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1 Introduction

There are only very few observations from which one could expect to learn something

about the deep structure of spacetime, described by a model of quantum gravity. One

of those is the observed accelerated expansion of the universe, which can be modelled

by including a nonzero cosmological constant in the Einstein-Hilbert action. This entails

the cosmological constant problem. Here, we will focus on one aspect of this problem,

namely the question why quantum vacuum fluctuations do not seem to gravity, i.e., why

the cosmological constant exhibits a severe fine-tuning problem. As its mass-dimensionality

is 2, one would expect quantum fluctuations to drive it to be of order one in units defined

by the square of the physical mass scale of the theory, which is the Planck scale. In terms

of Renormalization Group (RG) trajectories, the tiny value inferred from observations

implies that a particularly fine-tuned trajectory has to be picked. Of course every so-called

relevant coupling in a quantum theory corresponds to one free parameter that can only
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be fixed by comparison with experiment. Thus one always has to pick a particular RG

trajectory in order for the model to reproduce observations. On the other hand, relevant

couplings with only, e.g., a logarithmic running imply that if one picks a trajectory nearby,

the measured value of the coupling will only change slightly. For the cosmological constant,

this statement is not true, i.e., for a reason which as yet has no dynamical explanation,

our universe just “happens” to live on a highly fine tuned choice of trajectory.

As already proposed by Weinberg [1], a “degravitation” of the cosmological constant

is possible by changing its status from a coupling in the action to a constant of integration

that arises at the level of the equations of motion. The second is a “classical” quantity in the

sense that it is not affected by quantum fluctuations. In unimodular gravity [2], the metric

is conceived as a symmetric tensor with fixed determinant
√
−g = ε [3]. This implies that no

operator of the form
√
−g exists, as the volume is just a fixed number, and the cosmological

constant is removed from the space of couplings, the theory space. Once a Renormalization

Group trajectory in this reduced space has been picked, the effective equations of motion

can be calculated from the full effective action — the infrared endpoint of the trajectory —

and the cosmological constant will then make its appearence as a constant of integration. In

this way, quantum vacuum fluctuations do not affect the value of the cosmological constant.

It is thus of interest to investigate a quantum theory of unimodular gravity. Unimodular

gravity in both its quantum and classical form has sparked considerable interest since it

was originally proposed [3–16].

A second motivation to consider unimodular quantum gravity lies in the fact it will

most probably differ from the non-unimodular version of quantum gravity. This inequiv-

alence arises, as imposing the unimodularity condition alters the spectrum of fluctuations

of the theory. In more detail, deriving the full metric propagator by taking the second

variation of the action yields different results when
√
−g = ε is imposed, than if the metric

determinant is allowed to fluctuate. In particular, fluctuations of the conformal mode,

which yield an instability of the path-integral in the Euclidean case when starting from

the Einstein-Hilbert action, are absent in unimodular gravity. This already suggests that

although classically equivalent [13], the quantum version of unimodular and “standard”

gravity could differ. The absence of the conformal instability even suggests that the uni-

modular quantum theory could have better properties.

As the search for the “quantum theory of gravity describing our universe” is still

ongoing, an exploration of different models for quantum gravity models is clearly of interest,

both from a theoretical as well as from a phenomenological point of view. Here we will

focus on exploring models of asymptotically safe quantum gravity. As we will point out in

section 5, it might be possible to distinguish between different versions of asymptotically

safe gravity experimentally.

Finally, in order to better understand the structure of Renormalization Group (RG)

flows in gravity it is of interest to consider settings with fewer propagating degrees of free-

dom in the path-integral. Here, we should clarify that the physically propagating degrees of

freedom in both settings, unimodular vs. “full” gravity, agree in a perturbative expansion

around a flat background, i.e., there is a massless spin-2 graviton [13]. On the other hand,

the configurations that enter the path integral are different metric configurations, and, e.g.,
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the configuration space of the conformal mode is also summed over in the case of “full”

gravity. In order to shed light on the physical mechanism of asymptotic safety, it is helpful

to consider settings where some of the modes in the path-integral are removed.

In this paper, we will consider unimodular asymptotic safety, and investigate trun-

cated Renormalization Group flows based on an f(R) action. We will discuss the classical

equivalence of “full” gravity, which we will call Einstein gravity, with unimodular gravity

based on an f(R) action in section 2.1. We will then focus on the quantum theory, and

review the asymptotic safety scenario and the functional RG in section 3, where we will

also present all technical details of our calculation. In section 4 we will present the flow

equation for f(R) and discuss a fixed point and its properties. We will make a first step

toward phenomenology in studying the effect of dynamical matter in section 5, and finally

conclude in section 6.

2 Relation between unimodular gravity and Einstein gravity

2.1 Classical equivalence of f(R) gravity and unimodular f(R)

Before we embark on an analysis of quantum gravity, let us clarify the classical relation

between unimodular f(R) gravity and f(R) gravity with a full metric, see, e.g., [17] for a

review. Here we will focus on the Lorentzian case, and then switch to a Euclidean setting

for the analysis of the quantum theory. We focus on actions given by a function of the

curvature scalar, f(R), with f(0) = 0. We introduce the Newton coupling GN and the

cosmological constant Λ in the action

S =

∫
d4x
√
−g
(
f(R) +

1

8πGN
Λ + Lm

)
. (2.1)

The corresponding equations of motion are given by

− 1

2
f(R)gµν + f ′(R)Rµν −DµDνf

′(R) + gµνD
2f ′(R) +

1

16πGN
Λgµν =

1

2
Tµν , (2.2)

where the energy-momentum tensor is given by

Tµν = − 2√
−g

δLm
δgµν

. (2.3)

The Bianchi-identities

Dµ

(
Rµν −

1

2
gµνR

)
= 0, (2.4)

will now play a crucial role: by taking the covariant derivative of eq. (2.2), we deduce the

conservation law for the energy-momentum tensor by imposing the Bianchi-identities.

To obtain the unimodular equations of motion for the action

Su =

∫
d4xε (f(R) + Lm) , (2.5)

we have to consider tracefree variations gµνδgµν = 0 and obtain

f ′(R)Rµν −DµDνf
′(R) +

1

4
gµνD

2f ′(R)− 1

4
gµνRf

′(R) =
1

2

(
Tµν −

1

4
gµνT

λ
λ

)
. (2.6)
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Crucially, the covariant derivative of the l.h.s. of eq. (2.6) does not vanish when the Bianchi-

identities are used. Instead, we can impose conservation of the energy-momentum tensor,1

and thereby derive a nontrivial identity, namely

Dν

(
−1

4
f ′(R)R− 3

4
D2f ′(R) +

1

8
T λλ

)
=
−1

2
Dνf(R), (2.7)

where we have used eq. (2.6) and imposed eq. (2.4). This identity allows us to identify

1/2f(R) with −1
4f
′(R)R − 3

4D
2f ′(R) + 1

2T
λ
λ , up to a constant of integration, which we

choose to call 1
16πGN

Λ. Inserting this identity into eq. (2.6) we obtain eq. (2.2), i.e.,

classically unimodular f(R) gravity cannot be distinguished from standard f(R) gravity.

Note that this statement depends on the postulate of energy-momentum conservation in the

unimodular case. It is a priori clear that the two theories can only be classically equivalent,

if one additional condition is imposed in the unimodular case: since the equations of motion

of unimodular gravity are obtained by removing the trace from the standard equations of

motion, they contain precisely one condition less.

3 Unimodular quantum gravity

3.1 Asymptotic safety

From now on we will focus on Euclidean quantum gravity, as this allows for a straightfor-

ward application of RG tools. To arrive at a unimodular quantum theory of gravity, we will

invoke the asymptotic safety conjecture for gravity [18]. Interestingly, unimodularity plays

a role in a number of other approaches to quantum gravity, e.g., within causal set quantum

gravity, where a discrete version of unimodularity would be implemented by performing

the path-sum over all causets with a fixed number of elements [19, 20]. Further, Causal

Dynamical Triangulations is based on a setting where the number of simplices usually is

held fixed for the simulations, i.e., the cosmological constant is removed from the space of

couplings, see, e.g., [21].

An asymptotically safe quantum theory of gravity is valid at arbitrarily high momenta,

i.e., beyond the regime of validity of effective field theory [22–25], and at the same time

remains predictive, i.e., only comes with a finite number of free parameters. It is the second

requirement that breaks down in a perturbative quantization of gravity when extended to

arbitrarily high momenta [26–28]. Then, an infinite number of counterterms needs to be

introduced and there is no mechanism to predict the corresponding free parameters. In

asymptotic safety, the Renormalization Group flow approaches an interacting fixed point

at high momenta. Specifically, we refer to the dimensionless couplings here, which can be

obtained from the dimensionful ones by an appropriate rescaling with the RG momentum

scale k. If these couplings approach a fixed point, the theory becomes scale free and can be

extended to arbitrarily high momentum scales. The RG flow lives in an infinite dimensional

1As discussed, e.g., in [12], it is not clear whether this requirement can be preserved in a quantum

field theory setting for the matter degrees of freedom. This could potentially lead to a situation where the

low-energy effective equations of motion allow us to distinguish between General Relativity and unimodular

gravity.
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space of all couplings, the theory space, as quantum fluctuations generically generate all

operators that are compatible with the symmetries. In this infinite-dimensional space one

must then investigate whether predictivity can be obtained, i.e., whether the model has

only a finite number of free parameters. This is ensured, if the interacting fixed point

comes with a finite number of relevant, i.e., ultraviolet (UV) attractive directions. The

(ir)relevance of a coupling gi(k) determines its scale-dependence in the vicinity of a fixed

point. This can be obtained after linearising the RG flow:

gi(k) = gi ∗ +
∑
I

CIV
I
i

(
k

k0

)−θI
. (3.1)

Herein, gi ∗ denotes the fixed-point values of the coupling gi. V I are the eigenvectors of

the stability matrix Mij = (∂βgi/∂gj)|gn=gn ∗ , and −θI its eigenvalues. CI are constants

of integration. If θJ < 0, then CJ = 0 is required in order for the couplings to approach

the fixed point in the UV limit, where k →∞. On the other hand, relevant directions are

those with θJ > 0. These approach the fixed point automatically, imposing no requirement

on the corresponding parameter CJ . They have instead to be determined experimentally.

k0 is an arbitrary reference scale, which can be taken as the scale at which the value of the

couplings is measured. At a Gaußian fixed point, such as that underlying asymptotic free-

dom in Yang-Mills theory, only the couplings of positive and vanishing mass dimensionality

can be relevant. At an interacting fixed point, quantum fluctuations shift the critical ex-

ponents away from the mass dimensionality by an anomalous dimension. Additionally, the

(ir)relevant directions are typically no longer given by the operators defined at the Gaußian

fixed point, but in fact correspond to mixtures of these. When the anomalous dimensions

remain finite, this suggests that only a finite number of relevant directions exist, and that

these can be found among appropriate combinations of the couplings with the largest mass

dimensionalities.

It remains for us to determine whether an interacting fixed point exists in unimodular

gravity and which of the couplings correspond to relevant ones. Most importantly, we

cannot draw any strong conclusions from the evidence for a fixed point in the case of

quantum Einstein gravity [29–60]. As the symmetry changes from full diffeomorphisms

to transverse diffeomorphisms, and the field content is restricted by the unimodularity

requirement, the two theory spaces are different. The existence and properties of possible

fixed points can therefore be different in the two cases, as discussed in [61].

3.2 Comments on the equivalence between quantum Einstein gravity and

unimodular quantum gravity

In the following, we will refer to the quantum theory with a full dynamical metric and full

diffeomorphism symmetry as quantum Einstein gravity, also in cases where the underlying

action is not the Einstein-Hilbert action. In the unimodular case,
√
g = ε implies that the

volume term is not an operator any more, but simply a number. As such, it will be dropped

from the action, and no quantum fluctuations contribute to the running of the prefactor, i.e.,

the cosmological constant. In other words, the cosmological constant is removed from the
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unimodular theory space. In principle, one could also attempt to impose the unimodularity

condition employing a Lagrange multiplier, in which case the cosmological constant would

remain a running coupling, presumably resulting in an inequivalent quantum model [15].

In quantum Einstein gravity, one can impose
√
g = ε as a gauge. This does of course

not remove the cosmological constant from the theory space. This becomes particularly

important when the cosmological constant corresponds to a relevant coupling at an RG

fixed point. Then the predicted values of all other couplings in the infrared will depend on

the corresponding free parameter, associated to the cosmological constant. On the other

hand, in the unimodular case, the value of the cosmological constant, which will first enter

the theory at the level of the equations of motion, is also a free parameter. However none of

the predictable values of the irrelevant couplings depend on that parameter. Furthermore,

as pointed out in [61], choosing
√
g = ε as a gauge in quantum Einstein gravity implies

that a corresponding Faddeev-Popov ghost contributes to the Renormalization Group flow.

This additional ghost is completely absent in unimodular gravity. Imposing unimodularity

directly on the allowed configurations of the metric in the path-integral also changes the

symmetry from diffeomorphisms to transverse diffeomorphisms; again implying differences

at the quantum level. Choosing a classically equivalent formulation of unimodularity can

allow to keep full diffeomorphism invariance [14], however we focus on the other case here.

Finally, imposing
√
g = ε in unimodular gravity also implies that the spectrum of

quantum fluctuations, i.e., the off-shell part of the propagator of metric fluctuations, differs.

We will again see this explicitly in section 3.3.2. By itself, this already changes the RG

flow. We conclude that an equivalence between unimodular quantum gravity and quantum

Einstein gravity is not be expected.

3.3 Deriving the flow equations

In this section, we will detail the derivation of the RG flow equation for unimodular quan-

tum gravity. We will focus on a setting where unimodularity is implemented as a restric-

tion on the allowed configurations in the path integral. This has the advantage that it

reduces the number of fluctuating gauge degrees of freedom in the path integral, and could

therefore be expected to yield better results already in simple approximations of the full

path-integral.

3.3.1 Wetterich equation

To examine whether asymptotic safety is realized in unimodular gravity, knowledge of

the non- perturbative beta functions is required. Here, we will use the framework of the

functional Renormalization Group to obtain these. In that setting, an infrared cutoff func-

tion Rk(−D2), (with D denoting a placeholder for the appropriate covariant Laplacian)

depending on the momentum scale k, is included in the generating functional, which sup-

presses quantum fluctuations with covariant momenta −D2 < k2 [62, 63]. For instance, a

theta-cutoff takes the form [65]

Rk
(
−D2

)
=
(
k2 −

(
−D2

))
θ
(
k2 −

(
−D2

))
. (3.2)

– 6 –
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This allows us to obtain the scale dependent effective action Γk, which encodes the effect of

high-momentum quantum fluctuations. Its scale dependence is governed by the Wetterich-

equation

∂tΓk =
1

2
STr

(
Γ

(2)
k +Rk

)−1
∂tRk, ∂t = k∂k. (3.3)

Herein Γ
(2)
k is the second functional derivative with respect to the quantum fields, which

is matrix-valued in field space. The supertrace implies a summation in field space, includ-

ing a negative sign for Grassmann-valued fields. It also encodes a summation/integration

over the discrete/continuous eigenvalues of the kinetic operator Γ
(2)
k . For reviews, see,

e.g., [66–70]. In the case of gravity, M. Reuter has pioneered the application of the Wet-

terich equation in [36]. Gravity-specific reviews of the asymptotic safety scenario and the

application of the functional Renormalization Group can be found in, e.g., [71–80].

The application of Renormalization Group methods requires us to set a scale, which

seems a challenging task in quantum gravity, where no background spacetime is assumed

to exist. Here, the background field method [81] can be employed to circumvent this

problem: splitting the full metric into a background and a fluctuation piece provides a

background covariant derivative. This can be used to define “high-momentum” and “low-

momentum” quantum fluctuations by decomposing the quantum field into eigenfunctions

of the background Laplacian and sorting them according to their eigenvalue. At the same

time, admitting fluctuations of arbitrarily large amplitude implies that we can still perform

the functional integral over all metric configurations, as long as the topology is kept fixed.

While quantum Einstein gravity admits a linear split of the metric, unimodularity requires

us to use a non-linear split of the form

gµν = ḡµκexp(h..)
κ
ν = ḡµν + ḡµκh

κ
ν +

1

2
ḡµκh

κλhλν + . . . = ḡµν + hµν +
1

2
hµκh

κ
ν + . . . , (3.4)

where the background metric ḡµν is used to lower and raise indices at each order of the ex-

pansion in the fluctuation field hµν . We then take the path-integral over the fluctuation field

hµν as the definition of the generating functional for quantum gravity. (The effect of using

such a decomposition in quantum Einstein gravity has been studied in in [82, 83] and [64].)

Note that a similar decomposition has to be invoked for calculations involving fluctuations,

e.g., in a cosmological setting, in the context of (semi-) classical unimodular gravity.

We then have at our disposal the background covariant Laplacian −D̄2 which we can

use to set up a regulator Rµνκλ(−D̄2 +αR̄) (not to be confused with the Riemann tensor)

for the fluctuation field

hµνR
µνκλ

(
−D̄2 + αR̄

)
hκλ, (3.5)

where α is the prefactor of a possible additional dependence on the background curva-

ture R̄. While the action is invariant under a simultaneous transformation of the back-

ground and fluctuation piece (ḡµκ → ḡµλexp(γ..)
λ
κ, hµκ → hµκ − γµκ + 1/2[h..., γ...]µκ −

1/12[h..., [h..., γ...]]µκ + 1/6[γ..., [γ..., h...]]µκ + . . .), the regulator term is clearly not. The

same will be true for the gauge-fixing, as we will employ a background gauge fixing here.

This implies that background-field couplings and fluctuation-field couplings will satisfy dif-

ferent flow equations. For instance, the RG flow of the background Newton coupling will

– 7 –
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differ from that of the prefactor of the term quadratic in the fluctuation field and in deriva-

tives. In this work, we will not resolve this difference, but instead identify background and

fluctuation-field couplings, and leave the next step to future work. Thus, while a full cal-

culation would feature beta functions for the background and fluctuation couplings where

the nontrivial terms can only depend on the fluctuation couplings, our approximation will

involve a nontrivial dependence on the background couplings.

3.3.2 Second variation of the action

Our truncation is given by

Γk =

∫
d4xε f(R). (3.6)

Within quantum Einstein gravity, an analogous truncation has been considered in [29–35].

The unimodularity condition implies that the number of possible terms in the variation

of eq. (3.6) will be reduced, since terms which are present in quantum Einstein gravity,

such as (δ2√g)f(R) and (δ
√
g)f ′(R)δR, do not exist here. In fact

δ2Γk =

∫
d4xε

(
f ′(R)δ2R+ f ′′(R)(δR)2

)
. (3.7)

Evaluating the variation, starting from the relation eq. (3.4), and using a 4-sphere for the

background field configuration,2 we obtain

Γ2 =
1

2

∫
d4xε

[
f ′′(R)hµνD̄

µD̄νD̄κD̄λhκλ + f ′(R) ·

·
(
− 1

12
R̄ hµνh

µν − hµνD̄µD̄λhνλ +
1

2
hµνD̄

2hµν
)]

. (3.8)

Herein, gµν = ḡµν , i.e., we employ a single-metric approximation from now on.

As a next step, we insert a York-decomposition of the fluctuation field into a transverse

traceless tensor, a transverse vector, and a scalar (corresponding to the longitudinal vector

mode). Note that in contrast to the usual case, there is no trace mode, i.e.,

hµν = hTTµν + D̄µvν + D̄νvµ + D̄µD̄νσ −
1

4
ḡµνD̄

2σ, (3.9)

where D̄νhTTµν = 0, ḡµνhTTµν = 0 and D̄µvµ = 0.

It turns out that the second variation evaluated on the transverse vector mode vanishes.

In other words, the dynamics of the vector mode is arising from the gauge-fixing term only,

i.e., it is “pure gauge”. This is another major difference to the case of f(R) truncations in

quantum Einstein gravity, see, e.g., [29–32].

For the transverse traceless tensor mode we obtain

1

2

∫
d4xε hµνΓ

(2)µνκλ
TT hκλ =

1

2

∫
d4xεf ′(R)hTTµν

(
1

2
D̄2 − R̄ 1

12

)
hTT µν . (3.10)

2For this configuration, we have R̄µν = R̄
4
ḡµν and R̄µνκλ = R̄

12
(ḡµκḡνλ − ḡµλḡνκ).

– 8 –
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Finally, the scalar mode is governed by the following dynamics

1

2

∫
d4xε σΓ(2)

σσσ =
1

2

∫
d4xεσ

[
f ′(R̄)

(
−1

16
R̄D̄2D̄2 − 3

16
D̄2D̄2D̄2

)
+ f ′′(R̄)

(
9

16
D̄2D̄2D̄2D̄2 +

3

8
R̄D̄2D̄2D̄2 +

1

16
R̄2D̄2D̄2

)]
σ. (3.11)

As usual, no mixed contributions Γσv etc. can exist because of the transversality and

tracelessness of hTTµν and vµ.

3.3.3 Gauge-fixing

We choose a gauge-fixing that is related to the harmonic gauge condition, but modified

such that it satisfies

ḡµνD̄νFµ = 0, (3.12)

for the spherical background. Accordingly, this choice of gauge fixing only imposes three

instead of four gauge-conditions, i.e., it only fixes the transversal diffeomorphisms, infinites-

imally defined by

δDgµν = Lvgµν with Dµv
µ = 0. (3.13)

Note that in models of gravity which are invariant under transverse diffeomorphism, an

additional scalar mode appears upon linearization. As noted in [84], this mode is absent in

two cases: if the symmetry is enhanced to full diffeomorphism symmetry, yielding standard

Einstein gravity, or if the metric determinant remains fixed. Then the additional scalar,

which plays the role of the determinant, is removed from the model.

Gauge-fixing only the transverse diffeomorphisms is achieved by using the longitudinal

and transversal projectors defined in [85], which read

ΠLµν = −D̄µ

(
−D̄2

)−1
D̄ν , (3.14)

ΠT µν = ḡµν −ΠLµν . (3.15)

As they should, these satisfy ΠLµνΠ ν
Lκ = ΠLµκ, ΠLµνΠ ν

T κ = 0 and ΠT µνΠ ν
T κ = ΠT µκ.

We now project the harmonic gauge on its transversal part [86] and define

Fµ =
√

2Π κ
T µD̄

νhνκ. (3.16)

It is then straightforward to see that ḡµνD̄νFµ = 0. Accordingly only three conditions are

imposed on the fluctuation field, which one can easily see by inserting the York decompo-

sition: it turns out that the gauge fixing does not impose a condition on σ, but only on vµ,

which has only three independent components. These turn out to be gauge modes. Indeed

Fµ =
√

2

(
D̄2 +

R̄

4

)
vµ. (3.17)

Thus the gauge-fixing action reads

Sgf v =
1

α

∫
d4xεvµ

(
D̄2 +

R̄

4

)2

vµ. (3.18)

– 9 –
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Finally, the Faddeev-Popov ghost action is obtained in the usual way and reads

Sgh = −
∫
d4xε c̄µ

(
D̄2 +

R̄

4

)
cµ, (3.19)

where we have already identified gµν = ḡµν and D̄µc
µ = 0 = D̄µc̄

µ. (As we only evaluate

the ghost loop contribution to the running in the gravitational background couplings, this

is already allowed at this stage.)

3.3.4 Jacobian and auxiliary fields

The York decomposition implies the existence of a nontrivial Jacobian in the generating

functional [52]. Here, we will deal with this Jacobian by employing the following strategy:

from the structure of Sgf v it is obvious that a part of the Jacobian can be cancelled by the

field redefinition

vµ →
√
−D̄2 − R̄

4
vµ. (3.20)

Employing this field redefinition results in Sgf v = −1/α
∫
d4xεvµ

(
D̄2 + R̄

4

)
vµ., i.e., the

vector mode does not contribute to the RG flow if we impose Landau gauge. In principle,

we could choose to nevertheless impose a regulator on that mode with a dependence on

the gauge parameter. Here, we take the point of view that a vanishing (unregularized)

propagator allows us to trivially integrate out the v mode in the path-integral, such that it

does not affect the effective action. (Alternatively, a gauge-choice of the form vµ = 0 could

also be imposed, as in [64], also leading to a vanishing contribution of the vector mode.)

On the other hand, a corresponding redefinition of σ in order to absorb the remaining

part of the Jacobian would not lead to a simple form of the inverse propagator. Accord-

ingly we introduce auxiliary fields to take into account that part of the Jacobian. The

corresponding action is given by

Γk aux =

∫
d4xε

[
3

4
χ̄

(
−D̄2 − R̄

3

)
(−D̄2)χ+

3

4
ζ

(
−D̄2 − R̄

3

)
(−D̄2)ζ

]
, (3.21)

where χ is a complex Grassmann field and ζ is a real scalar field. These give the same

contribution to the flow equation, with a relative factor of −2. Accordingly, the total

contribution comes with a factor −1/2.

3.3.5 Choice of two regularization schemes and evaluation of traces

We will study two different regulators in the following. For the first choice, we follow [32]

and employ regulators which essentially substitute the following covariant Laplace-type

operators by k2:

∆2 = ∆ +
2R̄

12
, ∆1 = ∆− R̄

4
, ∆0 = ∆− R̄

3
, (3.22)

for the transverse traceless tensor, the transverse vector, and the scalar. Herein −D̄2 = ∆.

We choose a Litim-type cutoff [65]

Rk TT 1 = −1

2
f ′(R)

(
k2 −∆2

)
θ
(
k2 −∆2

)
, (3.23)
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for the transverse traceless tensor. Note that the negative sign is exactly as it should be,

as in the simplest case f(R) = −1
16πGR. For the scalar mode we obtain the slightly lengthier

expression

Rk σ 1 =

[
f ′′(R)

(
R2

16

(
k4 −∆2

0

)
+

3

8
R
(
k6 −∆3

0

)
+

9

16

(
k8 −∆4

0

))
+ f ′(R)

(
1

48
R2
(
k2−∆0

)
+

1

8
R
(
k4−∆2

0

)
+

3

16

(
k6−∆3

0

))]
θ
(
k2 −∆0

)
, (3.24)

such that for k2 −∆0 > 0

Γ
(2)
k σ+Rk σ 1 → f ′′(R)

(
R2 k4

16
+

3

8
Rk6+

9

16
k8

)
+f ′(R)

(
1

48
R2 k2+

1

8
Rk4+

3

16
k6

)
. (3.25)

Since the function f(R) appears explicitly, its scale-derivatives will feature on the right-

hand side of the Wetterich equation. They will lead to a schematic structure of the form

∂tg = c1g
2 + c2∂tg + . . . of the flow equation for the couplings. This results in nonpertur-

bative resummation structures, i.e., ∂tg ∼ c1g2

1−c2 . As the prefactor c2 can contain further

couplings, this choice of “spectrally adjusted” [87, 88] regulator roughly corresponds to a

resummation of an infinite series of polynomial terms in the couplings.

Explicitly, we will use the following derivatives

∂tf
′(R) = k2

(
2f̃ ′ + ∂tf̃

′ − 2R̃f̃ ′′
)
, (3.26)

∂tf
′′(R) = ∂tf̃

′′ − 2R̃f̃ ′′′, (3.27)

in terms of the dimensionless function f̃
(
R̃
)

= k−4f(R), where R̃ = R
k2 .

For the auxiliary fields and ghost we take

Rk gh 1 = −
√

2
(
k2 −∆1

)
θ
(
k2 −∆1

)
, (3.28)

Rk aux 1 =
3

4

(
k4 −∆2

0 +
R

3

(
k2 −∆0

))
θ
(
k2 −∆0

)
. (3.29)

In order to test the reliability of our results, we will actually perform a fixed-point search

with two different regularization schemes. As our second choice we employ a regulator,

which essentially substitutes covariant Laplacians ∆ = −D̄2 with k2 in the regularized

propagator. The additional curvature dependence which is introduced in the regulator

when using the operators eq. (3.22) is removed in this choice, resulting in a shift in possible

poles of the flow equation. With ∆ = −D̄2, this choice corresponds to

Rk TT 2 = −1

2
f ′(R)

(
k2 −∆

)
θ
(
k2 −∆

)
, (3.30)

for the transverse traceless tensor. For the scalar mode, we choose a regulator of the form

Rk σ, 2 =

[
f ′(R)

(
−1

16
R
(
k4 −∆2

)
+

3

16

(
k6 −∆3

))
+ f ′′(R)

(
9

16

(
k8 −∆4

)
− 3

8
R
(
k6 −∆3

)
+
R2

16

(
k4 −∆2

))]
θ
(
k2 −∆

)
. (3.31)
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eigenvalue multiplicity

∆0
n(n+3)−4

12 R; n = 0, 1, . . . (n+2)!(2n+3)
6n!

∆1
n(n+3)−4

12 R; n = 1, 2, . . . (n+1)!n(n+3)(2n+3)
2(n+1)!

∆2
n(n+3)

12 R; n = 2, 3, . . . 5(n+1)!(n+4)(n−1)(2n+3)
6(n+1)!

Table 1. Eigenvalues and multiplicities of Laplacians acting on transverse traceless tensors, trans-

verse vectors, and scalars, [89].

For the ghost, we choose

Rk gh, 2 =
√

2
(
−k2 + ∆

)
θ
(
k2 −∆

)
. (3.32)

The auxiliary fields come with a regulator of the form

Rk aux, 2 = −3

4

(
−k4 + ∆2 +

R

3

(
k2 −∆

))
θ
(
k2 −∆

)
. (3.33)

In both regularization schemes, we sum over the eigenvalues of the corresponding

Laplacians, which can be obtained for both ∆ and ∆s from table 1, where the multiplicities

are not affected by the curvature-dependent shift between ∆ and ∆s.

To convert the sum over eigenvalues into an integral, we employ the Euler-MacLaurin

formula. In this step, additional terms which depend on the derivatives of the integrand at

the lower boundary, arise. No contributions from the upper boundary exist, as θ(k2−x) = 0

for x→∞. From the lower boundary, only the first few terms contribute: as ∂tRk
(
Γ

(2)
k +Rk

)
is a polynomial of finite order in the eigenvalues, only the lowest few orders in derivatives,

when evaluated at the lower boundary, can contribute.

4 Results: asymptotic safety in f(R)

4.1 Flow equations

The flow equation for f̃
(
R̃
)

reads

∂tf̃
(
R̃
)

= −4f̃
(
R̃
)

+ 2R̃f̃ ′
(
R̃
)

+
R̃2

384π2
(FTT + Fσ + Fgh + Faux) , (4.1)

where the contributions from transverse traceless tensors FTT , scalars Fσ, auxiliary fields

Faux and Faddeev-Popov ghosts Fgh depend on the choice of regulator, as discussed above.

For the first choice of cutoff, which is a function of ∆s, we obtain

FTT =

(
89

18
+

60

R̃2
− 40

R̃

)
+

1

2f̃ ′

(
89

18
+

20

R̃2
− 20

R̃
− 127R̃

567

)(
2f̃ ′ + ∂tf̃

′ − 2f̃ ′′R̃
)
, (4.2)
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Fσ =
1(

1
8 f̃
′′
(
3 + R̃

)2
+ 1

24 f̃
′
(
3 + R̃

)2) ·
·

[(
−271

90
+

12

R̃2

(
1 + R̃

))
·

(
f̃ ′
(

9

8
+

1

2
R̃+

1

24
R̃2

)
+ f̃ ′′

(
9

2
+

9

4
R̃+

R̃2

4

))

+
(

2f̃ ′ + ∂tf̃
′ − 2f̃ ′′R̃

)(
−29

48
+

27

20R̃2
+

39

16R̃
− R̃− 3

16
R̃2 +

12161R̃3

6842880

)

+
(
∂tf̃
′′ − 2f̃ ′′′R̃

)(
−21

16
+

9

2R̃2
+

81

10R̃
− 23R̃

8
− 9R̃2

16
− 439573R̃4

622702080

)]
, (4.3)

Fgh = −2

(
109

30
+

36 + 24R̃

R̃2

)
, (4.4)

Faux =
6 + R̃

90R̃2
(
3 + R̃

) (−1080 + R̃
(
− 1080 + 271R̃

))
. (4.5)

As a main structural difference to quantum Einstein gravity with a full dynamical

metric, including a conformal factor [29–32], one should note that the function f̃ does not

appear on the right-hand side of the flow equation, i.e., the cosmological constant is not

part of the theory space.

For the second regulator, that imposes cutoffs on ∆, we obtain

FTT =
1

4536R̃2f̃ ′
(

1 + R̃
6

)[−252f̃ ′
(
−1080 + R̃

(
360 + R̃

))
+
(

2f̃ ′ + ∂tf̃
′ − 2f̃ ′′R̃

)(
45360R̃+ R̃

(
−22680 + R̃

(
− 126 + 311R̃

)))]
(4.6)

Fσ =
1

2
(

3−R̃
16 f̃ ′ + f̃ ′′ 9−6R̃+R̃2

16

) ·
·

[
1

16

(
∂tf̃
′′ − 2R̃f̃ ′′′

)(
−631

10
+

72

R̃2
− 72

5R̃
+

551R̃

15
− 511R̃2

90
− 55189R̃4

38918880

)
+

1

47900160R̃2

(
2f̃ ′ + ∂tf̃

′ − 2f̃ ′′R̃
)
·

·
(

64665216 + 8981280R̃− 58977072R̃2 + 16997904R̃3 + 3815R̃5
)

+

(
f̃ ′

(
9

8
− R̃

4

)
+ f̃ ′′

(
9

2
− 9

4
R̃+

R̃2

4

))
·

(
−511

90
+

4
(
3 + R̃

)
R̃2

)]
(4.7)

Fgh = − 8

4− R̃

(
− 7

60
+

6
(
6 + R̃

)
R̃2

)
, (4.8)

Faux =
−6 + R̃

90R̃2
(
− 3 + R̃

) (−1080 + R̃
(
− 360 + 511R̃

))
. (4.9)

Comparing the two equations for ∂tf̃
(
R̃
)
, we note that the different choice of regulariza-

tion scheme mainly serves the purpose of changing the singularity structure of the equation,

which can play a role in the search for global solutions [32]. Apart from that, the structure

is similar in both cases, with differences only in the numerical prefactors of most terms.
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a1 ∗ a2 ∗ a3 ∗ a4 ∗ a5 ∗ a6 ∗ a7 ∗ a8 ∗ a9 ∗ a10 ∗

-0.0121

-0.0118 0.0031

-0.0117 0.0037 0.00025

-0.0113 0.0038 0.00017 −5.40 · 10−5

-0.0112 0.0039 0.00020 −5.81 · 10−5 6.25 · 10−6

-0.0111 0.0039 0.00018 −6.68 · 10−5 5.11 · 10−6 −2.59 · 10−6

-0.0112 0.0039 0.00018 −6.67 · 10−5 4.77 · 10−6 −2.63 · 10−6 −1.09 · 10−7

-0.0111 0.0039 0.00018 −6.82 · 10−5 4.15 · 10−6 −3.12 · 10−6 −2.34 · 10−7 −1.89 · 10−7

-0.0111 0.0038 0.00017 −6.85 · 10−5 3.72 · 10−6 −3.26 · 10−6 −3.54 · 10−7 −2.24 · 10−7 −4.91 · 10−8

-0.0111 0.0038 0.00017 −6.90 · 10−5 3.37 · 10−6 −3.44 · 10−6 −4.37 · 10−7 −2.85 · 10−7 −6.96 · 10−8 −2.62 · 10−8

Table 2. Fixed-point values for the dimensionless couplings an in a polynomial expansion around

vanishing curvature, at increasing truncation order.

4.2 Fixed points

To search for fixed points, we expand f̃
(
R̃
)

in a polynomial around vanishing curvature,

where the cosmological constant is again absent,

f̃
(
R̃
)

=
10∑
n=1

anR̃
n. (4.10)

Note that the Newton coupling is given by G = − 1
16πa1

. Thus a negative fixed-point value

for a1 translates into a positive microscopic Newton coupling. Using the first regularization

choice eqs. (4.2)–(4.5), we find a number of fixed points, where we list only the most stable

one in table 2. Beyond R̃4 it becomes rather cumbersome to evaluate all solutions of the

fixed-point equations. We thus pick the most stable fixed point that exists in the four

truncations up to a4. At R̃5 and beyond we perform a numerical search for the solution of

the fixed-point equation in the vicinity of the fixed-point coordinates at lower truncation

order, and no longer investigate all solutions.

The fixed point at n = 1 is related to that found in [61], which neglected the additional

terms arising from the Euler MacLaurin formula. We clearly observe that the fixed point

at truncation order n+ 1 is a continuation of the fixed point at order n, as the coordinates

of the fixed points lie reasonably close to each other. This stability under extensions of the

truncation indicates that this is not an auxiliary fixed point. Interestingly, the fixed-point

values of the couplings an, n ≥ 5 are four orders of magnitude smaller than the highest-

order coupling. This suggests that an approximation of the fixed-point action employing

only the first few terms could be reasonable, for instance if cosmological consequences of

unimodular asymptotic safety are deduced from “RG improved” calculations.

The corresponding critical exponents are given in table 3, and again seem reasonably

stable under extensions of the truncation, cf. figure 1. Similarly to the case of quantum

Einstein gravity, two exponents with positive real part are observed, i.e., R and R2 form

relevant directions. In this approximation, the two critical exponents with positive real part

form a complex conjugate pair, which could hint at a necessary extension of the truncation

to obtain better numerical precision. Higher-order operators become increasingly irrele-
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θ1,2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

2.295

2.122 ± i 1.232

2.778 ± i 1.232 −1.233

2.832 ± i 0.781 −1.113 −3.111

2.912 ± i 0.687 −1.172 −3.415 −5.235

2.863 ± i 0.654 −1.155 −3.328 −5.447 −6.997

2.862 ± i 0.671 −1.197 −3.382 −5.380 −7.464 −8.863

2.847 ± i 0.673 −1.204 −3.418 −5.483 −7.325 −9.398 −10.708

2.841± i 0.678 −1.221 −3.440 −5.530 −7.534 −9.236 −11.324 −12.698

2.834 ± i 0.681 −1.228 −3.462 −5.569 −7.585 −9.545 −11.093 −13.224 −14.514

Table 3. Critical exponents at the fixed point shown in table 2. The first line is of course understood

to feature only one real critical exponent.

vant. The anomalous dimension is a positive contribution to the critical exponents for all

operators, i.e., quantum fluctuations shift all operators towards relevance. Comparing the

value of the critical exponents θi beyond i = 3 to the canonical dimension di = −(2i− 4),

we observe a decreasing distance up to θ6, cf. figure 1. Beyond, our truncation is not large

enough to produce convergent results, as can be inferred from the comparison between the

largest and second-largest truncation. Tentatively extrapolating this trend would indicate

that canonical scaling could be recovered at large powers of the curvature.

We observe an interesting difference to quantum Einstein gravity, where the gap be-

tween the smallest relevant and largest irrelevant eigenvalue is ∆UV = 5.58 [34, 35]. In our

case, we find ∆UV unimod ≈ 4.06, i.e., a significantly reduced gap. This is related to the

fact that canonically irrelevant operators are shifted further into irrelevance in quantum

Einstein gravity, whereas they are shifted into relevance in unimodular asymptotic safety.

At this stage, we should comment on the approximations we have used. There are

several sources of uncertainty in our results: firstly, using a spherical background to project

on the function f(R) entails ambiguities. Operators with the same number of derivatives

are projected onto simultaneously: on a sphere, derivatives of the curvature tensor and its

contractions vanish. Further, the Weyl tensor vanishes, allowing to re-express the Riemann

tensor in terms of the Ricci tensor and the Ricci scalar. Thus, the remaining ambiguity

lies in the fact that on a 4-sphere Rµν = R
4 gµν . Accordingly we derive the spectrum of

fluctuations, i.e., Γ(2), from an action of the form f(R), without contributions from other

tensor structures. Using a sphere to evaluate the traces and project onto powers of R

implies that we project on R2 + c1RµνR
µν at fourth order in derivatives, and so on, with

unknown coefficients ci. This ambiguity is inherent in the setup of our calculation and

is owing to a compromise between uniqueness of the projection and computability. Here,

our calculation is on a par with similar challenges encountered by f(R) approximations in

quantum Einstein gravity.
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Figure 1. Left panel: real part of the five largest negative criitical exponents (the first two are

degenerate) and canonical dimensions of the couplings (dashed lines). Right panel: difference

between the critical exponents θi (starting with the third-largest) to the canonical dimension di =

−(2i− 4) for the truncation including up to R̃9 (dark red dots) and up to R̃10 (blue dots). Beyond

the dashed purple line our results have not converged.

To address this ambiguity, we make a useful observation: had we considered beta-

functions for the disentangled system which distinguished between R2 and RµνR
µν , etc.,

a fixed point in that system necessitates the existence of a fixed point in our simplified

system. Furthermore, a relevant direction in the simplified system can only occur, if (at

least) one relevant direction exists in the disentangled system. Thus, our estimate of the

number of relevant directions provides a lower bound on the number of relevant directions

in the disentangled system, and a discovery of a fixed point in our approximation is a

necessary condition for the existence of a fixed point in the disentangled system.

Secondly, we have truncated the theory space very severly. This is important in two

places: firstly, our truncation is not closed in the sense that operators beyond those present

in the truncation are generated on the right-hand-side of the Wetterich equation. Secondly,

further operators also change the spectrum of fluctuations, i.e., Γ(2), which enters the

evaluation of the beta-functions for the coefficients ai.

Thirdly, we have employed a so-called single-metric approximation. This consists in

neglecting the fact that no background coupling should appear on the right-hand side of

the Wetterich equation, as the functional derivatives necessary to obtain Γ(2) are taken

with respect to the fluctuation field. Thus, fluctuation field couplings should appear on

the right-hand side of the Wetterich equation. Performing the necessary evaluation of

fluctuation-field and background-field flows at the level of an f(R) truncation is beyond

the scope of this paper.

All these approximations can affect the stability of our results. One could expect that

if the errors introduced into the results by the approximations are small, then the regulator-

dependence should not be too large. In this spirit we study whether a fixed point with

similar properties can also be found using the second regularization scheme, eqs. (4.6)–

(4.9). We find a fixed point with similar properties (see table 4 and 5), thus strengthening

the conclusion that the fixed point is not a truncation artifact.

The fixed point found at positive Newton coupling with the second regularization

scheme shares several characteristics with the fixed point found in the other scheme. Firstly,
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a1 ∗ a2 ∗ a3 ∗ a4 ∗ a5 ∗ a6 ∗ a7 ∗ a8 ∗ a9 ∗ a10 ∗

-0.0087

-0.0122 0.0020

-0.0082 0.0026 0.00031

-0.0083 0.0005 0.00045 6.63 · 10−5

-0.0083 0.00048 0.00044 6.56 · 10−5 −5.61 · 10−7

-0.0083 0.00044 0.00043 6.32 · 10−5 −5.27 · 10−7 −5.61 · 10−7

-0.0083 0.00046 0.00044 6.39 · 10−5 −3.93 · 10−7 −4.60 · 10−7 1.26 · 10−7

-0.0083 0.00047 0.00044 6.42 · 10−5 −3.901 · 10−7 −3.84 · 10−7 1.48 · 10−7 2.31 · 10−8

-0.0083 0.00046 0.00044 6.41 · 10−5 −3.327 · 10−7 −4.08 · 10−7 1.30 · 10−7 1.90 · 10−8 −5.23 · 10−9

-0.0083 0.00046 0.00044 6.40 · 10−5 −3.51 · 10−7 −4.32 · 10−7 1.20 · 10−7 1.26 · 10−8 −6.93 · 10−9 −2.19 · 10−9

Table 4. Fixed-point values using the second regularization scheme.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

2.355

3.034 3.034

2.441 11.349 −1.740

4.683 1.498 −1.952 −3.444

4.542 1.353 −2.099 −3.611 −5.329

3.937 1.006 −2.460 −3.708 −5.076 −7.156

3.899 1.204 −2.646 −3.656 −5.209 −6.923 −9.058

3.969 1.296 −2.653 −3.642 −5.414 −7.051 −8.854 −10.999

3.953 1.293 −2.711 −3.647 −5.388 −7.224 −8.936 −10.791 −12.947

3.933 1.289 −2.762 −3.653 −5.385 −7.192 −9.089 −10.851 −12.746 −15.907

Table 5. Critical exponents at the fixed point shown in table 4.

there are two positive critical exponents which are comparable to the real part of the two

relevant critical exponents in the other scheme. We observe that fixed-point values and

critical exponents converge slower than using the first regularization scheme, which could

suggest that the first scheme is actually better adapted to the properties of unimodular

f(R) gravity. Secondly, the fixed-point values for the couplings an, n > 4, are at least four

orders of magnitude smaller than the leading fixed-point values. Comparing the fixed-point

coordinates in the two regularization schemes, one should keep in mind that all but the a2

coupling have nonvanishing canonical mass-dimensionalities, i.e., the fixed-point values of

all couplings should not be expected to be universal.

With only two relevant directions, the number of free parameters is significantly smaller

than that implied by the analysis in [90], with a considerable smaller truncation, where

unimodularity was implemented together will full diffeomorphism symmetry, necessitating

the introduction of Stueckelberg fields. This implies a significantly higher predictive power

of our implementation, where
√
g = const is implemented as a restriction on the path-

integral measure. It also clearly shows that while the two implementations are equivalent

classically, one should not expect them to be so on the quantum level, see also [15].
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It is now interesting to examine the system while dropping the “RG-improvement”

terms ∂tf̃ on the right-hand side, which arise as we chose a regulator that depends on f̃ .

Neglecting these terms can have no effect on the positions of the fixed points, but can change

the value of the critical exponents. We observe that the signs of the critical exponents are

stable — another indication for the robustness of our result — but their numerical values

can change quite a bit. This is actually similar to the results in quantum Einstein gravity:

using the flow equations derived in [29, 30, 32], but dropping the RG improvement terms

can produce different values for the critical exponents.

We conclude that the anomalous dimensions, related to ∂tf̃ , are rather large. This

already suggests that it will be important to examine the system without employing a

single-metric approximation, as this will allow to disentangle the background-beta functions

from the anomalous dimensions, which are related to the fluctuation field.3 As discussed

in [91], a resolution of the difference between background field and fluctuation field could

also play a major role in obtaining viable global solutions.

Our work also has implications for the asymptotic safety scenario in full gravity: it

clarifies that the existence of a fixed point with three relevant directions in f(R) trunca-

tions is not due to the dynamics of the conformal mode. While we in fact find one relevant

direction less in unimodular gravity, this is due to the fact that we work in a different the-

ory space, arising from a different definition of the degrees of freedom and the symmetries.

In fact, simply dropping the contribution from the conformal mode in full gravity will not

result in the removal of the relevant direction resulting from the presence of the cosmo-

logical constant. It is the definition of a different theory space which does not contain the

cosmological constant, which lowers the number of relevant directions. Further, our result

can be read as a further confirmation of asymptotic safety in quantum Einstein gravity:

if the removal of only the conformal mode could destabilize the existence of a fixed point,

one might conclude that the fixed point in quantum Einstein gravity was just a truncation

artifact.

4.3 Global solutions

To analyze whether the fixed-point equation for f̃
(
R̃
)

might admit global solutions, we

bring it into normal form, i.e., we rewrite it such that the highest derivative, f̃ ′′′, occurs

with a prefactor normalized to one. It is a third-order differential equation, and thus

a solution comes with three free parameters. Singularities in the equation decrease the

number of parameters, as they impose constraints on the solution, if it is to be continued

through the singularity. Let us first consider the second choice of regularization scheme,

imposing a cutoff on ∆. In that case, inspection of eqs. (4.6)–(4.9) reveals singularities

at R̃ = 0, R̃ = 4 and R̃ = −6. Additional singularities arise from the prefactor of the

term ∼ f̃ ′′′, which has real zeros at R̃ ≈ −0.916 and R̃ ≈ 1.624. A seeming singularity

at R̃ = 3 is actually not there, as it also occurs in the denominator of the prefactor of

the term ∼ f̃ ′′′. So it does not in fact show up when we bring the equation into normal

form. Note that while the equation for f̃
(
R̃
)

was derived using a spherical background,

3For a bimetric study of the gravitational Renormalization Group flow that uses the decomposition

eq. (3.4) that is also required for the unimodular case, see [82].
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we postulate its validity for R̃ < 0 here, and include singularities at negative R̃ in the

parameter counting. Taken together, these singularities already overconstrain the system,

such that a global solution is unlikely to exist. This situation is very similar to that

found in [33] analyzing the equation derived in [29, 30]. As we have essentially followed

a very similar procedure here, and in particular imposed the cutoff in a similar way, it is

not unexpected that we find a differential equation with similar behavior. Following the

insight in [32], we can derive an alternative equation by adapting the choice of regulator,

and imposing a cutoff on combinations such as ∆ + R
4 , instead of on ∆, which in fact

corresponds to our first choice of regularization scheme. In that case, we should consider

eqs. (4.2)–(4.5) to determine the existence of fixed singularities. We again observe a fixed

singularity at R̃ = 0. Additional singularities again arise from the prefactor of the f̃ ′′′

term, and lie at R̃ ≈ −0.56 and R̃ ≈ 1.55. At a first glance, another singularity seems to

lie at R̃ = −3, but again does not exist in the normal form of the equation. We conclude

that this third-order equation exhibits precisely three singularities, which suggests that a

global solution could exist. Whether the asymptotic structure at large R̃ imposes further

constraints, requires a more detailed analysis which we leave to the future. Here, we only

observe that an asymptotic solution is given by f̃
(
R̃
)
∼ AR̃2 at leading order, as expected

from canonical dimensionality.

5 Toward the real world: adding matter

If a theory of quantum gravity is to be applied to our universe, dynamical matter degrees of

freedom must be accounted for. Here we take the point of view that matter fields must be

included at the microscopic level. Thus, our truncation should not only include dynamics

for gravity, but also fermions, vector bosons, and scalars. We will consider only minimally

coupled matter, and disregard further interactions for the moment. This is an approxima-

tion, as metric fluctuations induce matter self interactions in the UV [92, 93]. Interestingly

we can take advantage of structural similarities between quantum Einstein gravity and

unimodular gravity: the matter loop contribution to the background Newton coupling

beta function is the same in the two settings. This will change within more sophisticated

truncations. For instance, it is no longer true when wave-function renormalizations for the

matter fields are included, as these are derived from different graviton-matter-vertices. We

can thus take the matter contributions from [94, 95] and add these to the beta function

for the background Newton coupling, where we use the n = 1 truncation and identify

a1 = −1/(16πG) and subsequently expand to second order in G. We then have that

βG = 2G− G2

6π
(20− 2ND −NS + 4NV +NRS) , (5.1)

where NV is the number of abelian vector fields, ND the number of Dirac fields, NS the

number of real scalars and NRS the number of Rarita-Schwinger fields with spin 3/2. Herein

a type-II cutoff (nomenclature as in [29, 30]) has been used for the matter fields, as it is

required for the proper treatment of fermions [96]. For the gravitational contribution, we

have used the cutoff imposed on ∆S . In analogy to the Einstein gravity case, there is a
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Figure 2. We show the bound on the allowed number of Dirac fermions ND and scalars NS with

NV = 12 and NRS = 0. The blue thick line is obtained with the first regulator, and corresponds to

eq. (5.1), while the thin dashed blue line corresponds to the second regulator. For comparison, the

purple dashed line is the bound in quantum Einstein gravity from [94]. The green dot corresponds

to the Standard Model degrees of freedom, and the turqoise asterisk additionally contains three

right-handed fermions (neutrinos) and a dark matter scalar. The red dot, corresponding to the

degrees of freedom of the MSSM lies outside the allowed region.

bound on the number of Dirac fermions and scalars, if the number of vectors and spin 3/2

fields is fixed. Disregarding Rarita-Schwinger fields,

2ND +NS < 20 + 4NV , (5.2)

is required for a positive Newton coupling at the fixed point. While the microscopic value

of this coupling is not (yet) restricted observationally, its infrared value must be positive.

In all known truncations, the sign of the Newton coupling is preserved under the RG flow.

We therefore exclude negative fixed-point values based on the positivity of the observed

Newton coupling in the infrared.

Considering supersymmetric models, pure supergravity with a gravitino admits a viable

fixed point. On the other hand, the matter content of the minimal supersymmetric standard

model (NS = 49, ND = 61/2 and NV = 12) seems excluded. Whether this result will be

affected when the truncation includes supersymmetric interactions, and also an appropriate

regularization scheme [97] is used, is presently unclear.

Most importantly, the Standard Model matter content (NV = 12, NS = 4, ND = 45/2)

admits a gravitational fixed point at G∗ > 0. We can also add several additional scalars or

fermions, that could constitute dark matter and still find a viable fixed point. This result

is confirmed if we use a regulator imposed on ∆ = −D̄2 for the gravitational contribution.

This changes the factor 20 in eq. (5.1) to 14 and yields a tighter bound on fermions

and scalars. Crucially, the bound still includes the Standard Model, cf. figure 2. This

indicates that unimodular quantum gravity can be compatible with the matter content of

our universe.
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While this result is obtained within the simplest truncation, and requires much further

investigation, it is encouraging that we cannot find a way to exclude our model at this

stage from phenomenological considerations of matter. On the other hand, we actually

observe a tighter bound on matter than within quantum Einstein gravity. This arises,

as the bound comes from a balance of gravitational and vector with fermion and scalar

fluctuations. As the gravitational contribution is smaller in the unimodular case, the bal-

ance is reached for lower numbers of fermions/scalars. If this result persists beyond our

truncation, future discoveries of additional (dark matter) fermions and scalars might rule

out unimodular asymptotic safety (or necessitate the introduction of additional vectors

with the corresponding scalar modes to make them massive). Of course, much more de-

tailed studies are necessary in order to investigate the reliability of these bounds, and also

understand inhowfar these are universal. Crucially, the form of the bound presented in

this paper should be understood as coming with considerable systematic errors. Beyond

its implications for unimodular quantum gravity, the bound eq. (5.2) nevertheless points

towards a potential option how experimental constraints might be put on quantum gravity

models from low energy observations.

6 Conclusions

We have studied the Renormalization Group flow of unimodular quantum gravity and

found an interacting fixed point, further strengthening the evidence for unimodular

asymptotic safety.

In particular, we have used a truncation of the effective action to a function of the cur-

vature scalar, f(R), and derived the flow equation for this function. We have subsequently

expanded in powers of the curvature up to R10 and found a fixed point with two relevant

directions, i.e., two out of ten couplings correspond to free parameters of the model.

We have studied two different regularization schemes, and found a fixed point with

similar properties and two relevant directions in both schemes. While this provides evi-

dence that the fixed point is not an artifact of the approximation scheme, the remaining

scheme dependence indicates that further studies are necessary to determine the fixed-point

properties with quantitative precision.

As a main difference to quantum Einstein gravity, the cosmological constant is not part

of the theory space in the unimodular setting. The corresponding fine-tuning problem is

therefore avoided. This makes unimodular asymptotic safety attractive from a phenomeno-

logical point of view. The cosmological constant will only enter, once the RG flow has been

integrated into the infrared, where the effective equations of motion can be derived. As we

have shown, these can then be reformulated with the help of the Bianchi-identities, and

the cosmological constant appears as a constant of integration.

Furthermore the unimodularity condition
√
g = const reduces the number of propa-

gating components of the metric in the quantum theory and most importantly removes the

conformal mode from the path integral. This avoids the corresponding instability of the

Euclidean path integral in an Einstein-Hilbert truncation. Besides, the reduction in degrees

of freedom (by which we here mean components of the quantum field and not necessarily
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physical degrees of freedom) results in computational simplifications. Most importantly,

we find that an appropriate gauge fixing removes all but the transverse traceless and one

scalar mode of the metric.

Performing a first step towards phenomenology, we have also studied the compatibil-

ity of unimodular asymptotic safety with minimally coupled matter degrees of freedom.

Here we make use of structural similarities between quantum Einstein gravity and uni-

modular gravity at the level of the background couplings, which imply that the matter

contributions to the running of the background Newton coupling in unimodular gravity

agree with [94, 95]. We find bounds on the number of allowed scalars and fermions, at a

fixed number of Abelian vector bosons. At this order of the approximation it is only the

gravitational contribution to the Renormalization Group flow that differs from the result in

quantum Einstein gravity, and which yields a slightly tighter bound on the allowed number

of matter fields. Most importantly, we find that within this approximation, the Standard

Model, as well as small extensions by, e.g., a dark matter scalar, can be accommodated in

unimodular asymptotic safety. This suggests that unimodular asymptotic safety could pass

an important observational test. Moreover, this provides a first example, where different

models of quantum gravity might be distinguished observationally: as — within simple

truncations — unimodular asymptotic safety and quantum Einstein gravity impose differ-

ent bounds on the number of matter fields, detection of certain BSM-matter models, e.g.,

at the LHC, could potentially rule out one of these models while admitting the other. To

further quantify this exciting possibility, nonminimal matter-gravity couplings need to be

included in the truncations.

From here, several interesting routes are open toward future work: as has recently

been emphasized in [64, 82], the exponential parameterization of the metric in terms of the

fluctuation field, that we employed here, can also be advantageous in quantum Einstein

gravity. From our result, it is only a small step towards an analysis of the f(R) truncation in

that parameterization, as only the conformal mode needs to be added and the contribution

from fluctuations of
√
g needs to be added to the other propagators of the other modes.

Further, an extension of the truncation in a bimetric direction is possible as in quantum

Einstein gravity [53–60] and seems indicated, see, e.g., [91]. This is possible both within

pure gravity as well as including matter. In that case, it is particularly interesting to

investigate whether the unimodularity condition on the matter-graviton vertices can have

observable consequences. For instance, one could imagine that differences in the vertices re-

sult in a change of the number of relevant directions in the gravity-matter sector. This could

even lead to differences in predictions for the low-energy theory, e.g., along the lines of [98].
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