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1 Introduction

The AdS/CFT correspondence provides a powerful tool in probing many important phe-

nomena of strongly correlated systems in condensed matter physics [1–3]. In the context of

AdS/CFT, many charge transport coefficients such as DC conductivity, optical conductiv-

ity have been computed by considering the near-equilibrium filed theories on the boundary

with gravity dual in the bulk. One can perturb the boundary by a time-dependent field

with frequency ω to obtain the optical conductivity [1, 3]. However, under this approach,

when obtaining the DC conductivity with the limit ω → 0, one will confront the divergence

due to the spatial translation invariance of the homogeneous gravitational backgrounds in-

volved. Unfortunately, it is well-known that in the real materials, the spatial translation

invariance is not preserved i.e. the momentum are not conserved because of the presence

of impurities and lattices.

In order to extract the finite DC conductivity holographically, many approaches to

breaking of the spatial translation invariance in the bulk have been employed. There are ba-

sically two kinds of translational symmetry breaking: one is to introduce the lattices [4–12],

part of which relies on the complicated numerical computation technic in solving PDE, or

massive term [13–20] or spatial scalar fields [21–25] in the gravitational background by

hand. Another way is introducing Chern-Simons term [26] or pseudo-scalar [27] to spon-

taneously break the translational invariance, which will lead to instabilities.

Recently, a new approach to calculation of the DC conductivity has been developed

in [28, 29]. This approach does not rely on the zero frequency limit, but rather than a

time-independent electric field as perturbation on the boundary. The DC conductivities

can be obtained in terms of the horizon data by analysing regularity conditions to the

holographic model where the momentum dissipation is due to linear spatial scalar fields.
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Further discussions on the holographic massive gravity theory and Einstein-Maxwell theory

with inhomogeneous, periodic lattices have been studied in [30] and [31] respectively.

In this paper, we generalize the strategy presented in [28, 29] to calculate the DC

conductivities in five-dimensional Einstein-Gauss-Bonnet-Maxwell-linear scalar field the-

ory with momentum dissipation. The Gauss-Bonnet (GB) term in string effective action

appears as the first curvature stringy correction to Einstein-Hilbert action when consider-

ing the semi-classical effect, then the higher order terms is dual to the finite corrections

to the 1/N expansion of field theory on the boundary [32, 33]. So in the framework of

AdS/CMT, it is interesting to investigate the holographic conductivity of the quantum

field theories with the higher derivative gravity dual before the string theory is fully under-

stood [34–37]. Furthermore, to obtain the finite DC conductivities, we will also introduce

spatially dependent massless fields which lead to the momentum dissipation [21]. Since we

will focus on the isotropic bulk metric, we shall include three scalar fields that are linear in

all the spatial directions. The anisotropic solutions with one linear axion have been studied

in [38–41], and the discussions for condensed matter with the anisotropic black brane dual

can be found in [25, 29, 42].

This paper is organised as follows. In section 2, we present the exact solution for

Einstein-Gauss-Bonnet-Maxwell gravity with linear scalar fields. Then following [29], we

calculate the DC electrical conductivity σ, thermal conductivity κ̄ and thermoelectric α in

terms of horizon data in section 3. The conclusions are presented in section 4.

2 Black brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with

linear scalar fields

We begin with the following five-dimensional action of Einstein-Maxwell-Gauss-Bonnet

gravity with three scalar fields.

S =
1

2κ2

∫

M
d5x

√−g

(

R− 2Λ + α̃LGB − 1

2

3
∑

i=1

(∂φi)
2 − 1

4
FµνF

µν

)

, (2.1)

where 2κ2 = 16πG5 is the five-dimensional gravitational coupling and Λ = −6 is the

cosmological constant. α̃ is Gauss-Bonnet coupling constant with dimension (length)2 and

LGB =
(

RµνρσR
µνρσ − 4RµνR

µν +R2
)

(2.2)

is Gauss-Bonnet term.1 φi(x
µ)(i = 1, 2, 3) are 3 massless scalar fields and U(1) gauge field

strength is defined as Fµν = (dA)µν .

1We follow the conventions of curvatures as in [43].
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The equations of motion are easily obtained as

∇µF
µν = 0,

∇µ∇µφi = 0,

Rµν −
1

2
gµν

(

R+ 12 + α̃(R2 − 4RρσR
ρσ +RλρστR

λρστ )
)

+ α̃
(

2RRµν − 4RµρR
ρ
ν − 4RµρνσR

ρσ + 2RµρσλR
ρσλ
ν

)

−
3
∑

i=1

(

1

2
∂µφi∂νφi −

gµν
4

(∂φi)
2

)

− 1

2

(

FµλF
λ

ν − gµν
4

FλρF
λρ
)

= 0. (2.3)

We will consider homogeneous and isotropic charged black brane solutions, and then work

with the following planar symmetric ansatz

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dx2 + dy2 + dz2), (2.4)

where the UV boundary is defined as r → ∞. To obtain the metric homogeneous, we also

assume that the scalar fields are linearly dependent on the three spatial coordinates

φi(x
µ) = βiax

a = aix+ biy + ciz, (2.5)

and gauge field as

A = At(r)dt. (2.6)

So the Maxwell equations and Einstein equations can be solved exactly

At(r) = µ

(

1− r2
H

r2

)

, (2.7)

f(r) =
r2

4α̃

(

1−
√

1− 8α̃+
2β2α̃

r2
− 2β2α̃r2

H

r4
+

8α̃r4
H

r4
+

8α̃r2
H
µ2

3r4
− 8α̃r4

H
µ2

3r6

)

, (2.8)

where µ is the chemical potential of the dual field theory on the boundary, rH is the black

brane horizon i.e. f(rH) = 0. The positive constant β2 =
∑3

i=1 a
2
i =

∑3
i=1 b

2
i =

∑3
i=1 c

2
i

and the constants {ai, bi, ci} are satisfy
∑3

i=1 aibi =
∑3

i=1 bici =
∑3

i=1 ciai = 0. In terms

of the vector notation (~βa)i = βia and ~βa · ~βb =
∑

i βiaβib, we have

β2 ≡ 1

3

3
∑

i=1

~βa · ~βa (2.9)

under the condition

~βa · ~βb = β2δab. (2.10)

The temperature can be evaluated directly from the Euclidean continuation of the

metric (2.4), that is

T =
f ′(rH)

4π
=

6r2
H
− µ2

6πrH
− β2

8πrH
. (2.11)
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Since the entropy of GB black hole satisfies the area formula, from the Bekenstein-Hawking

entropy formula, we obtain the entropy density of horizon

s =
r3
H

4G5
. (2.12)

Finally, we discuss the UV and IR behavior of the solution. First, near the UV bound-

ary r → ∞,

f(r) ∼ 2r2

1 +
√
1− 8α̃

. (2.13)

So the effective asymptotic AdS radial is

L2
eff =

1 +
√
1− 8α̃

2
→
{

1 , for α̃ → 0
1
2 , for α̃ → 1

8

. (2.14)

Note that the Einstein limit is obtained by taking the limit α̃ → 0, in which the solu-

tion (2.4) reduces to the metric of [21]. To understand the geometry near horizon, we

define a new coordinate u,

r − rH =
3r2

H

4(3r2
H
+ µ2)u

. (2.15)

At the zero temperature T = 0, one can readily check that the extremal black brane

geometry is topologically equivalent to AdS2 × R
3:

ds2 =
L2

u2
(−dt2 + du2) + r2

H
(dx2 + dy2 + dz2), (2.16)

where L is the curvature radius of AdS2 with

L ≡
√

3β2 + 4µ2

12(β2 + 4µ2)
. (2.17)

So we can see that in the absence of U(1) gauge field, the extremal black brane geometry

can still be achieved.

Note that for a fixed mass and chemical potential, there is a space of solutions given

by the matrices of parameters βia, satisfying the constraint (2.10). One can recast the

parameter matrix into the form βia = βδia without loss of generality by performing O(3)

transformations, corresponding to redefinitions of the coordinates xa or of the scalars φi.

In all, the black brane solution is specified by T , µ and β, since these transformations leave

the solutions invariant [21].

3 DC conductivities

In this section, we will evaluate the DC electrical conductivity σ, thermal conductivity κ̄

and thermoelectric conductivity α in terms of horizon data.

– 4 –
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3.1 Electric conductivity

In order to compute the conductivities, we consider the perturbations of the form

gtx → δgtx(r),

grx → r2δgrx(r),

Ax → −Et+ δAx(r), (3.1)

and all the other metric and gauge perturbations vanishing. For simplicity of calculation, we

set βia = βδia as emphasized in the preceding section. Regarding this fact, it is consistent

to set all scalar fluctuations to be vanished except for the one with the linear piece along

the direction x. We can arbitrarily denote this scalar by φ and write

φ → φ+ δφ(r). (3.2)

Then linearizing the Maxwell equation, Einstein equations and Klein-Gordon equation, we

can obtain four independent equations of perturbations:

δA′′

x +

(

f ′

f
+

1

r

)

δA′

x +
2r2

H
µ

fr3

(

δg′tx −
2δgtx
r

)

= 0, (3.3)

δφ′ − βδgrx −
2Eµr2

H

βfr3
= 0, (3.4)

δg′′tx +
r2 + 4α̃(f − rf ′)

r(r2 − 4α̃f)
δg′tx +

8α̃ff ′ − r(4f + β2)

rf(r2 − 4α̃f)
δgtx +

2r2
H
µ

r(r2 − 4α̃f)
δA′

x = 0, (3.5)

δφ′′ +
3f + rf ′

rf
δφ′ − (3βf + βrf ′)δgrx

rf
− βδg′rx = 0, (3.6)

where the prime denotes derivatives with respect to r. From (3.3), one can define a radially

conserved current

J = −√−gF rx = −rfδA′

x −
2µr2

H

r2
δgtx, (3.7)

which is a constant. The Einstein equation (3.4) simply gives

δgrx = −2Eµr2
H

β2fr3
+

δφ′

β
. (3.8)

Then it is straightforward to see that the equation of motion for δφ can be simplified as

(3f + rf ′)

rf
δφ′ + δφ′′ = 0. (3.9)

To completely determine the solution of perturbation equations, we also need to impose

the boundary condition for fluctuations. Near the UV boundary r → ∞, the scalar field

perturbation equation (3.9) yields the behavior δφ ∼ k1 + k2/r
4, we demand the first term

vanishes, and δgtx behaves as r−2, which can be seen from (3.5).

Now we consider the asymptotic behavior near the horizon r = rH. Since we consider

the boundary condition at the future horizon, we will use ingoing Eddington-Finklestein

coordinates (v, r) defined as v = t+
∫

dr
f(r) here.

– 5 –
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First, the gauge field should be regular at the future horizon, which means that Ax ∼
−Ev + . . .. So from the (3.1), we conclude that δAx should satisfy

δAx ∼ − E

4πT
log(r − rH) +O(r − rH) (3.10)

near horizon r = rH. On the other hand, it is easy to see that the singular part of the

metric (2.4) can be expressed as

2δgtxdvdx− 2δgtx
f(r)

drdx+ 2r2δgrxdrdx (3.11)

in the ingoing Eddington-Finklestein coordinates. We can see from (3.8) that δgrx ∼ 1
r−rH

is divergence as r → rH. So to obtain the metric non-singular at the horizon, we should

require the metric perturbation behaves as

δgtx ∼ r2fδgrx|r→rH

= −2Eµr2
H

β2r
|r→rH +O(r − rH). (3.12)

Note that we have used the assumption of δφ is regular at the horizon. Since electric current

J is radial conserved, the DC electric conductivity can be easily obtained by evaluation

of (3.7) at the horizon:

σ =
∂J

∂E
(3.13)

=

(

r +
4µ2r4

H

β2r3

)
∣

∣

∣

∣

r→rH

= rH +
4µ2rH
β2

=
πT

2
+

2πTµ2

β2
+

√

3β2 + 6π2T 2 + 4µ2

2
√
6

+
µ2
√

6β2 + 12π2T 2 + 8µ2

√
3β2

.

As a demonstration, we plot the conductivity as a function of temperature in figure 1.

It behaves more like semiconductors, since for semiconductors, there are insufficient mobile

carriers at low temperatures and resistance is high; but as one heats the material, more

and more of the lightly bound carriers escape and become free to conduct. However for

normal metals there are plenty of mobile carriers and the motion of the lattice atoms due

to thermal energy causes them to interfere with the transport of mobile carriers through

the lattice. Thus, the conductivity of metals decreases as temperature goes up. We can

see from figure 1 that what we obtained does not correspond to normal metals.

The dependence of conductivity on β is also shown in figure 1, in which we can see

that in the small β limit, σ ∝ 1
β2 means that it is dominated by the coherent phase. But

as β becomes larger, σ ∝ β implies that the contribution of the pair production becomes

stronger, leading to an incoherent phase [22]. This phenomena strongly signals that there is

a competition effect between the Drude conductivity and conductivity due to pair creation

in the dual field theory.

– 6 –
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Figure 1. On the left is a graph for σ as a function of temperature T with β = µ = 0.1.

The right illustrates the scalar parameter β dependence of σ, where the color lines correspond to

µ = 0.1, T = 1 (blue); µ = 0.1, T = 0.1 (red) and µ = 1, T = 0.1 (yellow) respectively.

Now let us examine the behaviour of electric conductivity at low temperature. It is

easy to see that, in the limit of T ≪ µ, the σ behaves as

σ =
(β2 + 4µ2)

√

3β2 + 4µ2

2
√
6β2

+
π(β2 + 4µ2)

2β2
T + . . . , (3.14)

which means that the electric conductivity σ is finite as T → 0, indicating the metallic

behaviour. On the other hand, for the case T ≫ µ, we have

σ =
(β2 + 4µ2)π

β2
T +

3β4 + 16β2µ2 + 16µ4

24πβ2

1

T
+ . . . . (3.15)

To obtain the transport coefficient ᾱ, we should find a conserved heat current analogous

to electric current (3.7). In fact, we can combine the tx-component of Einstein equations

and Maxwell equation, and then define a r-independent quantity Q:

Q ≡
(

r2 − 4α̃f
)

(fδg′tx − f ′δgtx)

r
−AtJ, (3.16)

which satisfies ∂rQ = 0. Different from the Einstein gravity, there is a Gauss-Bonnet

coupling constant contribution in the expression for Q. However, such a α̃ correction does

not contribute to the thermal conductivity as we will see below. As discussed in [29], the

quantity Q should be identical to the heat current in the x-direction via calculation of

holographic stress tensor, i.e. Q = T tx − µJ . We present the proof in appendix A where

one can see clearly that Q is indeed the heat current.

Note that Q is independent of r, so after evaluation at the horizon, one can obtain

Q =
8EπTr2

H
µ

β2 , then ᾱ = ∂Q
T∂E is given by

ᾱ =
8πr2

H
µ

β2

= πµ+
4π3T 2µ

β2
+

4πµ3

3β2
+

2π2Tµ
√

6β2 + 12π2T 2 + 8µ2

√
3β2

. (3.17)

one may notice that α̃f(r) will vanish when evaluating Q on the horizon rH, so α̃ correction

does not contribute to thermoelectric conductivity.

– 7 –
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3.2 Thermal and thermoelectric conductivities

To compute the thermoelectric and thermal conductivities, as in [29], we consider the

fluctuations as follows:

gtx → tδh(r) + δgtx(r),

grx → r2δgrx(r),

Ax → tδa(r) + δAx(r),

φ → φ+ δφ(r). (3.18)

Then, similarly, linearizing the Maxwell equation ∂r(
√−gF rx) = 0, one obtain the following

conserved current J = −√−gF rx with

J = −2r2
H
µ(δgtx + tδh) + r3f(tδa′ + δA′

x)

r2
, (3.19)

and the linearised rx-component of Einstein equations is given by

δgrx =
2r2

H
µδa

β2r3f
+

(r2 − 4α̃f)(rδh′ − 2δh)

β2r3f
+

δφ′

β
. (3.20)

Again, to obtain the heat current Q, we also need to know the tx-component of the Einstein

equations

(r3f − 4α̃rf2)(δg′′tx + tδh′′) +
(

4α̃f2 + rf(r − 4α̃f ′)
)

(δg′tx + tδh′) (3.21)

+

(

4α̃f(rf ′′−f ′) +
4r4

H
µ2

r3
− r2f ′+4α̃rf ′2−r3f ′′

)

(δgtx + tδh) + 2r2
H
µf(tδa′ + δA′

x) = 0,

then one can combine (3.22) with Maxwell equation, and obtain the conserved current

Q =

(

r2 − 4α̃f
)

(fδg′tx − δgtxf
′ + tfδh′ − tδhf ′)

r
−AtJ . (3.22)

In order to calculate the transport coefficients α and κ̄, we assume δh(r) = −Cf(r) and

δa(r) = −E + CAt(r) which can be used to cancel the time-dependent terms of the con-

served current J and Q

J ≡ −r(A′

tδgtx + fA′

x),

Q ≡
(

r2 − 4α̃f
)

(fδg′tx − f ′δgtx)

r
−AtJ. (3.23)

Similarly, Q is the time-independent part of the heat current, which will be explained in

appendix A.

To find the behaviours of the perturbations near the horizon, we switch to Kruskal

coordinates (U, V ) instead, which are defined as U = −e−f ′(rH)u/2 and V = ef
′(rH)v/2. For

the purpose of the metric regularity at the horizon, the perturbation at the horizon should

be required as

δAx ∼ − E

4πT
log(r − rH) +O(r − rH), (3.24)

δgtx ∼ r2fδgrx|r→rH − C
f

4πT
log(r − rH) +O(r − rH). (3.25)

– 8 –
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Note that the positive sign in the first term of (3.25) is chosen to be satisfied the equation

for δgtx.

Now the α and κ̄ can be easily obtained. First, because J and Q are constants in

r direction, then evaluating the two conserved currents (3.19) and (3.22) at the horizon,

we obtain

J = ErH +
8CπTµr2

H

β2
+

4Eµ2rH
β2

, (3.26)

Q =
8πETµr2

H

β2
+

16Cπ2T 2r3
H

β2
. (3.27)

Consequently, the conductivities α and κ̄ are given by

α =
1

T

∂J
∂C

=
8πµr2

H

β2

= πµ+
4π3T 2µ

β2
+

4πµ3

3β2
+

2π2Tµ
√

6β2 + 12π2T 2 + 8µ2

√
3β2

, (3.28)

κ̄ =
1

T

∂Q
∂C

=
16π2Tr3

H

β2

= 3π3T 2 +
8π5T 4

β2
+

4π3T 2µ2

β2
+

π2T
√

3β2 + 6π2T 2 + 4µ2

√
6

+
2π2T (6π2T 2 + µ2)

√

2β2 + 4π2T 2 + 8
3µ

2

3β2
. (3.29)

The thermal conductivity is the Gauss-Bonnet coupling independent and this also agrees

the previous result obtained in [44]. At low temperature, these transport coefficients be-

have as

α =

(

πµ+
4πµ3

3β2

)

+
2π2µ

√

6β2 + 8µ2

√
3β2

T + . . . ,

κ̄ =
π2(3β2 + 4µ2)3/2

3
√
6β2

T + . . . , (3.30)

while at high temperature, the behaviour is

α =
8π3µ

β2
T 2 +

(

2πµ+
8πµ3

3β2

)

− µ(3β2 + 4µ2)2

72πβ2

1

T 2
. . . ,

κ̄ =
16π5

β2
T 4 +

2π3(3β2 + 4µ2)

β2
T 2 +

(3β2 + 4µ2)3

864πβ2

1

T 2
+ . . . . (3.31)

So we find that thermoelectric conductivity α is finite at T = 0, while thermal conductivity

κ = 0, meaning that a heat gradient does not give rise to transport. Our results imply

that we can extend [29] to higher dimensions with higher derivative gravity terms.

It would be interesting to check the Wiedemann-Franz law in our set-up. The

Wiedemann-Franz law stated that the ratio of the electronic contribution of the ther-

mal conductivity to the electrical conductivity of a conventional metal, is proportional to

– 9 –
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the temperature. For this purpose, let us first introduce the thermal conductivity at zero

electric current, which is the usual thermal conductivity that is more readily measurable

κ = κ̄− αᾱT/σ and hence

κ =
16π2r3

H
T

β2 + 4µ2
. (3.32)

For conventional metals, the Wiedemann-Franz law is characterized by the Lorenz ratio

i.e. L ≡ κ/(σT ) = π2/3 × k2B/e
2, which reflects that for Fermi liquids the ability of the

quasiparticles to transport heat is determined by their ability to transport charge so the

Lorenz ratio is a constant. Similarly, let us define the Lorenz ratios as follows

L̄ ≡ κ̄

σT
=

16π2r2
H

β2 + 4µ2
, (3.33)

L ≡ κ

σT
=

16π2β2r2
H

(β2 + 4µ2)2
. (3.34)

It is clear that the above equations do not obey the Wiedemann-Franz law and the Lorenz

ratios are not constants. As β → 0, L̄ and κ approach finite while L goes to zero and κ̄

diverges.

4 Summary

In this paper, we studied holographic DC thermoelectric conductivities for the higher

derivative gravity with momentum relaxation. We presented an exact solution for Gauss-

Bonnet-Maxwell theory with scalar fields. Then we derived analytically the DC electric

conductivity, thermal and thermoelectric conductivities of the dual conformal filed on the

boundary in the Gauss-Bonnet-Maxwell theory with momentum dissipation. The exact

form of the conductivities confirmed that the approach developed in [29] is applicable even

in Gauss-Bonnet gravity in AdS space.

Interestingly, we obtained a Gauss-Bonnet coupling dependent heat currents Q and

Q as be seen in (3.16) and (3.22). Unfortunately, such radially independent heat current

does not lead to α̃-dependent thermoelectric and thermal conductivities because the α̃-

dependent term α̃f(r) is vanishing at the horizon.

Moreover, different from the conductivities discussed in [22], the DC electric conduc-

tivity derived in this paper is temperature dependent and basically it increases as the

temperature goes up. The DC electric conductivity does not vanish even at T → 0 limit.

In our case, at T = 0 the black brane approaches AdS2×R
3 in the far IR with non-vanishing

entropy density. This reflects that the ground states of our system are semiconductors or

bad metals. The electric conductivity at zero temperature might be regarded as arising

from charged particle-hole pairs evolution [45]. This is because in those systems, at higher

frequencies, we can excite electrons from the filled valence band into the conduction band,

and these particle-hole pairs then contribute to the charge density.

It is our interests for the future task to work on the viscosity bound and causality

problem in this linear scalar fields modified Gauss-Bonnet theory. The upper bound of
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the Gauss-Bonnet coupling constant and its relation with the causality has been inves-

tigated in [46–51]. There are some very recent works on viscosity bound in anisotropic

superfluid [52] and backreaction effects [53] in higher derivative gravity. We expect that

the presence of the linear scalars may contribute some physics more interesting that would

greatly change the causal structure of the boundary theory and the upper and lower bounds

of the Gauss-Bonnet coupling constant. It would also be interesting to investigate the

physics of holographic superconductors in our geometry background by adding a charged

scalar field into the action.
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A Holographic stress tensor and the heat current

A standard holographic renormalization procedure [54–56] reveals that the holographic

stress tensor should be

T̃µν = −2

(

Kµν −Kγµν + 3γµν + 2α̃

(

τµν − 1

3
τγµν

))

, (A.1)

where

τµν = 2KKµλKν
λ − 2KµλKλρK

ρν +Kµν(KλρKλρ −K2), (A.2)

τ is the trace of τµν and K is the trace of the extrinsic curvature Kµν = ∇µnν . Note that

we have neglected the term 1
4γ

µν∂φi ·∂φi and the Ricci tensor terms which we do not need.

We consider the perturbation (3.1) about the black brane, it is straightforward to

calculate that

T̃ tx =

(

1

r2f1/2
− 4α̃f1/2

r4

)

δg′tx +
2(2f1/2 − 3r)

r3f
δgtx, (A.3)

and

T̃ xx =
1

r4f1/2

(

r2f ′ − 6r2f1/2 + 4f(r − α̃f ′)
)

, (A.4)

where we have used the notation nµ = (0, f−1/2, 0, 0, 0). So we can deduce that

f1/2r3(fT̃ tx − δgtxT̃
xx) =

(r2 − 4α̃f)(fδgtx − δgtxf
′)

r
. (A.5)

Evaluating both sides at the boundary r → ∞ and using the expression for Q given

in (3.16), we conclude that

T tx ≡ r6T̃ tx = Q+ µJ, (A.6)

– 11 –
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We now consider the time-dependent perturbation given in (3.18) with δh(r) = −Cf(r)

and δa(r) = −E + CAt(r), then, for the stress tensor of interest, we get

T̃ tx =

(

1

r2f1/2
− 4α̃f1/2

r4

)

δg′tx +
2(2f1/2 − 3r)

r3f
δgtx − CtT̃ xx

≡ T̃ tx
0 − CtT̃ xx, (A.7)

where T̃ tx
0 denote the time-independent part of stress tensor. Again, it is easy to check that

f1/2r3(fT̃ tx
0 − δgtxT̃

xx) =
(r2 − 4α̃f)(fδgtx − δgtxf

′)

r
, (A.8)

and recalling the definition for Q and evaluating the expression on the boundary r → ∞,

we can conclude that

T tx − µJ = Q− CtT xx. (A.9)
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