
J
H
E
P
0
4
(
2
0
1
6
)
0
4
2

Published for SISSA by Springer

Received: September 10, 2015

Revised: March 9, 2016

Accepted: March 24, 2016

Published: April 7, 2016

Impact of warped extra dimensions on the dipole

coefficients in b → sγ transitions

Raoul Malm,a Matthias Neuberta,b,c and Christoph Schmella

aPRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,

Johannes Gutenberg University,

55099 Mainz, Germany
bInstitut für Theoretische Physik, Universität Heidelberg,

Philosophenweg 16, 69120 Heidelberg, Germany
cDepartment of Physics, LEPP, Cornell University,

Ithaca, NY 14853, U.S.A.

E-mail: malmr@uni-mainz.de, neubertm@uni-mainz.de,

schmell@uni-mainz.de

Abstract: We calculate the electro- and chromomagnetic dipole coefficients C7γ,8g and

C̃7γ,8g in the context of the minimal Randall-Sundrum (RS) model with a Higgs sector lo-

calized on the IR brane using the five-dimensional (5D) approach, where the coefficients are

expressed in terms of integrals over 5D propagators. Since we keep the full dependence on

the Yukawa matrices, the integral expressions are formally valid to all orders in v2/M2
KK. In

addition we relate our results to the expressions obtained in the Kaluza-Klein (KK) decom-

posed theory and show the consistency in both pictures analytically and numerically, which

presents a non-trivial cross-check. In Feynman-’t Hooft gauge, the dominant corrections

from virtual KK modes arise from the scalar parts of the W±-boson penguin diagrams,

including the contributions from the scalar component of the 5D gauge-boson field and

from the charged Goldstone bosons in the Higgs sector. The size of the KK corrections

depends on the parameter y∗, which sets the upper bound for the anarchic 5D Yukawa

matrices. We find that for y∗ & 1 the KK corrections are proportional to y2
∗. We discuss

the phenomenological implications of our results for the branching ratio Br(B̄ → Xsγ), the

time-dependent CP asymmetry SK∗γ , the direct CP asymmetry Ab→sγCP and the CP asym-

metry difference ∆Ab→sγCP . We can derive a lower bound on the first KK gluon resonance

of 3.8 TeV for y∗ = 3, requiring that at least 10% of the RS parameter space covers the

experimental 2σ error margins. We further discuss the branching ratio Br(B̄ → Xsl
+l−)

and compare our predictions for C7γ,9,10 and C̃7γ,9,10 with phenomenological results derived

from model-independent analyses.
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1 Introduction

In July 2012 the Higgs boson, the last missing piece of the Standard Model (SM), was

discovered at the Large Hadron Collider (LHC) at CERN [1, 2]. Since then the hierarchy

problem, i.e. the question about the mechanism that stabilizes the Higgs mass near the

electroweak scale, is no longer a hypothetical issue. A promising possibility to solve the

hierarchy problem is offered by Randall-Sundrum (RS) models [3], in which the SM is

embedded in a slice of anti-de Sitter space while the Higgs sector is localized on the “infra-

red (IR) brane”, one of two sub-manifolds bounding the extra dimension. The smallness

of the electroweak scale can then be explained by the fundamental ultra-violet (UV) cutoff

given by the warped Planck scale, whose value near the IR brane lies in the TeV range.

Moreover, by allowing the fermion fields to propagate in the bulk, these models provide a

natural explanation for the hierarchies observed in the flavor sector [4–6] and the smallness

of flavor-changing neutral currents (FCNCs) [7–13].

In this paper we investigate the FCNC process b→ sγ in the minimal RS model with a

brane-localized Higgs sector. For two reasons this transition is very interesting in order to

search for new physics. In the SM the dipole coefficients are one-loop suppressed and the

transition is logarithmically suppressed by the GIM mechanism [14]. In order to include

the effects of the RS model on the transition b→ sγ we implement an effective Lagrangian,

in which the heavy Kaluza-Klein (KK) quarks and bosons are integrated out. The most

important operators are the electromagnetic dipole operators

Q7γ = −emb

4π2
s̄ σµνF

µνPR b , Q̃7γ = −emb

4π2
s̄ σµνF

µνPL b , (1.1)

with σµν = i
2 [γµ, γν ] and the projection operators PR,L = 1

2(1 ± γ5). Due to operator

mixing we also consider the chromomagnetic dipole operators

Q8g = −gsmb

4π2
s̄ σµν G

µν
a taPR b , Q̃8g = −gsmb

4π2
s̄ σµν G

µν
a taPL b , (1.2)

where ta are the generators of SU(3)c. The main focus of our paper lies on the derivation of

integral expressions for the dipole coefficients at the one-loop level using five-dimensional

(5D) propagators in the mixed position-momentum space and with the full dependence on

the Yukawa interactions imposed by the mixed boundary condition at the IR brane.

In the literature, the first discussions on b→ sγ in the RS model can be found in [7, 8,

15]. There, the authors claimed that the penguin diagrams with the exchange of charged

Higgs scalars (Goldstone bosons of the W± boson) along with KK fermions gives the

dominant contribution to the dipole coefficients. The diagram with the exchange of KK

gluons was found to be approximately aligned with the 4D down-type Yukawa matrix

and therefore subleading. Furthermore, the authors claimed that the dipole coefficients in

the brane-localized Higgs scenario were logarithmically divergent and sensitive to the UV

cutoff. It was shown in [16] that the diagrams contributing to the leptonic decay µ → eγ

at one-loop are indeed finite. With the same technique the authors of [17] investigated

the process b→ sγ working with 5D propagators and treating the Yukawa interactions as

perturbations. In [18], one of us discussed the b → sγ process in the minimal RS model
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with a brane-localized Higgs sector working in the KK-decomposed theory, where the dipole

coefficients are expressed via infinite sums over the contributions from different levels of

KK modes. In [19] the authors calculated the dipole coefficients in the custodial RS model

with a brane-localized Higgs sector, focusing only on the diagrams with an exchange of

the first level of KK fermions along with gluons and charged Goldstone bosons. Recently,

the authors of [20] studied lepton flavor violation in RS models in the 5D framework,

where they discussed the electromagnetic (leptonic) dipole operator in RS models with

a brane-localized or nearly brane-localized Higgs and treated the Yukawa interactions as

perturbations. In the present work, we perform a complete calculation of the electro- and

chromomagnetic (quark) dipole coefficients including all contributions at one-loop order in

the minimal RS model with a brane-localized Higgs sector. We derive expressions for the

dipole coefficients using 5D propagators computed by retaining the full dependence on the

Yukawa interactions. In contrast to [17, 20], we derive 5D expressions that are formally

valid to all orders in v2/M2
KK. In contrast to [20], we focus on the quark dipole coefficients,

including the contributions of the chromomagnetic dipole operator. In addition, we derive

formulas in the KK-decomposed (4D) theory including the contributions from all KK levels

and show the consistency with the results obtained in the 5D framework.

After introducing the model and setting up the notation in section 2 we derive formulas

for the dipole coefficients in the 5D framework in section 3. In section 4 we compare our

results with the expressions in the KK-decomposed theory and analyze the different KK

contributions to the dipole coefficients. After implementing the renormalization-group (RG)

evolution from the KK scale down to the B-meson scale we discuss the phenomenological

implications in section 5. Our main results are summarized in the conclusions.

2 Theoretical setup

We focus on RS models where the electroweak symmetry-breaking sector is localized on or

near the IR brane. The extra dimension is chosen to be an S1/Z2 orbifold parametrized

by a coordinate φ ∈ [−π, π], with two 3-branes localized on the orbifold fixed-points φ = 0

(UV brane) and |φ| = π (IR brane). The RS metric reads [3]

ds2 = e−2σ(φ) ηµν dx
µdxν − r2dφ2 =

ε2

t2

(
ηµν dx

µdxν − 1

M2
KK

dt2
)
, (2.1)

where e−σ(φ), with σ(φ) = kr|φ|, is referred to as the warp factor. The size r and curvature

k of the extra dimension are assumed to be of Planck size, k ∼ 1/r ∼ MPl. The quantity

L = σ(π) = krπ measures the size of the extra dimension and is chosen to be L ≈ 33−34 in

order to explain the hierarchy between the Planck scale MPl and the TeV scale. We define

the KK scale MKK = kε, with ε = e−σ(π), which sets the mass scale for the low-lying KK

excitations of the SM particles. On the right-hand side of (2.1) we have introduced a new

coordinate t = ε eσ(φ), whose values on the UV and IR branes are ε and 1, respectively.1 In

our analysis we consider the minimal RS model, adopting the conventions and notations

1The dimensionless variable t is related to the conformal coordinate z frequently used in the literature

by the simple rescaling z = t/MKK ≡ R′ t.
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of [10]. The gauge group is taken to be SU(3)c × SU(2)L ×U(1)Y like in the SM, and it is

broken to SU(3)c ×U(1)em by the Higgs vacuum expectation value (vev).

A tree-level analysis of electroweak precision observables, mainly the T parameter,

implies that the mass of the first KK gluon resonance is pushed to values Mg(1) > 11.3 TeV

at 95% confidence level (CL) [21], where we have used the most up-to-date values

from [22]. Loop corrections could potentially change this bound in a significant way. Also,

it is conceivable that new-physics contributions arising in a UV completion of the RS model

bring S and T back into the phenomenologically favored region. Nevertheless, one usually

considers RS models with a built-in protection for the T parameter by implementing a

custodial symmetry via the gauge group SU(3)c×SU(2)L×SU(2)R×U(1)X×PLR [23–25].

Then the bound from electroweak precision observables reduces to Mg(1) > 4.8 TeV at 95%

CL [29]. But on the other hand, the sensitivity of Higgs physics on virtual effects from

heavy KK excitations is strongly increased in the model with custodial symmetry, due to

the enlarged fermion multiplicity for each KK level. Comparing predictions for the signal

rates of the Higgs decaying into pairs of electroweak gauge bosons with data from the LHC

excludes KK gluon resonances lighter than (15 − 20) TeV × (y∗/3) at 95% CL [27], where

the precise value depends on the details of the localization of the Higgs sector near the IR

brane. Here y∗ sets the upper bound for the entries of the anarchic 5D Yukawa matrices,

|(Yq)ij | ≤ y∗. In the minimal RS model the resulting bounds are much weaker. For values

of y∗ & O(1), the custodial RS model thus loses its main advantage of allowing for lighter

KK resonances such that the minimal RS model is just as promising nowadays. Note also

that the parameter εK measuring CP violation in kaon mixing requires KK gluon masses

in the range of 10 TeV (with moderate fine tuning) irrespective of whether the minimal or

the custodial RS models are considered [9, 26].

Higgs localization. In this work we focus on the RS model with a brane-localized Higgs

field, where the inverse characteristic width ∆h of the Higgs field along the extra dimension

is assumed to be much larger than the inherent UV cutoff near the IR brane, i.e. ∆h �
ΛTeV ∼ severalMKK [28]. It is well known that quantum fields can be strictly localized

on orbifold fixed points, and in such a scenario the quantity ∆h can indeed be infinite or

arbitrarily large. Similar to the case of Higgs production via gluon fusion [29, 35–45], we

will find that our results for the Higgs contributions to the b → sγ and b → sg dipole

coefficients are sensitive to details of the localization mechanism. For these contributions

we sometimes extend our results to the case of a so-called narrow bulk-Higgs scenario, where

the Higgs field lives in the bulk with an inverse width such that MKK � ∆h � ΛTeV [29].

This is a special case of a general bulk-Higgs with ∆h ∼ v, where v is the Higgs vev.

The authors of [30, 31] have calculated the RS contributions to the dipole operators in

the KK-decomposed theory for a general bulk-Higgs field, where the localization parameter

is taken to be β ∼ 1 (in our notation β ∼ ∆h/v). Numerically, they also discuss the quasi

IR-localized limit by increasing β, i.e. by pushing the Higgs profile towards the IR brane.

They find that heavy KK fermion modes with masses mqn ∼ βMKK yield unsuppressed

contributions in the case where the Higgs inverse width is of order the UV cutoff, β ∼
ΛTeV/v (∆h ∼ ΛTeV). In this case, there are still some high-momentum KK modes that
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can probe the “bulky nature” of the Higgs field. In addition, the authors of [20, 30] have

observed the non-decoupling of heavy KK excitations of the Higgs boson itself in the

quasi IR-localized limit of large β. These findings show that the results of Higgs-induced

contributions to the dipole operators depend on the implementation of the Higgs sector

(see [20] for a nice recent discussion of this point). In our brane-localized Higgs scenario,

where ∆h � ΛTeV, we observe that the 5D description of the dipole coefficients gives results

which are consistent with the description in the KK-decomposed theory when summing

over the first few KK levels. This shows that heavy KK modes near the UV cutoff decouple.

Furthermore, KK excitations of the Higgs doublet do not arise in this version of the model.

Gauge sector. In the minimal RS model the SM gauge group lives in the bulk and is

broken to U(1)EM on the IR brane, where the Higgs field develops a vev. Details for the

implementation of the Higgs, gauge-boson, and gauge-fixing sectors in the context of this

model (and using our notations) have been given in [10]. The KK-decomposition for the

5D gauge-boson field BM (x, t) is in general given by (with B = A,G,W,Z)

Bµ(x, t) =
1√
r

∑

n

B(n)
µ (x)χBn (t) , B5(x, t) =

1√
r

∑

n

( −kt
mBn

)
ϕ

(n)
B (x) ∂tχ

B
n (t) , (2.2)

where B
(n)
µ are the KK modes of the gauge bosons with masses mB

n . The scalar particles

ϕ
±(n)
W , ϕ

(n)
Z are “unphysical” in the sense that they provide the longitudinal degrees of

freedom of the W,Z bosons (n = 0) and their KK modes (n ≥ 1), and thus they can

be gauged away. Similarly the scalar particles ϕ
(n)
A , ϕ

(n)
G provide the longitudinal degrees

of freedom for the photon and gluon KK modes. The scalar fields W±5 and Z5 mix with

the charged Goldstone bosons arising from the Higgs sector. Assuming for the time being

that the scalar sector is localized on the IR brane, we parameterize the Higgs doublet after

electroweak symmetry breaking in the usual form

Φ(x) =
1√
2

(
−i
√

2ϕ+(x)

v + h(x) + iϕ3(x)

)
, (2.3)

where v denotes the Higgs vev in the RS model. We determine the vev v from the shift

to the Fermi constant GF , which can be derived in the RS model by considering (at tree

level) the effect of the exchange of the infinite tower of KK W bosons on the rate for muon

decay. We find that v = (
√

2GF )−1/2
[
1 +

Lm2
W

4M2
KK

+O
(

v4

M4
KK

)]
[29] with the experimentally

measured value (
√

2GF )−1/2 ≈ 246.2 GeV. The decomposition of the scalar fields ϕ±, ϕ3

in (2.3) into the mass eigenstates ϕ
±(n)
W , ϕ

(n)
Z reads [10]

ϕ±(x) =
∑

n

m̃W

mW
n

√
2π χWn (1)ϕ

±(n)
W (x) , m̃W =

g5√
2πr

v

2
,

ϕ3(x) =
∑

n

m̃Z

mZ
n

√
2π χZn (1)ϕ

(n)
Z (x) , m̃Z =

g5/cw√
2πr

v

2
,

(2.4)

where cw ≡ cos θw is the cosine of the weak mixing angle, and m̃W , m̃Z are the leading

contributions to the W±- and Z-boson masses in an expansion in powers of v2/M2
KK,
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such that mW,Z = m̃W,Z

[
1− m̃2

W,Z

4M2
KK

(
L− 1 + 1

2L

)
+O

(
v4

M4
KK

)]
[10]. The SU(2)L and

hypercharge 5D gauge couplings are denoted by g5 and g′5. In the context of RS models

the weak mixing angle can be expressed as s2
w ≡ sin2 θw = g′25 /(g

2
5 + g′25 ), which can be

studied experimentally via the Z-pole polarization asymmetries observed at LEP. We take

s2
w and mW as input values which implies that mZ is a derived quantity given in the RS

model by mZ(mW , s
2
w) = mW

cw

[
1− m2

W

4M2
KK

s2w
c2w

(
L− 1 + 1

2L

)
+O

(
v4

M4
KK

)]
. Since the profile

of the zero mode is flat up to corrections of order v2/M2
KK, it follows that

√
2π χW,Zn (1)

in (2.4) is close to 1, and hence the fields ϕ±, ϕ3 coincide with ϕ
±(0)
W , ϕ

(0)
Z to leading

order. We mention that one can adjust the gauge-fixing Lagrangian so as to cancel any

mixings between the vector and scalar fields [10].

Quark sector. In the quark sector the minimal RS model contains an SU(2)L doublet

field Q(x, t) and two SU(2)L singlet fields u(x, t) and d(x, t) in the 5D Lagrangian, each

of which are three-component vectors in generation space. The 5D fermion states can

be described by four-component Dirac spinors [4, 5]. We use a compact notation, where

we collect the left- and right-handed components of the up- and down-type states into

six-component vectors UA = (UA, uA)T and DA = (DA, dA)T with A = L,R, which are

collectively referred to as QL,R. Their decomposition into 4D KK modes reads

QA(x, t) =
∑

n

Q(n)
A (t) q

(n)
A (x) ; A = L,R . (2.5)

The superscript n labels the different mass eigenstates in the 4D effective theory, such that

n = 1, 2, 3 refer to the SM quarks, while n = 4, . . . , 9 label the six fermion modes of the

first KK level, and so on. The functions Q(n)
L,R(t) denote the wave functions of the left- and

right-handed components of the nth KK mass eigenstate along the extra dimension. The

upper (lower) components of Q(n)
L,R(t) include the profiles of the SU(2)L doublet (singlet)

quark fields.

3 Calculation of the dipole coefficients

Like in the SM, the leading-order contributions to the b→ sγ and b→ sg dipole coefficients

in the RS model are loop suppressed, because there are no flavor-changing couplings that

can induce a chirality flip. But in contrast to the SM there are more one-loop diagrams to

be considered. Besides the additional exchange of KK W± bosons, new topologies appear

due to the flavor-changing couplings of the Higgs boson, the Z boson and its KK modes,

and the photon and gluon KK modes. Figure 1 shows all relevant Feynman diagrams

contributing in a general Rξ gauge. Internal scalar lines of the diagrams (II), (III) and (IV)

include the contributions from the scalar component of the 5D gauge bosons and from the

corresponding Goldstone bosons in the Higgs sector. In this section the Wilson coefficients

C7γ,8g and C̃7γ,8g are defined via the general parametrization of the transition amplitude

A7γ,8g = i
GF√

2
λt

[
C7γ,8g 〈sγ|Q7γ,8g|b〉+ C̃7γ,8g 〈sγ|Q̃7γ,8g|b〉

]
, (3.1)
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(I) tt′

t′′

b sh

γ, g

(IIa) b sA,G,W,Z

γ, g

(IIb) b sA,G,W,Z

γ, g

(IIIa) b s

WW

γ

(IIIb) b s

WW

γ

(IIIc) b s

WW

γ

(IIId) b s

WW

γ

(IVa) b s

GG

g

(IVb) b s

GG

g

(IVc) b s

GG

g

(IVd) b s

GG

g

Figure 1. Diagrams contributing in the minimal RS model to the transitions b → sγ and b → sg

at the one-loop level. Solid lines denote the exchange of up- or down-type quarks while wavy or

curled lines denote the exchange of (vector) gauge-bosons. Apart from diagram (I) a scalar (dashed)

line includes the contribution from the fifth component of the gauge boson and the corresponding

contribution from the Goldstone bosons in the Higgs sector. The extra-dimensional coordinates of

the vertices are labelled according to diagram (I).

where GF is the Fermi constant, and λt ≡ V ∗tsVtb is the relevant prod-

uct of entries of the CKM matrix. The matrix elements in (3.1) are

given by 〈Q7γ〉 = (emb/2π
2) ε∗µ(q) ū(ps) iσµν q

νPR u(pb) and 〈Q8g〉 =

(gsmb/2π
2) ε∗µ(q) ū(ps) iσµν q

νPR u(pb), where the outgoing photon (gluon) momen-

tum is q = pb − ps. The chirality-flipped matrix elements 〈Q̃7γ,8g〉 are given by analogous

expressions with PR → PL. Working in Feynman-’t Hooft gauge (ξ = 1), we compute each

amplitude in figure 1 using the Feynman rules of the 5D theory collected in appendix A.

As an example we consider the penguin diagram (IIa) in figure 1, in which a 5D W±-

boson propagator and two 5D quark propagators arise. The corresponding amplitude with

an external photon is given by

AW,vector
7γ =

4πQue5g
2
5

(2πr)3/2

∫
d4k

(2π)4

∫ 1

ε

dtdt′dt′′ ε∗µ(q)Dξ=1
W,αβ(t′, t; k) ū(ps)

[
D(2)†
L (t)PR+D(2)†

R (t)PL

]

×PW γαSu(t, t′′; ps−k)γµSu(t′′, t′; pb−k)γβPW

[
D(3)
L (t′)PL+D(3)

R (t′)PR
]
u(pb) , (3.2)

where Qu = 2/3 is the electric charge of the exchanged up-type quarks in the loop. The

functions D(2)
A (t) and D(3)

A (t) with A = L,R denote the profiles of the physical strange-

and bottom-quark mass eigenstates, respectively, as defined in (2.5). In the above equation

e5 is the 5D electromagnetic coupling, while g5 represents the 5D SU(2)L gauge coupling.

The 4D electromagnetic coupling can be obtained by e = e5/
√

2πr. The 2 × 2 matrix

PW ≡ P+ = diag(1,0) originates from the 5D Feynman rule for the W+
µ ŪADA vertices

(with A = L,R) in (A.1) and projects out the profiles of the SU(2)L doublet quark fields.

– 7 –
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The 5D W±-boson propagator in (3.2) can be decomposed as

Dξ
W,µν(t, t′; k) = BW (t, t′;−k2 − i0)

(
ηµν −

kµkν
k2

)
+BW (t, t′;−k2/ξ − i0)

kµkν
k2

, (3.3)

with the KK representation

BW (t, t′;−k2) =
∑

n

χWn (t)χWn (t′)
m2
Wn
− k2 − i0 . (3.4)

The propagator function (3.4) can be calculated in closed form, see [28] for more details

on the derivation and the solution. The 5D quark propagators in (3.2) can be decomposed

into four functions differing in chirality and Lorentz structure [16, 21, 32–34],

iSq(t, t′; k) =
[
∆q
LL(t, t′;−k2) /k + ∆q

RL(t, t′;−k2)
]
PR + (L↔ R) , (3.5)

where q = u, d. The KK representations of the propagator functions read

∆q
LL(t, t′;−k2) =

∑

n

1

k2 −m2
qn

Q(n)
L (t)Q(n)†

L (t′) ,

∆q
RL(t, t′;−k2) =

∑

n

mqn

k2 −m2
qn

Q(n)
R (t)Q(n)†

L (t′) ,
(3.6)

and analogously for ∆q
RR and ∆q

LR. Each propagator function is a 6 × 6 matrix. The

subscripts denote the handedness of the incoming and outgoing quark fields, such that the

propagator function ∆q
RL implies a chirality flip. Explicit expressions for these functions

are given in appendix B for the brane-localized Higgs scenario and the case of a narrow

bulk-Higgs.

Next we outline some of the basic steps needed to extract the dipole coefficients from

the diagrams in figure 1:

• We perform a Taylor expansion of each 5D propagator in the external momenta

ps, pb and keep the terms up to second order, since higher orders would contribute to

higher-dimensional operators and yield suppressed contributions. For instance, for a

5D quark propagator function we apply the expansion (q = u, d)

∆q
AB(t, t′;−(pi−k)2) =

[
1−2(pi ·k)

∂

∂k2
+ 2 (pi ·k)2

(
∂

∂k2

)2

∓ . . .
]

∆q
AB(t, t′;−k2) ,

(3.7)

where pi = ps,b, k is the loop momentum, and A,B ∈ {L,R}. We need to expand

up to second order in the external momenta in order to obtain the leading effects

of the dipole Wilson coefficients, since the matrix elements of the dipole operators

contain the bottom mass mb and the momentum difference q = pb − ps. In fact,

the term linear in pi in (3.7) contributes only in the RS model, and not in the SM,

to the dipole Wilson coefficients. Analogously we can expand the 5D vector-boson

propagator function BB(t, t′;−(pi − k)2) with subscript B = A,G,W,Z.
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• The extra-dimensional integration of the vertex with the external photon or gluon

can be performed analytically by using the flatness of their profiles χA,G0 = 1/
√

2π

and the orthonormality conditions for fermion and boson profiles

∫ 1

ε
dtQ(n)

A (t)Q(n′)†
A (t) = δnn′ 16×6 ,

2π

L

∫ 1

ε

dt

t
χBn (t)χBn′(t) = δnn′ , (3.8)

where Q = U ,D and A = L,R in the left equation and B = A,G,W,Z on the right.

• The previous two bullets allow us to combine two 5D propagators of the same

type when we expand them in the external momenta ps, pb and perform the extra-

dimensional integration of the vertex that couples to the external photon or gluon.

For instance we can apply (q = u, d)

∫ 1

ε
dt′′∆q

RR(t, t′′;−(ps − k)2) ∆q
RL(t′′, t′;−(pb − k)2)

=

{
− ∂

∂k2
+ k · (ps + pb)

(
∂

∂k2

)2

− 2

3

[
k · ps k · pb+(ps · k)2+(pb · k)2

]( ∂

∂k2

)3

+. . .

}
∆q
RL(t, t′;−k2) ,

(3.9)

where we neglect terms of order (k ·ps)n(k ·pb)n
′

with n+n′ ≥ 3. Analogous relations

can be derived for products of different fermion and boson propagator functions.

Equation (3.9) can be used to reduce each amplitude by one extra-dimensional inte-

gration and one 5D propagator.

• We perform a Wick rotation to Euclidean momenta with k0 = ik0
E and kE =

√
−k2.

• For the matching procedure on the dipole operators we first use that the photon

or gluon is on-shell, qµε
µ∗(q) = 0, which allows us to rewrite pµs,bε

∗
µ(q) = 1

2(pb +

ps)
µε∗µ(q). Then, we can use the Dirac equation /pbu(pb) = mb u(pb) and apply the

Gordon identity

ū(ps) iσ
µνqνPL,R u(pb) = ū(ps)

[
(ps + pb)

µPL,R − γµ (msPL,R +mbPR,L)
]
u(pb) ,

(3.10)

in order to extract the Wilson coefficients.

In the following three subsections we discuss the gauge-invariant subsets of the diagrams

shown in figure 1.

3.1 Higgs contribution

We begin with the first diagram (I) in figure 1, in which the Higgs boson and two down-type

5D quark propagators are exchanged. The Yukawa interactions of the Higgs boson with

two down-type quarks are given by

Lhdd(x) = −
∫ 1

ε
dt δη(t− 1)

h(x)√
2

[
D̄L(x, t)Yd dR(x, t) + D̄R(x, t)Yd dL(x, t) + h.c.

]
,

(3.11)
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where the first term is often referred to as the “correct-chirality Higgs coupling” in the

literature, since it is also present in the SM. On the other hand, the second term couples

a right-handed SU(2)L doublet quark field to a left-handed SU(2)L singlet, which is not

allowed in the SM and is thus called the “wrong-chirality Higgs coupling”. The function

δη(t − 1) denotes the normalized Higgs profile along the extra dimension, which we take

to be the regularized δ-function. For the calculations we use a square box of width η and

height 1/η, such that

δη(t− 1)→ 1

η
θ(t− 1 + η) , with η � y∗ v

MKK
, (3.12)

where η is related to the inverse Higgs width by ∆−1
h ∼ η/v. The brane-localized Higgs

scenario corresponds to values of η � y∗ v/ΛTeV, while the narrow bulk-Higgs scenario

implies values in the range y∗ v/ΛTeV � η � y∗ v/MKK. Note that the shape of the

regularized profile is irrelevant as long as η � 1.

With the Feynman rules in appendix A and the basic steps outlined in the beginning

of this section we can derive an expression for the Wilson coefficient and find

Ch7γ,8g =
κ7γ,8g
h

4GFλt

1

v

∫ ∞

0

dkE
k2
E +m2

h

[(
k2
E

8
∂kE −

k3
E

8
∂2
kE

)
T dRL(k2

E)

mb

+

(
k2
E

32
∂kE −

k3
E

32
∂2
kE
− k4

E

96
∂3
kE

)
T dRR(k2

E)

MKK

]
,

(3.13)

where mh is the Higgs mass. Concerning the derivatives we use the notation ∂kE ≡
∂/∂kE . Due to the parametrization of the amplitude in (3.1) we have to divide the dipole

coefficient by λt and GF . The couplings are given by κ7γ
h = Qd and κ8g

h = 1, where

Qd = −1/3 is the electric charge of the exchanged down-type quarks. The dimensionless

propagator functions in (3.13) are defined via

T dRL(k2
E) =

−v√
2

∫ 1

ε
dtdt′ δη(t−1) δη(t′−1)D(2)†

L (t)MY
d ∆d

RL(t, t′; k2
E)MY

d D
(3)
R (t′) , (3.14)

T dRR(k2
E) =

−vMKK√
2

∫ 1

ε
dtdt′ δη(t−1) δη(t′−1)D(2)†

L (t)MY
d ∆d

RR(t, t′; k2
E)MY †

d D
(3)
L (t′) ,

including the regularized δ-functions (3.12) and the matrix MY
d = P12 Yd + P21 Y

†
d . The

projector Pij for i, j = 1, 2 is a 2× 2 matrix with zero entries except for the ij-component,

which equals 1. In order to perform the integrations over t and t′ we need the solutions for

the external quark profiles and the 5D quark propagators in the region t, t′ ∈ [1− η, 1].

The presence of the δ-function regulator (3.12) implies that in the region near the

IR brane, for t ∈ [1 − η, 1], the quark profiles are determined by the coupled differential

equations (with Q = U ,D and q = u, d) [35]

(
∂t +

1

t
Mc

q +
%

η
MY

q

)
Q(n)
R (t) = xqnQ(n)

L (t) ,

(
∂t −

1

t
Mc

q −
%

η
MY

q

)
Q(n)
L (t) = −xqnQ(n)

R (t) ,

(3.15)
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with xqn ≡ mqn/MKK and % ≡ v/(
√

2MKK). These equations can be simplified for the

considered limit η � y∗ v/MKK. First, the term Mc
q = P+ cQ −P− cq, which contains the

bulk mass parameters cQ and cq, is parametrically suppressed for η cQi,di � y∗% and can

therefore be neglected. The projector P− projects on the lower components and is given

by P− = diag(0, 1). Secondly, the mass-dependent terms on the right side of (3.15) are

suppressed for the SM quarks, since ηxqn � y∗%. With these approximations, the basic

solutions are given by the trigonometric functions (for q = u, d)

S(t) = sinh
Xq (1− t)

η
, C(t) = cosh

Xq (1− t)
η

, (3.16)

with the hermitian matrix Xq = %(YqY
†
q )1/2. The basic ansatz for the solution consists of

four unknown coefficients each for Q(n)
L (t) and Q(n)

R (t). We can fix two coefficients by imple-

menting the Dirichlet boundary conditions (0 1)Q(n)
L (1) = 0 and (1 0)Q(n)

R (1) = 0 for the

orbifold-odd profiles on the IR brane. Two more coefficients can be eliminated by imposing

the Neumann boundary conditions (∂t 0)Q(n)
L (t)|t=1 = 0 and (0 ∂t)Q(n)

R (t)|t=1 = 0 for

the orbifold-even profiles. Finally, the solutions for t ∈ [1− η, 1] are given by (Q = U ,D)

Q(n)
L (t) =



C(t)
C(1η) 0

0 S̄(t)
S̄(1η)


Q(n)

L (1η) , Q(n)
R (t) =



S(t)
S(1η) 0

0 C̄(t)
C̄(1η)


Q(n)

R (1η) , (3.17)

where we use the short-hand notation 1η ≡ 1 − η. The functions S̄(t), C̄(t) are given

by (3.16) with Xq replaced by X̄q = %(Y †q Yq)1/2.

The derivation of the 5D quark propagator in the region near the IR brane has been

discussed in detail in [29]. Appendix B contains all solutions that are relevant for the present

work. Here we just comment that the basic solutions for the 5D propagator functions

∆q
AB(t, t′; k2

E) with A,B ∈ {L,R} for t, t′ ∈ [1−η, 1] are given in terms of the trigonometric

functions C(t) and S(t) in (3.16) with Xq replaced by

Sq =
√
X2
q + η2k̂2

E , (3.18)

where k̂E = kE/MKK is the Euclidean momentum normalized to the KK scale. The η de-

pendence of the propagator enters only via the product ηk̂E . As we will see below, this leads

to a different behavior of the propagator depending on whether ηk̂E � y∗% or ηk̂E � y∗%.

Calculation of the propagator functions T dRL(k2E) and T dRR(k2E). It is instructive to

discuss the calculation of the function T dRL(k2
E) in more detail, since it exhibits a sensitivity

on the regulator η, which is similar to that observed in the calculation of the loop-induced

Higgs coupling to two gluons [29, 35–45]. Applying the δ-function regulator (3.12) and

inserting the solutions for the external quark profiles (3.17) into (3.14), we obtain

T dRL(k2
E) =

−v√
2
D(2)†
L (1η)

∫ 1

1η

dtdt′

η2

[( C(t)
C(1η)

Yd ∆d,21
RL (t, t′; k2

E)− Xd

%

S(t)

C(1η)
∆d,11
RL (t, t′; k2

E)

) C(t′)
C(1η)

Yd

+

( C(t)
C(1η)

Yd ∆d,22
RL (t, t′; k2

E)− Xd

%

S(t)

C(1η)
∆d,12
RL (t, t′; k2

E)

)
X̄d

%

S̄(t′)

C̄(1η)

]
P12D(3)

R (1η) , (3.19)

– 11 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
2

where C(t),S(t) are defined in (3.16) with q = d. The propagator functions in the region

near the IR brane for t, t′ ∈ [1η, 1] can be found in appendix B.

We are not interested in the full dependence of T dRL(k2
E) on η, since in the end of the

calculation we will always remove the regulator (η → 0). However, since T dRL(k2
E) depends

on the product ηk̂E via the 5D quark propagator functions and we integrate the function

in (3.13) from zero to infinite Euclidean momentum, we have to investigate whether the

momentum integration commutes with the limit η → 0. If we implement a momentum

cutoff kE ≤ Λcut for the integral, the question can be reformulated as whether (3.13) yields

the same results when imposing the constraints η � y∗v/Λcut or η � y∗v/Λcut. Thus we

need to investigate the ultra-violet (UV) behavior of T dRL(k2
E) for large Euclidean momenta

near the cutoff kE ∼ Λcut.

Let us begin with the first scenario η � y∗v/Λcut, where η is bounded from below. In

fact, we also have to impose an upper bound η � y∗v/MKK, which is required in order to

find reliable solutions for the 5D propagator functions in the region t, t′ ∈ [1η, 1] [29]. When

we consider large Euclidean momenta near the UV cutoff (kE ∼ Λcut), the allowed range

of η implies the hierarchy k̂E � y∗%/η. Consequently, the function Sd = (X2
d + η2k̂2

E)1/2,

which is contained in the 5D propagator solutions, becomes approximately independent of

the Yukawa-dependent term, such that Sd ≈ ηk̂E . In this limit, we find that (ηk̂E � y∗%)

T dRL(k2
E) ∼ (ηk̂E)−3 (3.20)

falls off with the third inverse power of the product ηk̂E . An analogous analysis for T dRR(k2
E)

shows that it exhibits the same behavior as in (3.20). Since the imposed cutoff can be

identified with the effective UV cutoff of the theory near the IR brane, Λcut ≈ ΛTeV, the

behavior in (3.20) refers to the case of a narrow bulk-Higgs scenario.

We continue with the second scenario, where the δ-function regulator is bounded from

above by η � y∗v/Λcut. This case represents the brane-localized Higgs scenario for Λcut ≈
ΛTeV. Consequently, the product ηk̂E is much smaller than y∗% implying that Sd in (3.18)

becomes approximately independent of the regulator, Sd ≈ Xd. In this limit, we find

(ηk̂E � y∗%)

T dRL(k2
E) = D(2)†

L (1η)

∫ 1

1η

dtdt′

η2

[(
2Xd

sinh 2Xd

Zd(k
2
E)

1 +Zd(k2
E)

C(t′)
C(1η)

+
Xd

cothXd

C(t′)
C(1η)

− θ(t− t′)Xd
S(t′)
C(1η)

) C(t′)
C(1η)

Yd

−
(

2Xd

sinh 2Xd

Zd(k
2
E)

1 +Zd(k2
E)

S(t′)
C(1η)

+
Xd

cothXd

S(t′)
C(1η)

−θ(t−t′)Xd
C(t′)
C(1η)

) S(t′)
C(1η)

Yd

]
P12D(3)

R (1η) .

(3.21)

Here we have introduced the structure [29] (for q = u, d)

Zq(k
2
E) = %2 ỸqRq(k̂E)Ỹ †q RQ(k̂E) , (3.22)

with the modified Yukawa matrix Ỹq ≡ (tanhXq/Xq)Yq. We further need the ratio

RA(k̂E) =
I−cA− 1

2
(εk̂E) IcA− 1

2
(k̂E)− IcA+ 1

2
(εk̂E) I−cA+ 1

2
(k̂E)

I−cA− 1
2
(εk̂E) IcA+ 1

2
(k̂E)− IcA+ 1

2
(εk̂E) I−cA− 1

2
(k̂E)

; A = Q, q (3.23)
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of modified Bessel functions, where cQ, cu,d are the bulk mass parameters of the 5D quark

fields [4, 5]. In (3.21) we have not yet combined the terms inside the two round brackets.

But when combining them we find that the t, t′-dependence completely cancels and the

t, t′ integrations become trivial, an analogous observation was made for the Higgs produc-

tion via gluon fusion in [29]. In addition the remaining η-dependence completely cancels.

Finally, in the brane-localized Higgs scenario we find the results (ηk̂E � y∗%)

T dRL(k2
E) = D(2)†

L (1−)

[
2Xd

sinh 2Xd

Zd(k
2
E)

1 +Zd(k
2
E)

2Xd

sinh 2Xd
+

X2
d

cosh2Xd

]
ỸdP12D(3)

R (1−) ,

T dRR(k2
E) = D(2)†

L (1−)
1

k̂E

2Xd

sinh 2Xd

Zd(k
2
E)

1 +Zd(k
2
E)

1

RQ(k̂E)

2Xd

sinh 2Xd
P+D(3)

L (1−) , (3.24)

which are independent of the δ-function regulator. We have also included the final result for

T dRR(k2
E), which can be obtained by an analogous calculation. For large Euclidean momenta

kE �MKK the structure Zq(k
2
E) in (3.22) can be expanded as Zd(k

2
E) ≈ %2Ỹd Ỹ

†
d +O(k̂−2

E ).

We observe that T dRL(k2
E) reaches a non-zero plateau in this limit, which is in contrast with

relation (3.20) valid in the narrow bulk-Higgs scenario. Consequently, the contribution

of T dRL(k2
E) to the dipole coefficient (3.13) exhibits a dependence on the model under

consideration. On the other hand, the function T dRR(k2
E) vanishes also in the narrow bulk-

Higgs scenario and does not lead to a model-dependent contribution.

Interestingly we could have obtained the same results for T dRL(k2
E) and T dRR(k2

E)

in (3.24) if we had naively evaluated the extra-dimensional coordinates at t = t′ = 1−

instead of using the regularized δ-function in (3.14). We have explicitly confirmed that

(ηk̂E � y∗%)

T dRL(k2
E) = − v√

2
D(2)†
L (1−)MY

d ∆d
RL(1−, 1−; k2

E)MY
d D

(3)
R (1−) ,

T dRR(k2
E) = −vMKK√

2
D(2)†
L (1−)MY

d ∆d
RR(1−, 1−; k2

E)MY †
d D

(3)
L (1−) ,

(3.25)

lead to the results (3.24). An analogous situation was encountered for the calculation of

the propagator functions T±(k2
E) in the case of the Higgs production process via gluon

fusion [29].

Final result for the Wilson coefficient Ch7γ,8g. The above analysis shows that the

integrand of the dipole coefficient in (3.13) falls off with at least two inverse powers of

Euclidean momenta ∼ k−2
E in the UV, which implies the finiteness of the integral. Thus,

we are allowed to perform partial momentum integrations in (3.13) and find

Ch7γ,8g =
κ7γ,8g
h

4GFλt

1

v

[
lim

kE→∞
T dRL(k2

E)

4mb
−
∫ ∞

0

dkE kEm
4
h

(k2
E +m2

h)3

(
T dRL(k2

E)

mb
+

k2
E

k2
E +m2

h

T dRR(k2
E)

2MKK

)]
,

(3.26)

where all boundary terms at k2
E = 0 vanish. Based on the previous analysis only for large

Euclidean momenta we can have a non-zero boundary term in case of a brane-localized

Higgs scenario, where T dRL(k2
E) approaches a non-zero plateau. This is accounted for by
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the first term in the outer bracket of (3.26). We can insert our results for T dRL(k2
E) and

T dRR(k2
E) in (3.24) into (3.26) and find

Ch7γ,8g =
κ7γ,8g
h

4GFλt

1

v
D(2)†
L (1−)

[
P12

g(Xd, Ỹd)

4mb
D(3)
R (1−)− 2Xd

sinh 2Xd

∫ ∞

0

dkE kEm
4
h

(k2
E +m2

h)3

×
(
P12

mb

Zd(k
2
E)

1 +Zd(k2
E)

2Xd

sinh 2Xd
ỸdD(3)

R (1−) (3.27)

+
P+

2

kE
k2
E +m2

h

Zd(k
2
E)

1 +Zd(k2
E)

1

RQ(k̂E)

2Xd

sinh 2Xd
D(3)
L (1−)

)]
,

with

g(Xq, Ỹq)
∣∣∣
brane Higgs

=
2Xq

sinh 2Xq

%2ỸqỸ
†
q

1 + %2ỸqỸ
†
q

2Xq

sinh 2Xq
Ỹq = +%2YqY

†
q Yq +O(%4) ,

g(Xq, Ỹq)
∣∣∣
narrow bulk-Higgs

= −
X2
q

cosh2Xq

Ỹq = −%2YqY
†
q Yq +O(%4) . (3.28)

The function g(Xq, Ỹq) is model dependent. To leading order in v2/M2
KK it only differs in

the relative sign for a brane-localized and narrow bulk-Higgs. A similar observation was

made for the KK tower contribution in case of Higgs production via gluon fusion [29]. We

will see numerically in section (4.4) that this term emerges from the penguin diagrams

exchanging KK quarks. Note that in this present paper we limit our analysis of the narrow

bulk-Higgs model to the contributions involving the zero modes of the scalar doublet (see

in particular section 4.5). The contributions of scalar KK excitations have been studied

in [20, 30].

We can generalize the results obtained in the brane-localized Higgs sector by allowing

for two different Yukawa matrices Y C
q and Y S

q associated with orbifold-even and -odd quark

profiles [41, 46]. In other words, we associate the correct-chirality Higgs coupling with Y C
q

and the wrong-chirality coupling with Y S
q , i.e. we replace in the Lagrangian for the Higgs

coupling to down-type quarks Yd → Y C
d in the first term and Yd → Y S

d in the second

term of (3.11). We will refer to this model as the “type-II brane-Higgs” scenario [29]. We

find that our previous analysis still holds, provided we use Ỹq = (tanhXq/Xq)Y
C
q for the

modified Yukawa matrix and Xq = %(Y C
q Y

S†
q )1/2. We then obtain

g(Xq, Ỹq)
∣∣∣
type-II

brane Higgs
=

2Xd

sinh 2Xd

%2ỸqỸ
†
q

1 + %2YqỸ
†
q

2Xd

sinh 2Xd
Ỹq = +%2Y C

q Y
C†
q Y C

q +O(%4) ,

(3.29)

where to leading order in v2/M2
KK the KK contribution emerges from the correct-chirality

Higgs coupling. At this order there is no difference between the original result (3.28)

and (3.29). The wrong-chirality Higgs coupling only contributes at order v4/M4
KK.

In the following our paper concentrates on the RS model with a brane-localized Higgs

sector and we set for simplicity Y C
q = Y S

q ≡ Yq. The only exception is section 4.5, where

we discuss some results in the narrow bulk-Higgs scenario.
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3.2 Gauge-boson contribution

We continue with the diagrams (IIa) and (IIb) in figure 1, where two internal quarks and one

gauge boson are exchanged. The Wilson coefficients for the vector and scalar contributions

are given by (with B = A,G,W,Z)

CB,vector
7γ,8g =

κ7γ,8g
B

4
√

2GFλt
2π

∫ ∞

0
dkE

∫ 1

ε
dtdt′BB(t′, t; k2

E)D(2)†
L (t)PB

×
[(

11k2
E

16
∂kE +

5k3
E

16
∂2
kE

+
k4
E

48
∂3
kE

)
∆q
LL(t, t′; k2

E)PB D(3)
L (t′)

+

(
−3k2

E

2
∂kE −

k3
E

2
∂2
kE

)
∆q
LR(t, t′; k2

E)

mb
PB D(3)

R (t′)

]
,

CB,scalar
7γ,8g =

κ7γ,8g
B

4
√

2GFλt
2π

∫ ∞

0
dkE

∫ 1

ε
dtdt′Bscalar

B (t′, t; k2
E)D(2)†

L (t) ṼB−5
(t)

×
[(

k2
E

32
∂kE −

k3
E

32
∂2
kE
− k4

E

96
∂3
kE

)
∆q
RR(t, t′; k2

E)VB+
5

(t′)D(3)
L (t′)

+

(
k2
E

8
∂kE −

k3
E

8
∂2
kE

)
∆q
RL(t, t′; k2

E)

mb
ṼB+

5
(t′)D(3)

R (t′)

]
, (3.30)

where we introduced the matrices PA = PG = 12×2 and PZ = (P+ +gdR/g
d
LP−), with gdL ≡

T 3
d −Q2

d s
2
w and gdR ≡ −Q2

d s
2
w. In case of the W±-boson loop up-type 5D quark propagator

functions (q = u) arise, otherwise we need to set q = d in (3.30). The quark propagator

functions ∆q
AB(t, t′; k2

E) are given explicitly in appendix B for the brane-localized Higgs

scenario. We remark that in case of the photon and gluon contributions to the Wilson

coefficients (B = A,G) only KK resonances can contribute, therefore we have to subtract

the zero mode 4D propagator (2πk2
E)−1 from BB(t′, t; k2

E) in (3.30). The structures2 VB±5
(t)

and ṼB±5
(t) can be found in appendix A. The coefficients κ7γ,8g

B are given by

κ7γ
A = 2Q3

d e
2 , κ7γ

G = 2QdCF g
2
s , κ7γ

W = Qu
g2

5

2πr
, κ7γ

Z = 2Qd (gdL)2 g
2
5/c

2
w

2πr
,

κ8g
A = 2Q2

d e
2 , κ8g

G = − 1

Nc
g2
s , κ8g

W =
g2

5

2πr
, κ8g

Z = 2(gdL)2 g
2
5/c

2
w

2πr
, (3.31)

where e is the 4D electromagnetic and gs the QCD 4D gauge coupling. The

5D gauge coupling of SU(2)L can be obtained from
g25

2πr =
4m̃2

W
v2

=

4
√

2GFm
2
W

[
1− m2

W

2M2
KK

(
1− 1

2L

)
+O

(
v4

M4
KK

)]
, which can be derived from the expan-

sions of m̃W and v to leading order in v2/M2
KK given in the text below (2.4). Furthermore

Qu = 2/3, Qd = −1/3 and CF = (N2
c − 1)/(2Nc) = 4/3 with Nc = 3 being the color

factor for quarks. The largest factors occur in case of the penguin diagrams exchanging

KK gluons and W±-boson modes.

2The ± labels on the subscripts of V
B±5

(t) and Ṽ
B±5

(t) are only relevant for B = W and can be ignored

otherwise.
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The scalar Wilson coefficient in (3.30) contains the propagator function

Bscalar
B (t, t′;−k2/ξ), which is related to the 5D scalar propagator in general Rξ gauge via

Dscalar,ξ
B (t, t′; k) = −1

ξB
scalar
B (t, t′;−k2/ξ). Its KK decomposition (B = A,G,W,Z),

Bscalar
B (t, t′;−k2) =

∑

n

M2
KK

m2
Bn

tt′

ε2
∂tχ

B
n (t) ∂t′χ

B
n (t′)

m2
Bn
− k2 − i0 , (3.32)

can be used to express it in terms of the vector-boson propagator (3.4) by means of the

relation

Bscalar
B (t, t′; k2

E) =
M2

KK

ε2
tt′

k2
E

∂t ∂t′
[
BB(t, t′; 0)−BB(t, t′; k2

E)
]
. (3.33)

We can use this equation to eliminate the brane-localized terms inside the structures VB±5
(t)

and ṼB±5
(t) in case of the massive gauge bosons (B = W,Z). For example, the 5D Feynman

rule for the W−5 ŪLUR vertex given in (A.2) contains the term

ṼW−5
(t) = −ε

t

[
PW −

%M2
KK

Lm̃2
W

δ(t− 1)MY
ud

]
, (3.34)

where MY
ud = YuP12 − Y †d P21. The first term originates from the fifth component of the

gauge-boson coupling to quarks, while the second brane-localized term is due to the Yukawa

coupling of the W±-Goldstone boson. We now insert (3.33) into (3.30) and perform partial

integrations for the t, t′ coordinates, taking into account that all terms on the boundary

are orbifold-odd and therefore vanish. The partial integrations lead to derivatives acting

on fermion profiles and propagators. We can use the equation of motions for the fermion

profiles and the differential equations satisfied by the 5D propagators to show that all

brane-localized terms contained in VW±5
(t) and ṼW±5

(t) cancel. For example, the partial

t-integration of the scalar Wilson coefficient in (3.30) leads to the term (for B = W )

∂t

[
D(2)†
L (t)PW∆u

RR(t, t′; k2
E)
]

= D(2)†
L (t)PW

∆u
LR(t, t′; k2

E)

MKK
− ms

MKK
D(2)†
R (t)PW∆u

RR(t, t′; k2
E)

+ % δ(t− 1)D(2)†
L (t)MY

ud ∆u
RR(t, t′; k2

E) , (3.35)

where we have used that

∂tQ(n)
L (t) = − mqn

MKK
Q(n)
R (t) +Mq(t)Q(n)

L (t) ,

∂t∆
q
RR(t, t′; k2

E) =
1

MKK
∆q
LR(t, t′; k2

E)−Mq(t) ∆q
RR(t, t′; k2

E) .
(3.36)

The last term in (3.35) cancels with the remaining contribution from the brane-localized

term in (3.34). Furthermore, we will discard contributions that are suppressed by the

strange-quark mass.

In the last step we can perform partial integrations of the Euclidean momentum vari-

able and finally obtain (B = A,G,W,Z)

CB7γ,8g =
κ7γ,8g
B

4
√

2GFλt

{
5

24
RBLL −

1

4
RBLR + 2π

∫ ∞

0
dkE

∫ 1

ε
dtdt′D(2)†

L (t)PB (3.37)
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×
[

∆q
LR(t, t′; k2

E)

mb
PB D(3)

R (t′)
(
−9k2

E

8
∂kE −

3k3
E

8
∂2
kE

)

+ ∆q
LL(t, t′; k2

E)PB D(3)
L (t′)

(
3k2

E

32
∂kE −

3k3
E

32
∂2
kE
− k4

E

32
∂3
kE

)]
BB (t ′, t ; k2

E )

}
,

where we have combined both the vector and scalar Wilson coefficients. The partial mo-

mentum integrations are required for numerical reasons, since momentum derivatives acting

on fermion propagators lead to complicated expressions that are very inefficient to evaluate.

Note that the Wilson coefficients for B = A,G differ only in the factors κ7γ,8g
A and κ7γ,8g

G ,

see (3.31). Due to the partial momentum integrations we encounter non-zero boundary

terms for large Euclidean momenta in (3.37), they are defined by

RBLL = −2π lim
kE→∞

k2
E

∫ 1

ε
dtdt′BB(t′, t; 0)D(2)†

L (t)PB ∆q
LL(t, t′; k2

E)PB D(3)
L (t′) ,

RBLR = −2π lim
kE→∞

k2
E

∫ 1

ε
dtdt′BB(t′, t; 0)D(2)†

L (t)PB
∆q
LR(t, t′; k2

E)

mb
PB D(3)

R (t′) ,

(3.38)

where q = u for B = W and q = d for B = A,G,Z. In case of the penguin diagrams, in

which photon (gluon) modes are exchanged, we have to subtract the zero-mode contribution

from the full propagator function BA(t, t′; 0). The reason is that massless gauge bosons have

constant profiles that lead to flavor-conserving interactions and therefore do not contribute

to the Wilson coefficients.

Calculation of the boundary terms RBLL and RBLR. In order to determine the bound-

ary terms in (3.38) we need to know the UV behavior of the boson and fermion propagator

functions, which is worked out in appendix C. Using the results shown in equation (C.2),

we can calculate the first boundary term in (3.38) and obtain

RBLL = 2π

∫ 1

ε
dtBB(t, t; 0)D(2)†

L (t)P 2
B D(3)

L (t) , (3.39)

where we have to remember to subtract the zero-mode propagator in case of B = A,G,

since only KK photons and KK gluons can contribute. We can further simplify (3.39) by

using the explicit expressions for the propagator functions [10]

BB(t, t; 0) =
1

2πm̃2
B

+
L(1− t2)

4πM2
KK

; B = W,Z ,

B′B(t, t; 0) =
1

4πM2
KK

(
Lt2 − t2(1− 2 ln t) +

1

2L

)
; B = A,G ,

(3.40)

where B′B(t, t; 0) in the second line includes only the KK modes. Inserting (3.40) into (3.39)

and applying the orthonormality condition for the fermion profiles (3.8), we obtain

RALL =
L

2M2
KK

[
(∆D)23 −

2

L
(∆′D)23

]
, (3.41)

RWLL = − L

2M2
KK

[(∆D)23 + (δD)23 − (εD)23]− (δD)23

m̃2
W

,
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RZLL = − L

2M2
KK

[
(∆D)23 +

(
1− (gdR)2

(gdL)2

)(
(δD)23 − (εD)23

)]
−
(

1− (gdR)2

(gdL)2

)
(δD)23

m̃2
Z

,

where RGLL = RALL. We recover the known overlap integrals

(∆D)nn′ =

∫ 1

ε
dt t2D(n)†

L (t)D(n′)
L (t) , (∆′D)nn′ =

∫ 1

ε
dt t2

(
1

2
− ln t

)
D(n)†
L (t)D(n′)

L (t) ,

(δD)nn′ =

∫ 1

ε
dtD(n)†

L (t)P−D(n′)
L (t) , (εD)nn′ =

∫ 1

ε
dt t2D(n)†

L (t)P−D(n′)
L (t) , (3.42)

originally defined in [10]. For the other boundary term in (3.38), we can use relation (C.9)

and obtain

RBLR = −2π

xb

[
BB(1−, 1−; 0)D(2)†

L (1−)PB

(
P+

1 + %2ỸqỸ
†
q

+
P− %2Ỹ †q Ỹq
1 + %2Ỹ †q Ỹq

− P12

1 + %2ỸqỸ
†
q

%Ỹq − %Ỹ †q
P21

1 + %2ỸqỸ
†
q

)
PB D(3)

R (1−)

−
∫ 1

ε
dtD(2)†

L (t)P 2
B

(
D(3)
R (t)

∂t
2

+ xbD(3)
L (t)

)
BB(t, t; 0)

]
,

(3.43)

where Pij is a 2× 2 matrix with zero entries except for the ij-component, which equals 1.

We have omitted the terms at t = ε, since the upper component of D(n)
R (t) and the lower

component of D(n)
L (t) obey Dirichlet boundary conditions at the UV brane and therefore

vanish. In order to obtain the last term we have used that the function BB(t, t′; 0) vanishes

for t′ < t and we applied the equation of motion for the fermion profiles. We can further

simplify (3.43) by performing a partial t-integration of the term involving ∂tBB(t, t; 0) and

by using the fermion equation of motions to show that

RBLR =
1

2
RBLL −

2π

xb
BB(1−, 1−; 0)D(2)†

L (1−)PB

[
P+

2

1− %2ỸqỸ
†
q

1 + %2ỸqỸ
†
q

− P−
2

1− %2Ỹ †q Ỹq
1 + %2Ỹ †q Ỹq

− P12

1 + %2ỸqỸ
†
q

%Ỹq − %Ỹ †q
P21

1 + %2ỸqỸ
†
q

]
PB D(3)

R (1−) , (3.44)

where we neglected a term suppressed by ms/mb and where we recovered the term RBLL.

Applying the modified boundary conditions of the quark profiles,3 we obtain

RALR =
1

2
RALL ,

RWLR =
1

2
RWLL −

1

2m̃2
W

v√
2mb

D(2)†
L (1−)P12

1− %2ỸuỸ
†
u

1 + %2ỸuỸ
†
u

ỸdD(3)
R (1−) ,

RZLR =
1

2
RZLL −

1

2m̃2
Z

v√
2mb

(
1− gdR

gdL

)2

D(2)†
L (1−)P12

1− %2ỸdỸ
†
d

1 + %2ỸdỸ
†
d

ỸdD(3)
R (1−) ,

(3.45)

3In the brane-localized Higgs scenario one can consistently calculate the fermion profiles by using modi-

fied boundary conditions at the IR brane without the notion of a regulator for the δ-function [35]. Here we

can apply (%Ỹ †d 1)D(n)
L (1−) = 0 and (1 − %Ỹd)D(n)

R (1−) = 0.
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where RGLR = RALR. Yukawa-dependent terms appear in case of the massive gauge bosons

and originate from the Goldstone degrees of freedom, which are localized at the IR brane.

Finally, we have succeeded in obtaining expressions for the boundary terms (3.41)

and (3.45), such that the complete Wilson coefficient CB7γ,8g in (3.37) can be evaluated

numerically. The chirality-flipped Wilson coefficients C̃7γ,8g can be obtained from (3.37)

and (3.38) by interchanging the label L ↔ R. The boundary terms can be calculated in

analogy with the above steps, and we can use the results (3.39) and (3.44), for which we

find RBRR = RBLL|L→R and RBRL = RBLR|L↔R.

3.3 Triple gauge-boson vertex contribution

Finally we discuss the diagrams exchanging two internal gauge bosons (B = W,G) and one

quark, see diagrams (IIIa)-(IIId) and (IVa)-(IVd) in figure 1. There are four diagrams each,

involving vector and scalar components of the gauge-boson propagators. We refrain from

showing intermediate steps of the calculation but mention that we can proceed analogously

as in the previous section and combine the vector- and scalar-boson contributions. After

some algebra we obtain the Wilson coefficients

CWW
7γ =

κWW

4
√

2GFλt

{
1

6
RWLL −

1

4
RWLR + 2π

∫ ∞

0
dkE

∫ 1

ε
dtdt′D(2)†

L (t)P+

×
[
∆u
LL(t, t′; k2

E)P+D(3)
L (t′)

(
3k2

E

32
∂kE −

3k3
E

32
∂2
kE

+
k4
E

32
∂3
kE

)

+
∆u
LR(t, t′; k2

E)

mb
P+D(3)

R (t′)
(
−3k2

E

8
∂kE+

3k3
E

8
∂2
kE

)]
BW (t′, t; k2

E)

}
,

CGG8g =
κGG

4
√

2GFλt

{
1

6
RGLL −

1

4
RGLR + 2π

∫ ∞

0
dkE

∫ 1

ε
dtdt′D(2)†

L (t)

×
[
∆d
LL(t, t′; k2

E)D(3)
L (t′)

(
−5k2

E

32
∂kE +

5k3
E

32
∂2
kE
− k4

E

96
∂3
kE

)

+
∆d
LR(t, t′; k2

E)

mb
D(3)
R (t′)

(
3k2

E

8
∂kE−

3k3
E

8
∂2
kE

)]
B′G(t′, t; k2

E)

}
, (3.46)

where κWW = g2
5/(2πr) and κGG = Nc g

2
s . Note that the factor κGG for the triple gluon

vertex diagram is larger by N2
c = 9 compared to κ8g

G and comes with a relative sign. We

recover the same boundary terms that have already been calculated in section 3.2 apart

from constant factors.

4 Analysis of the dipole coefficients

4.1 Finiteness of the integrals

In order to show the finiteness of the dipole coefficients in (3.13), (3.37) and (3.46) we

need to know the UV behavior of the 5D boson and fermion propagators. We refer to

appendix C for the corresponding derivations. For instance, the general behavior of the

5D (vector) gauge-boson propagator is given by (subscript B = A,G,W,Z)

BB(t, t′; k2
E) ∼

√
tt′

kE
e−k̂E |t−t

′| . (k̂E � 1/t, 1/t′) (4.1)
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For large Euclidean momenta the propagator function is exponentially suppressed except

for |t− t′| ∼ 1/k̂E . Integrating (4.1) along the coordinates t and t′ we find

∫ 1

ε
dtdt′BB(t, t′; k2

E) ∼ 1

k2
E

, (k̂E � 1/ε) (4.2)

showing that the integral scales like k−2
E for Euclidean momenta k̂E � 1/ε. Based on this

analysis, and extending it to the case of the fermion propagator functions, we can formulate

a power counting for integrals, where each extra-dimensional coordinate is integrated over

the full interval. Excluding brane-localized terms, the counting in terms of Euclidean

momenta can be formulated as

∆q
AB → (kE)−1, BW,Z,A,G → (kE)−1 ,

∫ 1

ε
dt→ (kE)−1 , (4.3)

where A,B ∈ {L,R} and q = u, d for the quark propagator functions and with the addi-

tional condition that the last t-integration is not counted. This condition can be traced

back to the conservation of the total 5-momentum. We can apply the power-counting

scheme (4.3) to the penguin loops (3.37) and (3.46), showing that after the t, t′ integra-

tions the integrands fall off like k−2
E for large Euclidean momenta. Thus the remaining

momentum integration can be performed and yields a finite result. This is in agreement

with the findings of [16], where the authors derived a power-counting scheme for the penguin

diagrams treating the Yukawa interactions as small perturbations. The Higgs contribution

contains two brane-localized vertices and our scheme (4.3) does not apply. In fact, the

analysis of section 3.1 shows that the propagator functions in the brane-localized Higgs

scenario scale like T dRR(k2
E) ∼ k̂−1

E and T dRL(k2
E) ∼ const + O(k̂−1

E ) for large Euclidean

momenta. Since the Higgs boson propagator scales like k−2
E the Wilson coefficient is finite

which is in agreement with the results of [16].

In summary, using our expressions for the 5D propagators with non-trivial boundary

conditions at the IR brane we have confirmed the findings of [16] that the dipole coefficients

are finite and calculable. This conclusion is also consistent with our results (4.4) derived

in the KK-decomposed theory and discussed in the following section, where we can show

that all dipole coefficients converge after summing up the KK towers.

4.2 Connection with the KK-decomposed theory

We can express the dipole coefficients, as defined via the amplitude (3.1), in terms of sums

over zero-mode and KK-mode contributions. Starting from the expressions (3.13), (3.37)

and (3.46) in the 5D framework we replace the 5D propagator functions by their cor-

responding KK representations. The appearing momentum integrals can be performed

analytically and we obtain the loop functions I3,4(x) and I6-11(x), which are defined via
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their integral representations (D.1) in appendix D. We find the compact expressions

CB7γ,8g =
κ7γ,8g
B

4
√

2GFλt

∑

n,m

1

m2
Bm

(
mqn

mb

I6(xqnBm)

2
V B−

2mn Ṽ
B+

nm3 +
I7(xqnBm)

2
V B−

2mn V
B+

nm3

)
,

CWW
7γ =

κWW

4
√

2GFλt

∑

n,m

1

m2
Bm

(
mun

mb
I8(xBmun )V W−

2mn Ṽ
W+

nm3 + I9(xBmun )V W−
2mn V

W+

nm3

)
,

CGG8g =
κGG

4
√

2GFλt

∑

n,m

1

m2
Bm

(
mdn

mb
I10(xBmdn )V G

2mn Ṽ
G
nm3 + I11(xBmdn )V G

2mn V
G
nm3

)
,

Ch7γ,8g = − κ7γ,8g
h

4
√

2GFλt

∑

n

1

m2
h

(
mdn

mb
I3(xdnh ) (gdh)2n (gdh)n3 + I4(xdnh ) (gdh)2n (g̃dh)n3

)
,

(4.4)

where xab = m2
a/m

2
b , and q = u for B = W and q = d for B = A,G,Z in the first line. The

summation index m counts the contributions from the gauge-boson zero (m = 0 for the

SM gauge-bosons) and KK modes (m ≥ 1), while n counts the quark zero (n = 1, 2, 3

for the SM quarks) and KK modes (n = 4, . . . , 9 for the first KK level and so on). We

mention that there are no contributions from the massless zero modes (the SM photon and

gluon), which implies that the summation starts with m = 1 in the first line for B = A,G

and in the third line of (4.4). The ± superscripts on the overlap integrals V B±
nmk and Ṽ B±

nmk

are only relevant in the case of B = W and can be ignored otherwise. The definitions of

the overlap integrals can be found in appendix A, while explicit expressions for the loop

functions I3,4(x) and I6-11(x) are given in (D.2). We note that when we insert the integral

representations of the loop functions (D.1) into (4.4) we can identify the boundary terms

RBLL and RBLR, defined in the 5D approach by (3.38), with the expressions (B = A,G,W,Z)

RBLL =
∑

m,n

1

m2
Bm

V B−
2mn V

B+

nm3 , RBLR =
∑

m,n

1

m2
Bm

mqn

mb
V B−

2mn Ṽ
B+

nm3 (4.5)

in the KK-decomposed theory. Those terms originate from penguin diagrams where scalar

components of the 5D gauge bosons are exchanged. In fact, we have also checked equa-

tion (4.4) by using the 4D Feynman rules listed in appendix A and following the basic steps

to obtain the dipole coefficients. The chirality-flipped coefficients C̃B7γ,8g can be obtained

by replacing V B
nmk ↔ Ṽ B

nmk and (gdh)nk ↔ (g̃dh)nk.

We emphasize that there are two terms in each round bracket for the Wilson coeffi-

cients in (4.4). In the SM only diagrams with a chirality flip on the external b-quark line

contribute to C7γ , since the W± boson couples only to left-chiral quarks. Since in the RS

model we can have also couplings to right-chiral quarks, there are additional contributions

originating from diagrams where the chirality flip is performed on the internal quark line,

which generates the factor mqn/mb in front of the first term in each of the brackets in (4.4).

When exchanging KK quarks in the loop this factor is large and enhances the contributions.

We remark that we have numerically checked that all corrections in the RS model

decouple with M−2
KK, which is not directly obvious from the expressions (4.4). For instance,

let us discuss the KK contributions to CW7γ,8g. At first we stress that the loop functions

can only take values from the compact intervals I6(x) ∈ [−2,−1
2 ] and I7(x) ∈ [ 5

12 ,
2
3 ],
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and are irrelevant for the discussion. We begin with the contribution of penguin diagrams

that exchange SM quarks (n = 1, 2, 3) with KK W bosons (m ≥ 1) in the first line

of (4.4). Obviously the suppression by the squared KK W -boson mass implies that the

contribution decouples with M−2
KK. Next, we discuss the contribution from exchanging the

W boson (m = 0) with KK quarks (n ≥ 4). The overlap integrals scale like V W−
20n ∼ V W+

n03 ∼
Ṽ W+

n03 ∼ M−1
KK for n ≥ 4, which implies that the second term in the round bracket of the

first line in (4.4) decouples with M−2
KK. The first term in the round bracket is more subtle,

since it is enhanced by the KK-quark mass mqn ∼MKK. However, numerically we observe

that the summation over complete KK levels (n = 4, . . . , 9 for the first KK level and so

on) leads to cancellations such that there appears an additional M−1
KK suppression. Hence,

also the first term in the round bracket, when summed over complete KK levels, decouples

with M−2
KK. In a similar fashion we can proceed with the contributions from the penguin

diagrams with KK W bosons and KK quarks. The discussion can also be extended for the

remaining Wilson coefficients. In fact the decoupling behavior with M−2
KK is apparent in the

approximate expressions that will be given in section 4.4.

Finally, notice that the Wilson coefficients in the SM can be recovered from the second

terms in CW7γ,8g and CWW
7γ by summing only over the gauge-boson (m = 0) and quark zero

modes (n = 1, 2, 3), and by replacing the overlap integrals with the CKM matrix elements

V W−
20n → V ∗uns and V W+

n03 → Vunb with u1,2,3 = u, c, t.

4.3 Numerical evaluation

The first step is to generate anarchic 5D Yukawa matrices, where each entry is bounded

from above by y∗, i.e. |(Yq)ij | ≤ y∗. The real and imaginary parts of each entry are

randomized with a flat distribution. If we expand the exact profiles of the W boson and

the SM quarks in v2/M2
KK and only keep the leading terms, referred to as the zero-mode

approximation (ZMA) in [10], we can directly calculate the Wolfenstein parameters ρ̄ and

η̄ solely from the 5D Yukawa matrices. Next, we choose a random value for the bulk-mass

parameter cu3 ∈ [−1/2, 1], which corresponds to a localization of the right-chiral top quark

near the IR brane. Working at leading order in v2/M2
KK we can determine the remaining

eight bulk-mass parameters cQ1,2,3 , cu1,2 and cd1,2,3 from the experimental values for the

six quark masses evaluated at the scale µ = 1 TeV and from the Wolfenstein parameters

A and λ. Then, we choose a random value for MKK ∈ [1, 10] TeV (Mg(1) ∈ [2.45, 24.5] TeV)

and calculate the whole set xtheo = {mu,md,ms,mc,mb,mt, A, λ, ρ̄, η̄} using the exact

expressions that are valid to all orders in v2/M2
KK. Finally, we calculate the function

χ2(x) =
∑10

n=1(xexp(n) − xtheo(n))2/σ2
exp(n), where xexp contains the experimental

values of the quark masses and Wolfenstein parameters with standard deviations given

by σexp. Points with χ2(x)/dof > 11.5/10, corresponding to less than 68% CL, are

rejected. Based on the procedure described above we generate six sets of 5000 RS points

with different values for y∗ = 0.5, 1, 1.5, 2, 2.5 and 3. The upper value on y∗ originates

from requiring that the Yukawa sector remains in the perturbative regime [9].

We have implemented the integrals arising in the expressions for the dipole coefficients

in (3.13), (3.37) and (3.46) in Mathematica. Since we expect the RS corrections to the

SM Wilson coefficients to lie in the few percent range, we need to calculate the integrals
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Picture
Average time to calculate

C7γ,8g for one RS point

Average time fractions for each contribution

CW7γ,8g CWW
7γ CZ7γ,8g C

A/G
7γ,8g CGG8g Ch7γ,8g

5D 571 min 2% 4% 21% 32% 41% ≤ 0.01%

4D 9 min 16% 46% 38% ≤ 0.1%

Table 1. Time performance for calculating the Wilson coefficients C7γ and C8g in the 5D and 4D

(including 5 KK levels) pictures. The first column contains the average time needed in order to

calculate the Wilson coefficients for one RS point on a 2.4 GHz Intel Core i5 processor, such that the

results are compatible at the few per mille level in both approaches (see figure 2 for more details).

The additional columns show the relative fractions of time needed for the calculation of the six dif-

ferent contributions. Similar values are obtained in case of the chirality-flipped Wilson coefficients.

to an accuracy of a few per mille. We therefore set PrecisonGoal to 3 for the numerical

integrations. Furthermore we use a UV momentum cutoff such that kE ≤ Λcut = 100MKK,

which improves the time performance without losing the required precision. It turns out

that the numerical integrations over t and t′ can be made faster by making the substitution

t → φ/π = ln(t/ε)/ ln(1/ε) and analogously for t′, which maps the integration region on

the unit square. The first row of table 1 compares the time performance of calculating the

Wilson coefficients C7γ and C8g in the 5D and 4D pictures, averaged over many sets of RS

parameter points. We need on average 571 minutes per RS point on a 2.4 GHz Intel Core

i5 processor to calculate C7γ and C8g in the 5D approach. In more detail, the calculation

splits into six parts belonging to different amplitude topologies. The least amount of time

is required for the calculation of the Higgs contribution, since the t and t′ integrations can

be performed analytically, leaving over one momentum integral to be evaluated, see (3.13).

Most of the computational time is needed for the KK contributions of the neutral gauge

bosons, since the corresponding integrands involve all components of the 5D fermion prop-

agator functions, in contrast to the W±-boson Wilson coefficients in (3.37) and (3.46).

We can compare our results from the 5D approach with the summation over zero and

KK modes in the KK-decomposed theory, based on the results shown in (4.4). In order

to achieve a consistency between both approaches at the few per mille level, we need to

sum over five complete KK levels. The left plot in figure 2 confirms that the results for

C7γ calculated in the 5D and 4D approaches are consistent at the few per mille level. The

results for the RS corrections relative to the SM Wilson coefficient CSM
7γ are compatible

at the 10% level in both pictures, as shown in the right plot in figure 2. This presents a

non-trivial cross-check of the formulas derived in section 3. In both plots of figure 2 we have

focused on the real parts of C7γ , but we have checked that the histograms look similar in

case of the imaginary parts and also in case of C8g and the corresponding chirality-flipped

Wilson coefficients. We need on average 9 minutes to calculate the KK quark and gauge-

boson masses as well as the overlap integrals in the 4D formulation, see table 1. Effectively

there are only four different amplitude topologies, since CW7γ,8g and CWW
7γ both depend on

the same masses and overlap integrals, and analogously for CG7γ,8g and CGG8g . Therefore we

present combined time fractions for those Wilson coefficients in table 1. When we require

a consistency of a few per mille for the calculation of the Wilson coefficients between the
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Figure 2. Compatibility of the results for the Wilson coefficient C7γ (left) and for the RS corrections

relative to the SM Wilson coefficient CSM
7γ (µW ) ≈ −0.20 (right) calculated in the 5D and 4D

(including 5 KK levels) pictures. Both histograms contain RS parameter points with different

values for y∗ and MKK ∈ [1, 10] TeV. The vertical dashed lines denote the median values of the

corresponding distributions.

4D and 5D approaches, we find that the summation over KK levels is faster by a factor

of order 60. As a consequence, after we have verified that the results in the 5D and 4D

approaches agree at the required level of precision, we will implement the equations in (4.4)

for the numerical calculation of the Wilson coefficients for most of the RS points used in

the phenomenological analysis in section 5.

4.4 Approximate expressions

We emphasize that the integral expressions (3.13), (3.37) and (3.46) and the corresponding

results in the KK-decomposed theory (4.4) are formally valid to all orders in v2/M2
KK. All

numerical results that will be presented are calculated from those equations according to

the procedure described in (4.3). However, in order to better understand the size of the

different contributions from the diagrams in figure 1 we will also derive some approximate

formulas in this section. The first step is to parametrize the RS corrections relative to the

SM Wilson coefficients by

CRS,0
7γ (µW ) = CW,07γ (µW ) + CWW,0

7γ (µW ) + CZ,07γ (µW ) + Ch,07γ (µW )− CSM
7γ (µW ) ,

CRS,KK
7γ (µKK) = CW,KK

7γ (µKK) + CWW,KK
7γ (µKK) + CA,KK

7γ (µKK) + CG,KK
7γ (µKK)

+ CZ,KK
7γ (µKK) + Ch,KK

7γ (µKK) ,

(4.6)

where we distinguish corrections that arise from the exchange of only zero modes CRS,0
7γ (µW )

and of loops including at least one virtual KK particle CRS,KK
7γ (µKK). The individual zero-

mode contributions CB,07γ (µW ) for B = W,WW,Z, h are defined at the electroweak scale

µW ∼ mW and are given simply by setting m = 0 and summing over n = 1, 2, 3 in (4.4). On

the other hand the KK contributions CB,KK
7γ (µKK) are defined at the KK scale µKK ∼

MKK. Analogous parametrizations hold for the chirality flipped Wilson coefficients and for

CRS,0
8g (µW ) and CRS,KK

8g (µKK), where the triple gluon-vertex contribution must be included.
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RS corrections
Median values of the distributions in [%]

W WW Z A G GG h

|CB,07γ (µW )|/∑B |C
B,0
7γ (µW )| 34.8 65.0 0.07 — — — 0.001

|CB,08g (µW )|/∑B |C
B,0
8g (µW )| 99.6 — 0.4 — — — 0.007

|CB,KK
7γ (µKK)|/∑B |C

B,KK
7γ (µKK)| 33.9 51.2 7.7 0.0001 0.1 — 7.0

|CB,KK
8g (µKK)|/∑B |C

B,KK
8g (µKK)| 52.8 — 24.1 0.0004 0.005 0.6 22.0

Table 2. Median values of the distributions in the left column based on RS points with y∗ = 3

and MKK ∈ [1, 10] TeV. The median values can be used to estimate the relative size of the RS

corrections arising from the exchange of only zero modes CB,07γ,8g(µW ) and of loops including at least

one virtual KK particle CB,KK
7γ,8g (µKK). Similar values are obtained in case of the chirality-flipped

Wilson coefficients.

In the SM the contribution to the Wilson coefficients at leading order is given by the penguin

diagrams (II) and (III) in figure 1, in which virtual W± bosons and up-type quarks are

exchanged. The charm- and top-penguin diagrams yield comparable contributions, since

the product of the CKM matrix elements are of similar size, |λt| ≈ |λc|, where λq = V ∗qsVqb.
Making use of the unitarity of the CKM matrix, which implies λu + λc + λt = 0, the SM

Wilson coefficients at the electroweak scale are given by

CSM
7γ (µW ) = Qu

(
I7(xt)

2
− 1

3

)
+ I9(x−1

t )− 5

12
, CSM

8g (µW ) =
I7(xt)

2
− 1

3
, (4.7)

where xt ≡ m2
t /m

2
W . The loop functions I7(x) and I9(x) can be found in appendix D.

Using mt,pole = 176.7+4.0
−3.4 GeV [47] we find CSM

7γ (µW ) ≈ −0.20 and CSM
8g (µW ) ≈ −0.098.

In a first step, we look at the relative size of the RS corrections CB,07γ,8g(µW ) and

CB,KK
7γ,8g (µKK) based on a set of RS parameter points. To this end, we compare the median

values of the distributions obtained from calculating |CB,07γ,8g(µW )| and |CB,KK
7γ,8g (µKK)| and

normalizing them to the total sum of each (absolute) correction
∑

B |C
B,0
7γ,8g(µW )| and∑

B |C
B,KK
7γ,8g (µKK)|. Table 2 shows the results. The general pattern is that the penguin

loop diagrams with W±-boson exchange give the largest corrections, which is also true for

different values of y∗. In case of the zero-mode contribution CRS,0
7γ,8g we find that the largest

corrections are given by the deviations of the overlap integrals V W−
203 and V W+

303 in the RS

model with respect to the CKM matrix elements V ∗ts and Vtb in the SM, and by the coupling

of the W boson to right-chiral quarks. Those corrections stem from the non-flatness of the

W -boson profile and from deviations of the exact (Z2-even) quark profiles from the ZMA

expressions [10]. The zero-mode contributions from the Z and Higgs bosons arise due to

their flavor-changing couplings to quarks in the RS model, but they are suppressed by

small down-type quark masses and can be neglected. To leading order in v2/M2
KK we find

CRS,0
7γ (µW ) =

QuI6(xt) + 2I8(x−1
t )

4Vtb
â
(U)†
3

m2
t

M2
KK

2F 2(cQi)

(1 + 2cQ)2

[
1

3 + 2cQ
− ε1+2cQ +

ε2+4cQ

1− 2cQ

]
â
(D)
3

+
QuI7(xt) + 2I9(x−1

t )

4V ∗ts
â
(D)†
2

[
m2
t

M2
KK

3 + 14cQ + 8c2Q − F 2(cQ)(4 + 4cQ)

(1− 4c2Q)(3 + 2cQ)
− Lm2

W

M2
KK

F 2(cQ)

3 + 2cQ

]
â
(U)
3
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+
QuI7(xt) + 2I9(x−1

t )

4Vtb
â
(U)†
3

[
m2
t

M2
KK

3 + 14cQ + 8c2Q − F 2(cQ)(4 + 4cQ)

(1− 4c2Q)(3 + 2cQ)
− Lm2

W

M2
KK

F 2(cQ)

3 + 2cQ

]
â
(D)
3 , (4.8)

with the function F (c) ≡ sgn(cosπc)
√

(1 + 2c)/(1− ε1+2c) [10]. The three-component vec-

tors â
(U)
n and â

(D)
n for n = 1, 2, 3 form the columns of the unitary matrices Uu and Ud, which

define the CKM matrix VCKM = U †uUd in the ZMA [10]. The corrections in the first line

of (4.8) stem from the W+ūRdR coupling, while the remaining terms include corrections

to the CKM matrix elements Vtb and V ∗ts in the RS model. Concerning the KK contribu-

tions we find, contrary to the observation made in [17], (independently of y∗) that the triple

gluon vertex contribution is subdominant and does not enhance the chromomagnetic dipole

coefficients. In general we find that the penguin diagrams with the exchange of photon and

gluon KK modes yield very small corrections. At last we can compare the relative magni-

tude between CRS,0
7γ,8g(µW ) and CRS,KK

7γ,8g (µKK). Numerically, we find that both contributions

are similar in size for y∗ ≈ 2. For larger values of y∗ the KK contributions dominate in size.

In the next step, we will take a closer look at the main KK contributions to the Wilson

coefficients and derive approximate expressions.

W - and Z-boson contributions. We begin with the KK contribution of the W±-

and Z-boson penguin diagrams to the dipole coefficients. The dominant contributions

come from diagrams in which charged/neutral scalar zero modes (stemming from the fifth

component of the 5D gauge-boson field and the Goldstone bosons in the Higgs sector) and

KK quarks are exchanged, which are implicitly included in the first two expressions in (4.4)

for the Wilson coefficients.4 In this case we are allowed to take the limits xqnBm � 1 and

xWm
qn � 1 for the loop functions in (4.4), leading to I6(x) ≈ −1/2, I7(x) ≈ 5/12, I8(x) ≈ −1

and I9(x) ≈ 5/12. We find

CW,KK
7γ,8g (µKK) ≈ κ7γ,8g

W

4
√

2GFλt

[
5

24

(
RWLL −

3∑

n=1

VW
−

20n VW
+

n03

m2
W

)
− 1

4

(
RWLR −

mt

mb

VW
−

203 ṼW
+

303

m2
W

)]
,

CWW,KK
7γ (µKK) ≈ κ7γ

WW

4
√

2GFλt

[
1

6

(
RWLL −

3∑

n=1

VW
−

20n VW
+

n03

m2
W

)
− 1

4

(
RWLR −

mt

mb

VW
−

203 ṼW
+

303

m2
W

)]
,

CZ,KK
7γ,8g (µKK) ≈ κ7γ,8g

Z

4
√

2GFλt

[
5

24

(
RZLL −

3∑

n=1

V Z20n V
Z
n03

m2
Z

)
− 1

4
RZLR

]
, (4.9)

where the boundary terms RBLL and RBLR are given in (3.41) and (3.45). Since the limits of

the loop functions we have taken are not valid in case of SM quarks, we have to subtract

the contributions from the quark zero modes in (4.9). We observe that the corrections

of CW,KK
7γ (µKK) and CWW,KK

7γ (µKK) add up constructively, since κ7γ
W = Qu g

2
5/(2πr) and

κ7γ
WW = g2

5/(2πr). We can further simplify the boundary terms RW,ZLL and RW,ZLR in (4.9) by

expanding them in v2/M2
KK and neglecting terms that are suppressed by ms/mb. We obtain

RWLL ≈ −
L

2M2
KK

(∆D)23 −
(δD)23

m̃2
W

,

4If we would not include the contributions from the Goldstone bosons, the diagrams with gauge-boson

zero-modes and KK quarks would be suppressed to leading order by v4/M4
KK. In this case the contributions

from KK gauge-bosons and KK quarks would be dominant, since they contribute already at order v2/M2
KK.
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RWLR ≈ −
L

4M2
KK

(∆D)23 +
1

2m̃2
W

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 Yu Y

†
u YdD(3)

R (1−) ,

RZLL ≈ −
L

2M2
KK

(∆D)23 −
(

1− (gdR)2

(gdL)2

)
(δD)23

m̃2
Z

,

RZLR ≈ −
L

4M2
KK

(∆D)23 −
gdR
gdL

(
1− gdR

gdL

)
(δD)23

m̃2
Z

+

(
1− gdR

gdL

)2
1

2m̃2
Z

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 Yd Y

†
d YdD

(3)
R (1−) , (4.10)

where in the case of RWLR and RZLR we have implemented the relation [35]

1√
2
Q(m)†
L (1−)P12 ỸqQ(n)

R (1−) = δmn
mqn

v
− mqm

v
(δq)mn −

mqn

v
(δQ)mn . (4.11)

We checked numerically for different values of y∗ that the approximate formulas (4.9)

together with (4.10) are accurate at the 10% level compared with the exact expressions.

We emphasize that the approximate expressions are independent of the masses and profiles

of the KK quark and gauge-boson modes. In (4.10) we encounter terms including products

of three Yukawa matrices YuY
†
uYd and YdY

†
d Yd originating from the IR brane-localized

terms in RWLR and RZLR in (3.45). They originate from diagrams exchanging W± and

Z Goldstone bosons with a chirality flip on the internal KK quark line as shown in

figure 3. Those terms yield the dominant KK corrections for not too small values of the

Yukawa matrix entries, which is approximately fulfilled for RS points with y∗ & 1. In this

case we can derive simpler expressions and find (y∗ & 1)

CW,KK
7γ (µKK) ≈ Qu

λt

[
− 1

8

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 YuY

†
uYdD(3)

R (1−) +
1

4

mt

mb

V W−
203 Ṽ W+

303

m2
W

]
,

CZ,KK
7γ (µKK) ≈ Qd

λt

[
− 1

16

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 YdY

†
d YdD

(3)
R (1−)

]
, (4.12)

where the chromomagnetic dipole Wilson coefficients CW,KK
8g (CZ,KK

8g ) can be obtained

from the first (second) line in (4.12) by sending Qu → 1 (Qd → 1). Moreover, CWW,KK
7γ

is given analogously by the expression in the first line of (4.12) with Qu set to 1. We

checked numerically that the approximate expressions are valid at the 10% level with

respect to the exact expressions for RS points with y∗ & 1. Approximate formulas for the

chirality flipped Wilson coefficients C̃B,KK
7γ,8g (µKK) can be obtained from (4.12) by making

the replacements L↔ R, Yq ↔ Y †q , V W−
203 → Ṽ W−

203 and Ṽ W+

303 → V W+

303 .

Higgs contribution. The diagrams contributing to Ch,KK
7γ,8g (µKK) involve the exchange

of the Higgs boson with KK quark modes. For the exchange of KK quarks we can use that

xdnh � 1, allowing us to take the limits I3(x) = 1/(2x) + O(x−2) and I4(x) = 1/(12x) +

O(x−2). The contribution associated with I3(x) dominates, since this loop function is less

suppressed than I4(x) in the considered limit and the contribution is enhanced by mdn/mb,

which is a large factor for KK modes. If we only keep the corresponding contribution

– 27 –



J
H
E
P
0
4
(
2
0
1
6
)
0
4
2

bR sLW

γ, g

uR

uR

UL

bR sL

WW

γ

UL uR
bR sLZ, h

γ, g

dR

dR

DL

Figure 3. For y∗ & 1 those diagrams give the main KK corrections CRS,KK
7γ,8g (µKK) for the transitions

b → sγ and b → sg at the one-loop level. Internal solid lines labelled by uR denotes the exchange

of singlet up-type KK quarks, while UL, DL imply the exchange of SU(2)L doublet KK quarks.

Crosses denote a chirality flip on the internal KK quark lines. Here, dashed lines labelled with W

or Z denote the contributions from the corresponding Goldstone bosons in the Higgs sector.

associated with I3(x), we obtain approximately

Ch,KK
7γ (µKK) ≈ Qd

λt

[
1

16

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 YdY

†
d YdD

(3)
R (1−)− 1

8
(δD)23

]
, (4.13)

where we have expanded the expression to leading order in v2/M2
KK and neglected ms/mb-

suppressed terms. The corresponding expression for Ch,KK
8g is given by (4.13) with Qd →

1. Numerically we have checked that (4.13) is accurate at the 10% level with respect

to the exact expressions. Note that the YdY
†
d Yd structure in (4.13) originates from the

leading order expansion in v2/M2
KK of the function g(Xd,Yd) defined in (3.28) and gives

the dominant contribution for y∗ & 1. In fact, this term exactly cancels the expression

CZ,KK
7γ (µKK) in (4.12). Consequently, for y∗ & 1 the KK corrections from the Z-Goldstone

boson and Higgs diagrams cancel to very good approximation.

Dependence on Mg(1) and y∗. Figure 4 shows histograms of the (absolute) KK cor-

rections |CRS,KK
7γ,8g (µKK)| and |C̃RS,KK

7γ,8g (µKK)| for a set of RS parameter points with y∗ = 3

and Mg(1) = 10 TeV. We choose y∗ = 3 to obtain maximal effects, while still staying in

the perturbative regime for the Yukawa sector. The value Mg(1) = 10 TeV is close to the

lowest KK gluon mass that is consistent with the tree-level analysis of electroweak precision

data. The distributions can be well described by the approximate formulas given in (4.12)

and (4.13). For different values of Mg(1) and y∗, the corresponding distributions can be

obtained by the formula

CRS,KK
7γ,8g (µKK) ≈ CRS,KK

7γ,8g (µKK)
∣∣∣
M
g(1)

=10 TeV, y∗=3
×
(

10 TeV

Mg(1)

)2

×
(y∗

3

)2
, (4.14)

which is a good approximation for y∗ & 1. For smaller values of y∗ the KK contributions do

not follow a simple scaling law with y∗. An analogous equation holds for the distributions

of the chirality-flipped Wilson coefficients. In order to get a rough estimate for the typical

size of the KK corrections, we can calculate the median values of the distributions of
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|CRS,KK
7γ,8g (µKK)| and find (y∗ & 1)

Median
(
|CRS,KK

7γ,8g (µKK)|
)
≈ a7γ,8g ×

(
10 TeV

Mg(1)

)2

×
(y∗

3

)2
, (4.15)

with a7γ = 0.012 and a8g = 0.0073. In case of the median values of |C̃RS,KK
7γ,8g (µKK)| the

coefficients read ã7γ = 0.020 and ã8g = 0.012. These coefficients represent the median

values of the distributions shown in figure 4. We observe that the KK corrections to the

chromomagnetic dipole coefficients are (approximately) smaller by the factor κ8g
W /(κ

7γ
W +

κ7γ
WW ) = 3/5 with respect to the electromagnetic dipole coefficients. Furthermore, we find

the general pattern that the chirality-flipped Wilson coefficients are enhanced, which can be

explained by the different localization of the left- and right-handed bottom-quark profiles.

The left-handed bottom quark profile, which enters C̃RS,KK
7γ (µKK) and C̃RS,KK

8g (µKK), is

more localized towards the IR brane (cbL = cQ3 > cbR = cd3) and is thus more sensitive

to flavor-violating effects. This hierarchy of the bulk mass parameters is due to the large

mass difference of the top and the bottom quark, which requires that F (cbL) > F (cbR).

We can (approximately) relate our results with the numerical analysis of the Wilson

coefficients performed in [17], where the case of y∗ = 3 and Mg(1) = 2.5 TeV was discussed.

When we consider Mg(1) = 2.5 TeV we find that the corrections CRS,KK
7γ (MKK) are larger

by a factor of roughly 5 compared with [17]. In case of CRS,KK
8g (MKK) we find that the

corrections are similar in size. Concerning the corrections to the chirality-flipped Wilson

coefficients, we find that they are larger by a factor of ∼ 2 with respect to C7γ,8g, while [17]

reported a stronger enhancement by one order of magnitude. While we have been unable

to trace the origin of these discrepancies, the fact that we have performed our analysis

using both the 5D and 4D formulations of the RS model and found consistent results in

both approaches provides a highly non-trivial cross-check of our calculations.

4.5 Comment on the narrow bulk-Higgs scenario

We have observed that the sum of the KK contributions Ch,KK
7γ,8g (µKK) and CZ,KK

7γ,8g (µKK)

cancels to a very good approximation for y∗ & 1. In this section we investigate whether

this cancellation still holds in the narrow bulk-Higgs model.

The Higgs contribution was already calculated in section 3.1, and the final result has

been given in (3.27) and (3.28), including the case of a narrow bulk-Higgs. It follows

that the first term (containing the YdY
†
d Yd structure) in the approximative formula for

Ch,KK
7γ,8g (µKK) in (4.13) must be multiplied with a minus sign in the case of a narrow bulk-

Higgs. Concerning the Z-boson contribution we focus on the scalar diagram (IIb). For

y∗ & 1 the dominant corrections are due to the exchange of the Goldstone Z boson. The

corresponding terms can be extracted from CZ,scalar
7γ,8g in (3.30). We can proceed analogously

to the calculation of the Higgs contribution discussed in section 3.1. Therefore, we refrain

from giving more details here and quote the final result (y∗ & 1)

CZ,scalar
7γ,8g ≈ κ7γ,8g

Z

4GFλt

1

(gdL)2

1

2v
D(2)†
L (1−)

{
P12

h(Xd, Ỹd)

4mb
D(3)
R (1−) (4.16)
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Figure 4. Absolute corrections from KK modes to the Wilson coefficients at the KK scale for a set

of RS points with y∗ = 3 and Mg(1) = 10 TeV. The vertical dashed lines denote the median values

of the corresponding distributions. The size of the corrections are equally distributed among the

real and imaginary parts of the Wilson coefficients.

+ 2π

∫ ∞

0
dkE

Zd(k
2
E)

1 +Zd(k
2
E)

[
1

%

P+

RQ
D(3)
L (1−)

(
5kE
32

∂kE +
3k2

E

32
∂2
kE

+
k3
E

96
∂3
kE

)

+
P12

mb
ỸdD(3)

R (1−)

(
kE +

7k2
E

8
∂kE +

k3
E

8
∂2
kE

)]
ε2M2

KK

L2m̃2
Z

Bscalar
Z (1−, 1−; k2

E)

}
.

The scalar Z-boson propagator behaves like Bscalar
Z (1−, 1−; k2

E) = L2m̃2
Z/(2πε

2k2
EM

2
KK) +

O(k−4
E ) for large Euclidean momenta, rendering the integral finite. The function h(Xq, Ỹq)

in the first line of (4.16) is given by

h(Xq, Ỹq)
∣∣∣
brane Higgs

= − %2ỸqỸ
†
q

1 + %2YqỸ
†
q

Ỹq = −%2YqY
†
q Yq +O(%4) ,

h(Xq, Ỹq)
∣∣∣
narrow bulk-Higgs

= −1

2

(
Xd cothXd

cosh2Xd

− 1

)
Ỹq =

%2

3
YqY

†
q Yq +O(%4) ,

(4.17)

where the difference between the brane-localized and narrow bulk-Higgs scenario is to

leading order the relative factor −1/3. Thus, in the narrow bulk-Higgs scenario the ap-

proximate expression for CZ,KK
7γ,8g (µKK) in (4.12) must be multiplied with −1/3. Finally,
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adding Ch,KK
7γ,8g (µKK) and CZ,KK

7γ,8g (µKK) we obtain approximately (for y∗ & 1)

Ch,KK
7γ (µKK) + CZ,KK

7γ (µKK) ≈ Qd
2λt

v√
2mb

v2

M2
KK

D(2)†
L (1−)P12 YdY

†
d YdD

(3)
R (1−)

×
{

0 ; brane Higgs ,

− 1
12 ; narrow bulk-Higgs .

(4.18)

The corresponding expression for the coefficient of the chromomagnetic dipole operator is

obtained by replacing Qd → 1. The structure YdY
†
d Yd cancels in the brane-localized Higgs

case, while there remains a non-zero contribution in case of the narrow bulk-Higgs sce-

nario. This observation and the factors 0 and − 1
12 in (4.18) were first encountered in [48, 50]

for the case of lepton penguin loops. In fact, we can exactly reproduce the result (26) in [50]

for the Higgs contribution in the lepton sector from equation (4.18) by replacing Qd →
Qe = −1 and by accounting for factors in the definition of the Wilson coefficient. We note

that while the contributions from the neutral scalars cancel for y∗ & 1 in the brane-localized

Higgs scenario, we still have left over the (dominant) contributions from the charged Gold-

stone bosons. The latter contribution is absent in case of the leptonic dipole coefficient

for the transition li → ljγ in the minimal RS model, which does not include right-chiral

SU(2)L singlet neutrinos. However, a non-zero contribution from neutral scalars would be

present in case of the RS model with custodial protection, which can be found in [20, 49].

Finally, we remark that in order to calculate the contribution of the charged W±

Goldstone-bosons in the narrow bulk-Higgs scenario, we need to perform t, t′ integrations

over matrix-valued functions mixing Yu with Yd. Since we could not handle those integra-

tions in a semi-analytic way we will therefore confine our analysis to the brane-localized

Higgs scenario in the remainder of this paper.

4.6 Renormalization-group running to the meson scale

In the previous section we have analyzed the corrections to the SM Wilson coefficients

from the zero modes CRS,0
7γ,8g(µW ) defined at the electroweak scale µW ∼ mW and from the

KK particles CRS,KK
7γ,8g (µKK) at the KK scale µKK ∼ MKK. For the phenomenology we are

interested in the Wilson coefficients C7γ,8g(µb) at the meson scale µb ∼ mb. When running

down from higher scales down to µb, QCD effects generically lead to a mixing between

dimension-6 operators. The general effective Lagrangian for a new physics model at a high

scale (µKK in our case) can be written in the form

Leff =
GF√

2
λt

[ ∑

q=u,c,t

∑

i=1,2

C
(q)
i Q

(q)
i + C7γ Q7γ + C8g Q8g

+
∑

i=1,2

∑

A=L,R

( ∑

q=u,c,t,d,s,b

C
(q),LA
i Q

(q)
i (L,A) + Ĉ

(d),LA
i Q̂

(d)
i (L,A)

)

+
{
Q→ Q̃, C → C̃, L↔ R

}]
,

(4.19)
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Figure 5. Corrections to the effective Wilson coefficients in the SM CSM
7γ (µb) ≈ −0.30 and CSM

8g ≈
0.15 at the B-meson scale µb = 4.8 GeV for a set of RS points with y∗ = 3 and Mg(1) = 10 TeV.

The vertical dashed lines denote the lower (25%) and upper (75%) quartiles of the distributions.

The distributions look similar for the imaginary parts of the Wilson coefficients.

where we adopt the notation of [51]. Here Q
(q)
1,2 are the charged current-current operators,

Q7γ,8g are the dipole operators, and Q1,2(A,B), Q̂1,2(A,B) are neutral current-current

operators (including the four-quark QCD and electroweak penguin operators of the SM).

In the RS model such operators are induced by the exchange of the heavy KK modes of

the Z boson, photon and gluon. For simplicity, however, they will be neglected in our

analysis. When running down from µKK ∼ MKK to µW ∼ mW we consider only the

mixing between Q7γ and Q8g, which accounts for the dominant evolution effects. Between

the electroweak scale and the meson scale we further include the RS contribution to the

charged current-current operator Q
(c)
2 = 4(s̄jγµPLcj) (c̄iγ

µPLbi), which is also important in

the SM calculation. The corresponding Wilson coefficient in the SM reads C
(c)SM
2 (µW ) =

−λc/λt ≈ 1. In the RS model the W -boson coupling to quarks receives corrections, which

we include later in the analysis by defining the Wilson coefficient

C
(c)RS,0
2 (µW ) = − 1

4
√

2GFλt

g2
5

2πr

1

m2
W

V W−
202 V W+

203 − C(c)SM
2 (µW ) . (4.20)

The overlap integrals V W±
nmk are defined in relation (A.6) of appendix A.

Let us outline the basic steps how we evolve the Wilson coefficients down to the

meson scale. We need the evolution matrix U(µ1, µ2) which can be calculated from the

anomalous-dimension matrix γ̂ of our operator basis, which is contained in the more general
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basis considered in [51]. The running between scales is accomplished at leading order by

U(µ1, µ2) = V̂



[
αs(µ2)

αs(µ1)

]~γ(0)
2β0



D

V̂ −1 , (4.21)

where ~γ(0) includes the eigenvectors of the transposed anomalous-dimension matrix γ̂(0)T .

The matrices V̂ diagonalize γ̂(0)T , such that V̂ −1γ̂(0)T V̂ is diagonal. Note that γ̂(0) and

β0 = (33 − 2f)/3 depend on the number of active flavors f . Between the scales µKK and

µb we integrate out the top quark, such that the evolution matrix splits into two parts,

U(µb, µKK) = U (f=5)(µb, µW )U (f=6)(µW , µKK) . (4.22)

The RS corrections at the KK scale, coming from integrating out heavy KK resonances,

are contained in the coefficient ~CRS,KK(µKK). The evolution down to the electroweak scale

is given by ~CRS,KK(µW ) = U(µW , µKK) ~CRS,KK(µKK). At the electroweak scale the W

boson and the top quark are integrated out. Matching on this new effective Lagrangian

we include the contributions from the boson and fermion zero modes, which are given by
~C(0)(µW ) = ~CSM(µW ) + ~CRS,0(µW ), where ~CRS,0(µW ) contains the zero-mode corrections

to the SM coefficient. Next we evolve this contribution down to the meson scale. The

effective Wilson coefficient reads

~C(µb) = ~CSM(µb) + U(µb, µKK) ~CRS,KK(µKK) + U(µb, µW ) ~CRS,0(µW ) , (4.23)

where the SM Wilson coefficients are given by CSM
7γ (µb) ≈ −0.30 and CSM

8g (µb) ≈ −0.15.

Performing all steps including the dipole and the charged current-current operators, the

RS corrections to the electro- and chromomagnetic dipole operators at the B-meson scale

are given by

CRS
7γ (µb) = 0.475CRS,KK

7γ (µKK) + 0.123CRS,KK
8g (µKK) + 0.667CRS,0

7γ (µW )

+ 0.092CRS,0
8g (µW )− 0.174C

(c)RS,0
2 (µW ) ,

CRS
8g (µb) = 0.522CRS,KK

8g (µKK) + 0.702CRS,0
8g (µW )− 0.080C

(c)RS,0
2 (µW ) .

(4.24)

The numbers in front of the KK corrections CRS,KK
7γ,8g (µKK) have been calculated for µKK =

1 TeV, µb = 4.8 GeV and µW = 80.4 GeV. In our numerical analysis we set µKK = MKK

for each RS point. Relation (4.24) also holds for the chirality-flipped Wilson coefficients,

since (massless) QCD is blind to the fermion chirality.

Figure 5 shows the RS corrections to the SM values of the dipole coefficients at the

B-meson scale for RS points with y∗ = 3 and Mg(1) = 10 TeV. In general, the RS correc-

tions to the SM Wilson coefficients CSM
7γ (µb) and CSM

8g (µb) lie in the few percent region.

On the other hand, the relative corrections to the chirality-flipped Wilson coefficients are

large, since in the SM C̃SM
7γ (µb) and C̃SM

8g (µb) are suppressed by ms/mb. The dominant

contributions to CRS
7γ (µb) are given by the RG-evolved KK and zero-mode corrections

CRS,KK
7γ (µKK) and CRS,0

7γ (µW ). An analogous statement holds for CRS
8g (µb). The mixing of
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Figure 6. Left (right) is shown the approximate linear correlation between the RS corrections to

the (flipped) electro- and chromomagnetic dipole coefficients for RS points with y∗ = 3 (0.5) and

Mg(1) = 10 TeV. A similar correlation is found for the imaginary parts of the Wilson coefficients.

There is no correlation between CRS
7γ,8g(µb) and their chirality-flipped counterparts.

the chromomagnetic dipole Wilson coefficients into CRS
7γ (µb) yields a correction of roughly

10% for y∗ = 3 and 7% for y∗ = 0.5.

Finally, we remark that CRS
7γ (µb) and CRS

8g (µb) are linearly correlated, which

can be seen in figure 6. This is expected, since the main contributions arise from

penguin diagrams containing W±-boson modes, and they only differ by the factor

(κ7γ
W + κ7γ

WW )/κ8g
W = 1 + Qu = 5/3. The coefficients CRS

7γ (µb) and C̃RS
7γ (µb), as well as

CRS
8g (µb) and C̃RS

8g (µb), are however largely uncorrelated.

5 Phenomenology

5.1 Branching ratio Br(B̄ → Xsγ)

We begin with the CP- and isospin-averaged B̄ → Xsγ branching ratio, which is one of the

cleanest observables in B physics from a theoretical point of view. Measurements lead to

the combined result Br(B̄ → Xsγ)exp = (3.43± 0.21± 0.07)× 10−4 [54] for the branching

ratio define with a lower cut Eγ > E0 = 1.6 GeV on the photon energy in the meson rest

frame. The SM prediction at NNLO reads Br(B̄ → Xsγ)SM = (3.36± 0.23)× 10−4 [55] for

E0 = 1.6 GeV, showing that both values are compatible at the 1σ level. In order to estimate

the effects of the RS model we use the approximate formula (for Eγ > 1.6 GeV) [56]

Br(B̄ → Xsγ) = Br(B̄ → Xsγ)SM + 0.00247
(
|CRS

7γ |2 + |C̃RS
7γ |2 − 0.706 ReCRS

7γ

)
, (5.1)

where the Wilson coefficients have to be evaluated at the B-meson scale µb = 4.8 GeV.

While all known non-perturbative contributions (see in particular [57] for an estimate of

non-local hadronic effects) are taken into account, the RS corrections are included at leading

order in αs. This is accurate enough to estimate their impact, because these effects are

generally small.
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The dominant corrections in (5.1) stem from the last term in the round bracket, which

is proportional to ReCRS
7γ (µb). The squared contributions (and in particular the chirality-

flipped Wilson coefficient) have only a minor impact. Since the KK contributions are

approximately proportional to y2
∗, the biggest effects can be expected for large values of

y∗. There exists an upper limit y∗ ≤ ymax when requiring that the Yukawa sector remains in

the perturbative regime, and it is conventional to choose the value ymax ≈ 3 [9]. We have

generated RS parameter sets for different values of y∗ and Mg(1) (Yukawa matrices and

quark bulk masses), which correctly reproduce the SM quark masses and the Wolfenstein

parameters, see section 4.3 for more details. In the left plot in figure 7, we show predictions

for the branching ratios Br(B̄→ Xsγ) and Br(B̄ → Xs l
+l−), which will be discussed in the

next section, for a large set of RS model points with Mg(1) = 10 TeV. The black (green)

points are obtained with y∗ = 3 (0.5). We find that more than 90% (99%) of these points

lie within the experimental 2σ bands. The RS corrections to Br(B̄ → Xsγ) approximately

scale with y2
∗ in the region where y∗ & 2. For smaller values of y∗ there is no simple

scaling dependence. In general, we find that the size of the RS corrections to Br(B̄ → Xsγ)

is strongly dependent on y∗, in contrast to the observation of [17], where no significant

correlation in their numerical scan was reported. If we require that at least 10% of the

RS points lie within the 2σ error margin, we can derive the lower bound Mg(1) ≥ 3.4 TeV

for y∗ = 3. This bound cannot compete with the constraints from a tree-level analysis

of electroweak precision data at 95% CL. On the other hand, if we set Mg(1) = 2.5 TeV,

which is the lowest value allowed from the direct search of resonances in the invariant mass

spectrum of tt̄ production by the ATLAS [58] and CMS [59] collaborations, the maximal

Yukawa value can be constrained from above to y∗ . 2.

Let us comment on two further constraints on the RS parameter space. First, we

consider the CP-violating observable εK in kaon mixing, which can receive large cor-

rections in the RS model due to a strong chiral enhancement of the four-quark opera-

tor Q4 = (d̄RsL)(d̄LsR), after performing the RG running from MKK down to the kaon

mass. When we impose the constraint that the RS prediction for εK lies in the 2σ region of

the SM prediction we find that roughly 15% (0.7%) of the black (green) points in figure 7

survive. The fraction of allowed points decreases with smaller values of y∗, since the RS cor-

rections to εK are approximately proportional to 1/y2
∗. Still, the shape of the distribution

of points is not strongly affected, since εK is uncorrelated with the observables discussed

in this paper. Secondly, we can discuss the impact of Higgs physics, where the strongest

bounds arise from the signal rates of the Higgs decaying into pairs of electroweak gauge

bosons. Comparing with LHC data one finds the condition Mg(1) ≥ (15− 20) TeV× (y∗/3)

at 95% CL [27]. Applying this bound to the RS points with Mg(1) = 10 TeV would exclude

the black points (y∗ = 3) but still allow for the green points (y∗ = 0.5).

5.2 Branching ratio Br(B̄ → Xs l
+l−)

Next we consider the inclusive decay B̄ → Xs l
+l− in the low q2 region of the dilepton in-

variant mass, 1 GeV2 < q2 < 6 GeV2. From the latest measurements of the branching ratio

in the low dilepton mass region from Belle Br(B̄ → Xs l
+l−)Belle

exp = (14.93 ± 5.04+4.11
−3.21) ×

10−7 [60] and Barbar Br(B̄ → Xs l
+l−)Barbar

exp = (16.0+4.1
−3.9

+1.7
−1.3 ± 1.8) × 10−7 [61] we take
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Figure 7. Left is shown the branching ratio Br(B̄ → Xs l
+l−) with respect to the inclusive

radiative decay Br(B̄ → Xsγ). The right plot shows the time-dependent CP asymmetry SK∗γ as

a function of the branching ratio for the decay B̄ → Xsγ. In both plots the light gray and blue

bands show the 1σ experimental error margins while the area between the dashed lines contains

the SM prediction with 1σ uncertainty. All black (green) points represent possible RS scenarios

with y∗ = 3 (0.5) and Mg(1) = 10 TeV.

the combined value Br(B̄ → Xs l
+l−)exp = (15.8± 3.7)× 10−7 [62], which is in good agree-

ment with the SM prediction Br(B̄ → Xs l
+l−)SM = (16.2 ± 0.9) × 10−7 [62]. For the

calculation of the branching ratio in the RS model we need to take into account the elec-

troweak (leptonic) penguin operators Q9,10 and Q̃9,10 by adding the effective Lagrangian

Leff = GF√
2
λt
∑

i=9,10 (CiQi + C̃iQ̃i) to (4.19). The operators are defined by

Q9 =
e2

4π2
(s̄γµPLb)(l̄γ

µl) , Q10 =
e2

4π2
(s̄γµPLb)(l̄γ

µγ5l) , (5.2)

where as always the chirality-flipped operators can be obtained by replacing PL → PR.

In the SM C9(µW ) and C10(µW ) are loop suppressed. In the RS model corrections are

induced at tree-level due to the flavor-changing couplings of the Z boson, the Higgs and

the Z-boson and photon KK modes. The Higgs contributions are suppressed by lepton

masses and can therefore be neglected. To leading order in v2/M2
KK, the RS corrections to

the Wilson coefficients are given by [13]

CRS
9 (µKK) =

1

λt

[
QdQl

8π2v2

M2
KK

(∆′D)23 −
8π

αe
(glR + glL)

(
(gdR − gdL)(δD)23 − gdL

Lm2
Z

2M2
KK

(∆D)23

)]
,

CRS
10 (µKK) =

1

λt

[
−8π

αe

(
glR − glL

)(
(gdR − gdL)(δD)23 − gdL

Lm2
Z

2M2
KK

(∆D)23

)]
,

C̃RS
9 (µKK) =

1

λt

[
QdQl

8π2v2

M2
KK

(∆′d)23 −
8π

αe
(glR + glL)

(
(gdR − gdL)(δd)23 − gdR

Lm2
Z

2M2
KK

(∆d)23

)]
,

C̃RS
10 (µKK) =

1

λt

[
−8π

αe

(
glR − glL

)(
(gdR − gdL)(δd)23 − gdR

Lm2
Z

2M2
KK

(∆d)23

)]
, (5.3)

where αe = e2/4π, Qd = −1/3, Ql = −1, glL = −1/2 + s2
w and glR = s2

w. The func-

tions (∆D)23, (∆′D)23 and (δD)23 are defined in (3.42), while (∆d)23 and (∆′d)23 can be

found in [10]. Figure 8 shows the distributions of these Wilson coefficients at the B-meson
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scale. The coefficients CRS
9,10(µb) are much larger than their chirality-flipped counterparts

since the left-handed b-quark is more localized towards the IR brane than the right-handed

one, F (cbL)� F (cbR).

We emphasize that the new-physics contribution CRS
10 (µb) is largest for RS parameter

points with small values of y∗. The reason is that the overlap integral (∆D)23 in (5.3) can

be expressed approximately by (∆D)23 ∼ F (csL)F (cbL) [10], showing its sensitivity on the

localization of the left-handed strange- and bottom-quark profiles. For smaller values of y∗,
the profiles are shifted towards the IR brane, in order to reproduce the correct bottom and

strange quark masses, and the overlap integral increases in magnitude. For the branching

ratio in the low q2 ∈ [1, 6] GeV2 region, we have implemented formula (3.9) in [63] and find

Br(B̄ → Xs l
+l−) = Br(B̄ → Xs l

+l−)SM

+ 10−7 ×
[
1.41 ReCRS

7γ − 0.74 Re C̃RS
7γ + 2.81 ReCRS

9 − 0.059 Re C̃RS
9 − 4.65 ReCRS

10

+ 0.074 Re C̃RS
10 + 30.18 (|CRS

7γ |2 + |C̃RS
7γ |2) + 0.52 (|CRS

9 |2 + |C̃RS
9 |2)

+ 0.52 (|CRS
10 |2 + |C̃RS

10 |2) + 1.94 ReCRS
7γ C̃

RS∗
7γ − 0.008 Re(CRS

9 C̃RS∗
9 + CRS

10 C̃
RS∗
10 )

+ 2.42 Re(CRS
7γ C

RS∗
9 + C̃RS

7γ C̃
RS∗
9 )− 0.017 Re(CRS

7γ C̃
RS∗
9 + C̃RS

7γ C
RS∗
9 )

]
,

(5.4)

where all Wilson coefficients have to be evaluated at the B-meson scale µb. In our analysis

we have used CSM
7γ (µb) ≈ −0.30, CSM

9 (µb) ≈ 4.07 and CSM
10 (µb) ≈ −4.31. We note that

the coefficient of ReCRS
7γ (µb) is smaller than naively expected. The reason is that the

corresponding coefficient results from two terms that are interfering destructively, and

the difference is rather sensitive to the SM values of the Wilson coefficients CSM
7γ (µb) and

CSM
9 (µb). We stress, however, that this sensitivity does not have a large impact on our

analysis, since the corrections to the branching ratio in (5.4) are dominated by the RS

corrections to C10(µb).

The left plot in figure 7 shows the branching ratio Br(B̄ → Xs l
+l−) versus Br(B̄ →

Xsγ) for RS parameter points with y∗ = 3 (0.5) and Mg(1) = 10 TeV in black (green). More

than 70% (30%) of the model points lie within the experimental 2σ region. In fact, those

numbers do not significantly change when switching off the electroweak dipole corrections

CRS
7γ (µb) and C̃RS

7γ (µb). The decay Br(B̄ → Xs l
+l−) is mostly sensitive to the tree-level

corrections CRS
10 (µb) in the RS model, justifying the discussion of the branching ratio in [13],

where the corrections from the dipole coefficients have been neglected. Requiring that at

least 10% of the RS parameter points lie inside the 2σ error margin yields the lower bound

Mg(1) ≥ 3.3 TeV (6.2 TeV) for y∗ = 3 (0.5).

5.3 Time-dependent CP asymmetry in B̄0 → K̄
∗0
γ

In the SM, the left-handed structure of the weak interactions makes the emitted photon

mainly left-handed in b decays (b→ sγL) and right-handed in b̄ decays (b̄→ s̄γR), since the

chirality-flipped Wilson coefficients are suppressed by ms/mb relative to the original ones.

The helicity suppression of right-handed photons makes the time-dependent CP asymmetry

dominated by B-meson mixing in the SM, irrespective of hadronic uncertainties. But in

new-physics scenarios like the RS model there can be chirality flips on internal lines of a

penguin diagram, such that the amplitude for a right-handed photon in b decays is no longer
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Figure 8. Corrections to C9,10(µb) and C̃9,10(µb) in the RS model for parameter sets with y∗ =

3 and Mg(1) = 10 TeV. The vertical dashed lines denote the lower and upper quartiles of the

distributions, i.e. 50% of the RS points are included in the region in between the dashed lines. In

the SM we take CSM
9 (µb) ≈ 4.07 and CSM

10 (µb) ≈ −4.31. Similar plots are obtained for the imaginary

parts of the Wilson coefficients.

suppressed by ms/mb. Experimentally, the photon helicity can be accessed indirectly by

using the time-dependent CP asymmetry in B̄0 → K̄∗0γ decays, defined as

Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)

Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)
= SK∗γ sin(∆mBt)− CK∗γ cos(∆mBt) , (5.5)

where ∆mB is the mass difference between the heavier and the lighter neutral B-meson

mass eigenstate. The mesons K∗0 and K̄∗0 are observed via their decay into the CP

eigenstate KSπ
0. The helicity suppression can be measured by SK∗γ , which to leading

order is given by [66, 67]

SK∗γ ≈
2

|C7γ(µb)|2 + |C̃7γ(µb)|2
Im
[
e−iφd C7γ(µb) C̃7γ(µb)

]
. (5.6)

This observable is sensitive to the chirality-flipped Wilson coefficient C̃7γ(µb). The angle φd
is the phase of B0−B̄0 mixing and has been measured in B → J/ψKS decays to be sinφd =

0.682± 0.019 [54]. Due to the occurrence of C̃7γ(µb) in the numerator, the SM prediction

for SK∗γ is suppressed by the ratio ms/mb and reads SSM
K∗γ = (−2.3 ± 1.6)% [68]. The

current experimental value Sexp
K∗γ = (−16± 22)% [54] still suffers from large uncertainties.

The right plot of figure 7 shows the RS contributions to SK∗γ and the branching ratio

Br(B̄ → Xsγ) by the black (green) points for y∗ = 3 (0.5) and Mg(1) = 10 TeV. Gray

and blue bands denote the experimental values with the 1σ error margins for SK∗γ and
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Figure 9. Shown is the direct CP asymmetry of B̄ → Xsγ as a function of the difference of the

CP asymmetries of the charged and neutral B mesons. The light gray and blue bands denote the

experimental 1σ error margins and the area between the two horizontal dashed lines shows the 1σ

error margin of the SM prediction. The black (green) points represent RS points with y∗ = 3 (0.5)

and Mg(1) = 10 TeV.

Br(B̄ → Xsγ), respectively. Compared with the SM prediction the RS corrections can be

significant due to the sensitivity of SK∗γ on the imaginary part of C̃7γ(µb), which can receive

large corrections in the RS model. On the other hand, the corrections are not significant

when compared with the experimental result due to the large uncertainty. We observe that

more than 95% (99%) of the points lie within the experimental 2σ region for y∗ = 3 (0.5) and

Mg(1) = 10 TeV. Requiring that at least 10% of the RS points lie within the experimental

2σ regions of SK∗γ and Br(B̄ → Xsγ), we can derive the lower bound Mg(1) ≥ 3.8 TeV.

5.4 Direct CP asymmetry in B̄ → Xsγ

The direct CP asymmetry measures the difference between the rates of the decays B̄ → Xsγ

and B → Xsγ and is defined via the ratio

Ab→sγCP (δ) =
Br(B̄ → Xsγ)− Br(B → Xsγ)

Br(B̄ → Xsγ)− Br(B → Xsγ)

∣∣∣∣
Eγ>(1−δ)Emax

γ

, (5.7)

with a lower cut on the photon energy, which depends on the experiment. The experi-

mental value Ab→sγ,exp
CP = (1.5± 2.0)% [54] is compatible with zero. Theoretically, the CP

asymmetry is affected by perturbative “direct photon contributions”, in which the photon

couples to a local operator mediating the weak decay in the effective low-energy theory, as

well as non-perturbative “resolved photon contributions”, which account for the hadronic

substructure of the photon. Taking both effects into account the SM prediction lies in the

region −0.6% ≤ Ab→sγ,SM
CP ≤ 2.28% [69] and is compatible with the experimental result.

Let us now investigate the CP asymmetry in the RS model, where we can have addi-

tional contributions from chirality-flipped Wilson coefficients. The perturbative contribu-

tion [56]
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Ab→sγ,dir
CP (δ) =

αs(mb)

|C7γ |2 + |C̃7γ |2
{

40

81
Im[C2C

∗
7γ ]− 8z

9
[v(z) + b(z, δ)] Im[(1 + εs)C2C

∗
7γ ]

− 4

9
Im[C8gC

∗
7γ + C̃8gC̃

∗
7γ ] +

8z

27
b(z, δ) Im[(1 + εs)C2C

∗
8g

+
16z

27
b̃(z, δ)|C2|2 Im[εs]

}
(5.8)

is suppressed at leading order by a factor αs(mb) arising from the strong-interaction phases.

In the SM εs = λu/λt is the only source of a CP-violating weak phase, since all Wilson

coefficients are real. In addition to this CKM suppression the SM result is further sup-

pressed by the mass ratio z = m2
c/m

2
b resulting from the GIM mechanism. The functions

v(z), b(z, δ) and b̃(z, δ) can be found in [56, 69]. The non-perturbative contribution [69]

Ab→sγ,res
CP = − π

mb

[
Im

(
εs

C2C
∗
7γ

|C7γ |2 + |C̃7γ |2

)
Λ̃u27 − Im

(
(1 + εs)

C2C
∗
7γ

|C7γ |2 + |C̃7γ |2

)
Λ̃c27

− Im

(
C∗7γC8g + C̃∗7γC̃8g

|C7γ |2 + |C̃7γ |2

)
4π αs(mb) Λ̃78

] (5.9)

starts at leading order in ΛQCD/mb and involves hadronic parameters with val-

ues in the range −330 MeV < Λ̃u27 < 525 MeV, −9 MeV < Λ̃c27 < 11 MeV and

−17 MeV < Λ̃78 < 190 MeV. For our analysis we choose the values Λ̃u27 = 96 MeV,

Λ̃c27 = 1 MeV and Λ̃78 = 104 MeV.

Adding both contributions (5.8) and (5.9) we obtain the black (green) RS points shown

in the left plot of figure 9, for y∗ = 3 (0.5) and Mg(1) = 10 TeV. We observe that all points

lie inside the experimental 2σ area. The effects decrease for smaller values of y∗. In

general, the corrections to the observable Ab→sγCP are too small in order to constrain the RS

parameter space.

5.5 The CP asymmetry difference in B̄ → Xsγ

Another observable is the difference of the CP asymmetries in charged and neutral B-meson

decays. Its formula is given by [69]

∆Ab→sγCP = ACP(B̄+ → X+
s γ)−ACP(B̄0 → X0

sγ)

= 4π2αs(mb)
Λ̃78

mb
Im

(
C∗7γC8g + C̃∗7γC̃8g

|C7γ |2 + |C̃7γ |2

)
,

(5.10)

where the hadronic parameter Λ̃78 is predicted to lie in the range 12 MeV < Λ̃78 < 190 MeV.

Recently the BarBar collaboration has published the first experimental result ∆Ab→sγCP =

(5 ± 3.9stat ± 1.5syst)%, which is compatible with a null asymmetry difference at the level

of 1σ. For the analysis we take the average value Λ̃78 = 89 MeV.

Figure 9 shows the predictions in the RS model for y∗ = 3 (0.5). For most of the points

the corrections do not exceed the 1% level. All points are included in the experimental

2σ error band. The effects are also decreasing for smaller values of y∗. Currently, the RS

parameter space cannot be constrained by the CP asymmetry difference ∆Ab→sγCP .
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Figure 10. RS predictions for the real parts of the Wilson coefficients CRS
7γ –CRS

9 (left) and CRS
9 –

CRS
10 (right). Black (green) dots correspond to RS scenarios with y∗ = 3 (0.5) and Mg(1) = 10 TeV.

The brown contours correspond to the 1σ and 2σ best fit regions obtained in [71] and [72, 78],

respectively. The dotted lines represents the SM values.

5.6 Comparison with (almost) model-independent fits

Several tensions at the 2-3σ level in B̄ → K̄∗µ+µ− angular observables have shown up in the

collected data of the LHCb run during 2011 and 2012, including an integrated luminosity of

3 fb−1. One result is that the observable P ′5 in the invariant lepton mass region 4.0 GeV <

q2 < 8.0 GeV is only compatible with the SM prediction at the level of 3.7σ [70]. Several

model-independent theoretical analyses including also additional observables in B decays

have been performed, showing that the deviations can be explained by new physics [71–77].

The full 4-body angular distribution of the decay B̄ → K̄∗µ+µ− provides a sensitivity

to the operators Q7γ , Q9, Q10 and to the scalar and pseudo-scalar operators QP , QS and

their chirality-flipped counterparts. In the RS model we neglect the corrections to b →
sµ+µ− arising from the scalar operators QP and QS , since they follow from the tree-level

exchange of the Higgs boson and are suppressed by the small lepton masses [13]. Here,

we will focus on C7γ,9,10 and their chirality-flipped counterparts. Unfortunately, in the

literature there is no general fit where new physics is allowed to enter all Wilson coefficients

at once and including both real and imaginary parts. Therefore, we have to consider certain

scenarios where the underlying assumptions are partly violated in our model. This fact

needs to be kept in mind.

A general fit where new physics can modify C7γ,9,10(µb) and C̃7γ,9,10(µb) simultaneously

has been performed in [71]. It includes experimental data on the B̄ → K̄∗µ+µ− observables

P1,2, P ′4,5,6,8 and AFB in various q2 bins, as well as data on Br(B̄ → Xsγ), Br(B̄ →
Xs µ

+µ−), Br(B̄s → µ+µ−), the isospin asymmetry AI(B → K∗γ) and SK∗γ . Deviations

of the Wilson coefficients from their SM values are defined by CNP
i (µb) = Ci(µb)−CSM

i (µb).
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The best fit regions are given by (at 95% CL)

CNP
7 (µb) ∈ [−0.06, 0.01] , CNP

9 (µb) ∈ [−1.8,−0.6] , CNP
10 (µb) ∈ [−1.2, 2.0] ,

C̃NP
7 (µb) ∈ [−0.09, 0.06] , C̃NP

9 (µb) ∈ [−0.8, 1.4] , C̃NP
10 (µb) ∈ [−1.0, 0.8] ,

(5.11)

showing that only CNP
9 (µb) is inconsistent with zero. The most economical scenario corre-

sponds to a negative new-physics contribution to C9(µb) with all other Wilson coefficients

close to their SM values. Unfortunately, the RS model does not lead to such a large cor-

rection to C9(µb), as is evident from the upper left plot in figure 8. The corrections to the

remaining Wilson coefficients are however compatible at 95% CL with the fit regions given

in (5.11).

In order to clarify the role played by some of the Wilson coefficients some constrained

scenarios have been considered, in which only two Wilson coefficients at a time are assumed

to receive contributions from new physics. While this assumption does not hold true for the

RS model, we still like to compare our results with the two scenarios where only C7γ(µb)

and C9(µb) or C9(µb) and C10(µb) are assumed to be modified by (real) new physics contri-

butions. We do not consider modifications of C̃9(µb) and C̃10(µb), since the corresponding

corrections in the RS model are very small. In the left plot in figure 10 we consider the CRS
7γ –

CRS
9 plane. The brown contours correspond to the 1σ and 2σ best fit regions obtained from

the analysis in [71]. The best fit points are given by CNP
7γ (µb) ≈ −0.02 and CNP

9 (µb) ≈ −1.5.

We observe that almost none of the RS points touch the best fit region, since C9(µb) does

not receive large enough corrections. As a second scenario, we consider in the right plot

of figure 10 the CRS
9 –CRS

10 plane, where the best fit regions are obtained from a global fit

performed in [72, 78]. The fit includes 88 measurements of 76 different observables, includ-

ing B̄ → K̄∗µ+µ− angular observables and branching ratios as well as the branching ratios

of B̄ → K̄µ+µ−, B̄ → Xs µ
+µ−, B̄s → φµ+µ−, B̄ → K̄∗γ, B̄ → Xsγ and B̄s → µ+µ−.

We observe an anti-correlation between CRS
9 (µb) and CRS

10 (µb), which is also favored by

the best fit regions. While the corrections CRS
10 (µb) can be quite large for a few points in

parameter space, the corrections CRS
9 (µb) are too small to reach the best fit regions.

6 Conclusions

We have investigated the electro- and chromomagnetic (quark) dipole coefficients for b→ sγ

and b → sg transitions in the minimal Randall-Sundrum model with a brane-localized

Higgs sector. We have derived integral expressions for all contributions arising at one-loop

order using 5D fermion and gauge-boson propagators and retaining the full dependence

on the Yukawa interactions. The expressions are formally valid to all orders in v2/M2
KK,

in contrast to [16], where the Yukawa interactions were treated as small perturbations.

Our final results involve one momentum and two extra-dimensional integrations, and each

integrand contains one 5D gauge-boson and one 5D fermion propagator.

By analyzing the UV behavior of the 5D propagators we have confirmed the finiteness

of the penguin loops, as shown first in [16]. In addition, we have derived expressions in

the KK-decomposed (4D) theory and shown analytically and numerically that the dipole

coefficients coincide in both pictures, presenting a highly non-trivial cross-check of our
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calculations. We have derived approximate formulas for the KK contributions to C7γ,8g

and C̃7γ,8g and have shown that the dominant corrections originate from the W±-boson

penguin diagrams. More precisely, when working in Feynman-’t Hooft gauge the dominant

corrections stem from the parts of the diagrams which involve the scalar component of the

5D gauge-boson field and the charged Goldstone bosons from the Higgs sector. We find that

for not too small values of the anarchic (5D) Yukawa matrix entries the latter contributions

dominate and the size of the KK corrections to the dipole coefficients increases proportional

to y2
∗. In contrast to [17], we have not found a significant contribution of the triple gluon

vertex penguin diagram on C8g and C̃8g. In agreement with [17], we have observed the

general pattern that the chirality-flipped Wilson coefficients C̃7γ,8g receive larger corrections

than C7γ,8g, since the left-handed bottom-quark profile is more localized towards the IR

brane. For the Higgs and Z-boson penguin diagrams we have obtained results in the brane-

localized Higgs and narrow bulk-Higgs scenarios. For y∗ & 1 both contributions cancel to

good approximation for the case of a brane-localized Higgs, while there remains a non-zero

(zero-mode) contribution for the case of a narrow bulk-Higgs. A similar observation was

reported in [20, 48–50] for the case of the leptonic dipole coefficients.

In our phenomenological analysis we have RG evolved the dipole coefficients to the

B-meson scale µb. We have then performed a numerical scan of the RS parameter space

with anarchic 5D Yukawa matrices and investigated the branching ratio Br(B̄ → Xsγ),

the time-dependent CP asymmetry SK∗γ , the direct CP asymmetry Ab→sγCP and the CP

asymmetry difference ∆Ab→sγCP , all of which are sensitive to corrections to the dipole coef-

ficients. Currently, the observables Br(B̄ → Xsγ) and SK∗γ can be used to constrain the

RS parameter space. Requiring that at least 10% of the RS model points lie in the 2σ

experimental error margins, we can derive a lower bound on the mass of the first KK gluon

resonance of Mg(1) ≥ 3.8 TeV for Yukawa matrix entries bounded from above by y∗ = 3.

For smaller values of y∗ the bound gets weaker. We further discussed the branching ratio

Br(B̄ → Xsl
+l−), which is dominated by the tree-level corrections to C10(µb) in the RS

model. For this observable we can derive a lower bound of Mg(1) ≥ 3.3 TeV (6.2 TeV) for

y∗ = 3 (0.5), showing that the RS corrections increase for smaller values of y∗. Finally,

we have compared the Wilson coefficients C7γ,9,10 and C̃7γ,9,10 with the results of (almost)

model-independent fits performed in [71, 72, 78]. In general, the tree-level corrections to

C9(µb) are too small in the RS model in order to cover the best fit regions.

Note added. While this paper was under review the work [79] appeared, which contains

a detailed analysis of the decay B̄ → Xsγ in the minimal and custodial RS model with an

IR-localized bulk Higgs. Their implementation of the scalar sector includes contributions

from the Higgs zero mode and its KK excitations. In contrast to our approach the Yukawa

interactions are treated as perturbations and results for the one-loop penguin diagrams to

leading order in v2/M2
KK are derived. In addition to our work, the mixing of the dipole

operators with four-quark operators obtained by integrating out KK gluons and the Higgses

are included. Comparing our results for the branching ratio Br(B̄ → Xsγ) in the minimal

RS model with the analysis of [79], we find that they are of similar size.
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A Summary of Feynman rules

All particle momenta are flowing into the vertex and amplitudes are denoted by A.

5D theory. We begin with the vertices that couple two quarks and one boson. Each

vertex is accomplished additionally by an integral
∫ 1
ε dt and we obtain for the corresponding

amplitudes (q = u, d)

A{q̄Aµq, q̄aGcµqb,q̄Zµq ,q̄W±µ q′} =
{
iQq e5, igs,5 T

c
ab,

ig5 g
q
L

cw
,
ig5√

2

}
γµPB,

A{ q̄A5q, q̄aG5qb, q̄Z5q ,q̄W
±
5 q
′} =

{
Qq e5, gs,5 T

c
ab,

g5 g
q
L

cw
,
g5√

2

}[
VB±5

(t)PL + ṼB±5
(t)PR

]
,

Aq̄hq =
−i√

2
δη(t− 1)

[
MY

q PR +MY †
q PL

]
,

(A.1)

whereMY
q = Y C

q P12 +Y S†
q P21, gqL = T q3 −Qds2

w, e = e5/
√

2πr is the 4D electromagnetic

and gs = gs,5/
√

2πr is the QCD 4D gauge-coupling. In the first two lines the subscript B of

PB, VB±5
(t) and ṼB±5

(t) must be replaced by the corresponding boson label B = A,G,Z,W

on the left side.5 The t-dependent functions are given by

VA5,G5(t) =
ε

t
1 , ṼA5,G5

(t) = −VA5,G5
(t) ,

VW+
5

(t) =
ε

t

[
PW −

%M2
KK

Lm̃2
W

δη(t− 1)MY †
ud

]
, ṼW+

5
(t) = −VW+

5
(t)
∣∣∣
MY †

ud→−MY
du

,

VW−5
(t) =

ε

t

[
PW −

%M2
KK

Lm̃2
W

δη(t− 1)MY †
du

]
, ṼW−5

(t) = −VW−5 (t)
∣∣∣
MY †

du→−MY
ud

,

VZ5(t) =
ε

t

[
PZ −

(
1− gqR

gqL

)
%M2

KK

Lm̃2
Z

δη(t− 1)MY †
qq

]
, ṼZ5(t) = −VZ5(t)

∣∣∣
MY †

qq →−MY
qq

,

(A.2)

where gqR = −Qqs2
w and MY

qq′ ≡ Y C
q P12 − Y S†

q′ P21. We continue with the Feynman rules

for the triple gauge-boson vertices, where we assume that the external photon line is a zero

mode. The corresponding amplitudes read

AW
±
β (p)Aα(q)W∓γ (k) = ∓ i e5 2π

L t

[
ηαβ(q − p)γ + ηβγ(p− k)α + ηγα(k − q)β

]
,

5The superscripts of B±5 are only relevant for B = W and can be ignored otherwise.
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AW
±
5 (p)Aα(q)W∓β (k) = ±e5 η

αµ 2πMKK

L

[
∂
W±5
t + δη(t− 1)

]
ε

t2
,

AW±5 (p)Aα(q)W∓5 (k) = ±(p− k)αi e5
2π

L

[
1 +

M2
KK

Lm̃2
W

δη(t− 1)

]
ε2

t3
,

AGbβ(p)Gaα(q)Gcγ(k) =
gs,5 f

abc 2π

L

1

t

[
ηαβ(q − p)γ + ηβγ(p− k)α + ηγα(k − q)β

]
,

AGbβ(p)Gaα(q)Gc5(k) = i gs,5 η
αβ fabc

2πMKK

L
∂
Gc5
t

ε

t2
,

AGb5(p)GaαG
c
5(k) = gs,5 f

abc (p− k)α
2π

L

ε2

t3
, (A.3)

where the superscript of the t-derivatives indicates the field it should act on.

4D theory. In the KK-decomposed (4D) theory the amplitudes for the vertices coupling

two quarks and one boson can be summarized by

A{q̄Aµq, q̄aGcµqb,q̄Zµq ,q̄W±µ q′} =
{
iQqe5, igs,5 T

c
ab,

ig5 g
q
L

cw
,
ig5√

2

} γµ√
2πr

[
V Bnmk PL + Ṽ Bnmk PR

]
,

A{ q̄ϕAq, q̄aϕcGqb,q̄ϕZq ,q̄ϕ±W q′} =
{
Qqe5, gs,5 T

c
ab,

g5 g
q
L

cw
,
g5√

2

} 1√
2πr

[
V ϕBnmk PL + Ṽ ϕBnmk PR

]
,

Aq̄hq = −i
[
(g̃qh)nk PL + (gqh)nk PR

]
, (A.4)

where n,m, k are the mode-numbers of the anti-quarks, bosons and quarks respectively.

The labels B,ϕB on the right side must be replaced by the corresponding boson (label)

on the left side. The vector and scalar overlap integrals for the neutral gauge bosons are

given by

V Bnmk =
√

2π

∫ 1

ε

dt χBm(t)Q(n)†
L (t)PB Q(k)

L (t) , Ṽ Bnmk = V Bnmk|L↔R ,

V ϕBnmk =
√

2π

∫ 1

ε

dt
−k t ∂tχBm(t)

mBm

Q(n)†
R (t)VB5

(t)Q(k)
L (t) , Ṽ ϕBnmk = V ϕBnmk|L↔R,VB5

→ṼB5
,

(A.5)

where B = A,G,Z. The structures VB5(t) are defined in (A.2). For the W± boson we find

the following overlap integrals

VW
+

nmk =
√

2π

∫ 1

ε

dt χWm (t)U (n)†
L (t)PW D(k)

L (t) , VW
−

nmk = VW
+

nmk|U↔D , ṼW
±

nmk = VW
±

nmk |L↔R ,

V
ϕ+
W

nmk =
√

2π

∫ 1

ε

dt
−k t ∂tχWm (t)

mWm

U (n)†
R (t)VW+

5
(t)D(k)

L (t) , Ṽ
ϕ+
W

nmk = V
ϕ+
W

nmk

∣∣
L↔R,V

W
+
5
→Ṽ

W
+
5

,

V
ϕ−W
nmk =

√
2π

∫ 1

ε

dt
−k t ∂tχWm (t)

mWm

D(n)†
R (t)VW−5

(t)U (k)
L (t) , Ṽ

ϕ−W
nmk = V

ϕ−W
nmk

∣∣
L↔R,V

W
−
5
→Ṽ

W
−
5

.

(A.6)

The Goldstone-boson contributions from the Higgs sector are contained in the brane-

localized terms of VB±5
(t) in (A.2). We can simplify the scalar overlap integrals by per-

forming a partial t-integration noting that boundary terms at t = ε, 1 vanish, since we work

with the regularised δ-function (3.12). We can apply the equation of motions for the quark
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profiles such that the terms with the δ-functions cancel. For instance, in case of V
ϕ+
W

nmk we

can use that

∂t

[
U (n)†
R (t)P+D(k)

L (t)
]

=
mun

MKK
U (n)†
L (t)P+D(k)

L (t)− mdk

MKK
U (n)†
R (t)P+D(k)

R (t)

− % δη(t− 1)U (n)†
R (t)MY

udD
(k)
L (t) ,

(A.7)

where the last term in (A.7) cancels the δ-function appearing in VW+
5

(t). Repeating the

steps for the remaining cases we find

V ϕB
nmk =

mqn

mBm

V B
nmk −

mqk

mBm

Ṽ B
nmk , Ṽ ϕB

nmk =
mqn

mBm

Ṽ B
nmk −

mqk

mBm

V B
nmk , (B = A,G,Z)

V
ϕ+
W

nmk =
mun

mWm

V W+

nmk −
mdk

mWm

Ṽ W+

nmk , Ṽ
ϕ+
W

nmk =
mun

mWm

Ṽ W+

nmk −
mdk

mWm

V W+

nmk ,

V
ϕ−W
nmk =

mdn

mWm

V W−
nmk −

muk

mWm

Ṽ W−
nmk , Ṽ

ϕ−W
nmk =

mdn

mWm

Ṽ W−
nmk −

muk

mWm

V W−
nmk , (A.8)

where all scalar overlap integrals can be expressed in terms of the vector overlap integrals.

Concerning the quark-Higgs-quark couplings in (A.4) the overlap integrals are given by

(q = u, d)

(gqh)nk =
1√
2

∫ 1

ε
dt δη(t− 1)Q(n)†

L (t)MY
q Q(k)

R (t) , (g̃qh)nk =
[
(gqh)kn

]†
. (A.9)

In the brane-localized Higgs scenario with Y C
q = Y S

q we can perform the t-integration

analytically and find

(gqh)nk =
1√
2
Q(n)†
L (1−)P12

2Xq

sinh 2Xq
ỸqQ(k)

R (1−) , (A.10)

where Xq = %(YqY
†
q )1/2, Ỹq = (tanhXq/Xq)Yq and (g̃qh)nk =

[
(gqh)kn

]†
. We continue with

the triple gauge-boson vertices where photon or gluon zero modes are attached. We obtain

AW
±(n)
β (p)A

(0)
α (q)W

∓(k)
γ (k) = ∓ i e5√

2πr

[
ηαβ(q − p)γ + ηβγ(p− k)α + ηγα(k − q)β

]
,

Aϕ
±(n)
W (p)A

(0)
α (q)W

∓(k)
β (k) = ±e5 η

αβ

√
2πr

mW
n δnk ,

Aϕ
±(n)
W (p)A

(0)
α ϕ

∓(k)
W (k) = ±(p− k)α

i e5√
2πr

δnk ,

AG
(n)
β,b(p)G

(0)
α,a(q)G

(k)
γ,c(k) =

gs,5 f
abc

√
2πr

[
ηαβ(q − p)γ + ηβγ(p− k)α + ηγα(k − q)β

]
,

AG
(n)
β,b(p)G

(0)
α,a(q)ϕ

(k)
G,c(k) =

i gs,5 η
αβfabc√

2πr
mGn ,

Aϕ
(n)
G,b(p)G

(0)
α,a(q)ϕ

(k)
G,c(k) = (p− k)α

gs,5 f
abc

√
2πr

δnk .

(A.11)
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B Solutions for the 5D quark propagator

For details on the procedure of calculating the 5D quark propagator (3.5) in the mixed

position-momentum space we refer the reader to [29], where the solutions for the propagator

functions ∆q
LL(t, t′; k2

E) and ∆q
RL(t, t′; k2

E) have been derived (with Euclidean momentum

k2
E = −k2). Here we extend their results and also include the solutions for ∆q

RR(t, t′; k2
E).

The solution for ∆q
LR(t, t′; k2

E) can be obtained by complex conjugation ∆q
LR(t, t′; k2

E) =[
∆q
RL(t, t′; k2

E)
]†

. We begin with the solutions in the minimal RS model for a brane-

localized Higgs sector where the regulator η of the regularized δ-function in (3.12) fulfills the

constraint η � y∗v/ΛTeV, implying that ηkE � y∗v. As a consequence the η dependence

drops out of the solutions for the propagator functions. In this limit ηkE � y∗v we obtain

for q = u, d:

∆q,11
LL =

−
√
tt′

kEMKK

[
DQ

1 (k̂E , t)

DQ
1 (k̂E , 1)

RQ
1

1 +Zq

DQ
1 (k̂E , t

′)

DQ
1 (k̂E , 1)

− D
Q
1 (k̂E , t<)

DQ
1 (k̂E , 1)

LQ3 (k̂E , 1, t>)

]
,

∆q,12
LL =

√
tt′

kEMKK

DQ
1 (k̂E , t)

DQ
1 (k̂E , 1)

RQ
1

1 +Zq
%Ỹq

Dq
2(k̂E , t

′)

Dq
2(k̂E , 1)

,

∆q,21
LL =

√
tt′

kEMKK

Dq
2(k̂E , t)

Dq
2(k̂E , 1)

%Ỹ †q RQ
1

1 +Zq

DQ
1 (k̂E , t

′)

DQ
1 (k̂E , 1)

,

∆q,22
LL =

−
√
tt′

kEMKK

[
Dq

2(k̂E , t)

Dq
2(k̂E , 1)

%Ỹ †q RQ
1

1 +Zq
%Ỹq

Dq
2(k̂E , t

′)

Dq
2(k̂E , 1)

+
Dq

2(k̂E , t<)

Dq
2(k̂E , 1)

Lq2(k̂E , 1, t>)

]
,

∆q,11
RL =

−
√
tt′

MKK





DQ
2 (k̂E ,t)

DQ
2 (k̂E ,1)

Zq
1+Zq

DQ
1 (k̂E ,t

′)

DQ
1 (k̂E ,1)

+
DQ

2 (k̂E ,t)

DQ
2 (k̂E ,1)

LQ4 (k̂E , t
′, ε) , t < t′

DQ
2 (k̂E ,t)

DQ
2 (k̂E ,1)

Zq
1+Zq

DQ
1 (k̂E ,t

′)

DQ
1 (k̂E ,1)

+
DQ

1 (k̂E ,t
′)

DQ
1 (k̂E ,1)

RQL
Q
2 (k̂E , 1, t) , t > t′

,

∆q,12
RL = −

√
tt′

MKK

DQ
2 (k̂E , t)

DQ
2 (k̂E , 1)

1

1 +Zq
%Ỹq

Dq
2(k̂E , t

′)

Dq
2(k̂E , 1)

, (B.1)

∆q,21
RL = −

√
tt′

MKK

Dq
1(k̂E , t)

Dq
1(k̂E , 1)

1

%Ỹq

Zq
1 +Zq

DQ
1 (k̂E , t

′)

DQ
1 (k̂E , 1)

,

∆q,22
RL =

√
tt′

MKK





Dq
1(k̂E ,t)

Dq
1(k̂E ,1)

1
Ỹq

Zq
1+Zq

Ỹq
Dq

2(k̂E ,t
′)

Dq
2(k̂E ,1)

+
Dq

1(k̂E ,t)

Dq
1(k̂E ,1)

RqL
q
2(k̂E , 1, t

′) , t < t′

Dq
1(k̂E ,t)

Dq
1(k̂E ,1)

1
Ỹq

Zq
1+Zq

Ỹq
Dq

2(k̂E ,t
′)

Dq
2(k̂E ,1)

+
Dq

2(k̂E ,t
′)

Dq
2(k̂E ,1)

Lq4(k̂E , 1, t) , t > t′
,

∆q,11
RR =

−
√
tt′

kEMKK

[
DQ

2 (k̂E , t)

DQ
2 (k̂E , 1)

Zq
1 +Zq

1

RQ

DQ
2 (k̂E , t

′)

DQ
2 (k̂E , 1)

+
DQ

2 (k̂E , t<)

DQ
2 (k̂E , 1)

LQ2 (k̂E , 1, t>)

]
,

∆q,12
RR =

−
√
tt′

kEMKK

DQ
2 (k̂E , t)

DQ
2 (k̂E , 1)

Zq
1 +Zq

1

RQ

1

%Ỹ †q

Dq
1(k̂E , t

′)

Dq
1(k̂E , 1)

,

∆q,21
RR =

−
√
tt′

kEMKK

Dq
1(k̂E , t)

Dq
1(k̂E , 1)

1

%Ỹq

Zq
1 +Zq

1

RQ

DQ
2 (k̂E , t

′)

DQ
2 (k̂E , 1)

,

∆q,22
RR =

−
√
tt′

kEMKK

[
Dq

1(k̂E , t)

Dq
1(k̂E , 1)

1

%Ỹq

Zq
1 +Zq

1

RQ

1

%Ỹ †q

Dq
1(k̂E , t

′)

Dq
1(k̂E , 1)

− D
q
1(k̂E , t<)

Dq
1(k̂E , 1)

Lq3(k̂E , 1, t>)

]
.
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For the sake of readability we have suppressed the arguments of the propagator functions

∆q
AB(t, t′; k2

E) for A,B ∈ {L,R} and of Zq(k
2
E), RQ,q(k̂E) defined in (3.22), (3.23). The

modified Yukawa matrix is defined by Ỹq = (tanhXq/Xq)Yq with Xq = %(YqY
†
q )1/2 and

% = v/(
√

2MKK). We have used the abbreviations k̂E = kE/MKK, t> = Max(t, t′) and

t< = Min(t, t′). In (B.1) we used the functions DQ,q
i (k̂E , t) [29] which are related to the

more general functions DQ,q
i (k̂E , t, t

′) defined below via DQ,q
i (k̂E , t) ≡ DQ,q

i (k̂E , t, ε). The

generalized functions read

DA
1,2(k̂E , t, t

′) ≡ I−cA− 1
2
(k̂Et

′) IcA∓ 1
2
(k̂Et)− IcA+ 1

2
(k̂Et

′) I−cA± 1
2
(k̂Et) ,

DA
3,4(k̂E , t, t

′) ≡ I−cA+ 1
2
(k̂Et

′) IcA∓ 1
2
(k̂Et)− IcA− 1

2
(k̂Et

′) I−cA± 1
2
(k̂Et) ,

(B.2)

and

LAi (k̂E , t, t
′) ≡ πk̂E1η

2 cos (πcA)
DA
i (k̂E , t, t

′) ; i = 1, 2, 3, 4 , (B.3)

for A = Q, q. We introduced the shorthand notation 1η ≡ 1 − η and the bulk-mass

parameters are denoted by cQ,q.

Next we focus on the case of a narrow bulk-Higgs where the regulator η takes values

in the range y∗v/ΛTeV � η � y∗v/MKK, implying that the propagator solutions explicitly

depend on the product ηk̂E . For the calculation of the scalar contributions in section 3

we need to evaluate the 5D propagator functions in the region near the IR brane, where

the extra-dimensional coordinates take values in the range t, t′ ∈ [1η, 1]. Focusing on the

solutions in this region we obtain the results (t, t′ ∈ [1η, 1]):

∆q,11
LL =

−1

kEMKK

[ C(t)
C(1η)

(
ηk̂E

cothSq
Sq

Zη,1
q +RQ

) 1

Nη,1
q

C(t′)
C(1η)

− ηk̂E
C(t>)

C(1η)
S(t< + η)

Sq

]
,

∆q,12
LL =

1

kEMKK

C(t)
C(1η)

RQ
1

Nη,2
q

S(t′)
S(1η)

%Ỹq ,

∆q,21
LL =

1

kEMKK
%Ỹ †q

S(t)

S(1η)
RQ(k̂E)

1

Nη,1
q

C(t′)
C(1η)

,

∆q,22
LL =

−1

kEMKK
%Ỹ †q

S2
q

X2
q

[ S(t)

S(1η)

(
ηk̂E

cothSq
Sq

+RQ

) 1

Nη,2
q

S(t′)
S(1η)

− ηk̂E
S(t>)

S(1η)

S(t< + η)

Sq tanh2 Sq

]
%Ỹq ,

∆q,11
RR =

−1

kEMKK

[ S(t)

S(1η)

(
Zη,1
q + ηk̂E

tanhSq
Sq

RQ

) 1

Nη,1
q

1

RQ

S(t′)
S(1η)

− ηk̂E
S(t>)S(t< + η)

S(1η)Sq

]
,

∆q,12
RR =

−1

kEMKK

S(t)

S(1η)

1

Nη,2
q

Zη,2
q

1

RQ

C(t′)
C(1η)

X2
q

S2
q

1

Ỹ †q
, (B.4)

∆q,21
RR =

−1

kEMKK

1

Ỹq

X2
q

S2
q

C(t)
C(1η)

Zη,1
q

1

Nη,1
q

1

RQ

S(t′)
S(1η)

,

∆q,22
RR =

−1

kEMKK

1

%Ỹq

[ C(t)
C(1η)

(
1 + ηk̂E

tanhSq
Sq

RQ

) 1

Nη,2
q

Zη,2
q

1

RQ

C(t′)
C(1η)
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− ηk̂E
C(t>)S(t< + η)

C(1η)Sq coth2 Sq

]
,

∆q,11
RL =

−1

MKK

[ S(t)

S(1η)

(
Zη,1
q + ηk̂E

tanhSq
Sq

RQ

) 1

Nη,1
q

C(t′)
C(1η)

− C(t+ η)C(t′)
C(1η)

+ θ(t− t′)C(1 + t− t′)
]
,

∆q,12
RL =

−1

MKK

[ S(t)

S(1η)

1−Nη,2
q

Nη,2
q

%Ỹq
S̄(t′)
S̄(1η)

+
S(t>)C(t< + η)

S(1η)
%Ỹq

]
,

∆q,21
RL =

−1

MKK

[ C̄(t)
C̄(1η)

1

%Ỹq

X2
q

S2
q

Zη,1
q

1

Nη,1
q

C(t′)
C(1η)

− 1

%Ỹq

X2
q

S2
q

C(t>)S(t< + η)

C(1η) cothSq

]
,

∆q,22
RL =

−1

MKK

[ C̄(t)
C̄(1η)

1

Ỹq

[
1−Nη,2

q + ηk̂E
tanhSq
Sq

RQ

] 1

Nη,2
q

Ỹq
S̄(t′)
S̄(1η)

+
S̄(t+ η)S̄(t′)
C̄(1η)

+ θ(t− t′)C(1 + t− t′)
]
.

Again we have suppressed the arguments of the functions for the sake of readability. The

step functions is denoted by θ(t − t′). The t-dependent functions S(t), C(t) are defined

in (3.16) where we have to replace Xq by Sq as defined in (3.18), analogously for S̄(t) and

C̄(t). In (B.4) the modified Yukawa matrix is defined by Ỹq = (tanhSq/Sq)Yq. We also

introduced new structures (q = u, d) [29]

Nη,1
q (k2

E) ≡ 1 +Zη,1
q (k2

E) + ηk̂E

[
R−1
Q (k̂E)

cothSq
Sq

Zη,1
q (k2

E) +
tanh S̄q
S̄q

RQ(k̂E)

]
,

Nη,2
q (k2

E) ≡ 1 +Zη,2
q (k2

E) + ηk̂E

[
Zη,2
q (k2

E)R−1
Q (k̂E)

cothSq
Sq

+
tanhSq
Sq

RQ(k̂E)

]
,

(B.5)

with

Zη,1
q (k2

E) = %2
S2
q

X2
q

ỸqRq(k̂E) Ỹ †q RQ(k̂E) , Zη,2
q (k2

E) = %2ỸqRq(k̂E) Ỹ †q
S2
q

X2
q

RQ(k̂E) .

(B.6)

C Ultra-violet behavior of 5D propagators

This section discusses the behavior of the 5D propagator functions in the brane-localized

Higgs scenario for large momenta kE �MKK/t exceeding the effective Planck scale at each

point in the extra dimension. The results are used to show the finiteness of the penguin

diagrams and to calculate the boundary terms in section 3.

Gauge-boson propagator functions. Expanding the scalar and vector parts of the

gauge-boson propagator functions in Euclidean momentum space we find to leading order

(k̂E � 1/t, 1/t′)

Bscalar
B (t, t′; k2

E) ≈ L(tt′)
3
2

2πε2
e−k̂E(t>−t<)

2kEMKK

[
1− e2k̂E(t>−1) +

Lm̃2
B

(
1 + e2k̂E(t>−1)

)

kEMKK

][
1− e2k̂E(ε−t<)

]
,
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BB(t, t′; k2
E) ≈ L

√
tt′

2π

e−k̂E(t>−t<)

2kEMKK

[
1 + e2k̂E(t>−1)

][
1 + e2k̂E(ε−t<)

]
, (C.1)

for (subscript) B = A,G,W,Z. In case of the massive gauge bosons B = W,Z the scalar

propagator function includes the contributions from the fifth component of the 5D gauge-

boson fields and from the corresponding Goldstone-bosons in the Higgs sector, which gives

rise to the term proportional to Lm̃2
B/kEMKK. This term is absent in case of the photon

or gluon scalar propagator (B = A,G). Integrating (C.1) with a (well-behaved) function

f(t, t′) along both extra dimensional coordinates we can show that
∫ 1

ε
dtdt′BB(t, t′; k2

E) f(t, t′) ≈ L

4πk2
E

∫ 1

ε
dt f(t, t) ,

∫ 1

ε
dtdt′Bscalar

B (t, t′; k2
E) f(t, t′) ≈ L

8πε2k2
E

∫ 1

ε
dt f(t, t) .

(k̂E � 1/ε) (C.2)

We cannot prove (C.2) in general but we checked analytically that the relations are valid

for the functions relevant in the calculations of this paper. Relations (C.2) imply that

for large Euclidean momenta the propagator functions can be effectively replaced by the

δ-function δ(t− t′) apart from a constant factor.

Quark propagator functions. The results for the 5D quark propagator functions in the

brane-localized Higgs scenario are listed in (B.1). The solutions contain several functions

that have a simple form when expanded for large Euclidean momenta. To leading order

we find the expressions (k̂E � 1/t)

DA
1,4(k̂E , t)

DA
1,4(k̂E , 1)

≈ ek̂E(t−1)

√
t

[
1 + e2k̂E(ε−t)

]
,
DA

2,3(k̂E , t)

DA
2,3(k̂E , 1)

≈ ek̂E(t−1)

√
t

[
1− e2k̂E(ε−t)

]
, RA(k̂E) ≈ 1 ,

LA1,2(k̂E , 1, t) = −LA4,3(k̂E , 1, t) ≈
ek̂E(1−t)

2
√
t

[
1± e2k̂E(t−1)

]
, Zq(k

2
E) ≈ %2ỸqỸ

†
q , (C.3)

for A = Q, q and q = u, d. The expansions are independent of the bulk-mass parameters.

Using the above expressions in case of the propagator function ∆q
LL(t, t′; k2

E) we find (k̂E �
1/t, 1/t′)

∆q,11
LL (t, t′; k2

E) ≈ −e
−k̂E(t>−t<)

2kEMKK

[
1 + e2k̂E(ε−t<)

][
1 +

1− %2ỸqỸ
†
q

1 + %2ỸqỸ
†
q

e2k̂E(t>−1)

]
,

∆q,12
LL (t, t′; k2

E) ≈ e−k̂E(2−t−t′)

kEMKK

1

1 + %2ỸqỸ
†
q

%Ỹq

[
1 + e2k̂E(ε−t)

][
1− e2k̂E(ε−t′)

]
,

∆q,21
LL (t, t′; k2

E) ≈ e−k̂E(2−t−t′)

kEMKK
%Ỹ †q

1

1 + %2ỸqỸ
†
q

[
1− e2k̂E(ε−t)

][
1 + e2k̂E(ε−t′)

]
,

∆q,22
LL (t, t′; k2

E) ≈ −e
−k̂E(t>−t<)

2kEMKK

[
1− e2k̂E(ε−t<)

][
1− 1− %2Ỹ †q Ỹq

1 + %2Ỹ †q Ỹq
e2k̂E(t>−1)

]
,

(C.4)

at leading order in k̂−1
E . For a (well-behaved) function f(t, t′) we can show that

∫ 1

ε
dtdt′∆q

LL(t, t′; k2
E) f(t, t′) ≈ − 1

k2
E

∫ 1

ε
dt f(t, t) , (k̂E � 1/ε) (C.5)
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implying that the propagator function behaves like the δ-function δ(t − t′) for large mo-

menta. For functions that are localized near the IR brane the equation is already a

good approximation for k̂E � 1. Equation (C.5) is also valid in case of the propaga-

tor function ∆q
RR(t, t′; k2

E). We continue with the chirality-changing propagator function

∆q
LR(t, t′; k2

E). Using the coupled differential equation [29]

∆q
LR(t, t′; k2

E) = MKK(−∂t′ +Mq(t
′))∆q

LL(t, t′; k2
E) , (C.6)

we can show for a (well-behaved) function f(t, t′) that

∫ 1

ε
dtdt′∆q

LR(t, t′; k2
E) f(t, t′)=MKK

∫ 1

ε
dt
[
−∆q

LL(t, 1; k2
E)f(t, 1)+∆q

LL(t, ε; k2
E)f(t, ε)

]

+MKK

∫ 1

ε
dtdt′∆q

LL(t, t′; k2
E)
[
∂t′+Mq(t

′)
]
f(t, t′) , (C.7)

where we have performed a partial integration in t′. In the large Euclidean momentum

region we can show that (k̂E � 1/ε)

∫ 1

ε
dt∆q

LL(t, 1; k2
E) f(t, 1) ≈ −1

k2
E

[
P+

1 + %2ỸqỸ
†
q

+
P− %2Ỹ †q Ỹq
1 + %2Ỹ †q Ỹq

− P12

1 + %2ỸqỸ
†
q

%Ỹq

− %Ỹ †q
P21

1 + %2ỸqỸ
†
q

]
f(1, 1) ,

∫ 1

ε
dt∆q

LL(t, ε; k2
E) f(t, ε) ≈ − 1

k2
E

P+ f(ε, ε) ,

(C.8)

where higher order terms are suppressed at least by k−3
E . The first relation is approximately

valid already for k̂E � 1 if f(t, 1) has most of its support near the IR brane. Using (C.8)

in (C.7) we finally find for a (well-behaved) function f(t, t′) (k̂E � 1/ε)

∫ 1

ε
dtdt′∆q

LR(t, t′; k2
E) f(t, t′)≈MKK

k2
E

{[
P+

1+%2ỸqỸ
†
q

+
P− %2Ỹ †q Ỹq
1+%2Ỹ †q Ỹq

− P12

1+%2ỸqỸ
†
q

%Ỹq (C.9)

− %Ỹ †q
P21

1+%2ỸqỸ
†
q

]
f(1, 1)−P+ f(ε, ε)−

∫ 1

ε
dt

[
f ′(t, t+)+f ′(t, t−)

2
+Mq(t) f(t, t)

]}
,

where f ′(t, t±) = lims→t±0 ∂s f(t, s) is understood as a limiting procedure. An analogous

equation can be derived for the propagator function ∆q
RL(t, t′; k2

E).

D Loop functions

In the KK-decomposed 4D theory the Wilson coefficients in (4.4) involve the loop functions

I3,4(x) and I6−11(x). They are defined by the integral representations

I3(xnm) =
m2
m

m2
n

(
1

2
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
3k2

E

4
∂kE +

k3
E

4
∂2
kE

]
1

k2
E +m2

m

)
,

I4(xnm) =
m2
m

m2
n

(
1

12
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
k2
E

16
∂kE −

k3
E

16
∂2
kE
− k4

E

48
∂3
kE

]
1

k2
E +m2

m

)
,
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I6(xnm) = −1

2
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
9k2

E

4
∂kE +

3k3
E

4
∂2
kE

]
1

k2
E +m2

m

,

I7(xnm) =
5

12
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
− 3k2

E

16
∂kE +

3k3
E

16
∂2
kE

+
k4
E

16
∂3
kE

]
1

k2
E +m2

m

,

I8(xmn ) = −1

4
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
3k2

E

8
∂kE −

3k3
E

8
∂2
kE

]
1

k2
E +m2

m

,

I9(xmn ) =
1

6
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
− 3k2

E

32
∂kE +

3k3
E

32
∂2
kE
− k4

E

32
∂3
kE

]
1

k2
E +m2

m

,

I10(xmn ) = −1

4
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
− 3k2

E

8
∂kE +

3k3
E

8
∂2
kE

]
1

k2
E +m2

m

,

I11(xmn ) =
1

6
+m2

m

∫ ∞

0
dkE

1

k2
E +m2

n

[
5k2

E

32
∂kE −

5k3
E

32
∂2
kE

+
k4
E

96
∂3
kE

]
1

k2
E +m2

m

, (D.1)

where xab = m2
a/m

2
b . Note the different arguments of the loop functions I3,4,6,7(x) and

I8−11(x). Performing the momentum integrals the loop functions explicitly read

I3(x) =
3− 4x+ x2 + 2 lnx

2(x− 1)3
,

I4(x) =
2 + 3x− 6x2 + x3 + 6x lnx

12(x− 1)4
,

I6(x) =
4− 3x− x3 + 6x lnx

2(x− 1)3
,

I7(x) =
8− 38x+ 39x2 − 14x3 + 5x4 − 18x2 lnx

12(x− 1)4
,

I8(x) =
1− 12x+ 15x2 − 4x3 − 6x lnx

4(x− 1)3
,

I9(x) =
4− 49x+ 78x2 − 43x3 + 10x4 − 18x lnx

24(x− 1)4
,

I10(x) =
1 + 6x− 9x2 + 2x3 + 6x lnx

4(x− 1)3
,

I11(x) =
4 + 13x− 36x2 + 23x3 − 4x4 − 6x(2x− 3) lnx

24(x− 1)4
.

(D.2)
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