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1 Introduction

One of the greatest features of gauged linear sigma models (GLSMs) is the possibility

to describe very different types of string compactifications in a unified way. In the two

dimensional theory the Fayet Illiopolus (FI) terms play the role of Kähler parameters of

the target space geometry [1]. By tuning those to negative values the associated dual cycles

shrink to zero size resulting in partially or fully singular phases such as orbifolds or Landau-

Ginzburg models [2–4]. Hence GLSMs provide a very nice tool for string construction and

deep insights into their relations. However not every phase has a free conformal field theory

(CFT) descrpition which makes the computation of the spectrum in the 4D theory hard

for a generic phase. In the orbifold regime the full CFT is known and the full matter

spectrum and all symmetries can be obtained whereas this is not the case in the smooth

Calabi-Yau regime.
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With the virtue of having a UV complete theory at hand it is a great desire to classify

all the possible compactification spaces and obtain their properties and possible connec-

tions. Hence a lot of progress has been made to classify those spaces within the context of

Landau-Ginzburg models [5–8], orbifolds [9] as well as in smooth Calabi-Yaus described as

hypersurfaces [10] or complete intersections [11] in projective varieties.

In accordance to the insights into the string geometry of the compactification spaces it

was always a main effort to connect string theory with familiar models of particle physics.

Here basically all phases have been explored for model building, i.e. Gepner model con-

structions [12, 13], orbifolds [14–18] as well as smooth compactifications [19–21]. In par-

ticular Gepner and orbifold models seem to be a good starting point for model building

as they have a lot of additional i.e. discrete symmetries that are useful for models of par-

ticle physics. Those symmetries have a very nice geometrical interpretation: non-Abelian

Flavor symmetries arise from permutation symmetries of orbifold singularities [22, 23] and

discrete R-symmetries are remnants of the 10D Lorentz symmetry preserved by the orb-

ifold action. Hence orbifold spaces are the natural geometry where one should expect

R-symmetries [24–26]. On the other hand using the CFT techniques it is hard to obtain

those symmetries in the case of non-factorized torus lattices or in cases when freely acting

involutions are modded out as well [25].

However starting from the orbifold, gauge group and matter content is usually much

larger than the ones of the MSSM and hence they have to be sufficiently be reduced. Those

reductions often times correspond to resolutions of the orbifold singularities towards smooth

Calabi-Yau phase. Hence it might also be natural to consider smooth geometries right from

the start. These approaches have the benefit of having huge amounts of geometric data sets

to be explored in addition to the flexibility in choosing a poly stable vector bundle over it.

However in those cases possible helpful stringy effects might not be visible in the SUGRA

approximation. Especially additional symmetries that can control proton decay inducing

operators rely on continuous Abelian symmetries [27] as the discrete ones are much less

understood and there is no reason to expect a meaningful R-symmetry.

Here the orbifold picture can be helpful in uncovering such symmetries as discrete

remnants with the Higgs mechansim that corresponds to the blow-up process. In some

cases there might even be R-symmetries when the singularities are blown up in a symmetric

way such that rotational symmetries might stay preserved [26, 28].

Landau-Ginzburg orbifold models were first examples where the phenomenon of mirror-

symmetry was observed and physically explained by a simple sign change of the (left-

moving) U(1) R-symmetry of the (2,2) CFT [29]. However in the target space geometry

this sign change is much more drastic and in particular in the smooth geometric regime

described by non linear sigma models (NLSMs), the role of complex structure and Kähler

deformation gets interchanged. Mirror symmetry has lead to deep insights into the counting

of rational curves in smooth Calabi-Yau [30] and the computation of physical Yukawa

couplings in terms of the mirror dual Landau-Ginzburg description [31].

The benefit of the Landau-Ginzburg description in particular for (2,2) models lies in

the strong world sheet symmetries that ensure a save running towards a minimal model

CFT in the IR [32]. Using the exactness of world sheet supercharges for Landau-Ginzburg
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models come makes it possible to calculate the full massless spectrum for arbitrary super-

potentials [33] far beyond the chiral-chiral and chiral- anti-chiral ring computations.

Indeed by the GLSM intuition we have seen that tuning the world sheet FI parameters

from negative to positive values corresponds to the Higgs mechanism in the 4D theory and

thus one expects the Landau-Ginzburg phase to have the highest amount of symmetries.

Hence if we have control over the Landau-Ginzburg (LG) phase of an orbifold or smooth

phase we can track the origin and possibility for (discrete-)remnant symmetries in the

other ones. These questions might be of particular interest as they can uncover the point

in the moduli space where the discrete symmetries becomes local as expected by general

arguments of quantum gravity [34].

Especially well suited are geometries that do not have complex structure deformation

as their whole moduli space is spanned by the Kähler moduli only. In such cases the LG

formulation of the mirror dual geomtry can actually describe the full geometric moduli

space as polynomial deformation while it stays fixed at the LG locus. In such a case we

can describe the full spectrum and its change throughout all phases of the mirror dual

GLSM. Finally we note that remarkable steps have been made towards the computation of

the full massive and massless spectrum of the GLSM in an arbitrary phase. This is made

possible by powerful techniques of supersymmetric localization of the one-loop partition

function [35–37]. However in this work we concentrate on the derivation of the spectrum

using the methods of [33] and the computation of target space symmetries within this

framework.

This paper is structured as follows: first we review the methods of how to calculate

the full massless spectrum of Landau-Ginzburg models in section 2. Having clarified those

methods we introduce a way of how to compute the charges of all symmetries of these

models, that include gauge charges and the ones of discrete R-and non-R symmetries. These

techniques underlie the classification of all A9
1 Landau-Ginzburg orbifold (LGO) models we

present in section 3 including the computation of the full spectrum at the Fermat point. We

discuss the results of the scan and general features of the models. In section 4 we discuss

two examples in detail. We explicitly compute the charges under all symmetries and track

their conservation/breakdown through various phases and match the LGO deformation

perfectly to the Higgs mechanism in the 4D effective theories. In section 5 we discuss and

summarize our results. In appendix A we list the defining properties of our classification,

up to mirror symmtry and the full spectrum at the Fermat point.

2 Landau-Ginzburg orbifolds and their symmetries

In this section we review the tools necessary to analyze the massless spectrum of Landau-

Ginzburg orbifold models. Although we stick to a very specify class of models this review

is general and applicable to other cases as well. At first we review the methods that are

needed to calculate the massless spectrum. In the second part we give the methods needed

to calculate all charges of the spectrum under all discrete and continuous symmetries.
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charge φi ψi φi ψi

q− αi αi − 1 −αi 1− αi

q+ αi αi −αi −αi

Table 1. Left- and rightmoving R-charges of bosonic and fermionic components of superfields.

2.1 Landau-Ginzburg models and their spectrum

In the following we review the methods to calculate the full massless spectrum of Landau

Ginzburg orbifolds using techniques developed in [33]. For another review also see [38].

We are considering N = (2, 2) supersymmetric two dimensional field theories with

chiral superfields Φi charged under left-and right-moving R-symmetries (q−, q+) such that

the Landau-Ginzburg superpotential W is a homogeneous function of degree one. Left-and

right-moving R-charges of the superfields Φi are the same and given by qi− = qi+ = αi.

In the infra red the Landau-Ginzburg model flows to a minimal model CFT [32] with

central charge

c = 3
∑
i

(1− 2αi) . (2.1)

We want to describe c = (9, 9) compactifications and focus on the subclass with nine chiral

fields with R-charges αi = 1/3 in the rest of this work. To complete this theory to a critical

heterotic string theory we have to add the following field content:

• four light-cone gauged left moving bosons and four right-moving N = (1, 0) multiplets

to provide non-compact 4D Minkowski space.

• ten left moving Mayorana Weyl fermions λI contributing an SO(10) symmetry gauge

symmetry.

• eight left chiral Bosons compactified on an even and self-dual torus providing an E8

gauge symmetry.

Space-time supersymmetry is guaranteed by GSO projection onto states with integral left-

and right moving R-charge q− and q+ [39]. In addition to space-time supersymmetry the

GSO projection ensures the lift of the left moving current J− and SO(10) to E6. The GSO

projection leaves only states with

ĝ := e−πi(J−+F ) = 1 , (2.2)

with F being the left-and right-fermion number of the oscillator operators. Since αi is an

R-charge the bosonic and fermionic fields in an (2, 2) world sheet superfield have different

charges summarized in table 1. Since we have rational R-symmetry charges αi the exponent

of the GSO operator will give non-trivial projection constraints on the fields but there is a

power N such that

ĝN = id . (2.3)

– 4 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
8

By consistency we have to supplement the orbifold action with the addition of N − 1

twisted sectors where the world sheet fields close upon the twisted boundary conditions

of ĝ. Especially for our choice of αi = 1
3 we always have to consider at least six twisted

sectors.1

In addition to the R-symmetry we can impose additional discrete non-R symmetries to

the Landau-Ginzburg theory that restrict the superpotential W and leads to further linear

independent twistings. From the perspective of the two dimensional field theory those

discrete symmetries can often be obtained as discrete remnants of gauged U(1) symmetries

that originate from a GLSM description. Indeed many of our models can be described as

a Landau-Ginzburg orbifold phase of such models.

In general the addition of N discrete symmetries Z(j)
nj , j = 1, . . . , N leads to additional

projections and additional twisted sectors. Hence each additional Z(j)
nj factors represents

another orbifold taken from the original theory. In total there can be
∏N
j=0(nj) − 1 addi-

tional twisted sectors which can easily exceed O(100). In the following we denote a twisted

sector by the column vector (k0; k1, . . . , kN ) where we highlight the R-symmetry twist by

the first entry k0. But note that the additional quotients we take are Abelian non-R sym-

metries and hence all fields within one chiral multiplet Φi have the same charge under them.

Collecting the contributions of all twsitings in a (k0; k1, . . . , kN ) twisted sector we obtain

for bosonic (fermionic) coordinates φi (ψi) the total oscillator shift of νi (ν̃i) given as

νi =
k0α

i

2
+

N∑
j=1

kjQ
i
j mod 1 with 0 ≤ νi ≤ 1 (2.4)

ν̃i =
k0(α

i − 1)

2
+

N∑
j=1

kjQ
i
j mod 1 with − 1 ≤ ν̃i ≤ 0 (2.5)

where the superfield Φi has a Z(j)
nj charge Qij . Due to the twistings the vacuum acquires a

non trivial energy contribution

Evac =

{
−5

8 + 1
2

∑
i (νi(1− νi) + ν̃i(1 + ν̃i)) for k0 odd

0 for k0 even

}
. (2.6)

and charges

q−,vac =
∑
i

(
(αi − 1)(ν̃i − 1)− αi

(
νi −

1

2

))
, (2.7)

q+,vac =
∑
i

(
αi(ν̃i +

1

2
) + (αi − 1)

(
−νi +

1

2

))
, (2.8)

Qj,vac =
∑
i

Qij (ν̃i − νi − 1) . (2.9)

We construct a state by acting with oscillators on the vacuum to obtain E = 0 states

and impose the GSO and Z(j)
nj projections. Here we are sticking to the convention that

1Note that g
1
α results in a −1 phase which results in the NS boundary conditions on fermions. Hence

we have effectively mixed these sectors into the orbifold identification.
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negative oscillator frequencies have positive energy contributions, as in [33]. The q− and

q+ quantum numbers of a 4D state are given by the sum of the vacuum in eq. (2.7) and

oszillator contributions given in table (1).

We iterate this procedure for each twisted sector and collect all states with same

R-charge quantum numbers into vector spaces distinguished by left- and right-moving

charge: V(q−,q+).

When we construct the states above we are particularly interested in states massless

under the left- and right-moving Hamiltonian of the 2D theory

2L±,0 = {Q±, Q±} = 0 . (2.10)

The supercharges are nil potent and hence we are looking for states in the cohomology

of the Q± operators. As the right moving part gives rise to space-time supersymmetry

this operator is of particular importance for us. The Q+ operator commutes with Q− and

hence does not change q− of a state by its action but raises q+ by one unit. Hence Q+ acts

as a map between the vector spaces that gives rise to the following complex

. . .
Q+−→ V(q−,q+)

Q+−→ V(q−,q++1)
Q+−→ . . . . (2.11)

where massless 4D states correspond to states in the Q+ cohomology

H =
ker(Q+)

im(Q+)
, (2.12)

in the respective segment of the complex. In principle one should also obtain the Q−
cohomology but this is already achieved by the GSO projection. We construct the operator

Q+ explicitly in terms of components of the Φi fields by integrating over its Noether current

and obtain

Q+ =

∫
dσψ

i
+∂+φ

i + iψi−∂φiW ′ , (2.13)

where the first part comes from Kähler potential and the second from the super potential.

As explained in [33] we can compute the cohomology of Q+ by looking at the Kähler po-

tential and superpotential contribution independently. The parts coming from the Kähler

potential restricts us to consider states without ψ+ modes and those that only depend

holomorphically on the bosons φ as these have a non-vanishing (anti-)commutator and

thus cannot be in the kernel of Q+. Hence with this restriction in mind we can reduce our

considerations to the superpotential terms

Q
′
+ = ψi−∂φiW ′ . (2.14)

The above computation can be extremely time consuming in particular when there are

O(100) twisted sectors.

Having computed left- and right-moving R-charges of every state that are in the Q+

cohomology we can identify their space-time properties. As noted in the beginning only

– 6 –
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the SO(10) gauge symmetry is explicit as the rotational symmetry of the Mayorana-Weil

fermions. The left-moving world sheet current however becomes a U(1) current in the four

dimensional space that enhances the SO(10) to E6. Hence an E6 representation can be

identified by a collection of states and their q− charges according to their group theoretical

decomposition

78→ 450 ⊕ 16−3/2 ⊕ 163/2 ⊕ 10 ,

27→ 16−1/2 ⊕ 101 ⊕ 12 ,

1→ 10 .

In a similar fashion the right-moving charge q+ identifies the supersymmetric representa-

tion. This can in general be done by constructing the vertex operators corresponding to

the space-time super fields and the SUSY generators [33]. We do not review this construc-

tion here but state the result that a state with q+ = −1
2 is a left-chiral fermion and states

with q+ = −3
2 are gauginos in a vector multiplet. As the bosonic content of the theory is

fixed by space-time supersymmetry it is sufficient to calculate the fermionic spectrum of

the theory.

These are all the necessary steps that we need to consider in order to obtain the

spectrum of a given Landau-Ginzburg orbifold model. Once again we clarify the input

data necessary to fix a Landau-Ginzburg model completely:

1. Master Model: fix the superfield content and their R-charges constrained by (2.1) to

give a central charge c = (9, 9) in the IR.

2. Discrete Quotients: choose possible additional discrete quotients of the master model

by an anomaly free charge distribution of the chiral superfields.

3. Superpotential W: choose a superpotential W as homogenous function in the fields

consistent with all symmetries.

In this work we have fixed the master model and have classified all discrete quotients and

computed the whole spectrum for Fermat superpotentials that we give in section 3. In

section 4 we consider models where we deform away from the Fermat locus.

2.2 Construction of target space symmetries

In the previous section we have shown how we can deduce the E6 representation of the

states from the charges of the left-moving U(1) symmetries. In this section we focus on

the various other symmetries outside of E6 × E8.

We start by constructing the space-time R-symmetry generator, generalizing methods

of [40]. The key ingredient to construct these generators is the observation that neither

space-time supersymmetry nor E6 symmetry is explicit. I.e. the E6 gauginos are generically

distributed among the first k0 twisted sectors as:

State 10 450 16− 3
2

16 3
2

Sector (1; 0, . . . , 0) (1; 0, . . . , 0) (0; 0, . . . , 0) (2; 0, . . . , 0)

– 7 –
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As all states belong to a vector multiplet we have to find a charge operator that gives a

universal charge for all sub representations. Clearly this operator must be sensitive to the

k0 twist but also needs to be orthogonalized with respect to additional gauge symmetry

generators. In the following we propose the following charge generator

Q
(M)
R = 3k0 − 2q− +

∑
i

niqi mod M with ni ∈ Z , (2.15)

with M being 6
α . Our proposition for this generator differs by the one given in [40] by the

correction terms in possible non-Abelian Cartan elements qi. As gauginos of the Cartan

U(1)’s are always in the (1; 0, . . . , 0) sectors they all have R-charge qR = 3. However in

some cases additional gauginos in other twisted sectors may appear as the roots of an

additional non-Abelian enhanced gauge symmetry and must also have the same R-charge

as the Cartan generators. Hence the coefficients ni in (2.15) must be chosen to give a

universal charge also to those states. As the R-symmetry of the gauginos is fixed to be 3

the 4D superpotential has R-charge Q
(M)
R (W4D) = −6 mod M .

Next we want to propose a method to calculate the the charges under the additional

U(1) symmetries directly in terms of the discrete charge of the Landau-Ginzburg fields with

Fermat superpotential. First it is readily checked that each world sheet chiral multiplet Φi

automatically leads to a 4D gaugino state of the form(
φi− 1

6

φ
i
− 5

6
− 2ψi− 1

3

ψ
i
− 2

3

)
|1; 0, . . . , 0〉 , i = 1 . . . 9 , (2.16)

with φir, ψ
i
r being modes of the WS component fields, that generate nine U(1) currents. The

trace of them is just the left-moving U(1) inside of E6 which explains the first correction

term in the R-symmetry generator eq. (2.15). In analogy to (2.7) we define the charges of

the vacuum world sheet bosons, fermions and their conjugates as

Operator |vac〉 φj φ
j

ψj ψ
j

Charge qi (αj − 1) ·
(
ν̂i + 1

2

)
− αi ·

(
νi − 1

2

)
αiδji −αiδji (αi − 1)δji (1− αi)δji

.

(2.17)

In the cases when additional gauginos appear in other than the first twisted sector they give

rise to massless W bosons of the enhanced gauge symmetry. In this case we can calculate

the corresponding gauge enhancement by finding the Cartan charge that are given by an

appropriate linear combination of the above Cartan charge operators. Explicit examples of

SU(3) enhancements can be found in figure 3. Finally there are additional Abelian discrete

Z(j)
nj symmetries provided by the additional twisted sector quantum numbers. Note that

also that the discrete charges can be corrected by U(1) generators as well if non-Abelian

enhancement occurs

Q
nj
j = kj +

∑
i

niqi mod nj . (2.18)

By the same argument by which we have an R-symmetry generator it is clear that the

above generator cannot be an R-symmetry because Cartan gauginos are always in the

(1; 0, . . . , 0) sector and hence must have trivial charge under the same and conversely also

the 4D superpotential must be trivially charged under those.
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3 Classification of A9
1 models

There is a vast literature on classifications and constructions of N = (2, 2) Landau Ginzburg

orbifold models [5, 7, 8, 39, 41–43] as well as for (0,2) models [6, 44] including computation

of the chiral rings. We concentrate on the classification of (2,2) models with nine chiral

fields of R-charge α = 1
3 and all of their inequivalent Abelian discrete ZN3 quotients. Using

the methods described in the previous section we complete the existing literature by the

missing models and the full amount of uncharged vector and singlet states with respect to

the E6 gauge factors at the Fermat point. Having found the enhanced symmetry sector,

we can compute the full 4D symmetry group and their charges that we focus on in sec-

tion 4. Moreover we find that the full set of 152 inequivalent models is closed under mirror

symmetry. Finally we find that at the Fermat point all of the models obey the relation

NAdd-S − 3NAdd-V = (4−N ) · 76 , (3.1)

where NAdd-S and NAdd-V count the amount of N = 1 chiral superfields and vectorfields

uncharged under E6×E8 as well as the total amount of supersymmetries N of the model.

We comment on this relation at the end of this section.

3.1 Fermat classification and mirror symmetry

First we note that the amount of discrete quotient factors is bounded by the constraint of

inequivalent charges assignments to the nine superfields that become redundant as soon

as there are more than nine Z3 discrete quotient factors. Consistency of the symmetries

requires the discrete charge assignments to be anomaly free and hence they have to sum

up to zero (mod 3) for every discrete factor which fixes w.l.o.g. the charge of one superfield

uniquely. Moreover we can always rotate one linear combination into the R-symmetry to

give one field trivial discrete charges.

Thus the upper bound is fixed by at most seven Z3 quotients that we can take. By the

above arguments the model with seven quotient has, up to redefinitions, a unique charge

assignment given by

Qj(Φ
i) = δij with j = 1, . . . , 7 , (3.2)

Qj(Φ
8) = −1 and Qj(Φ

9) = 0 . (3.3)

Summarizing we fix a model by a set of nine dimensional charge vectors Qj with j =

1 . . . N . We then classify all models by systematically writing down all inequivalent charge

assignment for a fixed amount of quotients ZN3 with N < 7. Here two assignments are

equivalent if they are related by charge redefinitions or permutations of the nine worldsheets

fields Φi.

Summary of the classification. In total we find 152 inequivalent models. Depending

on the amount of discrete quotient factors we summarize the number of inequivalent models

in table 2. The reflexion symmetry observed in table 2 is a consequence of Green-Plesser

mirror symmetry [29] of the different Landau-Ginzburg orbifold models. The Green-Plesser
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Discrete Quotients ZN3 N: 0 1 2 3 4 5 6 7

Inequivalent Models 1 5 21 49 49 21 5 1

Table 2. The summary of inequivalent models per number of Z3 quotients.

mirror map can be summarized by the dualization of the set of charge vectors in H. The

dual set of charge vectors in H◦ is obtained by

H◦ :=
{
Q ∈ Z7

3 | 〈Q,Q′〉 = 0 mod 3 ∀Q′ ∈ H
}
. (3.4)

This indeed specifies for each collection of charge vectors H ⊂ ZN3 a dual model with

charge vectors in the complement vector space H◦ ⊂ Z7−N
3 . This is indeed a duality due

to H◦◦ = H. One example is the mirror of the Z7
3 model. This model has already the

maximal quotient group and hence the charge vector that are orthogonal to those must be

trivial and thus its mirror is the master model.

Indeed it is known that modding out the complement symmetry of a model results in

a sign change of the left-moving R-symmetry on the CFT level [29]. In the target space

geometry of non linear sigma models (NLSM) mirror symmetry acts as a change of complex

structure and Kähler deformations that is a change of 27 and 27 E6 charged states in the

N = (2, 2) compactification. The change of those representations is the same but in other

phases there might be not necessarily a geometric interpretation associated to them. The

results of our classification in terms of charge vectors and the spectrum at the Fermat point

is summarized in table 9 in appendix A up to mirror symmetry.

The Landau-Ginzburg superpotential. The generic superpotential for our models

are cubic monomials and are given as a sum of Fermat type superpotential WFermat and a

deformation part WDeformation:

W =WFermat +WDeformation , (3.5)

WFermat =

9∑
i=1

Φ3
i WDeformation =

∑
1≤i<j<k≤9

aijkΦiΦjΦk (3.6)

The superpotential of Fermat type is a cubic coupling involving the same superfields only

and all nine monomials have to be present in order to create compact directions for all

coordinates. Those terms are allowed and necessary for arbitrary additional quotients.

Depending on the charge assignment of the fields under additional quotient factors also

other cubic monomials can be allowed and give rise to deformation terms. These polynomial

deformations can generically be understood as complex structure deformations and decrease

the full residual symmetry of the Landau-Ginzburg superpotential which is maximal at the

Fermat point aijk ≡ 0. Clearly there are charge assignments that are rigid and do not

allow for those terms at all. We consider such geometries in section 4. Generically the

E6 charged matter is independent of such deformations, however the amount of additional

E6 × E8 uncharged vectors and gauge singlets depends on them.
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Figure 1. Summary of 27 and 27 representations of E6 of the A9
1 LGO classification. In geometric

analogy we plot the number of representations as hodge numbers. We plot their sum again the

Euler number χ.

However in our classification we focused on the Fermat type superpotentials and com-

puted the full spectrum using the methods of [33] described in section 2 where the symme-

tries are maximal.

3.2 Features of the classification

In the following we have constructed the whole spectrum for all 152 inequivalent models

at the Fermat point including gauginos and gravitinos as well as E6 charged multiplets.

We have summarized the spectrum of the E6 charged matter in figure 1. Note that we

can identify states by the U(1)L charge as described in section 2. In analogy to smooth

heterotic compactifications using the standard embedding we identify the number of 27-

plets as h2,1 and 27 as h1,1 Hodge numbers, respectively. As anticipated the graph is fully

mirror-symmetric realized by the reflection symmetry along the vertical-axis. Many models

have the same Hodge numbers which is why only few spots in the plot are populated. Note

that many of those models have an interpretation as the Landau-Ginzburg phase of an

orbifold or smooth compactification. We comment on that relation in the following by

subdividing the models into three different classes:

1. χ = 0 models: models along the y-axis have vanishing Euler numbers. Having vanish-

ing Euler number is a necessary condition for higher supersymmetry as those theories

are non-chiral in four dimensions. Indeed we find models of N = 2 and N = 4 SUSY

besides N = 1 models. Throughout this work we present all representations in N = 1

language and hence higher SUSY multiplets have to be constructed from them ac-

cordingly. Higher SUSY models also have additional charginos as expected from their

representation theoretic decompositions.

Among the N = 2 models those with h(2,1) = h(1,1) = 21 are the most prominent

example as they are the Landau-Ginzburg loci of K3× T 2 compactification as their

– 11 –
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Hodge numbers can be computed as

h2,1(K3× T 2) = h1,1(K3) · h1,0(T 2) + h2,0(K3) · h0,1(T 2) = 21 , (3.7)

h1,1(K3× T 2) = h0,0(K3) · h1,1(T 2) + h1,1(K3) · h0,0(T 2) = 21 . (3.8)

All other N = 2 compactification have a K3 × T 2 origin but with additional Z3

involutions modded out. Similarly we find two different N = 4 models originating

from T 6 compactifications at the Landau-Ginzburg locus, one with additional 32

vectors and one with 86. Indeed in both cases 8 of those additional Vector multiplets

form the adjoint representation of SU(3) that enhances (together with the three

(27,3) reps) E6 to the full E8 as expected from a trivial torus compactification. The

T 6 torus structure becomes even more visible by inspecting the residual vector states.

In the first case the 24 vector multiplets originate from the winding modes of the

torus that become massless at the Fermat Landau Ginzburg locus. They correspond

to the SU(3)3 adjoints of the same Lie lattice that underlies the T 6 which becomes

fully gauged at this point in the Kähler moduli space.

The situation is very similar in the second case, where we have 78 additional vector

states. Here the additional Z3 involution forces the T 6 lattice to have an E6 structure

in the geometric regime which becomes fully gauged at this locus. The precise form

of the gauge enhancement can be made very precise by calculating the corresponding

root lattice of the adjoint representation. In section 4 we give explicit examples for

those computations.

2. χ = ±1
2(h1,1 + h2,1) models: the boundary of the classification in figure 1 is given

by the lines with h2,1 = 0 or h1,1 = 0. Models on the h2,1 = 0 line correspond

to rigid geometries i.e. Calabi-Yaus with no complex structure deformation in the

NLSM interpretation. On the other hand we find models that have h1,1 = 0. These

are the mirror duals of those rigid geometries that have a fixed volume at the LGO

locus. Those geometries cannot be obtained by the methods of toric geometry as

a hypersurface or complete intersection in a given ambient space as those models

necessarily have at least one Kähler modulus inherrited by the ambient space. Many

models with a positive Euler number can be interpreted as the Landau-Ginzburg

locus of toroidal orbifold compactifications. Examples of them are the Z3 or Z3 ×
Z3 and their Landau-Ginzburg mirror that have gained a lot of attention in the

past [3, 31, 45].

3. Generic models: here we have models with various distributions of 27 and 27’s.

Comparing the amount of E6 charged fields with the Hodge numbers found in the

classification of symmetric orbifold geometries [9] lets us conclude that all of these

models admit an orbifold phase.

Finally we want to comment on the astonishing empirical relation satisfied by all the models

of our classification that is:

NAdd-S − 3NAdd-V = (4−N ) · 76 , (3.9)
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Γ(C) = CM ←→ Ũ(CM )xy Mirror
map: Γ

xy
C ←→ U(C)

Figure 2. Schematic graphic that shows how mirror symmetry at one point in moduli space

extends to a whole set of (marginal) deformed CFT’s.

with NAdd-S and NAdd-V being the number of additional N = 1 chiral- and vector super-

fields neutral under the E6 × E8 at the Fermat locus. This relation relates models with

various matter content with their amount of supersymmetries. Note however that we count

multiplets in N = 1 language even for higher amounts of supersymmetries. Hence in those

cases it is more helpful to recollect the states in the higher SUSY representations. For

example the N = 4 vectormultiplet consists of one vector and three left chiral N = 1

fields. Hence in those cases the left and right hand side of the relation vanishes identically.

However, the origin for N < 4 cases is unclear but might be explained by the strong sym-

metries and their anomalies at the Fermat locus. Moreover this relation might be a hint

that all A9
1 models might live in a common moduli as they have all been obtained from the

same master models although they have different amounts of supersymmetries. Finally we

remark that many deformations away from the Fermat point leave this relation invariant.

In all those Higgs transitions one vector-multiplet is traded for three chiral singlet fields.

4 Tracing target space symmetries

In this section we want to have a closer look at two Landau-Ginzburg models and investigate

their target space properties. Similar as in [46, 47] we investigate the deformation of the

Landau Ginzburg theory and match those effects with the Higgs mechanism in the four

dimensional theory. By using mirror symmetry those deformations can be interpreted as

going to finite volume geometries and hence we match the spectrum with the ones from

orbifold constructions.

In order for this to work we use the fact that Green-Plesser mirror symmetry actually

works for families of mirror dual CFT’s which we review in the following. For this consider

a CFT C where we act with the mirror map Γ that acts as a left-U(1)R sign flip. However

we can also deform the CFT C with an operator U . Then it is always possible to define a

mirror operator by the composition Ũ−1⊗Γ⊗U with Ũ−1 being the inverse deformation of

U with the sign flip taken into account. This establishes the string geometries not only to be

mirror dual at a specific point but over the whole moduli space summarized in the diagram

of figure 2. This means for example when we know the CFT for a given Calabi-Yau X we

can deform that CFT to a point where we know the mirror map, i.e. the Landau-Ginzburg

point and its Fermat locus. There the mirror is given by the Green-Plesser map (3.4).

By performing the inverse deformations we obtain the mirror dual geometry to the former

Calabi-Yau X̃.
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Φ1,1 Φ1,2 Φ1,3 Φ2,1 Φ2,2 Φ2,3 Φ3,1 Φ3,2 Φ3,3

U(1)R 1 1 1 1 1 1 1 1 1

Z(1)
3 1 1 1 -1 -1 -1 0 0 0

Z(2)
3 0 1 -1 0 1 -1 0 1 -1

Table 3. The charge assignment of the SU(3)4 mirror LGO.

In our case we want to consider deformations away from the Landau-Ginzburg point

towards large volume i.e. orbifold points. In the mirror these deformations are exactly

polynomial deformations i.e. complex structure deformations away from the Fermat locus.

Via this construction we can give an alternative description of large volume Calabi-Yau

spaces as the mirror dual of a Landau-Ginzburg model where we can apply the techniques

to compute spectra and symmetries.2 This strategy however has the limitation, that we

trade the control of the Kähler moduli with those over the complex structure.

With this strategy at hand we want to investigate the symmetries of orbifold com-

pactifications from the Landau-Ginzburg point. However these methods also apply for

deformations to fully smooth phases or phases with no intermediate orbifold phase such

as the Quintic. Moreover it is a particular benefit of this description that we can fully

describe the low energy symmetries of non-factorisable orbifold geometries.

Calculations on non-factorisable orbifold tori are genuinely harder to perform as the

orbifold action does not respect holomorphicity of the target space coordinates [25] whereas

our methods are independent from that.

In the following we give two examples where we explicitly construct the full spectrum

at the Fermat LGO point and compute the charges under all symmetries. It is worth noting

that at those points we do not have any uncharged fields and hence no moduli dependence

of superpotential couplings. We then perform the deformation to the orbifold point in the

mirror geometry which we match to the Higgs mechanism in the four dimensional theory.

4.1 The SU(3)4 model

As a first example we consider a model with very peculiar symmetries in the LGO phase

that we interpolate to the well known Z3 orbifold in deformed dual geometry. The model

is described by the charge assignment given in table 3 which differs from the one given in

appendix A by a charge redefinition for convenience. The GLSM of the dual geometry was

considered in [4] which admits a Z3 orbifold phase with a non-factorized E6 torus lattice

and can be found in table 11 of appendix C.1. The charges of the mirror LGO can be

obtained by applying the mirror map directly to the GLSM in table 3 and changing the

charges for discrete ones. Due to the symmetric structure of the Z3 charges it is convenient

to sub-label the 9 fields according to i = 3·a+j with a, j = 1, 2, 3. We use the same labeling

2In the smooth cases this is nothing but the Landau-Ginzburg-Calabi Yau correspondence [48] as well

as dual to orbifold models [31].

– 14 –



J
H
E
P
0
4
(
2
0
1
6
)
0
6
8

in the geometric GLSM where the a index identifies a torus an interpretation which is lost

in the mirror dual LGO. The spectrum is summarized in the following as

Singlets 27 27 E6-Adjoint

Left-Chirals 324 36 0 0

Vectors 32 0 0 1

The 32 vector multiplets assemble themselves into four adjoints of an additional SU(3)4

gauge group and the 324 singlets form tri-fundamental representations under those. The

full matter content and all its discrete charges are given at the end of this subsection in

table 4 and 5. The explicit form of the 32 vector multiplets with respect to the oscillator

states can be found in table 10. Note that unlike as in the N = 4 model on the E6 torus

lattice not all winding modes survive the Z3 projection. However the Z3 projection can

be interpreted as an adjoint breaking of E6 to SU(3)3’s. Besides the three geometrical

interpreted SU(3)’s the fourth one comes out of the E8 and stays preserved.

In order to capture the quantum numbers of the four SU(3) generators we collect their

eight Cartan generators in four pairs of ’strangeness and isospin’ (qXstr, q
X
iso) where we label

the four SU(3)’s by letters X ∈ {A,B,C,D}. The SU(3) Cartan operators are the following

sums in our two index notation:

qAstr =

3∑
i=1

(−2q3,i + q1,i + q2,i ) , (4.1)

qAiso =
3∑
i=1

(q1,j − q2,j) , (4.2)

while the other ones have the following index structure:

qBstr =

3∑
a=1

(−2qa,1 + qa,2 + qa,3) , (4.3)

qBiso =

3∑
a=1

(qa,2 − qa,3) . (4.4)

The structure is similar for the following two pairs of charge operators but to keep the

index summation structure similar, all indices are to be understood as i, a > 0 mod three.

Then the Cartans of SU(3)C can be written as

qCstr =

3∑
a=1

(−2qa,a + qa,a+1 + qa,a+2) , (4.5)

qCiso =

3∑
a=1

(qa,a+1 − qa,a+2) , (4.6)
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qBiso

qBstr

|3; 0, 1〉
|3; 0, 2〉

|5; 0, 1〉
|1; 0, 2〉

|1; 0, 1〉
|5; 0, 2〉

∏
a φ

a,1

− 1
6

ψ
a,3
0 |5; 0, 1〉

∏
a φ

a,1

− 1
6

ψ
a,2
0 |5; 0, 2〉

∏
a φ

a,2

− 1
6

ψ
a,1
0 |3; 0, 1〉

∏
a φ

a,3

− 1
6

ψ
a,1
0 |3; 0, 2〉

∏
a φ

a,3
1
6

ψ
a,2
0 |1; 0, 2〉

∏
a φ

a,1

− 1
6

ψ
a,3
0 |1; 0, 1〉

. . . |1; 0, 0〉

. . . |1; 0, 0〉

Figure 3. Charges of Vacua that form the weight lattice of the fundamental of SU(3)B . On the

right side we give the charges of the eight SU(3) gauginos under (4.3) resulting in the root lattice.

and the final set of charge operators are given by

qDstr =
3∑

a=1

(−2qa,1−a + qa,2−a + qa,−a) , (4.7)

qDiso =

3∑
a=1

(qa,−a − qa,2−a) . (4.8)

In order to construct the R-symmetry charge operator we have to divide out the strangeness

operator of the four SU(3)’s to obtain

Q
(18)
R = 3k0 − 2q− + 2q

(A)
str + 2q

(B)
str + 2q

(C)
str + 2q

(D)
str mod 18 , (4.9)

which guarantees uniform charge of all charginos. In addition the two orbifold twists induce

two discrete symmetries with charge generators

Q1
Z3

= k1 + qAiso + qCiso + qDiso mod 3 , (4.10)

Q2
Z3

= k2 + qBiso + qCiso − qDiso mod 3 , (4.11)

corrected by the isospin Cartan operators. Calculating strangeness and isospin quantum

numbers of vacua in other twisted sectors we find that they always form fundamental

representations under the four SU(3)’s. For SU(3)B we depict non-trivial charged vacua

and adjoint gauginos in figure 3. Note that all gauginos have R-charge 3 under the 4D

R-symmetry. However before we come to the 4D superpotential we first construct the

charges of all left-chiral superfields.

The 36 27-plets are summarized in table 4. We verify that indeed all states are

distinguished by individual quantum numbers. We get a similar structure for the 324
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label E6 × SU(3)4 Repr. Q1
Z3

Q2
Z3

QR Superfield

27A1 (27,3,1,1,1) 2 0 6

27A2 (27,3,1,1,1) 1 0 6

27A3 (27,3,1,1,1) 0 0 0

27B1 (27,1,3,1,1) 0 1 6

27B2 (27,1,3,1,1) 0 2 6

27B3 (27,1,3,1,1) 0 0 0

27C1 (27,1,1,3,1) 2 2 6

27C2 (27,1,1,3,1) 1 1 6

27C3 (27,1,1,3,1) 0 0 0

27D1 (27,1,1,1,3) 2 1 6

27D2 (27,1,1,1,3) 1 2 6

27D3 (27,1,1,1,3) 0 0 0

Table 4. All quantum numbers of the 27 representations of E6

label E6 × SU(3)4 Repr. Q1
Z3

Q2
Z3

QR

Sa1 (1,1,3,3,3) 1 0 6

Sa2 (1,1,3,3,3) 2 0 6

Sa3 (1,1,3,3,3) 0 0 0

Sb1 (1,3,1,3,3) 0 1 6

Sb2 (1,3,1,3,3) 0 2 6

Sb3 (1,3,1,3,3) 0 0 0

Sc1 (1,3,3,1,3) 1 1 6

Sc2 (1,3,3,1,3) 2 2 6

Sc3 (1,3,3,1,3) 0 0 0

Sd1 (1,3,3,3,1) 1 2 6

Sd2 (1,3,3,3,1) 2 1 6

Sd3 (1,3,3,3,1) 0 0 0

Table 5. The gauge representation of the 324 E6 singlet states and their R-charges.

additional E6 singlets. These fields form tri-fundamental representations of the SU(3)4

gauge factors summarized in table 5. We note two important facts about the spectrum:

first we do not find any uncharged fields i.e. all fields have non-trivial charges under some

operator and thus there is no modulus dependence of the 4D superpotential. Secondly we

find that the spectrum is completely invariant under the permutation of the four SU(3)

gauge factors combined with a reshuffling of discrete quantum numbers. We conclude

that we actually have a SU(3)4 o S4 gauge group. This S4 permutation symmetry is
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Amount of

deformation(s)

non-Fermat

deformation(s)
Chiral E6 Singlets Vector E6 Singlets

0 - 324 32

1 Bi 264 12

2 B1, B2 258 10

3 B1, B2, B3 252 8

Table 6. E6 uncharged spectra of the SU(3)4 LGO for one kind of deformation. Changing Bi any

other deformation results in the same spectrum. The number of 27’s is deformation invariant.

simply a descendant of the permutation symmetry of the chiral world sheet fields on the

LGO side. Indeed on the 2D theory this permutation is achieved by a charge redefinition

that multiplies Z(1)
3 and Z(2)

3 charges of the superfields in table 3 by factors of two. This

permutation symmetry makes also the interpretation of the origin of the four SU(3) factors

ambiguous as any of them could come out of the E8 while the others ones could come from

the geometry.

Landau-Ginzburg deformation. In the following we want to deform the Landau-

Ginzburg superpotential away from the Fermat locus. This is possible by the following

deformation terms that we can add to the Fermat superpotential

WDeform = AaΦ
a,1Φa,2Φa,3 +BiΦ

1,iΦ2,iΦ3,i + CiΦ
1,1+iΦ2,2+iΦ3,i +DiΦ

1,1+iΦ2,3+iΦ3,2+i ,

(4.12)

which exhaust all possible deformation terms in accord with the symmetries of the 2D

theory. In total we have 12 deformations that we split into 4× 3 triples. Switching on any

deformation, say B1, results in the reduction of the spectrum given in table 6 which we

have computed on the LGO side. We observe that the single term, say B1 6= 0 results in

the following breakdown of the four dimensional gauge group:

SU(3)A × SU(3)B × SU(3)C × SU(3)D
Bi 6=0−−−→ SU(3)B ×U(1)4 . (4.13)

Of course this breaking is exactly the same for another choice of Xi 6= 0 and leaves the

SU(3)X gauge factor unbroken while breaking the three SU(3)’s to two U(1)’s.3 The

equivalence of the deformation parameters and their induced breaking is again a result of

the permutation symmetry of the WS fields.

Adding additional Xj deformations of the same kind leaves the SU(3)X unbroken but

breaks the remnant U(1) factors completely.

However switching on any deformation of two different kinds, say Ai, Bj 6= 0 breaks

all SU(3) gauge factors.

3The same breaking patter has been observed in [49] on the CFT level for T 2/Z3 orbifolds when moving

away from from the self-dual radius. However note that we do not have a factorized geometry.
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The deformations Xi have an interpretation in form of torus Kähler moduli in the

mirror geometry. Indeed we find the spectrum we expect from the Z3 orbifold [45] given by

Untwisted Sector: 3× (27,3) Kähler moduli: 9× (1,1) ,

27 Fixed Points: (27,1) Bundle moduli: 3× (1,3) .
(4.14)

which coincides with our computation on the LGO side given in the last column of table 6.

Adding additional deformations corresponds to blow/ups of the orbifold singularities. In

the following we match the 2D LGO deformations with the Higgs mechanism in the four

dimensional theory.

Match with 4D effective action. As we have all symmetries at the LGO Fermat point

we can write down the full 4D effective superpotential up to trilinear order and match the

2D LGO deformation with the effects of the four dimensional Higgs mechanism. Before

we do that we consider the four dimensional superpotential W4D given at tree-level at the

LGO Fermat locus

W4D 3
A,B,C,D∑

I

|εijk|27Ii27Ij27Ik +

a,b,c,d∑
I

|εijk|SIiSIjSIk . (4.15)

The structure of all tree-level couplings is very compact due to the large amount of sym-

metries of the model. Note that there are no cubic couplings of the fields with themselves.

This is guaranteed by the 4D R-symmetry of the superpotential Q
(18)
R (W) = −6 mod

18. Couplings with the singlets SIi and 27-plets only occur at the fourth order. The de-

formations of the LGO A,B,C,D 6= 0 can be matched to be non-vanishing VEVs inside

tri-fundamentals SA3 , SB3 , SC3 or SD3 of table 5. We focus again w.l.o.g. on Bi deformation

that gives a VEV in the (1,3,1,3,3)b3 representation.

In the following we want to discuss the D-and F-flat directions and the mass-terms

explicitly. To do so, we need to introduce the three indices Sb3 → Si,j,kb3
with i, j, k being

anti-fundamentals indices of SU(3)A, SU(3)C and SU(3)D, respectively. The VEVs bi ↔ Bi
lie in the fields as

B1 :〈S1,1,1
b3
〉 = 〈S2,2,2

b3
〉 = 〈S3,3,3

b3
〉 = b1 , (4.16)

B2 :〈S1,2,3
b3
〉 = 〈S2,3,1

b3
〉 = 〈S3,1,2

b3
〉 = b2 , (4.17)

B3 :〈S2,1,3
b3
〉 = 〈S1,3,2

b3
〉 = 〈S3,2,1

b3
〉 = b3 . (4.18)

which guarantees D-flatness. F-flatness is checked by noting in (4.15) that there is no

quadratic Sb3 coupling but always with fields that acquire no VEV. The corresponding

couplings of the above fields in (4.15) give the mass terms after inserting the VEVs:

W4D 3 εxyzεiloεjmpεknqSi,j,kbx
Sl,m,nby

So,p,qbz
. (4.19)

The indices i, j, k, l,m, n, o, p, q are the three SU(3) indices, while x, y, z label the three Sbx
states. The rank of the mass matrix for the 1,2 and three deformations, the Goldstinos

and the amount of massive chiral superfields is summarized in the following table:
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Field Theory

VEVs

Mass Matrix

Rank

Goldstone

Bosons

Massive

Superfields

- 0 0 0

b1 20 20 2 · 20 + 20

b1, b2 22 22 2 · 22 + 22

b1, b2, b3 24 24 2 · 24 + 24

We find that the missing multiplets exactly accommodate for the change in the singlet

numbers from the LGO calculation given in table 6.

At next we can turn towards the 27 fields and their couplings. Upon the breakdown of

the fields the nine 27Ai ,27Ci and 27Di fields decompose in the 27 states that we interpret

as the twisted fields at the fixed points in the orbifold language. Furthermore, the following

tree level couplings among 27-plets are generated by singlet VEV insertions of fourth order:

W4D−Higgsed ∈
3∑
i

27Ai27Ci27DiSbi

=b1

(
3∑
m

27m,m,m
A1 27m,m,m

C1 27m,m,m
D1

)

+b2

(
3∑
m

27m,m+1,m+2
A2 27m,m+1,m+2

C2 27m,m+1,m+2
D2

)

+b3

(
3∑
m

27m,m+2,m+1
A3 27m,m+2,m+1

C3 27m,m+2,m+1
D3

)
,

(4.20)

which we interpret as couplings among the various fields located at different fixed points in

the orbifold language whereas the VEVs play the role of the world sheet instanton effects

that communicate the coupling. Note that it is straightforward from this perspective to

obtain all order couplings and their moduli dependence just by inserting the VEVs in the

superpotential obtained as the Fermat point. Finally note, that the deformation to the

orbifold phase does not break the R-symmetry of the four dimensional theory as expected.

At this point we have not exhausted all Landau Ginzburg deformations yet. Indeed

there are nine residual ones Ai, Ci and Di corresponding to blow-up modes. However

in the general orbifold there are 27 independent blow ups and hence we have a LGO

description where three orbifold fixed points get blown up simultaneously. It is remarkable

that all deformations correspond to Higgs VEVs in 4D fields that are neutral under the

R-symmetry. Hence we can resolve all 27 singularities while keeping the R-symmetry. This

is in contrast to the usual expectation that there are no R-symmetries in smooth heterotic

compactifications. However note that we have a non-factorized E6 root lattice underlying

the orbifold geometry and that a single LGO deformation always blows-up three fixed points

with the same volume. Hence along this very specific direction in the Kähler moduli space

the R-symmetry is preserved as similarly observed in [28]. Similarly observations have been

made in smooth compactifications [50] where U(1) become massless along special directions

in the K”ahler moduli space.
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Also note that in this description all Kähler moduli are treated completely democratic

thanks to the S4 permutation symmetry. Hence in the smooth case we can not distinguish

blow-up from ambient volume.

4.2 The Z3 × Z3,free mirror LGO

As a second example we consider the Z3 orbifold and divide by an additional Z3,free action

and construct its mirror dual Landau-Ginzburg orbifold. The table 12 of appendix C.2.

But before we consider the Landau-Ginzburg model we construct the Z3 × Z3,free orbifold

spectrum that we want to match.

Spectrum of the Z3 × Z3,free orbifold. The orbifold model is described by the geo-

metric twist vectors vi and gauge embedding V i that are modded out of the T 6 by their

exponential action and have the form

vi3 =

(
1

3
,

1

3
,−2

3

)
, and V i

3 = (vi3, 0
5)(08) , (4.21)

vi3,free =

(
1

3
,−1

3
, 0

)
, and V i

3,free = (vi3,free, 0
6)(08) , (4.22)

where the second twist vector vi3,free is combined with a lattice shift such that it acts freely

on T 6/Z3 and with its gauge shift embedding V i
3,free inside the first E8 gauge factor. The

additional roto-translational embedding does not induce additional fixed points but acts

as an additional projection in the untwisted sector and a triple-wise identification of fixed

points. In the following we use represent a state as |q〉R ⊗ |P 〉L with E8 weight vector P

and SO(8) weight q using the conventions in [51]. Also recall the projection condition in

the untwisted sector

ei2πi(P ·V+q·v) = id . (4.23)

Hence starting from the orbifold spectrum in (4.14) the untwisted spectrum is projected

in the following way: Kähler moduli of the form

|0, 1, 0, 0〉R ⊗ αi|0〉L (4.24)

are reduced from nine to only three diagonal ones. The six roots of the SU(3) gauge

symmetry that have the explicit form

αµ|0〉R ⊗ |(1,−1, 0), 05)(08)〉L , (4.25)

get all projected out by the freely acting twist such that only their two Cartan generators

survive. Similarly the the three (27,3)-plets in the untwisted sector get reduced to only

the three (bosonic) 27’s

|0, 0, 0, 1〉R⊗


|(0, 0, 1,±(1, 04))(08)〉L

|(−1,−1, 05)(08)〉L

|(−1
2 ,−

1
2 ,

1
2 , (±

1
2)5)〉L

|0, 1, 0, 0〉R⊗ |


(0,−1, 0,±(1, 04))(08)〉L

|(1, 0, 105)(08)〉L

|(12 ,−
1
2 ,

1
2 , (±

1
2)5)〉L
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Φ1,1 Φ1,2 Φ1,3 Φ2,1 Φ2,2 Φ2,3 Φ3,1 Φ3,2 Φ3,3

U(1)R 1 1 1 1 1 1 1 1 1

Z1
3 1 0 -1 0 0 0 -1 1 0

Z2
3 0 1 -1 0 0 0 1 1 1

Z3
3 0 0 0 1 -1 0 1 1 1

Table 7. The charge assignment of the Z3 × Z3,free Mirror-LGO.

|0, 0, 1, 0〉L⊗


|(−1, 0, 0,±(1, 04))(08)〉L

|(0, 1, 105)(08)〉L

|(−1
2 ,

1
2 ,

1
2 , (±

1
2)5)〉L

whose roots we have split up in the (2 · 5 + 1 + 16) contributions. The free Z3 involution

identifies three fixed points but acts trivial on the spectrum. Hence in total we have the

following spectrum.

Untwisted Sector: 3× 27 Kähler moduli 3× 1 ,

9 Fixed Points: 27 Bundle moduli 9× 1 .
(4.26)

The GLSM for the above geometry can be realized by the charge assignment given in

table 12 of appendix C.2 which is simply the GLSM that admits the Z3 orbifold phase

supplemented with another Z3 element.

The Z3 × Z3,free Landau-Ginzburg model. We construct the mirror-dual Landau-

Ginzburg orbifold by taking the orthogonal Z3 charge assignment of the GLSM in table 12

and obtain the mirror LGO with charges given in table 7. Computing the full massless

spectrum at the Fermat locus gives the following spectrum:

Repr Non E6 27 27 E6 Adjoints

Left-Chirals 252 12 0 0

Vectors 8 0 0 1

We find the eight Landau-Ginzburg U(1)’s and additional singlet fields. This time we do

not have have a non-Abelian enhancement and hence we can not give the spectrum in the

same compact way as before. We obtain the simplest 4D R-charge generator as

Q
(18)
R = 3k0 − 2q− mod 18 , (4.27)

under which the superpotential is charged qR(W4D) = −6 mod 18. For the U(1) generators

we simply stick with the original charge formulas given in (3.2) which results in fractional

charges. In the following we focus on the Higgs fields and the fields that become massive

when we deform to the orbifold phase in the mirror.
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Amount of

deformation(s)

non-Fermat

deformation(s)
Chiral E6 Singlets Vector E6 Singlets

0 - 252 8

1 Aa/B 196 6

2 A1, A2 140 4

3 A1, A2, A3 84 2

Table 8. Spectra of the SU(3)4 LGO for one kind of deformation. Changing Aa any other

deformation results in the same spectrum.

Landau-Ginzburg deformation. At next we look at the LGO deformations away from

the Fermat point. They are given by the following four deformations

WDeform =
3∑

a=1

AaΦ
a,1Φa,2Φa,3 +BΦ1,3Φ2,2Φ3,2 (4.28)

We can compute the resulting spectrum upon switching on the various deformation terms

summarized in table 8. Any deformation removes two vectors and 56 singlet fields from the

spectrum. By comparing the spectrum we find that switching on all three Aa deformations

brings us to the orbifold phase where the massless spectrum matches the one on the CFT

level (4.26) perfectly. Hence the three orbifold Kähler moduli correspond to the deforma-

tions Aa. Thus again we interpret the LGO deformations Aa as giving the three tori finite

size. The leftover deformation B is then the blow-up deformation of all nine fixed points

simultaneously.

Match with 4D effective action. Again we match the deformation of the Fermat LGO

with the Higgs mechanism in the 4D theory. As the spectrum is much less compact as in

the SU(3)4 we omit showing it here in all details but consider the Higgs fields in more

detail. The (1; 0, 0, 0) twisted sector has twelve neutral fermions that can be collected to

four groups corresponding to the respective LGO deformation. We give the states in the

following notation

Sa,b,c;i,j,k : φa,i− 5
6

φb,j− 5
6

ψc,k2
3

|1; 0, 0, 0〉 . (4.29)

The three Higgs states that obtain a VEV corresponding to Aa deformations are given

by the a = b = c which we can, in the GLSM analogy, identify as the ambient torus

deformations:

Sa,a,a;1,2,3 , Sa,a,a;1,3,2 , Sa,a,a;2,3,1 . (4.30)

These states have non-trivial charges under
(
U(1)a,1,U(1)a,2,U(1)a,3

)
as

(qa,1, qa,2, qa,3) (Sb,b,b;1,2,3) = δa,b

(
1/3, 1/3,−2/3

)
, (4.31)
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where we have highlighted the permutations of the indices and charges. The last three

states can be identified with the Higgs-fields of the B deformations and are given as

S1,2,3;3,2,2 , S1,3,2;3,2,2 , S2,3,1;2,2,3 . (4.32)

The Higgs fields that correspond to the B deformation on the other hand are charged

among the following symmetries have exactly the same charge pattern under as the states

before but under the off diagonal U(1) combination: (U(1)1,3,U(1)2,2,U(1)3,3).

Note that the R-symmetry of this model in eq. (4.27) is not corrected by non-Abelian

gauge enhancements and hence the charges of all fermions is essentially given by the first

twisted sector number. Hence the above described fermions have R-charge qR = 3 and

thus left-chiral super multiplets have R-charge qR(S) = 6. Thus a VEV in any of those

representation will break the R-symmetry in the 4D theory. A D-flat direction is given by

the VEV configuration

Aa : 〈S(a,a,a;1,2,3)〉 = 〈S(a,a,a;2,3,1)〉 = 〈S(a,a,a;1,3,2)〉 = aa , (4.33)

B : 〈S(1,2,3;3,2,2)〉 = 〈S(2,3,1;3,2,2)〉 = 〈S(2,1,3;3,2,2)〉 = b , (4.34)

which is enforced by the triplet charge patter under three U(1)’s. Indeed this VEV con-

figuration is also F-flat as the above singlet fields always appear at most linear in any

coupling. We observe that the VEV lies diagonally in the three Higgs fields whereas two

of them become the Goldstone modes of the two broken U(1)’s and the third can be in-

terpreted as the diagonal Kähler modulus in the orbifold. In addition we have explicitly

checked that the three fields in eq. (4.33) take part in gauge invariant tree-linear couplings

with exactly 27 pairs of fermions. Hence there are 54 fields that become massive by giv-

ing a non-trivial VEVs aa 6= 0. These massive states originate from sectors (k0; k1, k2, k3)

and their conjugate ones (6 − k0; 3 − k1, 3 − k2, 3 − k3) as the Higgs fields are untwisted

sector fields.

To summarize we find that any Higgs VEV aa corresponding to the deformations Aa,

breaks two U(1)’s and removes 54+2 fermions which exactly matches our computation from

the LGO side in table 8. Switching on all deformations Aa brings us to the orbifold point

where we find 84 singlet states and two residual U(1)’s as well as three (not-necessarily

independent) discrete symmetries. However we also find that the R-symmetry is broken as

soon as we move towards finite volume geometries in the mirror.

5 Summary and discussion

In this work we have classified the subset of heterotic (0,2) Landau-Ginzburg orbifolds with

nine (2,2) superfields including their discrete quotients. In addition most of the computa-

tions in the literature do not go beyond the computation of the chiral ring or equivalently

E6 charged matter. We add the full computation of singlets and vector multiplets at the

Fermat point that are uncharged under the generic E6 to the existing literature. In total

we find a set of 152 inequivalent models closed under mirror symmetry. Within this set

we find models with N = 4, 2 and 1 supersymmetry as well as χ = 0 and h1,1 = 0 models
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that do not have a geometric phase. Models with a geometric phase admit a Zn3 orbifold

phase where additional vector states at the Fermat point can be matched to the gauged

isometries of the underlying orbifold lattice at the self-dual radius similar as in [49]. More-

over we find hints that all models might live in a common moduli space as all of them

satisfy a common relation (3.9) that relates all non-E6 charged states with the amount of

target space SUSY. In addition we extend the methods of [40] to compute discrete R-and

non-R-symmetry charges of 4D states as well as their representations under the additional

gauge symmetries in section 2.2. By considering two examples we indeed find that there

do not exist uncharged moduli fields in the spectrum.

These methods pave the way for the second part of this work where we investigate non-

Fermat deformations of Landau-Ginzburg models by considering two explicit examples.

These deformations correspond to the world sheet Kähler parameters in the mirror dual

geometry. Indeed we have constructed the two examples to be Landau-Ginzburg description

of Z3 and Z3 × Z3,free orbifolds on non-factorized torus lattices.

By having full control over the spectrum and its symmetries we match the Landau-

Ginzburg deformations perfectly to the effects of the Higgs effect in four dimensions. This

formulation enables us to track the change in the spectrum and the breakdown of all

symmetries through the various geometric phases. In particular for non factorized orbifolds

these calculations have not been performed using the CFT techniques [25] due to the loss

of holomorphicity of the coordinates. Hence we provide a tool to compute discrete (non-

)R-symmetries for non-factorized geometries. In the second example we can confirm the

conjectured absence of a discrete R-symmetry in the Z3 × Z3,free as soon as one enters

its large volume regime. In the first example however the R-symmetry is conserved as

expected for an Z3 orbifold. Moreover this model admits very strong symmetries i.e. an

additional SU(3)4oS4 symmetry at the Fermat locus and an E6 torus lattice in the mirror

dual orbifold phase. Due to these strong symmetries any further deformation corresponds

to a simultaneous resolution of three singularities at once and all of them preserve the

R-symmetry. Hence we provide the first example of a smooth Calabi-Yau geometry that

admits a discrete R-symmetry. This conservation results from the very special locus in

the Kähler moduli space where three fixed points have a common resolution divisor. In

addition due to the S4 permutation symmetry the Kähler parameters of the underlying

torus and the resolution divisors are indistinguishable as also been observed in [4].

The models we have considered in this work correspond to the heterotic standard

embedding only and in the orbifold phase we always have variants of Zn3 actions. Hence

the next logical step would be to extend the above procedure to other examples i.e. prime

and non-prime factor models and check if the models satisfy similar relations.

Finally it would be desirable to extend the above procedure also to (0,2) to models that

can describe non-standard embedding models. However those attempts come genuinely

with a lot more problems such as complications in the RG flow from the UV Landau-

Ginzburg theory [52] and a much less well understood mirror map [53].
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A List of charges of A9
1 classification

In this appendix we give the full classification of A9
1 Gepner models and their discrete

quotients.

In table 9 we list the charge vectors of the nine chiral superfields under the respective Z3

discrete symmetry. For convenience we only give the charge vectors for half of the models

that have at most four additional discrete quotients. The other half can be constructed

by applying the mirror map (3.4). In addition we give the full massless spectrum at the

Fermat locus. The first column gives the N = 1 chiral multiplets and the second one

the vector multiplets. In the first four rows we then depict the representations under E6,

whereas S denotes singlets states. We have ordered the models according to the amount of

4D supersymmetries. Note that adjoint valued chiral fermions signal higher SUSY models.
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S 27 27 Adj.
N = 4

32 3 3 1 (1,1,1,0,0,0,0,0,0) (1,1,1,0,0,0,0,0,0) (1,1,1,0,0,0,0,0,0)
96 9 9 3 (0,0,0,1,1,1,0,0,0) (0,0,0,1,1,1,0,0,0) (0,0,0,1,1,1,0,0,0)

(0,0,0,0,0,0,1,-1,0) (0,0,0,0,1,-1,1,-1,0)
86 3 3 1 (1,1,1,0,0,0,0,0,0)
258 9 9 3 (0,0,0,1,1,1,0,0,0)

(1,-1,0,1,-1,0,1,1,-1,0)
N = 2

14 1 1 1 (1,1,1,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0) (1,2,0,0,0,0,0,0,0)
194 21 21 1 (0,0,0,1,1,1,0,0,0) (0,0,0,0,0,0,1,1,1) (0,0,1,1,1,1,1,1,1)
14 1 1 1 (1,1,1,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0)
194 21 21 1 (0,0,1,1,1,0,0,0,0) (0,0,0,1,2,0,0,0,0) (0,2,1,0,0,0,0,0,0) (0,2,1,1,2,0,0,0,0)

(0,0,0,0,0,1,1,1,0) (0,0,0,0,0,0,1,1,1) (0,0,0,1,2,0,0,0,0) (0,0,0,0,0,0,1,2,0)
14 1 1 1 (1,2,0,1,1,1,0,0,0) (1,1,1,0,0,0,0,0,0) (1,1,1,1,2,0,0,0,0) (1,2,0,1,2,0,0,0,0)
194 3 3 1 (0,0,0,1,1,1,1,1,1) (0,0,0,1,1,1,0,0,0) (0,0,0,1,1,1,0,0,0) (0,2,1,0,2,1,0,0,0)

(0,0,1,1,1,0,1,2,0) (0,0,0,0,0,0,1,2,0) (1,1,1,0,0,0,1,2,0)
14 1 1 1 (1,1,1,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0) (1,2,0,1,2,0,0,0,0)
194 9 9 1 (1,2,0,1,2,0,1,2,0) (0,1,2,0,0,0,0,0,0) (0,2,1,0,2,1,0,0,0)

(0,1,0,1,1,0,1,2,0) (1,1,0,0,1,0,1,2,0)
32 1 1 1 (1,1,1,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0) (1,2,0,1,2,0,0,0,0)
248 9 9 1 (1,2,0,1,2,0,0,0,0) (0,0,0,1,1,1,0,0,0) (1,1,1,0,0,0,0,0,0)

(0,0,0,0,0,0,1,2,0) (0,0,0,2,1,0,1,2,0)
N = 1, χ = 0

8 0 0 1 (1,1,1,1,2,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0)
252 13 13 0 (0,1,0,0,0,0,1,1,0) (0,1,0,0,1,0,0,1,0) (0,1,0,1,1,0,1,2,0) (0,2,1,0,0,0,0,0,0)

(0,0,0,1,1,1,0,0,0) (0,0,0,1,1,1,0,0,0) (0,1,0,1,1,0,1,2,0)
8 0 0 1 (1,2,0,1,2,0,0,0,0)

252 9 9 0 (0,1,0,0,1,1,1,2,0)
(0,0,0,0,1,0,0,1,1)

14 0 0 1 (1,1,1,1,2,0,0,0,0)
270 9 9 0 (0,1,0,2,1,0,1,1,0)

(1,0,0,0,0,0,0,1,1)
8 0 0 1 (1,2,0,1,2,0,0,0,0)

252 7 7 0 (2,1,0,0,0,0,1,1,1)
(1,0,0,0,0,1,0,0,1)

N = 1 Mirror Pairs
8 0 0 1 (0,0,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0)

252 84 0 0 (0,0,0,1,2,0,0,0,0) (0,0,0,1,2,0,0,0,0)
(0,0,0,0,0,0,1,2,0)

8 0 0 1 (1,1,1,0,0,0,0,0,0)
252 0 84 0 (0,1,0,0,1,1,0,0,0)

(0,1,0,0,0,0,0,1,1)
8 0 0 1 (1,1,1,1,2,0,0,0,0) (1,1,1,1,1,1,0,0,0) (1,2,0,1,2,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,0,0,1,1,1,1,1,0) (1,2,0,1,2,0,0,0,0)

252 40 4 0 (0,0,0,0,0,1,1,1,0) (0,0,0,0,0,0,1,2,0) (0,2,1,1,1,1,0,0,0) (0,1,0,1,1,1,1,1,0) (0,0,0,0,0,0,1,2,0)
(0,0,0,0,0,1,1,1,0) (0,0,1,1,1,1,1,1,0) (0,0,0,0,0,2,0,0,1)

8 0 0 1 (1,1,1,0,0,0,0,0,0) (1,2,0,0,0,0,0,0,0) (0,0,1,1,1,0,0,0,0)
252 4 40 0 (0,1,0,1,1,0,0,0,0) (0,0,0,1,1,1,0,0,0) (0,1,0,1,1,0,0,0,0)

(0,0,0,0,1,0,1,1,0) (1,0,0,1,1,0,0,0,0)
14 0 0 1 (1,2,0,1,2,0,0,0,0) (1,2,0,1,2,0,1,2,0) (1,2,0,1,2,0,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0)
270 36 0 0 (0,0,1,0,0,2,0,0,0) (2,1,0,0,1,2,1,2,0) (0,1,0,1,1,0,1,2,0) (2,1,0,1,2,0,0,0,0)

(0,0,1,0,0,2,0,0,0) (0,0,0,0,0,0,1,2,0)
14 0 0 1 (1,1,1,0,0,0,0,0,0)
270 0 36 0 (0,1,0,1,1,0,0,0,0)

(0,0,0,0,1,0,1,1,0)
32 0 0 1 (1,2,0,1,2,0,1,2,0) (1,2,0,1,2,0,0,0,0)
324 36 0 0 (2,1,2,2,1,0,0,0,1) (0,2,0,0,0,1,1,2,0)

(0,1,2,0,0,2,0,0,1)
32 0 0 1 (1,0,0,0,2,1,1,1,0)
324 0 36 0 (0,1,0,1,1,1,0,2,0)

(0,0,1,2,1,1,1,0,0)
8 0 0 1 (1,1,1,2,2,2,0,0,0) (1,2,0,1,1,1,0,0,0) (1,2,0,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0) (1,2,0,0,0,0,0,0,0)

252 24 12 0 (0,0,0,0,0,0,1,2,0) (1,0,2,1,2,0,0,0,0) (0,1,2,0,0,0,0,0,0) (0,1,1,1,0,0,0,0,0)
(0,0,0,0,0,0,1,2,0) (0,1,1,0,1,0,1,2,0) (0,0,0,2,1,0,0,0,0)

8 0 0 1 (1,2,0,1,2,0,0,0,0) (1,2,0,1,2,0,0,0,0)
252 12 24 0 (0,1,0,0,1,1,2,1,0) (0,2,1,0,2,1,0,0,0)

(0,0,0,0,0,1,0,1,1)
8 0 0 1 (1,2,0,0,0,0,0,0,0) (1,2,0,1,2,0,0,0,0)

252 18 6 0 (0,0,0,1,1,1,1,2,0) (0,1,0,0,1,0,0,1,2)
(0,0,1,0,0,2,0,0,0)

8 0 0 1 (1,2,0,1,2,0,0,0,0)
252 6 18 0 (0,0,1,1,0,1,0,0,0)

(0,0,0,0,0,1,1,1,0)
14 0 0 1 (1,0,0,0,1,2,2,0,0) (1,0,0,0,0,2,2,1,0) (1,0,0,0,2,1,1,1,0)
270 18 6 0 (0,1,2,2,1,0,0,0,0) (0,1,0,0,2,1,1,1,0) (0,1,0,0,1,1,1,2,0)

(0,0,1,2,0,0,0,0,0) (0,0,1,2,1,1,1,0,0)
14 0 0 1 (1,0,0,1,1,0,2,1,0) (1,0,0,0,1,1,2,1,0) (1,0,0,0,2,2,0,1,0)
270 6 18 0 (0,1,2,1,1,1,0,0,0) (0,1,0,1,0,1,0,0,0) (0,1,0,0,0,1,0,2,0)

(0,0,1,1,1,0,0,0,0) (0,0,1,2,1,1,1,0,0)
8 0 0 1 (1,0,0,2,1,0,2,0,0) (1,0,0,0,2,1,1,1,0)

252 16 4 0 (0,1,2,1,1,1,0,0,0) (0,1,0,0,0,0,0,2,0)
(0,0,1,2,1,1,1,0,0)

8 0 0 1 (1,0,0,0,2,2,1,0,0) (1,0,0,0,0,2,1,2,0)
252 4 16 0 (0,1,0,1,0,1,0,0,0) (0,1,0,0,2,1,1,1,0)

(0,0,1,1,1,0,0,0,0) (0,0,1,2,1,1,1,0,0)
8 0 0 1 (1,0,0,0,0,2,2,1,0)

252 27 3 0 (0,1,0,1,0,2,1,1,0)
(0,0,1,1,1,0,0,0,0)

8 0 0 1 (1,0,0,0,1,1,0,0,0)
252 3 27 0 (0,1,0,1,0,1,0,0,0)

(0,0,1,1,1,0,0,0,0)
8 0 0 1 (1,0,0,0,2,1,0,2,0)

252 12 0 0 (0,1,0,0,1,1,1,2,0)
(0,0,1,2,1,1,1,0,0)

Table 9. Charge assignment and matter content for all A9
1 Fermat quotients.
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B Additional gaugino states in SU(3)4 model

We summarize the explicit form of the 32 additional gauginos of the SU(3)4 model. Note

that we find the 9 Cartan generators in the first twisted sector whereas the 24 roots are

distributed throughout the other sectors.

Cartan Generators
(
φa,i− 1

6

φ
a,i

− 5
6
− 2ψa,i

− 2
3

ψ
a,i

− 1
3

)
|1; 0, 0〉 , a, i = 1, 2, 3

SU(3)A

φ
2,1

− 1
6
φ
2,2

− 1
6
φ
2,3

− 1
6
ψ
1,1

0 ψ
1,2

0 ψ
1,3

0 |1; 1, 0〉

φ
1,1

− 1
6
φ
1,2

− 1
6
φ
1,3

− 1
6
ψ
3,1

0 ψ
3,2

0 ψ
3,3

0 |3; 1, 0〉

φ
3,1

− 1
6
φ
3,2

− 1
6
φ
3,3
1
6
ψ
2,1

0 ψ
2,2

0 ψ
2,3

0 |5; 1, 0〉

φ
1,1

− 1
6
φ
1,2

− 1
6
φ
1,3

− 1
6
ψ
1,1

0 ψ
1,2

0 ψ
1,3

0 |1; 2, 0〉

φ
2,1

− 1
6
φ
2,2

− 1
6
φ
2,3

− 1
6
ψ
3,1

0 ψ
3,2

0 ψ
3,3

0 |3; 2, 0〉

φ
3,1

− 1
6
φ
3,2

− 1
6
φ
3,3

− 1
6
ψ
1,1

0 ψ
1,2

0 ψ
1,3

0 |5; 2, 0〉

SU(3)B

φ
1,3

− 1
6
φ
2,3

− 1
6
φ
3,3

− 1
6
ψ
1,2

0 ψ
2,2

0 ψ
3,2

0 |1; 0, 1〉

φ
1,2

− 1
6
φ
2,2

− 1
6
φ
3,2

− 1
6
ψ
1,1

0 ψ
2,1

0 ψ
3,1

0 |3; 0, 1〉

φ
1,1

− 1
6
φ
2,1

− 1
6
φ
3,1

− 1
6
ψ
1,3

0 ψ
2,3

0 ψ
3,3

0 |5; 0, 1〉

φ
1,2

− 1
6
φ
2,2

− 1
6
φ
3,2

− 1
6
ψ
1,3

0 ψ
2,3

0 ψ
3,3

0 |1; 0, 2〉

φ
1,3

− 1
6
φ
2,3

− 1
6
φ
3,3

− 1
6
ψ
1,1

0 ψ
2,1

0 ψ
3,1

0 |3; 0, 2〉

φ
1,1

− 1
6
φ
2,1

− 1
6
φ
3,1

− 1
6
ψ
1,2

0 ψ
2,2

0 ψ
3,2

0 |5; 0, 2〉

SU(3)C

φ
1,2

− 1
6
φ
1,1

− 1
6
φ
3,3

− 1
6
ψ
1,1

0 ψ
2,3

0 ψ
3,2

0 |1; 1, 1〉

φ
1,1

− 1
6
φ
2,3

− 1
6
φ
3,2

− 1
6
ψ
1,3

0 ψ
2,2

0 ψ
3,2

0 |3; 1, 1〉

φ
1,3

− 1
6
φ
2,2

− 1
6
φ
3,1

− 1
6
ψ
1,2

0 ψ
2,1

0 ψ
3,3

0 |5; 1, 1〉

φ
1,1

− 1
6
φ
2,3

− 1
6
φ
3,2

− 1
6
ψ
1,2

0 ψ
2,1

0 ψ
3,3

0 |1; 2, 2〉

φ
1,2

− 1
6
φ
2,1

− 1
6
φ
3,3

− 1
6
ψ
1,3

0 ψ
2,2

0 ψ
3,1

0 |3; 2, 2〉

φ
1,3

− 1
6
φ
2,2

− 1
6
φ
3,1

− 1
6
ψ
1,1

0 ψ
2,3

0 ψ
3,2

0 |5; 2, 2〉

SU(3)D

φ
1,3

− 1
6
φ
1,1

− 1
6
φ
3,2

− 1
6
ψ
1,1

0 ψ
2,2

0 ψ
3,3

0 |1; 1, 2〉

φ
1,1

− 1
6
φ
2,2

− 1
6
φ
3,3

− 1
6
ψ
1,2

0 ψ
2,3

0 ψ
3,1

0 |3; 1, 2〉

φ
1,2

− 1
6
φ
2,3

− 1
6
φ
3,1

− 1
6
ψ
1,3

0 ψ
2,1

0 ψ
3,2

0 |5; 1, 2〉

φ
1,1

− 1
6
φ
2,2

− 1
6
φ
3,3

− 1
6
ψ
1,3

0 ψ
2,1

0 ψ
3,2

0 |1; 2, 1〉

φ
1,3

− 1
6
φ
2,1

− 1
6
φ
3,2

− 1
6
ψ
1,2

0 ψ
2,3

0 ψ
3,1

0 |3; 2, 1〉

φ
1,2

− 1
6
φ
2,3

− 1
6
φ
3,1

− 1
6
ψ
1,1

0 ψ
2,2

0 ψ
3,3

0 |5; 2, 1〉

Table 10. All 32 gaugino states that belong to the SU(3)4 model. We have collected the roots in

groups of their SU(3) roots.
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C Mirror dual GLSM descriptions

In this section we give the explicit charge assignments for the GLSMs that give the geo-

metric description of the two mirror-dual LGO models that we consider.

C.1 GLSM with Z3 orbifold phase on E6 lattice

The GLSM specified in table 11 admits a Z3 orbifold phase with an E6 torus lattice.

The orbifold blow-up cycles are controlled by the exceptional coordinates E1,2,3 and their

gaugings. The orbifold phase is obtained by sending their FI terms to negative values.

Hence each cycle controls the size of 9 blow-up modes. Setting the FI parameters of torus

divisors U(1)1,2,3 to negative values results in the LGO phase.

Φ1,1 Φ1,2 Φ1,3 Φ2,1 Φ2,2 Φ2,3 Φ3,1 Φ3,2 Φ3,3 C1 C2 C3 E1 E2 E3

U(1)R 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

U(1)1 1 1 1 0 0 0 0 0 0 -3 0 0 0 0 0

U(1)2 0 0 0 1 1 1 0 0 0 0 -3 0 0 0 0

U(1)3 0 0 0 0 0 0 1 1 1 0 0 -3 0 0 0

U(1)E1 1 0 0 1 0 0 1 0 0 0 0 0 -3 0 0

U(1)E2 0 1 0 0 1 0 0 1 0 0 0 0 0 -3 0

U(1)E3 0 0 1 0 0 1 0 0 1 0 0 0 0 0 -3

Table 11. The charge assignment of a GLSM with Z3 orbifold phase with E6 torus lattice structure.

C.2 GLSM with Z3 × Z3,free orbifold phase

In table 12 we give the GLSM of the Z3 orbifold that has an additional freely acting Z3,free

modded out, realized by the last column. The orbifold phase is obtained by setting the FI

term of the exceptional U(1)E to negative values. The LGO phase we obtain by setting

all other FI terms to negative values as well. We note that we can not unhiggs the Z3

symmetry at the GLSM level to a U(1) symmetry on the world sheet.

Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7 Φ8 Φ9 C1 C2 C3 E1

U(1)R 0 0 0 0 0 0 0 0 0 1 1 1 0

U(1)1 1 1 1 0 0 0 0 0 0 -3 0 0 0

U(1)2 0 0 0 1 1 1 0 0 0 0 -3 0 0

U(1)3 0 0 0 0 0 0 1 1 1 0 0 -3 0

U(1)E 1 0 0 1 0 0 1 0 0 0 0 0 -3

Z3,free 0 1 0 0 2 0 1 1 1 0 0 0 0

Table 12. The charge assignment of a GLSM with Z3 × Z3,free orbifold phase.
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