hole lies within this region. It would

be interesting to make this comparison in higher spin gravity. Taking again the example

of N = 3 studied in section 2.3 as a warm-up: there we found indication that all W3 black
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holes are allowed by the unitarity bound in the CFT (as it happened for N = 2 super-

Virasoro). It would be very interesting to study if this always the case: are WN unitarity

bounds always compatible with our extremal bounds?. In contrast, for BPS conditions in

the boundary and bulk the agreement is exact in the semiclassical limit. It is reassuring

that supersymmetry is robust and protected in these scenarios. It would be interesting to

evaluate unitarity bounds in WN and carry this analysis explicitly. This is a question we

leave for future work.

As mentioned throughout various sections, there is an extensive literature on super-

symmetric properties of higher spin gravity prior to our work. For instance, the asymptotic

symmetries of theories based on sl(N |N−1) were discussed in [60, 61, 63–65, 81] (in partic-

ular, the work [60] discusses both principal and non-principal embeddings). This collection

of works contained as well a detailed account of supersymmetric conical defects solutions,

and in [81] these states were mapped to chiral primaries for the supersymmetric minimal

model dualities in [82–84]. The role of the angular holonomy, and its non-trivial Jordan

decomposition, was noted back then to be an important key to build Killing spinors. How-

ever the discussion was always tied to supersymmetry and not a more general concept of

extremality.

The construction of black holes in sl(N |N − 1) Chern-Simons theory was as well dis-

cussed in prior work, where the emphasis was placed on solutions at finite temperature.

This is one of the main differences relative to our work: we treat the sources of the higher

spin black hole as a deformation of the CFT Hamiltonian, whereas [60, 61, 63–65] utilize a

holomorphic deformation of the solution. As it is clear in section 2 and 3, the Hamiltonian

formulation has the advantage of phrasing both the extremal and supersymmetric condi-

tions as conditions among the charges only. This is the construction that natural fits from

dual CFT point of view, and our excellent agreement with the CFT is unique from that

point of view. Recently, the concept of hypersymmetry in osp(1|4) Chern Simons theory

was studied in [69] with the intention of understanding black holes and their symmetries.

Their definition of extremality relies on requiring that the entropy is real; this is along the

lines of the bounds found in [12]. We expect this to agree with our definition, however

there is room for ambiguities since the starting point is conceptually rather different. It

would be interesting to exhibit the agreement (or lack thereof) explicitly.

Perhaps a drawback of our choice of examples is that the W(3|2) algebra is not unitary

in the large-c limit. We have however seen that most of our conclusions are insensitive to

this fact, and are expected to hold much more generally. An interesting future direction

would be to extend our results to other setups where this problem does not arise, and to

study in particular extremal black holes in theories based on infinite-dimensional algebras

such as shs[λ], as well as other generalizations considered recently in [21, 22]. The technical

difficulty within the shs[λ] algebras is that in the bulk it is difficult to impose holonomy

conditions; the appeal of course is that these are the relevant structures to study the

tensionless limit of string theories and their dual CFT description. Within the class of non-

supersymmetric Chern-Simons like theories of gravity, yet another future direction would

be study our proposal of extremal black holes in lower spin gravity [85] or in non-AdS like

theories such as in [86, 87]. These interesting problems will be addressed elsewhere.
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A The sl(3|2) superalgebra

In this appendix we collect some useful facts and formulae regarding the superalgebra

sl(3|2) and its real form su(2, 1|1, 1) .

A.1 Definition and (anti-)commutation relations

The superalgebra sl(m|n;C) consists of all complex (m + n) × (m + n) supermatrices of

the form

M =

(
A B

C D

)
, (A.1)

equipped with the supercommutator

[M,M ′} =

(
AA′ −A′A+BC ′ +B′C AB′ −A′B +BD′ −B′D
CA′ − C ′A+DC ′ −D′C CB′ + C ′B +DD′ −D′D

)
, (A.2)

and satisfying the supertraceless condition

sTr(M) ≡ Tr [A]− Tr [D] = 0 . (A.3)

The complex dimension of the superalgebra is (m + n)2 − 1. Elements with B = 0 and

C = 0 are called even or bosonic, while those with A = 0 and D = 0 are termed odd

or fermionic. The even subalgebra is sl(m;C) ⊕ sl(n;C) ⊕ C. In what follows we deal

specifically with m = 3 and n = 2. We comment on the real form of interest below.

In the principal embedding of sl(2|1) in sl(3|2) [60, 61], the even-graded sector of the

superalgebra is decomposed into the sl(2) generators, Li, one spin 1 multiplet, Ai, one spin

2 multiplet, Wm, and a spin 0 element, J . By spin we mean the sl(2) spin, S. Within

each multiplet the indices range from −S to S, giving a total of 3 + 3 + 5 + 1 = 12 bosonic

generators. This structure is encoded in the commutation relations

[Li, Lj ] = (i− j)Li+j , [Li, Aj ] = (i− j)Ai+j , [Li,Wm] = (2i−m)Wi+m . (A.4)
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The remaining non-vanishing commutators read

[Ai, Aj ] = (i− j)Li+j , [Ai,Wm] = (2i−m)Wi+m ,

[Wm,Wn] = −1

6
(m− n)(2m2 + 2n2 −mn− 8)(Lm+n +Am+n) .

(A.5)

Therefore, the bosonic part of the sl(3|2) algebra is sl(3)⊕ sl(2)⊕ u(1), where the sl(3) is

generated by (Li + Ai)/2 together with Wm, while the sl(2) corresponds to (Li − Ai)/2.

The latter factor should not be confused with the “gravitational” sl(2) spanned by Li. Of

course, the Abelian generator is J . In turn, the odd-graded elements consist of two spin

1/2 multiplets, Hr and Gr, and two spin 3/2 multiplets, Ts and Ss;

[Li, Gr] =

(
i

2
− r
)
Gi+r , [Li, Hr] =

(
i

2
− r
)
Hi+r ,

[Li, Ss] =

(
3i

2
− s
)
Si+s , [Li, Ts] =

(
3i

2
− s
)
Ti+s .

(A.6)

The number of fermionic generators is 2+2+4+4 = 12. Their U(1) charge assignments are

[J,Gr] = Gr , [J,Hr] = −Hr , [J, Ss] = Ss , [J, Ts] = −Ts . (A.7)

Additionally, they satisfy

[Ai, Gr] =
5

3

(
i

2
− r
)
Gi+r +

4

3
Si+r , [Ai, Hr] =

5

3

(
i

2
− r
)
Hi+r −

4

3
Ti+r ,

[Ai, Ss] =
1

3

(
3i

2
− s
)
Si+s −

1

3

(
3i2 − 2is+ s2 − 9

4

)
Gi+s ,

[Ai, Ts] =
1

3

(
3i

2
− s
)
Ti+s +

1

3

(
3i2 − 2is+ s2 − 9

4

)
Hi+s ,

[Wm, Gr] = −4

3

(m
2
− 2r

)
Sm+r , [Wm, Hr] = −4

3

(m
2
− 2r

)
Tm+r ,

[Wm, Ss] = −1

3

(
2s2 − 2sm+m2 − 5

2

)
Sm+s

− 1

6

(
4s3 − 3s2m+ 2sm2 −m3 − 9s+

19

4
m

)
Gm+s ,

[Wm, Ts] =
1

3

(
2s2 − 2sm+m2 − 5

2

)
Tm+s

− 1

6

(
4s3 − 3s2m+ 2sm2 −m3 − 9s+

19

4
m

)
Hm+s ,

(A.8)

(A.9)
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together with the anti-commutation relations

{Gr, Hs} = 2Lr+s + (r − s)J ,

{Gr, Ts} = −3

2
Wr+s +

3

4
(3r − s)Ar+s −

5

4
(3r − s)Lr+s ,

{Hr, Ss} = −3

2
Wr+s −

3

4
(3r − s)Ar+s +

5

4
(3r − s)Lr+s ,

{Sr, Ts} = −3

4
(r − s)Wr+s +

1

8

(
3s2 − 4rs+ 3r2 − 9

2

)
(Lr+s − 3Ar+s)

− 1

4
(r − s)

(
r2 + s2 − 5

2

)
J .

(A.10)

Notice that the elements Li, J , Hr and Gr generate sl(2|1) ⊂ sl(3|2), while osp(2|1) ⊂
sl(2|1) is spanned by Li and (Hr +Gr)/

√
2.

Another useful basis for sl(3|2), which we use in the analysis of Killing spinors, can be

constructed from the twenty-five 5 × 5 matrices

(eIJ)KL = δIKδJL . (A.11)

It is convenient to split the index I = (1, 2, 3, 4, 5) into I = (i, ī), where i = (1, 2, 3) and

ī = (4, 5). Then, a basis for the even elements of the superalgebra is given by

Eij = eij − δij1 ,
Eīj̄ = eīj̄ + δīj̄1 , (A.12)

while the odd elements are spanned by

Eij̄ = eij̄ ,

Eīj = eīj . (A.13)

Notice that, as expected, the above basis is overcomplete since∑
i

Eii = −
∑
ī

Eī̄i . (A.14)

This matrix actually corresponds to the U(1) generator in the superalgebra. The

(anti-)commutation relations in this basis can be found in [64].

A.2 Matrix representation

For convenience, we have chosen to work in a representation where all matrices are real

and satisfy

L†i = (−1)iL−i , A†i = (−1)iA−i , W †m = (−1)mW−m , (A.15)

and

H†r = (−1)r+
1
2G−r , T †s = (−1)s+

1
2S−s . (A.16)
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The generators in this basis are [61]

L1 =


0 0 0 0 0√
2 0 0 0 0

0
√

2 0 0 0

0 0 0 0 0

0 0 0 1 0

 , L0 =


1 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 1
2 0

0 0 0 0 −1
2

 ,

A1 =


0 0 0 0 0√
2 0 0 0 0

0
√

2 0 0 0

0 0 0 0 0

0 0 0 −1 0

 , A0 =


1 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 −1
2 0

0 0 0 0 1
2

 ,

W2 =


0 0 0 0 0

0 0 0 0 0

4 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , W1 =


0 0 0 0 0√
2 0 0 0 0

0 −
√

2 0 0 0

0 0 0 0 0

0 0 0 0 0

 ,

W0 =


2
3 0 0 0 0

0 −4
3 0 0 0

0 0 2
3 0 0

0 0 0 0 0

0 0 0 0 0

 , J =


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 3

 ,

G 1
2

=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0
√

2 0 0 0

 , H 1
2

=


0 0 0 0 0

0 0 0
√

2 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

 ,

S 3
2

=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−3 0 0 0 0

 , S 1
2

=


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−1 0 0 0 0

0
√

2 0 0 0

 ,

T 3
2

=


0 0 0 0 0

0 0 0 0 0

0 0 0 −3 0

0 0 0 0 0

0 0 0 0 0

 , T 1
2

=


0 0 0 0 0

0 0 0 −
√

2 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

 .

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

– 57 –



J
H
E
P
0
4
(
2
0
1
6
)
0
7
7

A.3 The real form su(2, 1|1, 1)

As listed in [62], the real forms associated with sl(3|2;C) are:

sl(3|2;R) ⊃ sl(3;R)⊕ sl(2;R)⊕R ,

sl(3|2;H) ⊃ su∗(3)⊕ su∗(2)⊕R ,

su(p, 3− p|q, 2− q) ⊃ su(p, 3− p)⊕ su(q, 2− q)⊕ iR . (A.24)

In the present work are interested in the last possibility with p = 2 and q = 1, the main

reason being that it is this choice of bulk superalgebra that makes natural contact with

the boundary W(3|2) theory [23]. In particular, notice that su(p, 3− p|q, 2− q) is the only

real form with a compact u(1) generator.

The superalgebra su(2, 1|1, 1) ⊃ su(2, 1)⊕ su(1, 1)⊕ iR is defined as the set of super-

traceless 5× 5 supermatrices M satisfying

M †K +KM = 0 , (A.25)

where K is a non-degenerate Hermitian form of signature (2, 1|1, 1). One can check that

in our representation of sl(3|2) the generators

Li, Ai, iWm, iJ, (A.26)

and

eiπ/4 (Hr +Gr) , eiπ/4i (Hr −Gr) , e3iπ/4 (Ts + Ss) , e3iπ/4i (Ts − Ss) , (A.27)

satisfy the above property with

K =


0 0 −1 0 0

0 1 0 0 0

−1 0 0 0 0

0 0 0 0 i

0 0 0 −i 0

 . (A.28)

Notice that K has the correct eigenvalues. Therefore, these particular combinations of

generators, with the above pre-factors included, form a basis for the real superalgebra

su(2, 1|1, 1).

In the analysis of Killing spinors in the sl(3|2) theory we have decomposed the fermionic

parameter as

ε = ε− + ε+ , (A.29)

where ε± are U(1) eigenstates. Demanding that this matrix belong to su(2, 1|1, 1) im-

plies that

ε†K +Kε = 0 ⇔ ε±
†

= −Kε∓K . (A.30)
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B The W(3|2) algebra

In what follows we will briefly discuss some basic aspects of the W(3|2) algebra, and col-

lect some useful formulae. The material below follows [80, 83] closely. As it is common

usage in the literature, we shall use the terms “spin” and “conformal dimension/weight”

interchangeably.

B.1 Commutator algebra and spectral flow

Before diving into the higher spin algebra, let us recall the structure of the N = 2 super-

Virasoro algebra. In addition to the stress tensor T , this algebra contains a weight-1 U(1)

current J and two weight-3/2 fermionic currents G+ and G− with U(1) charges +1 and

−1, respectively. The corresponding commutators are given by[
Lm, Ln

]
= (m− n)Lm+n + c

12m(m2 − 1)δm+n,0 (B.1)[
Lm, Jn

]
= − nJm+n

[
Lm, G

±
r

]
=
(
m
2 − r

)
G±m+r (B.2)[

Jm, Jn
]

= c
3mδm+n,0

[
Jm, G

±
r

]
= ±G±m+r (B.3){

G+
r , G

−
s

}
= 2Lr+s + (r − s)Jr+s + c

3

(
r2 − 1

4

)
δr+s,0

{
G±r , G

±
s

}
= 0 . (B.4)

In addition to the super-Virasoro operators, the W(3|2) algebra contains an additional

N = 2 multiplet generated by a dimension-2 superconformal primary. We shall adopt the

notation {V,U+, U−,W} for the currents in this multiplet. V has conformal dimension

2 and U(1) charge zero, U± have weight 5/2 and U(1) charge ±1, and W has dimension

3 and U(1) charge zero. The commutators between the super-Virasoro currents and the

higher spin multiplet fields are[
Lm, Vn

]
= (m− n)Vm+n

[
Lm, U

±
r

]
=
(

3
2m− r

)
U±m+r (B.5)[

Lm,Wn

]
= (2m− n)Wm+n

[
Jm, Vn

]
= 0 (B.6)[

Jm,Wn

]
= 2mVm+n

[
Jm, U

±
r

]
= ± U±m+r (B.7){

G±r , U
∓
t

}
= ± (3r − t)Vr+t + 2Wr+t

[
G±r , Vn

]
= ∓ U±r+n (B.8)[

G±r ,Wn

]
=
(
2r − 1

2n
)
U±r+n

{
G±r , U

±
t

}
= 0 . (B.9)

in agreement with the N = 2 supersymmetric structure.

Finally, the commutators of the higher spin multiplet operators with themselves were

given by Romans in [80][
Vm , Vn

]
= (m− n)A

[2]
m+n + c

12m(m2 − 1)δm+n,0 (B.10)[
Wm , Wn

]
= c

48m(m2 − 1)(m2 − 4)δm+n,0 + (m− n)B
[4]
m+n (B.11)

+ (m− n)(2m2 −mn+ 2n2 − 8)B
[2]
m+n (B.12)[

Vm , Wn

]
= C

[4]
m+n + (2m− n)C

[3]
m+n + (6m2 − 3mn+ n2 − 4) C

[2]
m+n︸ ︷︷ ︸
=0

+m(m2 − 1)C
[1]
m+n

(B.13)
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{
U+
r , U

−
s

}
= D

[4]
r+s + (r − s)D [3]

r+s +
(
3r2 − 4rs+ 3s2 − 9

2

)
D

[2]
r+s (B.14)

+ (r − s)
(
r2 + s2 − 5

2

)
D

[1]
r+s + c

12

(
r2 − 1

4

) (
r2 − 9

4

)
δr+s,0 (B.15){

U±r , U
±
s

}
=
(
E

[4]
±

)
r+s

(B.16)

[
Vm , U

±
r

]
=
(

Φ
[7/2]
±

)
m+r

+
(

3
2m− r

) (
Φ

[5/2]
±

)
m+r

+
(
3m2 − 2mr + r2 − 9

4

) (
Φ

[3/2]
±

)
m+r

(B.17)[
U±r , Wm

]
=
(

Ψ
[9/2]
±

)
r+m

+
(
2r − 3

2m
) (

Ψ
[7/2]
±

)
r+m

+
(
2r2 − 2rm+m2 − 5

2

) (
Ψ

[5/2]
±

)
r+m

(B.18)

+
(
4r3 − 3r2m+ 2rm2 −m3 − 9r + 19

4 m
) (

Ψ
[3/2]
±

)
r+m

. (B.19)

Here A [s], B[s], C [s], D [s], E
[s]
± , Φ

[s]
± , Ψ

[s]
± are normal-ordered composite operators built out

of primary and quasi-primary operators, with their precise form fixed by Jacobi identities

(the explicit expressions have been given in [80]), and the self-coupling κ of the higher spin

multiplet with itself is fixed in terms of the central charge as

κ = ± (c+ 3)(5c− 12)√
2(c+ 6)(c− 1)(2c− 3)(15− c)

. (B.20)

As pointed out in [80], the sign ambiguity in κ corresponds merely to the freedom of

simultaneously flipping the sign of all fields in the higher spin multiplet. Note also that

κ is real only for −6 < c < 1 or 3
2 < c < 15 , and in particular purely imaginary as

c → ∞ . For c > 15 {V,U+, U−,W} are anti-Hermitian while the remaining currents

are Hermitian. Alternatively, the full algebra can be written in terms of operators with

standard Hermiticity properties by rescaling the higher spin multiplet currents by κ.

As noted in [80] the redefinition

L′n = Ln + ηJn +
η2

6
cδn,0 (B.21)

J ′n = Jn +
c

3
ηδn,0 (B.22)

G±
′

r = G±r±η (B.23)

V ′n = Vn (B.24)

U±
′

r = U±r±η (B.25)

W ′n = Wn + 2ηVn (B.26)

is an automorphism of the full W(3|2) algebra for any η . We have exploited this property

extensively in our calculations.

B.2 The semiclassical limit

Our discussion has been fully quantum so far. However, in order to compare with the

results from the bulk calculations in the main text, we need to consider the semiclassical
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limit of the W(3|2) algebra whose commutation relations we have given above. Roughly

speaking this entails a “large-c” limit, but the correct procedure is a bit more subtle than

a naive expansion in 1/c . The appropriate limiting procedure has been discussed in [88],26

which we follow here.

In the present context, we are instructed to first rescale the currents (denoted collec-

tively by Js(z)) and central charge as

Js(z) = ~−1J̃s(z) , c = ~−1c̃ . (B.27)

Expanding now in ~ → 0 (keeping the rescaled currents and central charge fixed) these

rescalings imply that the r.h.s. of the OPEs and commutation relations are linear in ~ , with

corrections of order O(~2) . In particular, the semiclassical OPE algebra (which translates

into Poisson brackets) is obtained from the quantum OPE algebra (which translates into

commutators) by taking the limit27

J̃s(z)J̃s′(w)
∣∣∣
semiclass

≡ lim
~→0

1

~
J̃s(z)J̃s′(w) . (B.28)

Furthermore, the leading term in the ~ expansion of the composite fields A [s], B[s], C [s],

D [s], E
[s]
± , Φ

[s]
± , Ψ

[s]
± is of order O(~−1) and it precisely agrees with the corresponding

expressions obtained from the bulk analysis [23] of asymptotic symmetries.

Finally, we notice that under the above procedure the parameter κ defined in (B.20)

becomes

κ −−−−−−−−→
semi-classical

±5i

2
. (B.29)

B.3 Normal-ordered composite operators

In order to compute unitarity and BPS bounds for theW(3|2) algebra one requires the action

of the modes of various normal-ordered composite operators on highest weight vectors. As

in the main text, we consider NS highest weight states |h.w.〉 satisfying

L0 |h.w.〉 = h |h.w.〉 (B.30)

J0 |h.w.〉 = q |h.w.〉 (B.31)

V0 |h.w.〉 = q2 |h.w.〉 (B.32)

W0 |h.w.〉 = q3 |h.w.〉 (B.33)

and28

Ln |h.w.〉 = Jn |h.w.〉 = Vn |h.w.〉 0 , n > 0 (B.34)

G±r |h.w.〉 = 0 , r > 0 (B.35)

U±r |h.w.〉 = 0 , r > 0 (B.36)

26We thank Carl Vollenweider for helpful discussions on this matter.
27In terms of a free-field realization of the currents, the semiclassical limit amounts to dropping terms

containing more than a single Wick contraction.
28Note that

[
G±r , V0

]
= ∓U±r . Therefore, the highest-weight conditions V0 |h.w.〉 = v |h.w.〉 and

G±r |h.w.〉 = 0 (r > 0) imply U±r |h.w.〉 = 0 (r > 0) as well.
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The definition of normal-ordering we use follows [80, 89] and reads

(: AB :)n ≡
∑

p≤−∆A

ApBn−p + (−1)AB
∑

p>−∆A

Bn−pAp , (B.37)

where ∆A is the dimension of A and (−1)AB is −1 if both A and B are fermionic, and

+1 otherwise. Products of more than two fields are defined recursively, grouping them as

follows:

: A1A2 . . . Ai−1Ai :≡ (: A1 (: A2 (. . . (: Ai−1Ai :) . . .) :) :) . (B.38)

We will also need a formula for the modes of derivatives of operators:

(∂A)n = − (n+ ∆A)An . (B.39)

Some additional useful relations for normal-ordered products can be found in [89], such as

: BA : = (−1)|A||B|

: AB : +
∑
`≥1

(−1)`

`!
∂(`) [AB]`

 , (B.40)

where [AB]` is the coefficient of the (z − w)−` term (i.e. the `-th pole) in the AB OPE.

We can e.g. apply this formula to show

: ∂pJ J :=: J∂pJ : (B.41)

which follows from (B.40) and the fact that the JJ OPE consists of just an anomalous

(field-independent) term. For the remainder of this section, all composite fields are assumed

to be normal-ordered, and we use a square bracket to denote combinations that are primary

or quasi-primary operators.

The explicit expression for the composite field C [4] is [80]

C [4] =
2

c− 1
[J∂T − 2∂J T ] +

κ

c+ 3

(
2 [J∂V − 2∂J V ]− 3

[
G+U− +G−U+ − 4

3
∂W

])
(B.42)

With the help of the above formulae, in the NS sector we get the mode expansion

(
C [4]

)
n

=
2

c− 1

−nLnJ0 +
∑
p≥1

(3p− n)Ln−pJp +
∑
p≤−1

(3p− n) JpLn−p


+

2κ

c+ 3

−nVnJ0 +
∑
p≥1

(3p− n)Vn−pJp +
∑
p≤−1

(3p− n) JpVn−p

 (B.43)

− 3κ

c+ 3

4n

3
Wn +

∑
p≤−1/2

(
G+
p U
−
n−p +G−p U

+
n−p
)
−
∑
p≥1/2

(
U−n−pG

+
p + U+

n−pG
−
p

)
and we conclude the important result

C
[4]
0 |h.w.〉

NS
= 0 and C [4]

n |h.w.〉
NS

= 0 for n > 0 . (B.44)
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Other composites whose explicit action on highest weight state we have used in the

main text are (all composite operators below are assumed to be normal-ordered)

D [1] =
1

4
J (B.45)

D [2] =
1

10(c− 1)

(
(5c− 3) [T ]− 3

[
J2
])

+
κ

5
[V ] (B.46)

D [3] = 3γ

(
2(5c2 + 9) [JT ]− 3(4c+ 3)

[
J3
]

+
1

2
(c− 3)(13c− 6)

[
G+G− − ∂T − 1

3
∂2J

])
+

2κ

5c− 12

(
21 [JV ]− (c+ 6)W

)
(B.47)

D [4] = 6γ

{
9c(c− 1)

[
T 2 − 3

10
∂2T

]
+ 3(4c+ 3)

([
JG+G− − J∂T − 1

3
J∂2J

]
−
[
J2T

])
(B.48)

+
1

4

(
5c2 − 51c+ 18

) [
∂G+G− −G+∂G− +

2

5
∂2T +

1

6
∂3J

]
(B.49)

+
1

4
(c2 − 53c+ 66)

[
J∂2J − 3

10
∂2
(
J2
)]}

(B.50)

+
6κ

(c+ 3)(5c− 12)

{
18(c− 1)

[
TV − 3

10
∂2V

]
− 2(c− 15) [JW ] (B.51)

+ (4c+ 3)

[
G−U+ −G+U− +

2

5
∂2V

]}
(B.52)

where γ = 1
(c−1)(c+6)(2c−3) . By explicit computation we find

D
[1]
0 |h.w.〉

NS
=
q

4
|h.w.〉

NS
(B.53)

D
[2]
0 |h.w.〉

NS
=

(
5c− 3

10(c− 1)
h+

κ

5
q2 −

3

10(c− 1)
q2

)
|h.w.〉

NS
(B.54)

D
[3]
0 |h.w.〉

NS
= 3γ

(
2(5c2 + 9)qh− 3(4c+ 3)q3 +

1

2
(c− 3)(13c− 6)

q

3

)
|h.w.〉

NS

+
2κ

5c− 12

(
21qq2 − (c+ 6)q3

)
|h.w.〉

NS
(B.55)

D
[4]
0 |h.w.〉

NS
= 6γ

(
9c(c− 1)h

(
h+

1

5

)
+

1

4

(
5c2 − 51c+ 18

)(7h

5
− q

2

)

+ 3(4c+ 3)q2

(
1

3
− h
)

+
1

4
(c2 − 53c+ 66)

q2

5

)
|h.w.〉

NS
(B.56)

+
6κ

(c+ 3)(5c− 12)

(
18(c− 1)q2

(
h+

1

5

)
+

32

5
(4c+ 3)q2 − 2(c− 15)qq3

)
|h.w.〉

NS

and

D [1]
n |h.w.〉

NS
= D [2]

n |h.w.〉
NS

= D [3]
n |h.w.〉

NS
= D [4]

n |h.w.〉
NS

= 0 , for n > 0 (B.57)
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