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1 Introduction

In recent years we have seen enormous progress in qualitative and quantitative understand-

ing of out-of-equilibrium quantum dynamics. Theoretical and numerical methods have been

very effective to unearth the generic behaviour of a variety of observables in such systems.

Coupled with the rapid growth of experimental techniques in cold atom and many-body

systems to probe such dynamics, one can furthermore ratify our theoretical understanding.

Motivated by these considerations we continue our explorations of dynamics of strongly

coupled non-equilibrium quantum systems using holographic methods.

One simple scenario of interest in many circumstances is a situation where we start

with a QFT in global equilibrium and deform it by turning on external sources for relevant

operators. The sources provide external dials which can serve to do work on the system

and drive it out of equilibrium. We could consider sources that act homogeneously in space

(but localized in time), which is often referred to as global quench, or have it act locally in

spacetime, which corresponds to a local quench. Both types of protocols are well studied in
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literature in the past decade or thereabouts. In either case we are considering deformations

of the form

SQFT 7→ SQFT +

∫
ddxJ (x)O(x) , (1.1)

where O(x) is a (composite) operator of the QFT and J the classical source we dial.

The distinction at this level between local and global quenches is simply in the spacetime

support of the source J (x).

Much of the analytic progress in this front has been in 1+1 dimensional CFTs, where

the quench protocols of the form (1.1) can be incorporated into a Euclidean path integral,

and studied efficiently by computing correlation functions of the deforming operator O(x)

in the unperturbed state of the CFT, cf., [1, 2] for the original discussion and [3] for

a review.

Our primary interest is in exploring the dynamics of strongly coupled QFTs subject

to such protocols in higher dimensions. A natural framework to explore this question is

provided by the holographic AdS/CFT duality which maps the QFT problem onto the

dynamics of a gravitational system in asymptotically AdS spacetime. For concreteness we

will focus on 2+1 CFTs which are originally in global thermal equilibrium and subject

them to a quench by a local scalar operator O of dimension ∆. The gravitational problem

then comprises of Einstein-Hilbert gravity coupled to a massive scalar, whose mass m is

related to the conformal dimension by the standard formula, viz., ∆ = 3
2 +
√

9
4 +m2 `2AdS.1

The initial global equilibrium state maps onto a planar Schwarzschild-AdS4 black hole and

the problem at hand involves analyzing the deformation of this said black hole consequent

to turning on a boundary source for the scalar field. This then amounts to a gravitational

infall problem. The pulse of scalar on the boundary propagates into the bulk and dissipates

through the black hole horizon. Of interest to us are the observables in the interim process.

While there are many quantities that could be, and indeed have been [4–43], studied

in this context, we will for definiteness focus our attention on entanglement entropy. While

strictly not an observable, the entanglement entropy for a particularly chosen spatial re-

gion of the QFT captures important aspects of the field theory dynamics. Not only does it

provide a measure of how correlations in the system evolve following the quench, but it fur-

thermore is also a simple quantity to compute in the holographic context. The holographic

entanglement entropy proposals of [44, 45] and their covariant generalization [4] provide

an extremely simple route to its computation. All we are required to do is solve a classical

problem of finding areas of extremal surfaces anchored on the said region of interest.

In what follows we will explore how holographic entanglement entropy evolves following

a local quench. We will restrict our attention to a very specific scenario, wherein we quench

a CFT3 with a ∆ = 2 operator. The disturbance will be taken to be localized in space and

time — we pick exponential damping in space and an inverse Pöschl-Teller switch on/off

in time, cf., (3.1). We retain translational invariance in one spatial direction, breaking

homogeneity in the other. We study entanglement entropy for strip-like spatial regions

1We will only consider deformations by operators which are well separated from the unitarity bound —

our focus will be on conformally coupled scalars with ∆ = 2.
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that are aligned with the symmetry we retain, so that the problem of finding extremal

surfaces can be mapped to effectively finding geodesics in an auxiliary three dimensional

spacetime. Of interest to us are how the entanglement entropy growth is correlated with

the position and size of the strip relative to the quench location.

To appreciate the question, let us recall some well known facts. The classic analysis

of [1] of entanglement entropy growth following a global quench in CFT2 has spurred lots

of activity on the subject. While the two dimensional case can effectively be described by a

quasiparticle picture, since the entanglement growth is linear due to left and right movers

decoupling (following an initial quadratic ramp up [22, 28, 30]), the holographic models

present a much different picture in higher dimensions.2

The results of various analyses of global quenches have been beautifully encapsulated

in the ‘entanglement tsunami’ picture developed by Liu-Suh in [28, 30] and further explored

recently in [47]. Following an initial quadratic growth in time, the entanglement entropy

for any region grows linearly at a rate dictated by the tsunami velocity vE . To define this

quantity unambiguously the authors chose to normalize the local value of entanglement

entropy relative to the final thermal entropy expected for the same region once equilibration

is complete. This does leave a single parameter which is the aforementioned velocity. It

was found not only vE ≤ 1 as required by causality with equality in d = 2 consistent with

the CFT2 analysis, but one could further bound it by a universal dimensional dependent

constant v∗E(d).3 This upper bound on velocity was attained holographically for matter

that collapsed into a Schwarzschild-AdSd black hole at late times.

Given this rather clear situation for global quenches, we are interested in ascertaining

the behaviour when we localize the quench protocol to a finite spatial domain. We in

principle could focus on deformations by sources delta-function supported at point. This

is natural when studying this problem in QFT as one can map the computation to that of

computing correlation functions on some background, however for our purposes of carrying

out numerical investigations we choose to smear out the source. We expect firstly that the

underlying locality of the QFT forces entanglement entropy to behave causally; as explained

in [48, 49] this means that the source makes its presence felt only when it acts in the causal

past of the entangling surface (the boundary of the region of interest). This is indeed what

one sees in explicit computations in CFT2. The entanglement entropy only starts changing

after a time lag set by the time it takes for the quench disturbance to propagate between

the region of interest and its complement. As long as the quench front is localized either

in the region or in the complement, we only have the initial state entanglement.

2We note here that oftentimes global quenches are holographically modeled by considering a Vaidya-AdS

geometry (see [4, 46] for early discussions) that corresponds to infalling null matter in the bulk, which does

not accord a clean CFT interpretation. A more cleaner perspective is offered by either solving the non-linear

dynamics of gravity coupled to realistic matter like a scalar field, or more simply by implementing an end

of the world brane boundary state [25] explicitly in holography. The results for the growth of entanglement

entropy are however independent of the particularities of the modeling.
3This statement as far as we are aware is robust for QFTs whose holographic duals are given in terms

of two derivative Einstein-Hilbert gravity coupled to sensible matter. There is a-priori no reason for them

to hold when the gravitational dynamics includes higher derivative corrections and we in particular are not

aware of any statement of this kind.
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Previous analyses of holographic local quenches by [23] involved modeling the system

by the infall of a massive particle — this is effectively an eikonal approximation wherein

one is assuming that the wavepackets of the quench are tightly collimated. Moreover, the

authors chose to work with very heavy operators ∆� 1 which could then be approximated

in terms of worldlines of a small black holes. The relevant geometry can be obtained by

applying a suitable symmetry transformation to the global Schwarzschild-AdS black hole

and with it in hand properties of holographic entanglement entropy were explored. This

picture was further supported by field theory analysis of such deformations at large central

charge [50, 51]. Our aim to tackle this problem from a different perspective by studying

the entanglement evolution in a quenched gravitational background as explained above.

We will recover most of the results mentioned above in our analysis.

We can moreover explore quantitative features of the entanglement evolution. We see

that the propagation of entanglement is confined to a an effective light-cone. We extract an

entanglement velocity vE from this emergent causal structure. Unlike the case of the global

quench, the velocity depends on the details of the quench. It appears to grow monotonically

with increase in the amplitude of the quench source as well as with the increase of the initial

temperature. For a certain range of parameters is appears to track the tsunami velocity

bound v∗E(3) of [28], while for others it reaches close to the speed of light.

One can understand this behaviour qualitatively as follows: for well localized quenches

in large regions A one is in the eikonal limit. Here the growth of the entanglement entropy is

linear with an ‘entanglement velocity’ that is close to the speed of light. On the other hand

for regions which are confined within a broad quenching pulse, the situation is nominally

similar to a global quench experiment. As we are collapsing scalar matter, we should expect

that the behaviour in this domain is isomorphic that seen by [28], and indeed we recover

the tsunami velocity.4 Away from these limiting cases we see contamination from edge

effects both from finite size of A and the finite width of the quench source. We have not

examined the detailed non-linear effects that cause the velocity to grow from the tsunami

bound towards the speed of light, but display some examples which illustrate the pattern.

While our numerical results are constrained to probing small spatial regions relative to

thermal scale,5 we nevertheless are able to extract both this entanglement velocity as well as

examine the return to the equilibrium. In contrast to studies in lattice models in low dimen-

sions which display a logarithmic return of entanglement entropy to its equilibrium value

after the quench, we find that the holographic systems prefer to equilibrate exponentially.

The outline of the paper is as follows. In section 2 we describe the basic set-up for

holographic local quenches, describing the general methodology and the determination

of entanglement entropy from the gravitational background. In section 3 we give the

4There is a somewhat annoying fact that the tsunami velocity v∗E(3) = 0.687 in three spacetime dimen-

sions is mraginally lower than the speed of sound vs = 0.707, making it somewhat hard to convincingly

point to precise origin of the effect. We nevertheless feel confident that the analogy with the global quench

points to the tsunami velocity being the operative feature.
5This constraint arises because our numerical solutions only determine the geometry to the exterior of

the apparent horizon. For small regions A the extremal surfaces stay in this domain, but for larger regions,

they do penetrate the apparent horizon — see [9, 53].
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basic numerical results for the quench spacetime and extremal surfaces therein. The key

statements regarding the behaviour of entanglement entropy in a locally quenched CFT

are then extracted in section 4, where we describe the growth velocity vE and the return to

equilibrium. We end with some open questions in section 5. Some details of the numerical

methods are collected in the appendices.

2 Preliminaries: holographic local quench

We are interested in the behaviour of entanglement entropy in a 2 + 1 dimensional field

theory that has been driven out of equilibrium locally by an inhomogeneous relevant scalar

operator. Holographically, this amounts to solving the gravitational dynamics of a 3 + 1

dimensional asymptotically AdS spacetime and its consequences for the area of extremal

surfaces anchored on the boundary.

2.1 Metric ansatz

In order to dynamically evolve a spacetime geometry following a local quench, it is con-

venient to choose our metric ansatz to be a generalization of the infalling Eddington-

Finkelstein coordinates for black holes. We choose to work in an asymptotically AdS4

spacetime, dual to a 2 + 1 dimensional CFT,

ds2 = −2Ae2χ dt2 + 2 e2χ dt dr − 2Fx dtdx+ Σ2
(
eB dx2 + e−B dy2

)
, (2.1)

where r denotes the radial bulk coordinate, with the boundary lying at r =∞, and t is a

null coordinate that coincides with time on the boundary. We have chosen our quench to

be localized in the x-direction and translationally invariant in the y direction. Hence all

the fields appearing above {A,χ, Fx,Σ, B} depend only on the coordinates {r, t, x} with ∂y
being an isometry.

This choice for the metric has many advantages: it provides us with coordinates that

remain regular throughout the entire domain as the spacetime equilibrates, it leads to a

characteristic formulation of our gravitational infall problem, and it comes with a residual

radial diffeomorphism that is of great computational help [54]. Indeed, the metric (2.1)

remains invariant under radial shifts,6

r → r = r + λ(xµ) . (2.2)

On physical grounds, we anticipate that the black hole’s horizon will grow locally as the

effects of matter from the boundary are felt in the interior of the bulk. Hence a sensible

gauge choice is to dynamically determine λ so that the coordinate location of the black

hole’s apparent horizon7 remains fixed. This keeps the calculational domain simple.

6For notational clarity, we use upper case Latin indices {M,N, . . .} to represent bulk coordinates, and

lower case Greek indices {µ, ν, . . .} to refer to boundary coordinates.
7See appendix A for further details about our numerical scheme.
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Einstein’s equations in the presence of a scalar field are given by

RMN −
R

2
GMN −

d(d− 1)

2 `2AdS

GMN = TMN

TMN = ∇MΦ∇NΦ +GMNLΦ, LΦ = −1

2

(
GMN∇MΦ∇NΦ +m2Φ2

)
.

(2.3)

For simplicity, we restrict our attention to m2 `2AdS = −2 so that the asymptotic expansion

of the scalar field near the boundary is analytic in powers of 1/r:

Φ(r, t, x) =
φ0(t, x)

r
+
φ1(t, x)

r2
+ · · · (2.4)

We note that since t is a null coordinate, φ1(t, x) will have contributions coming from both

the source and the response of the scalar field, as will be explained below.

2.2 Asymptotic geometry

In a theory of gravity on asymptotically AdS spacetimes, asymptotic analysis alone is not

sufficient to determine the bulk metric [55]. Indeed, the missing piece in the asymptotic

analysis is the boundary stress tensor, determined by solving the full bulk equations:

Tµν ∼ g(3)
µν , (2.5)

where g
(3)
µν is the part of the metric undetermined by the equations of motion for d = 3.

While our infalling coordinate chart (2.1) differs from the standard Fefferman-Graham

chart typically used for asymptotic expansions, it is a straightforward exercise to carry

out an asymptotic analysis. Demanding that the field equations are obeyed in the near-

boundary r →∞ domain we find

A(r, t, x) =
(r + λ(t, x))2

2
− ∂tλ(t, x)− 1

4
φ0(t, x)2 +

a(3)(t, x)

r
+ · · · (2.6)

χ(r, t, x) =
c(3)(t, x)

r3
+ · · · (2.7)

Fx(r, t, x) = − ∂xλ(t, x) +
f (3)(t, x)

r
+ · · · (2.8)

Σ(r, t, x) = r + λ(t, x)− 1

4
φ0(t, x)2 + · · · (2.9)

B(r, t, x) =
b(3)(t, x)

r3
+ · · · . (2.10)

One may also show that the explicit map to the Fefferman-Graham coordinates {τ, ρ, ξ}
takes the asymptotic form

τ(r, t, x) = t+
1

r
− λ(t, x)

r2
+ · · · , (2.11)

ρ(r, t, x) = r + λ(t, x)− 1

4

φ0(t, x)2

r
+ · · · , (2.12)

ξ(r, t, x) = x+O(r−3). (2.13)

– 6 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
9

Additional care needs to be taken when dealing with scalar fields in a theory of gravity

formulated in terms of null coordinates. Indeed, the falloff of scalar fields with m2`2AdS = −2

is known to behave in Fefferman-Graham coordinates as:

Φ(ρ, τ, ξ) =
φsource(τ, ξ)

ρ
+
φresponse(τ, ξ)

ρ2
+ · · · (2.14)

as we approach ρ→∞. By using the coordinate expansion above, we obtain

Φ(r, t, x) =
φsource(t, x)

r
+
φresponse(t, x) + ∂tφsource(t, x)− λ(t, x)φsource(t, x)

r2
+ · · · ,

(2.15)

thus confirming our earlier claim that φ1 = φresponse + ∂tφ0 − λφ0 mixes the source and

the expectation value of the scalar.

2.3 Boundary stress tensor

In order to solve Einstein’s equations as efficiently as possible, we found it useful to use the

boundary stress tensor and its conservation equations to find and propagate the undeter-

mined fields a(3) and f (3) accurately in time (in our scheme, b(3) and c(3) need to be read

off from the solutions directly). For asymptotically AdS4 spacetimes, the boundary stress

tensor in the presence of a scalar field of mass squared m2`2AdS = −2 can be expressed in

the Brown-York form as

Tµν = Kµν −Kγµν + 2 γµν −
(
γRµν −

1

2
γRγµν

)
+

1

2
γµν φ

2, (2.16)

where we have introduced some boundary data: γµν is the induced metric on the boundary,

Kµν ,K ≡ γµνKµν its extrinsic curvatures, and γRµν ,
γR its intrinsic curvatures. Explicitly

in terms of the asymptotic expansion coefficients we find that the energy-momentum tensor

takes the form

T00 = 2a(3) + 4c(3) + φ0φresponse, (2.17)

Ttx =
3

2
f (3) − 1

2
φ0∂xφ0 , (2.18)

while the conservation equations in the presence of the scalar source φ0(x, t) read

∂tT00 = ∂xTtx + ∂tφ0 φresponse, (2.19)

∂tTtx =
1

2

(
∂xT00 − 3 ∂xb

(3) + ∂xφ0 φresponse − φ0 ∂xφresponse

)
. (2.20)

We take our initial state to be in thermal equilibrium, which translates to an initial

condition on the bulk metric, which is then the planar static Schwarzschild-AdS4 black

hole spacetime with temperature

T =
3M

1
3

4π
. (2.21)

The initial boundary stress tensor is then simply Tµν = diag{1, 1
2 ,

1
2}. To model our local

quench, we simply need to specify a source function φ0(t, x) and let the system evolve

according to the Einstein equations, all while making sure that λ is gauge-chosen to fix the

location of the apparent horizon.
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2.4 Holographic entanglement entropy

Once we have obtained solutions for the local quench, we can study the subsequent dy-

namics of the entanglement entropy of a region A on the boundary using the covariant

holographic entanglement entropy prescription [4]. The latter requires us to determine

extremal surfaces anchored on the entangling surface on the boundary.

For simplicity, we exploit the translational invariance, and restrict our attention to a

strip-region

A = {(x, y) | x ∈ (−L,L), y ∈ R} , ∂A = {(x, y) | x = ±L, y ∈ R} . (2.22)

The extremal surfaces EA anchored on ∂A are straightforwardly determined by solving a set

of ODEs. Using coordinates adapted to the ∂y isometry, we parameterize the surface by co-

ordinates y, τ . Consequentially, EA is then obtained by solving the geodesic equations in an

auxiliary three dimensional spacetime with metric g̃MNdX
N dXM = gyy gMN dX

N dXM ,

with the restriction to y = constant understood, i.e., XM (τ) = {t(τ), r(τ), x(τ)}.
Equivalently we solve the Euler-Lagrange equations obtained from the Lagrangian L =

gyy gMNẊ
MẊN .

While we have phrased the determination of EA as a boundary value problem, it

is practical to switch to an initial value formulation. We parameterize the solutions by

specifying the turning point, or tip, of the geodesic in the bulk, XM
∗ (τ) = {t∗, r∗, x = 0},

and evolve towards the boundary using an ODE solver (for instance the Matlab solver

ode45 ) until both ∂A and a specified UV cutoff are reached.

To this end, we have chosen to transform our system of 3 second order ODEs into a

system of 6 first order ODEs in the variables{
t, Pt ≡ Σ2 ṫ, r, P+ ≡ e2χ

(
ṙ −A ṫ

)
, x, Px ≡ Σ2 ẋ− e−BFx ṫ

}
. (2.23)

With these new variables,8 L = 2P+Pt + P 2
x . The boundary conditions at the turning

point are

{t = t∗, Pt = 0, r = r∗, P+ = 0, x = 0, Px = ±1} . (2.24)

The conditions on Pt and P+ are a consequence that, because of symmetry, we expect

ṫ = ṙ = 0 at X∗, whereas the condition for Px has been chosen to normalize the action by

setting L = 1. The sign determines whether the geodesic will go towards the positive or

negative x-axis.

To translate from the length of the geodesic to the actual entanglement entropy SA we

pick an IR regulator Ly along the translationally invariant direction and a UV cutoff ε. We

choose to present the results for the regulated entanglement entropy by subtracting off the

corresponding answer in the unperturbed theory. There are two natural regularizations we

can use:

Regulator 1: we subtract the entanglement in the ‘instantaneous thermal state’ obtained

by taking the Schwarzschild-AdS4 metric with a horizon located at r+(x, t) = M
1
3 +λ(t, x).

This choice allows clean matching of the asymptotic coordinate chart.

8These definitions for the momenta ensure that all quantities are of order O(1) for numerical stability.
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Regulator 2: we alternately can choose to subtract of the vacuum entanglement entropy

for the same region, with a dynamical UV cut-off εvac(x, t). This gives

∆SA = Ly

∫ dτ − 2

ε
− 2λ(t, x) +

4π

L

(
Γ(3

4)

Γ(1
4)

)2
 . (2.25)

The two regulators differ by a finite amount that is invariant temporally, allowing us to

cross-check our numerical results. In what follows we will simply quote ∆SA normal-

ized by Ly.

3 The quench spacetime and extremal surfaces

We now turn to describing the results of solving Einstein’s equations sources by the scalar

field boundary condition. We then describe properties of the extremal surfaces of interest

in these geometries.

3.1 Numerical solutions

We use the characteristic formulation of Einstein’s equations resulting from the null slicing

of spacetime outlined in [54] to numerically find the geometry. Even though we start with a

complicated set of PDEs, the characteristic formulation simplifies the equations of motion

into two categories: the equations for the auxiliary fields that are local in time and reduce

to a nested set of radial ODEs, and the equations for dynamical quantities that encode the

evolution of the geometry.

To numerically integrate the Einstein and Klein-Gordon equations, we discretize the

radial direction using a Chebyshev collocation grid. This choice of discretization for the

extra dimension is particularly well suited to find smooth solutions to boundary value

problems while ensuring their exponential convergence as the grid size is increased. We

opted to choose a rational Chebyshev basis to deal with the non-compact spatial direction.

The main advantage of working with a rational Chebyshev grid is that the boundary

conditions at x = ±∞ are already implemented behaviourally ; as long as the solution decays

at least algebraically fast or asymptotes to a constant, we can avoid specifying the boundary

conditions explicitly [56]. We use a grid of 41 points in both directions. To propagate in

time, we use an explicit fifth-order Runge-Kutta-Fehlberg method with adaptive step size.

We also avoid aliasing in both the radial and spatial directions by applying a low-pass filter

at each time step that gets rid of the top third of the Fourier modes.

We chose the source function to be φ0(t, x) = f(x)g(t) with

f(x) =
α

2

[
tanh

(
x+ σ

4s

)
− tanh

(
x− σ

4s

)]
, g(t) = sech2

(
t− tq∆
tq

)
. (3.1)

With it, we can ramp up the scalar field to reach its maximum value α at time t = tq∆

before it vanishes again. The parameters {s, tq,∆} are chosen to facilitate the numerics,

whereas σ determines the width of the perturbation. In practice, we found s = 0.15,

tq = 0.25 and ∆ = 8 to give us satisfying accuracy for the late-time behaviour of the scalar

– 9 –
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(a) λ(t, x) (b) T00(t, x)

Figure 1. Evolution profile of the (a) radial shift λ(x, t), and (b) T00(x, t) component of the stress

tensor, for α = 0.5, M = 0.1, σ = 2. The field λ determines the evolution of the entropy in our

solution.

field while preserving a nicely localized shape for the pulse. So we therefore study the

quench protocols parametrized by two parameters: an amplitude α and a width σ. Along

with the initial temperature of the system which we take to be parametrized by M , we

have three parameters at our disposal.

φ0(x, t) =
α

2

[
tanh

(
5

3
(x+ σ)

)
− tanh

(
5

3
(x− σ)

)]
sech2 (4 t− 8) ,

Protocol parameters: {α, σ,M}
(3.2)

The evolution of the spacetime following our quench is fairly simple. The injection of

local excitation results in hydrodynamical evolution almost from the very beginning (cf., [5,

6] for analogous statements with spatial homogeneity). Since our perturbation excites the

sound mode of the system, we have the initial energy-momentum perturbation dispersing

at the speed of sound. The presence of shear viscosity results in entropy production,

manifested in the solution by the local growth of the horizon area element.

In figure 1(a) we display the spatial and temporal profile of the function λ(x, t), related

to the area element of the horizon. We see that the initial perturbation indeed results in

entropy production, as expected. Curiously, the initial perturbation splits to two local-

ized perturbations after some time; those follow the expected hydrodynamic evolution.

Figure 1(b) shows the equivalent evolution of the energy density for the same set of param-

eters. Finally, figure 2 shows that following the conclusion of the quench the total energy is

conserved. These features verify the intuitive picture of hydrodynamical evolution following

a local excitation of the system.

To quantify the entropy production, we can monitor the growth of the area of the

apparent horizon as a function of time. In order to express the result in physical units, we

need to convert from the natural time scale on the horizon to the time measured in the

boundary. Recall that our solutions for the metric components are obtained on a slice of

constant ingoing time coordinate t. We could, following [52], map the horizon data along
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Figure 2. Evolution of the total energy on the boundary E =
∫
T00 dx after a quench described

by parameters α = 0.5, M = 0.1, σ = 2.
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t

Figure 3. The growth of the apparent horizon (in blue) as a function of boundary time, for α = 0.3

and M = 0.1. We also overlay the plot for the total energy
∫
T00dx produced by quenching the

system in red for direct comparison.

ingoing null geodesics to the boundary. We will refrain from doing so explicitly and instead

work directly in the chosen coordinates leaving implicit this translation.9

Using the induced metric hab on a constant t slice we obtain the area element on the

horizon which can be integrated directly. Since the naive answer is infinite, we regulate it

by removing the contribution from the initial equilibrium state (i.e. subtract off the static

Schwarzchild-AdS answer) to obtain:

∆Areah = Ly

∫
r=rh

(
Σ2
√

1 + 2λ′e−2χ−B − r2
h

)
dx (3.3)

9We also note that λ(t, x) is defined on a constant ingoing time slice, and as such the radial shifts affect

the horizon “instantaneously” rather than causally.
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Figure 4. Evolution of the geodesics’ radial depth for a quench; α = 0.5, M = 0.1, L = 0.8, σ = 2.

The blue data points represent the radial depth u∗ in the fixed, gauged coordinate system, whereas

the red data points represent the ungauged radial depth U∗.

The numerical results are expressed in figure 3, where we also show the total energy

for comparison. Notice the striking resemblance of the horizon’s area evolution with that

of the total energy injected into the system by the quenching scalar field. This seems to

indicate that the growth of the horizon is dictated by processes governed by the speed of

sound, such as energy and momentum transport. This is indeed the intuition we would

have from the hydrodynamic regime of slow variations and it is a reassuring check of the

set-up that this indeed is upheld.

3.2 Extremal surfaces

Having the solution at hand we can compute the extremal surfaces as described in sec-

tion 2.4. In figure 4 we display the radial depth of the turning point for the extremal

surfaces, as function of (boundary) time. Different points correspond to different extremal

surfaces, which contribute to entanglement entropy of surfaces of varying lengths. We have

plotted the radial depth both in the computational coordinate (in which the horizon is at

fixed radial distance) and in coordinates in which the horizon grows.

Since our calculational domain ends at the apparent horizon, we cannot probe ex-

tremal surfaces that extend past into the trapped region. These are known to exist in

various explicit simulations (cf., [53] for a comprehensive survey in Vaidya-AdS space-

times). Pragmatically, this restricts our attention to small regions A. We will nevertheless

see that despite this restriction we can still extract interesting physical features of SA using

surfaces that lie outside the apparent horizon.

One of the interesting features to notice from figure 4 is that the geodesics never go

beyond their initial depth in the bulk when we consider their position in the ungauged

radial coordinate, i.e., where the radial depth is

U∗ ≡ u∗

1 + λ(t∗, x = 0)u∗
, (3.4)
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with u∗ = 1/r∗ being the radial position of the tip in the coordinate system where the

apparent horizon is at a fixed coordinate locus.

4 Propagation of entanglement entropy

Armed with the numerical results for the spacetime geometry and the extremal surfaces

therein, we are now in a position to extract some physical lessons for the evolution of

entanglement entropy following a local quench. We restrict our attention to regions A
centered around the source of the initial excitation which is taken to be w.l.o.g. at x = 0.

We will examine the behaviour of ∆SA as a function of the width L of the strip and time

t after the quench.

We note that the region of parameter space that we can explore numerically is limited.

The amplitude α of the scalar field cannot be too large, otherwise the time-evolution of

the quench solution does not converge. Similarly, the evolution code becomes unstable if

the spatial discretization falls below a critical grid size, which has for consequence that

we cannot resolve quenches with width σ below a certain threshold. The width L of the

entangling surface is in turn constrained by the initial values we can pick for M , which

determines the position of the event horizon of the initial configuration: if M is taken to

be large, then we cannot find extremal surfaces that go deep enough in the bulk to probe

larger regions A, whereas if M is taken too small, then it becomes increasingly harder

to quench the spacetime with a scalar source. We found that using quenches with width

σ = 2, together with M ranging from 0.005 and 0.2 and α between 0.1 and 0.5, yielded

interesting results that remained mostly the same, albeit delayed in time, as those with σ

chosen larger.

Before proceeding we remind the reader that for regions A which are much wider

than the width of the quench source profile, there is a time delay before the entanglement

entropy starts to change. This is consistent with the causal properties one would required

of entanglement. Only when the quench can affect both the region and its complement (by

being in the past of the entangling surface) would we expect a change in the entanglement

for A. This is clearly borne out in our simulations and is used to benchmark that we are

on the right track.

4.1 An emergent light-cone

We first note that the entanglement generated by the local quench is linearly dispersing, i.e.,

it traces an effective light-cone. This is quite reminiscent of the Lieb-Robinson bound [57]

in non-relativistic theories, where correlations follow an effective information light-cone.

The speed of entanglement propagation is then denoted by vE below.

The velocity vE we find is bounded from below. A-priori one might guess whether the

lower bound is given by the speed of sound, which is the speed in which the initial pulse

spreads, thereby further exciting the system and generating additional entanglement on

larger scales. The true speed is however a bit lower, as we shall see, suggesting that the
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Figure 5. Maximum of the entanglement entropy SA(t) as a function of L, for α =

{0.1, 0.2, 0.3, 0.4, 0.5} starting from the bottom, and M = 0.1. The slopes of these curves depend

quadratically on the amplitude α of the scalar field.

mechanism of entanglement propagation differs from that which drives physical transport

of energy and other conserved charges in the system.10

We therefore interpret the velocity vE as the speed in which the initial entanglement,

generated locally by the quench, propagates in time. The entanglement velocity can be

extracted from the emergent light-cone defined along the curve where ∆SA(t) reaches a

maximum for every L in the L − t plane. We remark that unlike the results of [23], the

height of this peak does not remain constant in our setup. Instead, we find that the

maximum value of SA(t) increases as we increase L.

This behaviour of the entanglement entropy can be quantified rather explicitly. We

find that dependence is strongest when the amplitude of the scalar field is varied. For

small sizes L, the maximum of SA increases linearly with L. If we denote the slope of these

curves by s, then we find the interesting relation

∂

∂L
SA(L, tmax, α) = s(α) ∼ α2 for small/intermediate regions. (4.1)

The actual scaling for the slopes obtained from our numerical data are:

• s(α) ∼ α1.92 for α = {0.1, 0.2, 0.3, 0.4, 0.5} and M = 0.1

• s(α) ∼ α2.0043 for α = {0.05, 0.1, 0.15, 0.2} and M = 0.01

10A-priori this statement statement appears reasonable, since the propagation of energy in the system is

governed by the ability of the system to homogenize, which per se is not the same as becoming quantum

entangled. There is thus far no clear mechanism for intuiting entanglement transport in quantum field

theories, though the attempts of [47] suggest potentially interesting mechanisms for the same.
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Figure 6. Maximum of the entanglement entropy SA(t) as a function of L, for a range of masses

of the initial black hole M = {0.005, 0.01, 0.02, 0.1}, starting from the top, and α = 0.1. Lowering

the temperature (decreasing M) slightly increases the maximum of SA(t). The same phenomena is

observed for α = 0.2.

In the first case, the linear behaviour is shown in figure 5. In the second instance (not

pictured), while the linear nature breaks down when L is large, the slopes for small to

intermediate regions still depend quadratically on the amplitudes. The dependence on

temperature is less interesting. When the temperature M changes, the maximum of the

entanglement entropy shifts slightly, as can be seen in figure 6.

For general values of parameters, the entanglement velocity vE changes with parame-

ters, always bounded from below by the tsunami velocity (4.2), and above by the speed of

light. We do however find two universal results which we now turn to.

4.1.1 Universal behaviour at high temperature

In the limit of an approximate global quench where the region A is contained within the

local quench, i.e., L . σ, and at high temperatures, we find a universal light-cone velocity

vE = 1 (to very high accuracy), regardless of the amplitude of driving scalar field (including

values well within the non-linear regime).11 This is depicted in figure 7. We note that for

some values of parameters, this universal behaviour can be affected by edge effects of the

local quench, and is seen for small enough surfaces only.

As we decrease the black hole temperature, the velocity at the small surfaces becomes

lower than 1. This confirms that vE = 1 is a high temperature effect only.

4.1.2 Wide quench profiles

An interesting feature of the emergent light-cone is the abrupt change of velocity as the

width of the region A, L, is increased. When the size of the region A becomes of the same

11It is worth noting that previous results for global quenches could not have seen this feature since the

entanglement entropy saturates for strip geometries.
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Figure 7. Position of the maximum of SA(t) in the L− t plane for a quench described by α = 0.5,

M = 0.1. The light-cone velocity extracted from the slope of this line is vLC = 1, and is independent

of the value of α.

order as the width of the local quench, the curve traced by the peak of the entanglement

entropy goes from one linear regime to another, as shown in figures 8(a), 8(b), and 8(c).

Interestingly, for the first two data sets (for which α = 0.1, M = {0.005, 0.01, 0.02},
σ = 2), the light-cone velocities of vE = {0.678, 0.688, 0.706} are very close to the tsunami

velocity of a Schwarzschild-AdSd+1 black hole found in [28], given by

v∗E(3) =
(η − 1)

1
2

(η−1)

η
1
2
η

∣∣∣∣∣
d=3

=

√
3

2
4
3

= 0.687, with η =
2(d− 1)

d
. (4.2)

We note that temperature does not seem to have an effect on vE , which is consistent

with the above formula. For these parameters, the evolution is described by linear response

to good approximation, and in that regime the tsunami velocity seems to capture the spatial

propagation of entanglement to very good accuracy.

This behaviour should be anticipated on physical grounds. When the region A is

completely immersed in the quench source, we are back to the case where we may approx-

imately think of the situation as a global quench problem. The fact that the source is not

homogeneous in Ac is irrelevant because all that matters is that the excitations produced

by the quench are in the causal past of the entangling surface ∂A. With this in mind we

immediately anticipate that the results for the Vaidya quench explore in [28, 30] should

apply and one see a linear growth with the tsunami velocity.

The story of the local quench however should be a lot richer than the homogeneous

global quench. For one, we can encounter an interplay between the size of A and the width

of the pulse. We also expect that the non-linearities of gravity will play a role as we try to

increase the amplitude. Indeed we see that velocity vE increases as we increase the strength

of the non-linearities in the bulk evolution — this is illustrated in figures 9(a) and 9(b)
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(a) M = 0.005, vE = 0.678(0.818).
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(b) M = 0.01, vE = 0.688(0.834).

3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

2.0

tmax

L

(c) M = 0.02, vE = 0.706(0.859).

Figure 8. Position of the maximum of SA(t) in the L−t plane for a quenches described by α = 0.1,

starting from different initial states parameterized by M shown above. The light-cone velocities for

large L for the three scenarios are also indicated, as are the corresponding values for small region

sizes (in parenthesis). While we give the values of the velocity vE for small regions, this data should

be interpreted with care, for we typically find that edge effects contaminate the data, and these

slopes should not be taken at face value in the small L regime.

(where the scalar field amplitude was doubled from 0.1 to 0.2). This goes against the idea

of the tsunami velocity as an upper bound on the speed propagation of the entanglement

propagation, at least when that evolution is spatially resolved. Coupled with the earlier

observation regarding the upper bound on vE ≤ 1, we find it natural to conjecture that

v∗E(3) = 0.687 ≤ vE ≤ 1 (4.3)

The details of deviation from the two extreme limits appear to depend on various effects

which we have not yet disentangled. While the upper bound follows form causality, it

is unclear at present whether the tsunami velocity encountered (herein and before) is a

fundamental bound on information processing in strongly coupled systems. It would be

interesting to come up with a model which allows us to explore the different propagation

velocities perhaps along the lines of [47].

4.2 Entanglement decay

The process of return to equilibrium is characterized by universal behaviour and critical

exponents. Therefore, an interesting quantity in our model is the decay of the entanglement

– 17 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
9

3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

2.0

tmax

L

(a) M = 0.01, vE = 0.764(0.887).
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(b) M = 0.02, vE = 0.776(0.934).

Figure 9. Position of the maximum of SA(t) in the L−t plane for a quenches described by α = 0.2,

starting from different initial states parameterized by M shown above. The light-cone velocities for

large L for the three scenarios are also indicated. Conventions are the same as in figure 8.
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Figure 10. Exponential decay of the entanglement entropy evolution at late times; α = 0.5,

M = 0.1, L = 0.8. The fit parameters for the particular choice of quench parameters turns out to

be a1 = 2.5335, a2 = 0.5277, a3 = 0.6049, and a4 = 0.0454. Note that we evolve the solution for

late but finite time, which explains why a4 6= 0. In the infinite time limit we expect a4 = 0.

entropy after it has reached a local maximum. To our knowledge this is the first time this

decay has been calculated in either holographic theories or in higher dimensional conformal

field theories.

From our numerical data we find that the profile for the decay is best fitted by an

exponential damping

∆SA(t) ∼ a1e
−a2(t−a3) + a4 , (4.4)

where the parameters ai depend on the specifics of the sources chosen to implement the

quench protocol. In figure 10 we depict the behaviour for a particular simulation (param-
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eters in the caption). Note also the time delay in the initial growth, which illustrates the

causality feature discussed earlier.

It is interesting to contrast our result for the exponential return to equilibrium against

a more slow return seen in some spin chain models. For instance, in [58] the authors

study free electrons in a half-filled chain and determined the growth and decay of the

entanglement entropy after a local quench. In that set-up they find a very slow return to

the unperturbed value. In two dimensions the decay is characterized by SA(t) ∼ a1 log(t)+a2
t

as t→∞. The parameters a1, a2.are again obtained by fitting and depend on the specific

details of the quench.

It is somewhat intriguing that the holographic computations relax much faster. This

is reminiscent of features of scrambling in black hole physics, which we comment on in our

discussion section 5.

5 Conclusions and future directions

The main focus of the present paper was to describe the dynamics of the holographic

entanglement entropy following a local quench. While this problem has been studied in the

past using various known exact solutions to model the quench, we have carried out a full

numerical simulation of Einstein’s equations in the presence of a perturbing external source

on the boundary of AdS. Given the explicit numerical solution to the quench geometry, we

can study the dynamics of entanglement entropy by exploring the behaviour of extremal

surfaces that are anchored on the boundary.

The upshot of our analysis was a clear signal that entanglement entropy disperses

linearly, in a manner reminiscent of the Lieb-Robinson light-cone. The dispersion velocity

appears to depend on the details of the quench, though we were able to bound the result

between two interesting bounds that have been discussed in the literature earlier. On the

one hand we found that for wide quench profile, the propagation speed saturated a putative

lower bound, given by the entanglement tsunami velocity obtained by [28] in the context

of global quenches (modeled using the Vaidya-AdS spacetime). On the other hand well

localized quenches appear to propagate entanglement at the speed of light. It is rather

curious that we have results very similar to the Vaidya-AdS quench, for the geometry we

construct is not the same. This lends support to thesis of [28, 30] that the holographic

tsunami velocity ought to be a generic phenomenon.

The second aspect of holographic entanglement entropy which is interesting in our

study is the rather rapid reversion of result to the equilibrium value. In various simula-

tions we have tested, the reversion is exponentially fast, in contrast to the much slower

logarithmic decay seen in spin models. This suggests again, as has been suspected in the

past, that black holes are very efficient at information processing, cf., [59, 60].

There are many other interesting areas for further investigation. It would be interest-

ing to study other quench protocols and other theories, including massive models, primarily

to extract a more detailed dependence of the entanglement velocity and the rate of equi-

libration. A particularly interesting direction is the study of (global and local) quenches

past critical points, generalizing the results of [61] to higher dimensions. It would also be
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interesting to study other non-local measures besides the entanglement entropy, which are

more sensitive to the spatial structure of entanglement in quantum field theory, and to the

differences between strongly coupled holographic CFTs and CFTs of small central charge.

In particular, the mutual information of disjoint intervals would be interesting to calculate

in our setup for local quenches. Finally, one can make a direct connection to the study

of entanglement entropy following a local quench in two-dimensional CFTs, for which we

have analytic results to explain the behaviour at large central charge [50]. We hope to

report on these results in the near future [62].
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A Apparent horizons

In section 2, we used the residual radial reparametrization freedom of the metric (2.2) to

fix the coordinate location of the black hole’s apparent horizon. Here we provide some

details on the process we used.

The notion of apparent horizon depends on the existence of trapped surfaces, which

in turn depend on a chosen foliation. Given a spacelike surface S, a trapped surface on S
corresponds to the region where both ingoing and outgoing future-directed null geodesic

congruences orthogonal to S have non-positive expansions. The apparent horizon is then

defined as the boundary of this trapped region, on which the geodesic congruences have

vanishing expansions.

In our case, a spacelike surface can be parametrized by the two orthogonal vector fields

spanning the x and y direction:

eMx = (0, 0, 1, 0), eMy = (0, 0, 0, 1). (A.1)

We now construct future-directed null geodesic congruences orthogonal to both ex
and ey. Ingoing geodesic congruences can be parametrized by the tangent null vector field

kM = (0,−1, 0, 0), whereas outgoing geodesic congruences have

NM = e−2χ

(
1, A+ e−2χ e

−B F 2
x

2 Σ2
,
e−B Fx

Σ2
, 0

)
. (A.2)

The normalization is chosen such that gMN k
M NN = −1. Since we are interested in the

rate of change of the cross-sectional area of null geodesic congruences along their transverse
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directions, we need to define the transverse metric

hMN = gMN + kMNN +NMkN . (A.3)

With this in hand, we can calculate the expansion θ ≡ hMN∇MkN .12 This yields a

condition on the dynamics of the field Σ:[
d+Σ− e−B

2 Σ

(
Fx ∂xB − ∂xFx − e−2χ F 2

x

∂rΣ

Σ

)]
r=rh

= 0 , (A.4)

where d+ ≡ ∂t + A ∂r. In addition, taking a time derivative of this relation yields a

stationarity condition that ensures that the horizon condition holds for all times. One can

show that the resulting constraint can be expressed as a second order spatial ODE that

determines the value of A(r, t, x) at the apparent horizon.

B Numerical details: integration strategy and boundary conditions

We use the characteristic formulation of Einstein’s equations resulting from the null slicing

of spacetime outlined in [54] (see also [63]) to numerically integrate our solution. The clever

idea behind this scheme is that both A(r, t, x) and time derivatives disappear completely

from the equations of motion if we replace the latter with d+ = ∂t + A ∂r, the directional

derivative along outgoing null geodesics. The equations thereby obtained reduce to a set of

nested radial ODEs that is much easier to tame than Einstein’s equations in all their glory.

For numerical purposes, we need to change variables to u = 1/r to make the domain

compact, and redefine the fields appearing in the metric by subtracting the known divergent

pieces as u→ 0. We do so as follows:

Φ(u, t, x) ≡ φ(u, t, x)u,

Σ(u, t, x) ≡ 1 + λ(t, x)u

u
− 1

4
φ(u, t, x)2u,

B(u, t, x) ≡ b(u, t, x)u3,

χ(u, t, x) ≡ c(u, t, x)u3,

Fx(u, t, x) ≡ − ∂xλ(t, x) + fx(u, t, x),

d+Σ(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ Σ̃(u, t, x),

d+Φ(u, t, x) ≡ Φ̃(u, t, x),

d+B(u, t, x) ≡ − 3

2
b(u, t, x)u2 +

(
B̃(u, t, x) +

1

2
∂ub(u, t, x)

)
u3,

A(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ a(u, t, x)

(B.1)

12The expansion for the ingoing geodesic congruences along n is always negative, so we need only worry

about the congruences along k.
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We remark that the presence of a scalar source forces us to shift the field Σ by an appropriate

function of φ so that it satisfies our asymptotic analysis.

Given φ, λ, and b, we can proceed to solve for c, fx, Σ̃, Φ̃, and B̃ — in that order. The

prescription to find appropriate boundary conditions for these new fields is to expand the

equations of motion near u = 0 and verify their agreement with the asymptotic analysis

conducted in section 2.2. We have, after an appropriate normalization of the ODEs:

u

3
∂uc(u, t, x) + c(u, t, x) = gc(t, x) ⇒ c(u, t, x) =

Cc(t, x)

u3
+ gc(t, x),

−u
2

2
∂2
ufx(u, t, x)− u ∂ufx(u, t, x) + fx(u, t, x) = gfx(t, x)

⇒ fx(u, t, x) =
C

(1)
fx

(t, x)

u2
+ C

(2)
fx

(t, x) u+ gfx(t, x),

− u ∂uΣ̃(u, t, x) + Σ̃(u, t, x) = gΣ̃(t, x) ⇒ Σ̃(u, t, x) = CΣ̃(t, x) u+ gΣ̃(t, x),

− u ∂uΦ̃(u, t, x) + Φ̃(u, t, x) = gΦ̃(t, x) ⇒ Φ̃(u, t, x) = CΦ̃(t, x) u+ gΦ̃(t, x),

u

2
∂uB̃(u, t, x) + B̃(u, t, x) = gB̃(t, x) ⇒ B̃(u, t, x) =

CB̃(t, x)

u2
+ gB̃(t, x) .

• For c, we find that

gc(t, x) =
1

6
φ0(t, x)φ1(t, x)− 1

12
λ(t, x)φ0(t, x)2 (B.2)

agrees with the asymptotic expansion for Σ; spectral methods take care of making

the non-analytic part vanish: Cc(t, x) = 0.

• For fx, we find that gfx(t, x) = O(u2). As a result, we need to specify ∂ufx(u =

0, t, x) = f (3)(t, x) as a boundary condition, which in turn determines C
(2)
fx

(t, x).

Again, spectral methods ensure C
(1)
fx

(t, x) = 0.

• For Σ̃, we find

gΣ̃(t, x) = −1

8
φ0(t, x)2 +O(u) , (B.3)

which agrees with the asymptotic expansion for d+Σ. However, we do things a bit

differently to determine Σ̃ on the entire domain [63]. Indeed, in order to ensure that

the computational domain remains on a fixed rectangular grid, a condition (A.4)

on d+Σ was derived in appendix A. We use this horizon condition as a boundary

condition for Σ̃(u = uh, t, x). As a consistency check, one can verify that

∂uΣ̃(u = 0, t, x) =
1

2
T00(t, x)− 1

3
φ0(t, x)φ1(t, x)− 1

12
λ(t, x)φ0(t, x)2 (B.4)

is indeed satisfied at every time step.

• For Φ̃, we find

gΦ̃(t, x) = −1

2
φ0(t, x) +O(u2), (B.5)

– 22 –
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thus we need to impose

∂uΦ̃(u = 0, t, x) = CΦ̃(t, x) = −φresponse(t, x) (B.6)

for Φ̃ to be in agreement with the asymptotic analysis for d+Φ.

• For B̃, things are a bit trickier. The shift above is the only one that reconciles

the expansion of d+B near the boundary with the value of gB̃(t, x) obtained from

its redefinition; every other choice leads to a contradiction between the equation of

motion and its expected behaviour, which requires

B̃(u = 0, t, x) =
1

4
(∂xφ0(t, x))2 − 1

4
(∂xf

(3)(t, x))2 . (B.7)

With those solutions in hand, the next step is to calculate ∂tλ. Since λ determines the

position of the apparent horizon, it makes sense to solve for its dynamics using information

about the horizon for increased accuracy. To proceed, we need two equations: the horizon

condition (A.4), which determines a condition on d+Σ, and the stationarity constraint,

which ensures that the horizon condition is satisfied at all times. Rather than using the

field redefinition of d+Σ in the horizon condition, we use the definition of d+ to express

d+Σ as

d+Σ = ∂tλ+A+ d+

(
−1

4
φ2

)
(B.8)

As a result of our knowledge of ahor(t, x) from the stationarity condition, we can calculate

∂tλ, which in turn enables us to solve for a everywhere by using the last relation above.

Now that we have solved for all the fields on a particular time slice, all that is left to

do is to propagate λ, T00, Ttx, φ and b forward in time (the last two from our knowledge

of d+Φ and d+B), and reiterate the procedure.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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