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1 Introduction

Tensor group field theory (hereafter TGFT) is a background-independent formalism for

quantum gravity. Using the powerful quantum field theory language, it offers both a tenta-

tive definition of the fundamental degrees of freedom of quantum spacetime and a precise

encoding of their quantum dynamics. It combines the results of tensor models [1–4] about

the combinatorics of random discrete spaces and the insights of loop quantum gravity [5–7]

about quantum geometry. More in detail, TGFTs are quantum field theories on Lie groups,

characterized by a peculiar non-local pairing of field arguments in their interactions, whose

immediate consequence is that their Feynman diagrams are dual to cellular complexes
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rather than simple graphs. The quantum dynamics is thus defined, in perturbation the-

ory, by a sum over such cellular complexes (interpreted as discrete spacetimes) weighted

by model-dependent amplitudes, in turn functions of group-theoretic data. Historically,

group field theories (GFTs) [8–16] grew out of tensor models for 3d and 4d gravity [17–

19], themselves a generalization of the matrix model definition of 2d Riemannian quantum

gravity [20–22]. In tensor models, the dynamics of a quantum spacetime is given by a sum

over equilateral d-dimensional triangulations, generated as the Feynman expansion of the

partition function for a finite rank-d tensor, and weighted by (the equilateral restriction

of) the Regge action for simplicial gravity. They are thus prototypical models of purely

combinatorial random geometries. GFTs arise when the domain of the tensors is extended

to a group manifold, and the first models [8, 9] make use of these additional data to define

amplitudes corresponding to state sum models of topological BF theory (by incorporating

appropriate gauge invariance conditions, to which we will return in the following). Soon it

was realized [23] that these group-theoretic data gave the boundary states of the same mod-

els the structure of loop quantum gravity states [5–7]. Later [24, 25], indeed, GFTs were

shown to provide a complete definition of the dynamics of the same quantum states as their

Feynman amplitudes are given by spin foam models [26, 27], a covariant definition of the

dynamics of LQG spin networks, in turn dual to simplicial gravity path integrals [28, 29].

Now, they are understood as a natural second quantized formulation of loop quantum

gravity [30–32], and GFT models incorporating more quantum geometric features of LQG

states and simplicial geometry are indeed among the most interesting ones.

In the meantime, tensor models have witnessed an important resurgence, in the form

of colored tensor models [1, 33]. These solved many issues raised by earlier tensor models

and allowed a wealth of important mathematical results to be obtained. They triangulate

pseudo-manifolds with only local singularities [34], having in particular no tadfaces (i.e.

a face which runs several times through a single edge). Most importantly, they admit a

large N expansion [35–37] (where Nd is the size of the tensor), whose leading order is now

well understood. The leading graphs in this limit, the melonic graphs, form particularly

simple “stacked” triangulations of the sphere in any dimension [38]. Their appearance is a

very general phenomenon [39, 40]. Some of these results have immediately been extended

to topological GFTs and multiorientable models [41–44], and beyond the leading order, to

define interesting double scaling limits [45–48].

Incorporating the insights of colored tensor models into GFTs leads to TGFTs. Here,

the GFT fields are required to transform as proper tensors under unitary transformations

and their interactions are required to have the additional U(N)⊗d invariance, which can be

interpreted as a new notion of locality, hence singles out a new theory space [49]. In turn,

this invariance requires their arguments to be labeled (ordered). Both facts are crucial for

GFT renormalization.

GFT renormalization is in fact a thriving area of current research. Given that the first

definition of the GFT quantum dynamics is in terms of a perturbative expansion around

the Fock vacuum, the first aim is to prove renormalizability of specific models, showing

therefore their consistency as quantum theories. Second, one is interested in unraveling

the phase space of GFT models, looking in particular for a phase in which approximate
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smooth geometric physics (governed by some possibly modified version of General Relativ-

ity) emerges from the collective behavior of their pre-geometric degrees of freedom [50, 51],

maybe through a process of condensation. The search for such a geometric phase, and

the associated phase transition(s), is common to tensor models [38], loop quantum grav-

ity [52–54], and spin foam models [55–57], but also to other related approaches like (causal)

dynamical triangulations [58–60]. Moreover, it has been conjectured [50, 51] to have a di-

rect physical interpretation in a cosmological context [61], and some recent results in GFT

support this conjecture [62–66].

The TGFT framework is well-suited for renormalization, as one can import more or less

standard QFT techniques even in such background independent context. One ingredient is

the new notion of locality provided by the U(N)⊗d invariance of tensor interactions. The

other ingredient, a notion of scale is naturally assumed to be given by the decomposition

of GFT fields in group representation. This is fully justified in terms of spectra of the

kinetic operator (as in standard QFT) when a Laplacian on the group manifold is used, as

suggested by the analysis of radiative corrections to topological GFT models [67] (which

correspond to ultra-local truncations of truly propagating models). All these ingredients,

it turns out, speak to one another very nicely, as indeed in TGFT models counter-terms

necessary to cure divergences remain of the same form of the initial interactions. More

precisely, by precise power counting of divergences, one sees that at large ultraviolet (UV)

scales (in the sense of large eigenvalues of the group Laplacian) connected subgraphs which

require renormalization seem local (as defined by tensor invariance) when observed at

lower scales.

A large amount of results has been already obtained. For models without gauge invari-

ance the proof of renormalizability at all orders, which started with [68, 69], now includes a

preliminary classification of renormalizable models [70, 71] and studies of the equations they

satisfy [72–74]. Then Abelian [75, 76] and non-Abelian gauge invariance (whose important

role we already emphasized) has been included [77, 78]. The computations of beta functions

typically shows UV asymptotic freedom [79–82] to be a rather generic feature of TGFTs,

even if the analysis of more involved models is in fact quite subtle [83]. Renormalizabil-

ity and UV asymptotic freedom are the two key properties of non-Abelian gauge theories

which form the backbone of the quantization of all physical interactions except gravity,

hence it is encouraging to find them also in TGFTs, which aim at quantizing gravity.

Once renormalizability (and possibly asymptotic freedom) is established, the next stage

is to understand the infrared (IR) behavior of the renormalization group flow, in particular

phase diagrams and phase transitions. One can prove that the leading “melonic” order

of tensor models and of topological GFTs exhibits a phase transition, corresponding to

a singularity of the free energy for a certain value of the coupling [38, 84]. The critical

susceptibility can be computed at least for simple tensor models to be equal to 1/2. In the

same tensor models context, in which the only notion of distance is the graph distance, one

sees a phase corresponding to branched polymers, with Hausdorff dimension 2 and spectral

dimension 4/3 [85], as in CDT. In GFTs and TGFTs, where the group theoretic data play

a prominent role, not only computing observables and critical exponents, but also finding

the nature of the transitions and their physical interpretation is much more difficult.
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Therefore we need more analytic tools. One powerful scheme is provided by functional

renormalization techniques. These have been developed for TGFTs for the first time in [86].

Applied to the (comparatively) easy case of an Abelian rank-3 model, the RG flow equations

could be derived and the phase diagram be plotted in the key UV and IR regimes, showing

evidence for a phase transition to a condensed phase, at least in some approximation.

In this paper we perform a leading order analysis of the correlation functions of a simple

TGFT with quartic melonic interactions and U(1) group, in dimension 6, endowed with

gauge invariance conditions. This model is just-renormalizable [76], and asymptotically

free [82]. Hence it should exist at the level of constructive field theory [87] (see [88] for

the construction of a simpler super-renormalizable TGFT). Although we shall not achieve

such a complete non-perturbative analysis in this paper, we provide some significant steps

in this direction. We define the intermediate field formalism for our model and with a

multi-scale analysis we establish its renormalizability, compute the beta function of the

model and check its asymptotic freedom. In this way we recover all the results of [76]

and [82]. The development of the intermediate field method for our model is in itself, we

believe, an interesting result. It is known to be particularly convenient for quartic tensor

models [89–91], and should become a standard tool for TGFT’s as well. One should notice

in particular that in our case, due to the gauge conditions, the intermediate fields are of a

vector rather than matrix type, a promising new feature.

We then define the effective expansion of the model, which sits “in between” the bare

and the renormalized expansion. Its main advantage is to be free of renormalons [87]. We

check this fact again in our model by establishing uniform exponential upper bounds on

effective amplitudes. We also establish closed equations for the leading order (i.e. melonic

approximation) to the two-point and four-point functions. Combining all these results

proves that these closed equations admit a unique solution for small enough renormalized

coupling, and gives full control over the melonic approximation of the theory, bringing it

to the level of analysis of the Grosse-Wulkenhaar non-commutative field theory [92–95].

Similar closed equations have been written for another renormalizable TGFT theory,

in dimension 5 and with a simpler propagator without gauge invariance conditions in [96].

The renormalization and numerical analysis of these equations have been recently deve-

loped in [97].

Our paper is organized as follows. In section 2 we define the model and its intermediate

field representation. In section 3 we establish and analyse its power-counting with multi-

scale analysis. Section 4 describes its renormalization, computes the beta function (in

agreement with [82]), introduces the effective expansion and establishes uniform bounds

on the corresponding effective amplitudes. Section 5 writes the closed equations for the

melonic approximation to the bare and renormalized two point and four-point functions,

and completes the proof that these equations have a unique solution at small renormalized

coupling, which is in fact the Borel sum of their renormalized expansion.
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2 The model

In this section, we shall briefly recall the basics of TGFTs models with closure constraint

(gauge invariance) and Laplacian propagator. Then we shall focus on a particular U(1)

quartic model at rank six first defined in [75]. Within this section definitions and computa-

tions are still formal since we do not introduce cutoffs; this will be done in the next sections.

2.1 General formalism for TGFTs

A generic TGFT is a statistical field theory for a tensorial field, for which the entries are

living in a Lie group G, generally compact, such as U(1) or SU2) for the simplest cases. A

family of such models was defined and renormalized to all orders in [75–78].1

The theory is defined by an action and by the following partition function

S(φ̄, φ) = Sint(φ̄, φ)− J̄ · φ− φ̄ · J, Z(J̄ , J) =

∫
dµC(φ̄, φ)e−S[φ̄,φ], (2.1)

where Sint is the interaction and dµC is a Gaussian measure characterized by its covariance

C. The fields φ and φ̄ are complex functions φ̄, φ : Gd 7→ C noted φ(g1, · · · , gd) = φ(~g),

~g = (g1, g2, . . . , gd), and φ̄(~g ′), ~g ′ = (g′1, g
′
2, . . . , g

′
d). They should equivalently be also

considered as rank-d tensors, that is elements of the tensor space L2(G)⊗d, where L2(G) is

the space of functions on G which are square-integrable with respect to the Haar measure.

The 2N -point Green functions are obtained by deriving N times with respect to sources J

and N times with respect to anti-sources J̄

G2N (~g1, · · · , ~gN , ~g ′1, · · ·~g ′N ) =
∂2NZ(J̄ , J)

∂J1(~g1)∂J̄1(~g ′1) · · · ∂JN (~gN )∂J̄N (~g ′N )

∣∣∣
J=J̄=0

. (2.2)

The Gaussian measure is defined by the choice of the action’s kinetic term. TGFTs

such as those of [68–71] use a mass term plus the canonical Laplace-Beltrami operator ∆

on the group Gd, hence correspond to the formal normalized measure

dµC0(φ̄, φ) =
1

Z0
e−Skin[φ̄,φ]Dφ̄Dφ (2.3)

with

Skin(φ̄, φ) =

∫
[dg]dφ̄(~g)[(−∆ +m2)φ](~g), (2.4)

where dg is the Haar measure on the group. Although the Lebesgue measure Dφ̄Dφ

in (2.3) is ill-defined, the measure dµC0 itself is well-defined, and the propagator C0 in the

parametric (or Schwinger) representation is

C0(~g, ~g ′′) =

∫
dµC0(φ̄, φ)φ̄(~g)φ(~g ′) =

∫ ∞

0
dαe−αm

2
d∏

c=1

Kα(gcg
′−1
c ), (2.5)

1Renormalizability has not been yet established for models based on the Lorentz group, which is non-

compact. However, at least intuitively, one could expect the additional difficulties present in the non-

compact case to be rather of IR nature than of UV nature, from the point of view of TGFT renormalizability;

this would imply similar renormalizability results as in the compact group case.
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where Kα is the heat kernel associated to the Laplacian operator, and c is our generic

notation for a color index running from 1 to d. In momentum space this propagator

becomes diagonal. Let us from now on restrict to the case G = U(1). The Fourier dual of

U(1) is Z, hence in momentum space, we note ~p = (p1, · · · , pd) ∈ Zd, where pc ∈ Z is called

the strand momentum of color c, and we have

C0(~p, ~p ′) =
d∏

c=1

δ(pc, p
′
c)

1

~p 2 +m2
. (2.6)

In the specific TGFT we study in this paper, we want the field configurations to obey

the additional gauge invariance

φ(g1, g2, . . . , gd) = φ(hg1, hg2, . . . , hgd), φ̄(g1, g2, . . . , gd) = φ̄(hg1, hg2, . . . , hgd) ∀h ∈ G.
(2.7)

This gauge invariance complicates slightly the writing of the model. In order to imple-

ment it, we could introduce the (idempotent) projector P which projects the fields on

the subspace of gauge-invariant fields, then equip the interaction vertices and propagators

with such projectors. But in this case the tensorial symmetry U(N)⊗D symmetry of the

interaction vertex (which provides the analog of a locality principle for renormalization)

would be blurred. Hence the best solution, used in [75], consists in implementing the gauge

invariance directly on the Gaussian measure by introducing a group-averaged covariance

C(~g,~g ′) =

∫
dµC(φ̄, φ)φ̄(~g)φ(~g ′) =

∫ ∞

0
dαe−αm

2

∫
dh

d∏

c=1

Kα(gchg
′−1
c ). (2.8)

In other words, we introduce the gauge invariance projector P only in the propagator of

the theory.2 In momentum space we have.

C(~p, ~p ′) =
d∏

c=1

δ(pc, p
′
c)
δ (
∑

c pc)

~p2 +m2
. (2.9)

From now on we shall remember that the covariance is diagonal in momentum space, with

diagonal values

C(~p) =
δ (
∑

c pc)

~p2 +m2
, (2.10)

hence defining the set P = {~p ∈ Z6|
∑

c pc = 0} of momenta satisfying the gauge constraint,

all Green functions of our theory can in fact be defined for restricted momenta ~p ∈ P , or

if one prefers, are zero outside P.

TGFT interactions by definition belong to the tensor theory space [39, 40, 49] spanned

by U(N)⊗d invariants. Hence the most general polynomial interaction is a sum over a

finite set B of such invariants b, also called d-bubbles, associated with different coupling

constants tb
Sint(φ̄, φ) =

∑

b∈B
tbIb(φ̄, φ), (2.11)

2Additional insertions of P on the vertex would result in the same Feynman amplitudes, since P 2 = P .
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Figure 1. Some connected tensor invariants.

Figure 2. A tensorial vacuum (N=0) rank-three Feynman graph.

where Ib is the connected invariant labeled by the bubble b. Graphically, each bubble is

associated with a bipartite d-regular edge-colored graph. Each color c ∈ {1, 2, . . . , d} is

associated with a half-line at each vertex, and each vertex bears respectively a field φ or

its complex conjugate φ̄ according to its black or white color. The edge coloring of the

bipartite graph allows to visualize the U(N)⊗d invariance by showing the exact pairing

of fields and anti-fields argument of the same color. Such graphs also enable to visualize

whether the interaction is connected or not. Some examples of connected invariants at

ranks d = 3 and d = 6 are shown in figure 1.

The Feynman amplitudes of the perturbative expansion are associated with Feynman

graphs whose vertices belong to the set B of the interaction d-bubbles. A Wick contraction

is represented by a dotted line. Figure 2 gives an explicit example for d = 3.

For a Feynman graph G, we note V(G), L(G) and E(G) the sets of the vertices (the

d-bubbles), internal (dotted) lines and external (dotted) half-lines, and V (G), L(G) and

E(G) = 2N(G) the number of elements in these sets. The number of vertices V is also

identified with the order of perturbation, also often noted n.

The Green functions are given by a sum over Feynman graphs (connected or not)

G2N =
∑

G, E(G)=2N

1

s(G)

(∏

b∈B
(−tb)nb(G)

)
AG , (2.12)

where nb is the number of vertices of type b and s(G) is the graph symmetry factor (di-

mension of the automorphism group). Note that expanding each vertex b as a d-regular

bipartite edge-colored graph as in figure 1 and coloring the dotted lines with a new color

0, any such graph G is therefore canonically associated to a unique (d + 1)-regular bipar-

– 7 –



J
H
E
P
0
4
(
2
0
1
5
)
0
9
5

tite edge-colored graph, for which the vertices are the black and white nodes, as shown in

figure 2. Hence it defines an associated d-complex, in which in particular faces are easily

defined as the bi-colored connected components [39, 40]. These faces are either closed or

open if they end up on external half-lines.

The connected Green functions or cumulants Gc2N are obtained by restricting sums

such as (2.12) to connected graphs G, and are obtained from the generating functional

W (J̄ , J) = log[Z(J̄ , J)] (2.13)

through

Gc2N (~g1, · · · , ~gN , ~g ′1, · · ·~g ′N ) =
∂2NW (J̄ , J)

∂J1(~g1)∂J̄1(~g ′1) · · · ∂JN (~gN )∂J̄N (~g ′N )

∣∣∣
J=J̄=0

. (2.14)

The vertex functions Γ2N are obtained by restricting sums such as (2.12) to one particle

irreducible amputated graphs G (amputation mean we replace all the external propagators

for dotted half-lines by 1). They are the coefficients of the Legendre transform of W (J̄ , J).

Using the convolution properties of the heat kernel (following from the composition

properties of its random path representation), the Feynman amplitude AG of G can be

expressed in direct space as [78]

AG =


 ∏

`∈L(G)

∫ ∞

0
dα`e

−α`m2

∫
dh`




 ∏

f∈F(G)

Kα(f)

(
~∏
`∈∂f

h
ε`f
`

)


×


 ∏

f∈Fext(G)

Kα(f)

(
gs(f)

~∏
`∈∂f

h
ε`f
` g−1

t(f)

)
. (2.15)

In this expression, F(G) is the set of internal faces of the graph, Fext(G) the set of external

faces, and ε`f the adjacency matrix which is non zero if and only if the line ` belongs to

the face f and is ±1 according to their relative orientation. We noted α(f) =
∑

`∈∂f α`
the sum of Schwinger parameters along the boundaries-lines of the face f , and gs(f) or gt(f)

the boundary variables in the open face f , s for “source” and t for “target” variables. We

use also the notation F for the set of faces and F for its cardinal (number of elements).

These amplitudes AG can be interpreted as lattice gauge theories defined on the cel-

lular complexes dual to the Feynman diagrams G. The group elements h` (resp. gs(f),

gt(f)) define a discrete gauge connection associated to the edges ` (resp. boundary edges)

of the cellular complex, and the ordered products ~∏
`∈∂fh

ε`f
` (resp. gs(f)

~∏
e∈∂fh

εef
e g−1

t(f))

are its holonomies (discrete curvature) associated to bulk (resp. boundary) faces of the

same complex.3

Due to the diagonal character of the propagator in momentum space, these Feyn-

man amplitudes are easier to express in the momentum representation. In particular the

3In models of 4d quantum gravity that bear a closer relation with loop quantum gravity, and that

encode more extensively features of simplicial geometry, additional conditions called simplicity constraints

are imposed [26–32]. Obviously, they complicate the structure of the amplitudes, making them richer. We

do not consider these additional constraints here.
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1 2 3

Figure 3. The quartic tensor interactions at rank 6.

momentum conservation along faces due to the δ functions in (2.9) ensures that when

expressed in momentum space non-zero Green functions of the theory of order 2N must

themselves develop into sums over U(N)⊗d tensor-invariants of the momenta of order N ;

in other words to any entering momentum pc must correspond an exiting momentum with

same value p′c = pc. In particular the two point function in momentum space is a function

G2(~p) of a single momentum ~p ∈ Zd, and the connected four point function Gc4 is a sum

over all quartic invariants of the theory. In general the contribution of a given specific ten-

sor invariant is complicated to extract from the Green functions. It requires a somewhat

subtle decomposition using Weingarten functions, which we shall not detail here, referring

the reader to [89–91].

2.2 The quartic melonic U(1)-model in dimension 6

After this quick overview of general TGFTs, we come to the particular model studied in

this paper, namely the d = 6 Abelian quartic model with melonic interactions. It is the

simplest just-renormalizable model (with no simplicity constraints) in the classification of

gauge invariant TGFT models [77]. As such, it is also the simplest interesting testing

ground for the analytic techniques we develop here.

General quartic interactions at rank 6 are of the three types indicated in figure 3. Mel-

onic interactions correspond to the type 1. They are leading in the 1/N tensorial expansion

and are marginal in the renormalization group (RG) sense, the other ones being irrelevant.

Hence the interaction part of the action considered from now on is the sum of all the

bubbles of type 1. There are 6 of them, characterized by a unique index c referring to the

special color which colors the two lonely lines of the bubble:

Sint =
6∑

c=1

λcTrbc(φ̄φ). (2.16)

More explicitly a quartic interaction b1 with special color 1 writes

Trb1(φ̄φ) =

∫
d~gd~g ′ φ̄(g1, g2, · · · , g6)φ(g′1, g2, · · · , g6)φ̄(g′1, g

′
2, · · · , g′6)φ(g1, g

′
2, · · · , g′6)

=
∑

~p,~p ′

φ̄(p1, p2, · · · , p6)φ(p′1, p2, · · · , p6)φ̄(p′1, p
′
2, · · · , p′6)φ(p1, p

′
2, · · · , p′6), (2.17)

where the last line is written in Fourier space. Remark that since only fields satisfying the

propagator constraints
∑
pc = 0 can contribute, in (2.17) we must have p1 = p′1. Hence

– 9 –
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each Trbc is a function of fields with 9 (rather than 10) independent strand momenta,

because pc = p′c. We can therefore in our model simplify (2.17) into

Trb1(φ̄φ) =
∑

~p∈P,~p ′∈P|p1=p′1

φ̄(p1, p2,· · ·, p6)φ(p1, p2,· · ·, p6)φ̄(p1, p
′
2,· · ·, p′6)φ(p1, p

′
2,· · ·, p′6).

(2.18)

From now on we consider only the color-symmetric case λc = λ ∀c = 1, · · · , 6.

As remarked, Green functions in momentum space develop into sums of tensor invari-

ants. In particular the connected four point function Gc4 develops over all quartic invariants

(connected or not). Hence it develops over the connected invariants of figure 3 and over the

disconnected invariant which is the square of the quadratic invariant. This may seem dan-

gerous at first sight since to be renormalizable our model should not involve in particular

renormalization of invariants of type 2 and 3 which are not part of the initial interaction.

As well known, renormalization is best stated in terms of the vertex functions Γ.

Hence we shall be particularly interested in computing the two point vertex function or

self-energy Γ2(~p) and the four point vertex function Γ4(~p1, . . . , ~p4). These functions are

a priori defined on P or P2. However we shall see that their divergent part is simpler.

More precisely we shall define melonic parts Γmelo
2 (~p) and Γmelo

4 (~p1, . . . , ~p4) for these vertex

functions, and even a refined monocolor melonic part Γmelo
4,mono(pc, p

′
c) of Γmelo

4 (~p1, . . . , ~p4),

such that Γ2(~p)− Γmelo
2 (~p) and Γ4,mono(pc, p

′
c)− Γmelo

4,mono(pc, p
′
c) are superficially convergent

(hence truly convergent after all divergent strict subgraphs have been renormalized). More

precisely we shall prove that

Theorem 1 There exist two (ultraviolet-divergent) functions f and g of a single strand

momentum p ∈ Z such that

Γmelo
2 (~p) = −λ

6∑

c=1

f(pc), Γmelo
4,mono(pc, p

′
c) = −λδ(pc, p′c)g(pc). (2.19)

and such that Γ2(~p)−Γmelo
2 (~p) and Γ4,mono(pc, p

′
c)−Γmelo

4,mono(pc, p
′
c) are superficially conver-

gent (hence truly convergent after all divergent strict subgraphs have been renormalized).

All higher order vertex functions are also superficially convergent.

In particular Γmelo
2 and Γmelo

4,mono(pc, p
′
c) both depend in fact of a single non-trivial func-

tion, respectively f and g, of a single strand momentum in Z. We shall prove that the

special form (2.19) of the primitive divergencies of the theory is compatible with the renor-

malization of the couplings in (2.18). In the next section we introduce the intermediate

field representation in which the functions f and g are particularly simple to represent

graphically and to compute.

2.3 The intermediate field formalism

The intermediate field formalism is a mathematical trick to decompose a quartic interaction

in terms of a three-body interaction, by introducing an additional field (the intermediate

field) in the partition function. It is based on the well-known property of Gaussian integrals:
∫ +∞

−∞
dxe−x

2/2eiκxy =
√
πe−κ

2y2/2. (2.20)
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1
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σ1

Figure 4. Intermediate field decomposition.

We first apply the general method without exploiting gauge invariance, then stress

the simplification due to gauge invariance. This means we start with (2.17) which

we want to exhibit as a square. For this we introduce the six auxiliary matrices∑
p2,··· ,p6

φ̄(p1, p2, · · · , p6)φ(p′1, p2, · · · , p6) = Mp1,p′1
, which are quadratic in terms of the

initial φ̄ and φ and can be thought as partial traces over color indices other than 1. The

interaction in (2.17) can be rewritten as

Trb1(φ̄φ) = tr M2 , (2.21)

where tr means a simple trace in `2(Z). Using many times (2.20) we can decompose

this square interaction tr M2 with a new Hermitian matrix σ1 corresponds graphically to

“pinching” the two special strands of color 1 with this matrix field, as indicated in figure 4.

More precisely

e−λtr (M2) =

∫
dσ1e

−tr (σ2
1)/2ei

√
2λtr (σ1M)

∫
dσ1e−tr (σ2

1)/2
. (2.22)

The next step is to make this decomposition systematic for the six melonic interactions.

Writing

tr (σ1M) = Tr φ̄Σ1φ, (2.23)

where

Σ1 = σ1 ⊗ I⊗ I⊗ I⊗ I⊗ I (2.24)

acts in the large tensor space `2(Z)⊗6 and Tr means a trace in this large tensor space,

allows to express the previous intermediate field decomposition as

eλ tr M2
=

∫
dσ1e

−tr (σ2
1)/2ei

√
2λTr φ̄Σ1φ

∫
dσ1e−tr (σ2

1)/2
. (2.25)

Using color permutation, we decompose all six bubbles in this way. An intermediate

field σc is therefore associated to each quartic bubble bc with weak color c. The operators

Σc = I · · · ⊗ σc ⊗ · · · I (2.26)

commute in the tensor space `2(Z)⊗6, as they act on different strands. Introducing Σ =∑6
c=1 Σc, we can rewrite the partition function of the original theory as

Z(J̄ , J) =

∫
dµC(φ, φ̄)e−Sint(φ̄,φ) =

∫
dµC(φ, φ̄)dν(σ)e−φ̄·J−φ·J̄ei

√
2λTr φ̄Σcφ, (2.27)
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the normalized Gaussian measure dν(σ) being factorized over colors with trivial covariance

identity on each independent coefficient (Gaussian unitary ensemble). The tensor integral

becomes Gaussian, hence can be computed as a determinant. We find:

Proposition 1 The partition function of the model is given by

Z(J̄ , J) =

∫
e−J̄(1−i

√
2λCΣ)−1CJ−Tr ln(1−i

√
2λCΣ)dν(σ). (2.28)

Therefore pairs of sources are become resolvents (1 − i
√

2λCΣ)−1 in this representation.

Perturbatively one can expand both the interaction logarithm and these resolvents as

−Tr ln(1− i
√

2λCΣ) =

∞∑

n=1

1

n
Tr (i

√
2λCΣ)n; (1− i

√
2λCΣ)−1C =

∞∑

n=1

(i
√

2λCΣ)nC.

(2.29)

We call the factors Tr (i
√

2λCΣ)n loop vertices [99] and the factors (i
√

2λCΣ)nC ciliated

vertices [89] or, more simply, chains.

We now incorporate the important simplification (2.18) due to the gauge constraint

of our model. It ensures that all components of the σ matrices factorize trivially from

the integral (2.28) except the diagonal ones. More precisely since for an intermediate

matrix of color c only the pc = p′c term contribute, any loop vertex or chain depends only

of the diagonal part τc(pc) := (σc)pc,pc of the six intermediate field matrices previously

introduced. Hence we can reduce the six intermediate matrices in our model to six vector

fields τ (these diagonal parts).4 Since each τ operator is diagonal we conclude also that all

propagators occurring in either a Tr (i
√

2λCΣ)n loop or in a (i
√

2λCΣ)nC chain have the

same momentum ~p ∈ Zd. Since we remarked that the Σc operators all commute together

in the tensor space `2(Z)⊗6, the value of a loop vertex is a simple sum over the numbers

k1, · · · , k6 of insertions of σ1, · · · , σ6, their total number being n. It can therefore be

written as

Tr (i
√

2λCΣ)
n

= [i
√

2λ]n
∑

~p∈Z6, ~k∈N6 |
∑
c kc=n

n!∏6
c=1 kc!

δ (
∑

c pc)

(~p2 +m2)n

6∏

c=1

τc(pc)
kc

=
∑

~p∈P
[iC0(~p)T (~p)]n , (2.30)

where we recall that C0(~p) = (~p2 +m2)−1, P = {~p ∈ Z6 |
∑

c pc = 0} and we define

T (~p) =
√

2λ
∑

c

τc(pc). (2.31)

Similarly any chain is a diagonal operator, hence depends on a single momentum ~p and is

non-zero only for ~p ∈ P , with value

(CΣ)nC(~p) = [i
√

2λ]nδ

(∑

c

pc

) ∑

~k∈N6 |
∑
c kc=n

n!∏6
c=1 kc!

1

(~p2 +m2)n+1

6∏

c=1

τc(pc)
kc

= [iC0(~p)T (~p)]nC0(~p). (2.32)

4This important simplification could be interesting for a future constructive analysis of the model.
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n n’

color c’

δn,n′δc,c′= tr(Cσ1Cσ2Cσ3) =

1

2

3
color c

Cσ1Cσ2Cσ3C =

2

3
1

Figure 5. Intermediate field graphic representation: propagator, loop vertex and ciliated vertex.

Hence

Proposition 2 The partition function of the model is given by

Z(J̄ , J) =

∫
dν(τ)e−

∑
~p∈P J̄(~p)(1−iC0(~p)T (~p))−1C0(~p)J(~p)−

∑
~p∈P ln[1−iC0(~p)T (~p)] , (2.33)

where dν is the normalized Gaussian measure on the six vector fields τc(p), each defined

on Z, with trivial covariance
∫
dν(τ)τc(p)τc′(p

′) = δ(c, c′)δ(p, p′). (2.34)

We want now to describe graphically the Green’s functions G2N and the vertex func-

tions of the initial theory in this intermediate field formalism.

2.4 Graphical representation

This subsection provides our graphical conventions and Feynman rules for the intermediate

field perturbative expansion in the momentum representation. An intermediated field

propagator is represented by a wavy line, which bears a color label c and carries a single

momentum pc, and correspond to the covariance of a τc intermediate field. The loop vertices

(which come from deriving the logarithmic interaction in (2.28)), are represented by grey

disks, to which intermediate field half-lines are attached. The chains (which come from

deriving the source term in (2.28)) are represented as ciliated lighter gray disks: they are

characterized by a single cilium, represented as a dotted half-line attached to the disk, see

figure 5. A cilium has no color and represents on its left side the entrance of the particular

momentum ~p of the chain and on its right side its exit.

The former propagators C which were the dotted lines of the initial representation of

figure 2 are now in one-to one correspondence with the arcs5 on the boundary of all the

disks (both the loop vertices and the ciliated vertices), see figure 6.

Green functions G2N of the initial theory can be computed as Feynman graphs with

exactly N ciliated vertices and an arbitrary number of loop vertices [89]. In particular G2

correspond to the sum over connected graphs with exactly one ciliated vertex, and Gc4 to

the sum over connected graphs with exactly two ciliated vertices (a generic one is pictured

in figure 6).

5These arcs are often called corners in the mathematic literature; here we prefer a more physical termi-

nology to convey the fact that arcs are associated to propagators.
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Figure 6. A 4-point graph of the tensorial theory in the intermediate field representation.
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1

6

Figure 7. A 4-point graph of the pure intermediate field theory.

We can also consider the pure intermediate field theory with the J̄ and J sources put to

zero. We introduce new sources J dual to τ . A source J is therefore a set of six functions

Jc(qc) for ~q = {qc} ∈ Zd. Introducing the natural notation J ·τ =
∑

~q∈Zd
∑d

c=1 Jc(qc)·τc(qc)
this pure intermediate field theory is defined by the partition function

Z(J ) =

∫
dν(τ)e−J ·τ−

∑
~p∈P ln[1−iC0(~p)T (~p)]. (2.35)

It has connected Green functions corresponding to expectation values of products of τ fields

W c1,···cN
N (q1, · · · , qN ) =

∂N logZ(J )

∂Jc1(q1), · · · ∂JcN (qN )

∣∣∣
J=0

. (2.36)

These expectation values are represented by a sum of Feynman graphs such as those of

figure 7, with a total number of q wavy half-external lines attached to the loop vertices

(grey disks), each carrying a color c and a single strand momentum qc.

By color permutation symmetry, the one point function of the pure theory at color

c, W c
1 (qc) is in fact independent of c. We call it therefore W1(q). It is a function on Z.

Similarly the pure intermediate fields two point function W c1,c2
2 (q1, q2), which a priori is

given as a function of two colors c and c′, and of two strand momenta q1 and q2, can by

color permutation symmetry be described by just two functions on Z2, namely W=
2 (q1, q2),

which corresponds to c1 = c2, and W 6=2 (q1, q2), which corresponds to c1 6= c2.
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The renormalization of our model will involve only the melonic approximation of the 2-

and 4-point vertex functions Γmelo
2 and Γmelo

4 . But there is a simple correspondence between

the melonic approximation of the 2N -point vertex functions Γmelo
2N of the initial theory and

the tree approximation of the N -point Green functions W tree
N of the pure theory, discovered

in the context of tensor models [89]. We shall develop it in our case in subsection 3.3 and

use it to identify graphically the functions f and g in Theorem 1. We now return for a while

to the initial theory to establish its power counting and renormalization using a multi-scale

analysis. This analysis will lead us naturally to focus on the melonic approximations which

govern renormalization.

3 Regularization and power counting

3.1 The regularized theory

Simpler superrenormalizable Abelian TGFT models [75] as well as a just renormalizable

non-Abelian model at rank 3 [77] have been analyzed already using a multiscale expansion.

We recall the basic steps of that analysis here, adapting it to our specific model.

Like any theory with ultraviolet (UV) divergencies, this model requires a UV cutoff

before introducing the renormalization procedure (which gives a coherent scheme to extract

finite and cut-off independent information). We shall use in this paper both the parametric

cutoffs as in [78] and sharp momentum cutoffs, which are simpler for our model because of

its strong momentum conservation rules.

The parametric cutoffs slice the Schwinger parameter. We fix a parameter M > 1

and define

C0(~g, ~g′) =

∫ ∞

1
dαe−αm

2

∫
dh

d∏

c=1

Kα(gchg
′−1
c )

Ci(~g, ~g′) =

∫ M−2(i−1)

M−2i

dαe−αm
2

∫
dh

d∏

c=1

Kα(gchg
′−1
c ), i 6= 0. (3.1)

We choose the UV-regulator Λ so that Λ = M−2ρ, and the complete propagator CΛ ≡ Cρ

is then given by:

Cρ =

ρ∑

i=0

Ci. (3.2)

A corresponding sharp momentum cutoff χ≤ρ(~p) is 1 if |~p|2 ≤M2ρ and zero otherwise.

The theory with cutoff ρ is defined by using the covariance

Cρ(~p) = C(~p)χ≤ρ(~p). (3.3)

Then we slice the theory according to

Cρ(~p) =

ρ∑

i=1

Ci(~p), Ci(~p) = C(~p)χi(|~p|2) (3.4)
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where χ1 is 1 if |~p|2 ≤M2 and zero otherwise and for i ≥ 2 χi is 1 if M2(i−1) < |~p|2 ≤M2i

and zero otherwise.

A subgraph S ⊂ G in an initial Feynman graph is a certain subset of lines (propagators

C) plus the vertices attached to them; the half-lines attached to the vertices of S (whether

external lines of G or half-internal lines of G which do not belong to S) form the external

lines of G. Translating to the intermediate representation, we find that a subgraph should

be a set of arcs of the intermediate field representation, plus all the wavy edges attached to

these arcs. The external lines are then the (half)-arcs attached to these wavy edges which

do not belong to S.

A vertex of the initial representation is called external for S if it is hooked to at least

one external line for S. Similarly a wavy line of the intermediate representation will be

called external to S if it hooks to at least one external arc.

Particularly interesting subgraphs in the intermediate field representation are those for

which the set of arcs are exactly those of a set S ⊂ LV of loop vertices (excluding any chain,

so no arc belongs to any ciliated vertex). Let us call such subgraphs proper intermediate

or PI. Remark that any PI graph is automatically 1PI in the initial representation (since

all arcs belong to at least one loop, the one of their loop vertex). Also any PI graph can

be considered amputated, hence as a graph for a particular vertex function. The converse

is not true and many graphs for vertex functions do not correspond to PI graphs in the

intermediate representation.

PI subgraphs can be represented as graphs of the pure intermediate theory, simply

by omitting the two half-arcs at the end of each external wavy line. In our model their

amplitude depends only of the single strand momentum entering the wavy line, not of the

full momentum of the two half-arcs hooked at its end.

We shall see that in our theory only very particular non-vacuum connected subgraphs

are superficially divergent, namely PI graphs which are trees with at most two external lines.

3.2 Multiscale analysis

The multi-scale analysis [87] allows to renormalize in successive steps, in the Wilsonian

spirit. It attributes a scale to each line ` ∈ L(G) of any amplitude of any Feynman

graph G.

Let us start by establishing multi-scale power counting. We can perform this analysis

both with parametric or sharp cutoffs, ending with the same conclusions. In this subsection

we use the sharp cutoffs since they attribute the same scale to all arcs of any loop vertex

or chain, hence a single scale to any loop vertex of the intermediate field representation.

The amplitude of a graph G, A(G), with fixed external momenta, is thus divided

into the sum of all the scale attributions µ = {i`, ` ∈ L(G)}, where i` is the scale of the

momentum p of line `:

A(G) =
∑

µ

Aµ(G). (3.5)

At fixed scale attribution µ, we can identify the power counting in powers of M . The

essential role is played by the subgraph Gi formed by the subset of lines of G with scales

higher than i. By the momentum conservation rule along any loop vertex, this subgraph
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is automatically a PI subgraph which decomposes into k(i) connected PI components:

Gi = ∪k(i)
k=1G

(k)
i . These connected components form when (i, k) take all possible values an

abstract tree for the inclusion relation (the famous Gallavotti-Nicolò tree [98]). We have

Theorem 2 The amplitude Aµ(G) is bounded by:

|Aµ(G)| 6 KL(G)
∏

i

k(i)∏

k=1

Mω(Gki ), K > 0, (3.6)

and the divergence degree ω(H) of a connected subgraph H is given by:

ω(H) = −2L(H) + F (H)−R(H), (3.7)

where L(H) and F (H) are respectively the number of lines and internal faces of the subgraph

H, and R(H) is the rank of the adjacency matrix ε`f for the lines and faces of H.

Proofs. Obviously we have (for K = M2)

|Ci(~p)| ≤ Kδ(
∑

c

pc)M
−2iχ≤i(~p). (3.8)

Fixing the external momenta of all external faces the Feynman amplitude (in this momen-

tum representation) is bounded by

|Aµ(G)| ≤


 ∏

`∈L(G)

KM−2i`


 ∏

f∈Fint(G)

∑

pf∈Z

∏

`∈∂f
χ≤i`(~p)

∏

`∈L(G)

δ(
∑

c

p`c). (3.9)

The key to multiscale power counting is to attribute the powers of M to the G(k)
i con-

nected components. For this, we note that, trivially: M i = M−1
∏i
j=0M , a trivial but

useful identity which allows e.g. to rewrite
∏
`∈L(G)M

−2il = M2
∏
`∈L(G)

∏i`
i=0M

−2. Then,

inverting the order of the double product leads to

∏

`∈L(G)

M−2i` =
∏

i

∏

`∈L(∪k(i)
k=1G

k
i )

M−2 =
∏

i

k(i)∏

k=1

∏

l∈L(Gki )

M−2 =
∏

i

k(i)∏

k=1

M−2L(Gki ). (3.10)

The goal is now to optimize the cost of the sum over the momenta pf of the internal faces.

Summing over pf with a factor χ≤i(~p) leads to a factor KM i, hence we should sum with

the smallest values i(f) of slices i for the lines ` ∈ ∂f along the face f . This is exactly the

value at which, starting form i large and going down towards i = 0 the face becomes first

internal for some Gki . Hence in this way we could bound the sums
∏
f∈Fint(G)

∑
pf∈Z by

∏

i

k(i)∏

k=1

MF (Gki ). (3.11)

However this can be still improved, because we have not yet taken into account the gauge

factor
∏
`∈L(G) δ(

∑
c pc). It clearly tells us that some sums over pf do not occur at all. How
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many obviously depends of the rank R of the incidence matrix ε`f . Indeed rewriting the

delta functions in terms of the pf(`,c) we have

∏

`∈L(G)

δ(
∑

c

p`c) =
∏

`∈L(G)

δ(
∑

f

ε`fpf ). (3.12)

Hence writing the linear system of L equations
∑

f ε`fpf = 0 corresponding to the delta

functions we can solve for R momenta pf in terms of L − R others. It means that in

the previous argument we should pay only for F − R sums over internal face momenta

instead of F .6

This argument can be made more precise and rigorous and distributed over all scales

starting from the leaves of the Gallavotti-Nicolò tree (the smallest subgraphs Gki ) and

progressing towards the root we can select faces such that the restricted sub-matrix ε`f
still has maximal rank R(Gki ) in each Gki . We discard the other faces decay factor. Then

we can select lines so as to find a restricted square submatrix ε`f with maximal rank R(Gki )

in each Gki . This leads to

|Aµ(G)| ≤ KL(G)
∏

i

k(i)∏

k=1

M−2L(Gki )+F (Gki )−R(Gki ) = K |L(G)|
∏

i

k(i)∏

k=1

Mω(Gki ). (3.13)

This equation completes the proof, and the exponent ω(Gki ) = −2L(Gki ) + F (Gki )− R(Gki )

identifies the divergence degree. �

3.3 Melonic graphs

In this subsection, we will determine the nature of PI superficially divergent graphs, which

are those with positive divergence degree ω ≥ 0. We shall establish that they are melonic [1]

in the ordinary representation, and trees in the intermediate field representation.

Consider first the case of a PI vacuum subgraph. If it is a tree on n loop vertices, it

has L = 2(n− 1) arcs, 5n+ 1 faces (since each wavy line glues two faces) and it is easy to

check by induction (adding leaves one by one from a root) that the rank R of the ε matrix

is maximal, namely n. Hence ω = −4(n− 1) + 5n+ 1− n = 5 in this case.

Next let us consider the case of a PI tree subgraph with N external wavy lines, hence

2N external arcs.

• if N = 1 the subgraph is a two point function and the single external wavy line adds

one arc, suppresses one face and does not change the rank, hence ω = 2 in this case.

• if N = 2 the subgraph is a four point function and the two external wavy lines adds

two arcs. If they have different colors, or have the same color c and hook to two

components of the tree not connected by lines of color c, then they open two different

faces and do not change the rank, so that ω = −1. However there is a special case,

6Remark that the remaining product unused or redundant δ functions are simply bounded by 1 because

the pf variables are discrete, hence the δ function are simply Kronecker symbols, all bounded by 1; of course

this would not be true for continuous variables as a product of redundant δ distributions in the continuum

is ill-defined.
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when the two external wavy lines have same color and hook to the same loop vertex

or to different loop vertices joined by a path in the tree made of wavy line all of the

same color c. In that case and only that case, the wavy lines open only the single

face of color c common to all loop vertices along this path, the rank again has not

changed and ω = 0.

• if N > 2, each new external line takes L into L+ 1, can either keep F unchanged (if

it hits an already open face), in which case R is also unchanged, or takes F to F − 1,

in which case either R is unchanged or goes to R − 1; hence ω decreases at least by

1. This proves

ω(G) ≤ −(N − 2) if N > 2. (3.14)

Consider next the case of a PI vacuum subgraph with N external wavy lines and q

wavy loops. We can first pick a tree of wavy lines then add the wavy loops one by one.

Each added loop creates two new arcs and changes the number of faces by -1, 0 or 1. It can

change the rank at most by 1, and when it creates a face, then the rank cannot decrease

(the matrix ε becoming bigger). Hence

ω(G) ≤ −(N − 2)− 3q if N > 2. (3.15)

In particular if N = 1 and q ≥ 1 we have ω(G) ≤ −1 and the graph is convergent.

Finally it remains to study the case of non-vacuum, non-PI graph. Since they add

at least one new arc to a PI graph, it is easy to check they have ω < 0, except in two

particular cases corresponding both to one-particle reducible graphs:

• a chain of arcs joining PI two-point trees, with one of them at both ends. Such

subgraphs are one-particle reducible two point subgraphs of the initial theory with

ω = 2.

• a chain of arcs joining PI two-point trees, with one of them at a single of its two ends.

Such subgraphs are one-particle reducible four point subgraphs of the initial theory,

with ω = 0.

These cases are not interesting since such subgraphs cannot occur as Gki s and, as is

well known, renormalization can be restricted to IPI subgraphs.

These results in particular show that the degree of divergence ω does not depend on

the number of vertices, but only on the number of external lines. This is typical of a just

renormalizable field theory.

Trees in the intermediate representation correspond to melonic subgraphs in the ordi-

nary representation [89]. Hence we have proved, in agreement with the other renormalizable

TGFT’s:

Theorem 3 The only superficially divergent PI subgraphs are melonic in the ordinary

representation, with two or four external ordinary lines. In the intermediate representation,

amputating the trivial external arcs, they are PI trees with a single external wavy line, or

with two external wavy lines of the same color carrying the same strand momentum.
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Melonic graphs are graphs with zero degree,7 hence for which all jackets are pla-

nar. We include for completeness brief definitions of these two notions, referring to [1]

for more details.

Definition 1 (Jackets) A jacket J of a regular d + 1 colored graph Gc is the canonical

ribbon graph associated to Gc and to a (D+1)-cycle ξ up to orientation. It has the same

number of lines and vertices than Gc, but contains only a subset of the faces, those with

consecutive colors in the cycle FJ =
{
f ∈ FGc |f = (ξq(0), ξq+1(0)), q ∈ ZD+1

}
.

Hence there are d!/2 jackets at rank d and to each jacket is associated a Riemann

surface of genus gJ .

Definition 2 (Degree) The degree $(Gc) is by definition the sum over the genus of all

the jackets:

$(Gc) =
∑

J
gJ ⇒ $(Gc) ≥ 0. (3.16)

The degree governs the 1/N tensorial expansion since the number of faces is a monotonically

decreasing function of the degree. Melonic graphs have maximal number of faces at a given

perturbation order. More precisely

Lemma 1 The number of faces Fc of Gc is related to the number of black vertices p and

to the dimension d by:

Fc =
d(d− 1)

2
p+ d− 2

(d− 1)!
$(Gc). (3.17)

A tensorial graph G having a unique colored extension Gc, we can extend the notion of

degree to tensorial graph. Since the colored extensions of type 1 vertices of our theory all

have the same number of inner faces (faces without color 0), the degree of Gc again governs

the number of faces of G, which are the bicolored faces of Gc which includes color 0. In our

case the vertices of G all have 25 inner faces and p = 2 black vertices, so that (3.17) tells us

F (G) = 5V + 6− 1

60
$(Gc). (3.18)

Returning to Theorem 3 we can precise the divergent part of the theory in the language

of the previous section. Γmelo
2 and Γmelo

4 are naturally defined as the melonic approximations

to Γ2 and Γ4 and Theorem 3 indeed proves that Γ2 − Γmelo
2 and Γ4,mono − Γmelo

4,mono are

superficially convergent. Moreover they express simply as tree approximations of the pure

τ intermediate field theory: we have

Γmelo
2 (~p) =

√
2λ

6∑

c=1

W tree
1 (pc), Γmelo

4 (pc, p
′
c) =

√
2λδ(pc, p

′
c)W

=,tree
2 (pc, pc) (3.19)

where W tree
1 and W=,tree

2 are respectively the tree approximation to W1 and W=
2 .

7The degree in question is the “degree of the colored graph”, which characterizes the dominant order of

the large-N limit of tensor models. It should not be confused with the degree of divergence, and we denote

it by $(Gc).
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But Theorem 3 contains still an additional information on the divergent part of Γmelo
4 .

Defining W=,tree
2,mono as the part of W=,tree

2 in which all wavy lines along the unique path

joining the two external lines must be of the same color c than these two external lines, it

states that the difference W=,tree
2 −W=,tree

2,mono is also ultraviolet finite, hence can be neglected

in the following section on renormalization.

Since (3.19) is nothing but (2.19) with f = −i
√

2/λW tree,c
1 and g = W tree

2,mono, this

completes the proof of Theorem 1.

3.4 Uniform convergent bounds

An important aspect of the multiscale analysis is that it provides easily a uniform expo-

nential bound on convergent amplitudes:

Theorem 4 (Uniform Weinberg theorem) The amplitude A(G) for a completely con-

vergent connected graph G (i.e. a graph for which ω(H) < 0 ∀H ⊂ G) is uniformly bounded

in terms of its size, i.e. there exists a constant K such that if n is the order (number of

vertices) of the graph:

|A(G)| ≤ Kn(G). (3.20)

Proofs. We assume N(G) ≥ 1, so that ∀H ⊂ G, N(H) ≥ 1 (the vacuum case N(G) = 0 is

an easy extension left to the reader). (3.14) implies that for a convergent PI graph with

2N > 4 external arcs

ω(H) ≤ −N(H)/3 = −2N(H)/6. (3.21)

This is also true if H is convergent with N = 1 or 2, since we saw that in this case

ω ≤ −1 ≤ −N(H)/3. For a φ4 graph of order V = n with 2N external legs, we have

2L = 4V + 2N . Therefore (3.13) implies that for another constant K

A(G) ≤ Kn
∑

µ

∏

i

k(i)∏

k=1

M−2N(Gki )/6. (3.22)

Let us now define

iv(µ) = sup
`∈Lv(G)

i`(µ), ev(µ) = inf
`∈Lb(G)

i`(µ), (3.23)

where v denotes a vertex v ∈ G, and Lv(G) the set of its external (half)-lines. v is external

to a high subgraph Gki if and only if eb < i ≤ ib, and then it is hooked to at least one of

the 2N(Gki ) external half-lines of Gki . Therefore

∏

i,k

M−2N(G(k)
i )/6 ≤

∏

i,k

∏

v∈G(k)
i |ev<i≤iv

M−1/6. (3.24)

Using the fact that there are at most 4 half-lines, and thus 6 = 4 × 3/2 pairs of half-

lines hooked to a given vertex, and that, for two external lines ` and `′ of a vertex v,

|ev − iv| ≥ |i` − i`′ |, we obtain:

A(G) ≤ Kn
∑

µ

∏

v

∏

(`,`′)⊥v

M−
|i`−i`′ |

36 , (3.25)
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where the product over (`, `′) ⊥ v means the product over all pairs of half-lines hooked to

v. The bound means that there is exponential decay in scale differences between all such

pairs.8 Organizing the sum over µ = {i`} along a tree of lines of G as in [87], it is easy to

bound it by KL(G , hence to complete the proof of (3.20), hence of Theorem 4. �
The next section is devoted to renormalization of the model and to a computation of

its beta function.

4 Perturbative renormalization and flow

Renormalization consists, after having identified the “dangerous” subgraphs Gki (those with

ω ≥ 0), in subtracting from them their local Taylor approximation (the “counter-terms”),

up to cancelation of the divergencies, hence up to order ω. Then one should compute how

renormalization changes the interaction from bare to renormalized, hence compute the flow

of the theory from the ultraviolet to the infrared regime.

4.1 Perturbative renormalization and counter-terms

Our goal in this section is to check that, as stated in [78, 82]

Theorem 5 The U(1) model with T 4 interaction at rank 6 is just renormalizable and

asymptotically free.

The perturbative renormalization implies the following redefinitions

φ = Z1/2(Λ)φr, φ̄ = Z1/2(Λ)φ̄r, (4.1)

λ = Z−2(Λ)Z
1/2
λ (Λ)λr = Z1/2

λ λr, (4.2)

m = Z−1/2(Λ)Z1/2
m (Λ)mr = Z1/2

m mr, (4.3)

and the UV-regularized generating partition function is:

Z : =

∫
dµ

C(Z−1/2Z
1/2
m mr)

(Z1/2φr, Z
1/2φ̄r)e

Z
1/2
λ λr

∑6
i=1 Trbi (φ̄rφr)

=

∫
dµ

C(Z−1/2Z
1/2
m mr)/Z

(φr, φ̄r)e
Z

1/2
λ λr

∑6
i=1 Trbi (φ̄rφr). (4.4)

In these definitions, the “r” subscript applies to the renormalized quantities. The mass

and wave function counter terms can be absorbed in the covariance
∫
dµ

C(Z−1/2Z
1/2
m mr)/Z

(φr, φ̄r)φr(~θ)φ̄r(~θ′)=
∑

~p

1

Z

δ(
∑

c pc)

~p2 + Z−1Zmm2
r

ei~p·(
~θ−~θ′)

=
∑

~p

δ(
∑

c pc)

~p2+m2
r

1

1+
δZ~p

2+δm2m2
r

~p2+m2
r

ei~p·(
~θ−~θ′), (4.5)

8(3.25) is of course a very sloppy estimate, that could be easily improved. For instance we could take

advantage of the momentum representation conservation rules to remark that only one pair of different

scales is in fact hooked to any vertex, rather than 6, but it won’t change the structure of the result, only

improve numerical constants.
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with δZ = Z − 1, δm2 = Zm− 1. Identifying this covariance with the one of the initial bare

theory means that the (bare) propagator of the theory rewrites in terms of renormalized

quantities as

C =
δ(
∑

c pc)

~p2 +m2
r + δZ~p2 + δm2m2

r

. (4.6)

As well known the renormalized parameters in a BPHZ scheme are obtained in terms

of the bare ones through the vertex functions, which are the one-particle irreducible ampu-

tated functions. In our model the power counting analysis of the previous section showed

that we need only to renormalize the 2 point vertex function Γ2 (self-energy), and the four

point vertex function Γ4.

4.2 The renormalization group flow

The basic idea of the renormalization group is the following. All correlation functions are

invariant under an infinitesimal dilatation s := 1 + δ of the ultraviolet cut-off Λ with a

simultaneous redefinition of the coupling constants, mass, and field normalization:

Λ→ Λ(1 + δ), m→ m+ δm, λ→ λ+ δλ, Z → Z(1 + δZ). (4.7)

Renormalized quantities parametrize a given trajectory of the RG flow. We have the

relations:

φsΛ = Z1/2(sΛ)φr, m(sΛ) = Z1/2
m (sΛ)mr, λ(sΛ) = Z1/2

λ (sΛ)λr, (4.8)

involving

φsΛ = Z1/2(sΛ)Z−1/2(Λ)φΛ =: Z1/2(s)φΛ, (4.9)

m(sΛ) = Z1/2
m (sΛ)Z−1/2

m (Λ)m(Λ) =: Z1/2
m (s)m(Λ), (4.10)

λ(sΛ) = Z1/2
λ (sΛ)Z−1/2

λ (Λ)λ(Λ) =: Z1/2
λ (s)λ(Λ). (4.11)

These relations give the transformations of field, mass and couplings of two theories

with different cut-offs, hence along the same trajectory of the RG flow. They imply trivially

the invariance of the renormalized correlation functions along a given trajectory. This

invariance translates into a differential equation for the correlation functions describing the

evolution of the RG flow, namely the so called Callan-Symanzik (CS) equation. Writing

G2N
Λ,mΛ,λΛ

({~θi}) = ZN (Λ)G2N
r,mr,λr({~θi}), (4.12)

with

[Z(sΛ)Z−1(Λ)]NG2N
Λ,mΛ,λΛ

= G2N
sΛ,msΛ,λsΛ

. (4.13)

and developing, with s := 1 + δ, we get

Z(sΛ)Z−1(Λ) =

(
Z(Λ) + Λ

dZ

dΛ
δ

)
Z−1(Λ) = 1 + δΛ

d

dΛ
lnZ, (4.14)

G2N
sΛ,msΛ,λsΛ

= G2N
Λ,mΛ,λΛ

+ Λδ

{
∂

∂Λ
+
dλ

dΛ

∂

∂λ
+
dm2

dΛ

∂

∂m2

}
G2N

Λ,mΛ,λΛ
. (4.15)
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Figure 8. The self-energy contribution at one-loop.

Gluing the pieces, we obtain the CS equation:

{
Λ
∂

∂Λ
+ β(λ)

∂

∂λ
+m2γm2(λ)

∂

∂m2
+Nγ(λ)

}
G2N

Λ,mΛ,λΛ
= 0, (4.16)

with the following definitions:

G2N
Λ,mΛ,λΛ

:=
1

Z

∫
dµCΛ

(φ̄, φ)
N∏

j=1

φ̄(j)(~θj)φ
(j)(~θ′j)e

−Sint(φ̄,φ), (4.17)

β := Λ
dλ

dΛ
, γ := −Λ

d

dΛ
lnZ, γm2 := Λ

d

dΛ
lnm2. (4.18)

We analyze now this equation at first order (one loop).

4.3 One loop self energy

We start by computing the corrections to the propagator. At one loop, the only melonic

(hence divergent) graph is pictured in figure 8.

Its value is

Γmelo,1
2 (~p) = −

∑

c

∑

qc′,c′ 6=c

2λ
δ(
∑

c′ q
c
c′)

(~qc)2 +m2
= −2λ

∑

c

∑

qc
c′ c
′ 6=c

δ(
∑

c′ q
c
c′)

(~qc)2 +m2
, (4.19)

where ~qc ∈ Zd has components qcc′ = (q1, q2, . . . , qc = p, . . . , qd).

Let’s use the Schwinger representation to rewrite the denominator as an integral of an

exponential, with UV cutoff on the parameter α. It gives

Γmelo,1
2 (~p) = −2λ

∑

c

∫ ∞

1/Λ2

dαe−αm
2
∑

qc
c′ 6=c

δ(
∑

c′

qcc′)e
−α(~qc)2

= −2λ
∑

c

∫ ∞

1/Λ2

dαe−αm
2

∫ 2π

0

dβ

2π

∑

qc
c′ 6=c

eiβ(
∑
c′ q

c
c′)e−α(~qc)2

= −2λ
∑

c

∫ ∞

1/Λ2

dαe−αm
2

∫ 2π

0

dβ

2π
eiβpce−αp

2
c

∏

c′ 6=c

∑

qc
c′

eiβq
c
c′e−α(qc

c′ )
2

. (4.20)
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In the last equality, we introduced an integral representation of the Kronecker delta. Now,

we can turn the argument of the exponent into a perfect square and obtain, for ~p ∈ P

Γmelo,1
2 (~p) = −2λ

∑

c

∫ ∞

1/Λ2

dαe−αm
2

∫ 2π

0

dβ

2π
eiβpce−αp

2
ce−5β2/4α

∏

c′ 6=c

∑

qc
c′

e−α(qc
c′−iβ/2α)2

(4.21)

∼ −2λ
∑

c

∫ ∞

1/Λ2

dαe−αm
2

∫ 2π

0

dβ

2π
eiβpce−αp

2
ce−5β2/4α

(π
α

)5/2
, (4.22)

in the α → 0 limit. This identifies the divergent behavior of this expression. These

divergencies come from the neighborhood α = 0, and using the distributional expansion

e−β
2/4α =

√
4πα[δ(β) + αδ

′′
(β)] +O(α5/2), (4.23)

we obtain:

Γmelo,1
2 (~p) =−2λ

∑

c

∫ ∞

1/Λ2

dαe−αm
2

∫ 2π

0

dβ

2π
eiβpce−αp

2
c
√

4πα[δ(β)+αδ
′′
(β)]

(π
α

)5/2
+O(1/Λ)

= −2λπ2

√
5

∑

c

∫ ∞

1/Λ2

dαe−αm
2
e−αp

2
c

(
1

α2
− p2

c

1

5α

)
+O(1/Λ). (4.24)

The asymptotic expansion of this expression at large Λ is now easy to find using

integrating by parts

I =

∫ ∞

1/Λ2

dαe−αm
2
e−αp

2
c

1

α2
.

=

∫ ∞

1/Λ2

dαe−αm
2 1

α2
− p2

c

∫ ∞

1/Λ2

dαe−αm
2 1

α
+O(1/Λ)

= Λ2e−m
2/Λ2 − (p2

c +m2)

∫ ∞

1/Λ2

dαe−αm
2 1

α
+O(1/Λ). (4.25)

The divergent part of the last integral is at most logarithmic near zero. Thus:

∫ ∞

1/Λ2

dαe−αm
2 1

α
= A ln(Λ) +O(1/Λ), (4.26)

and it suffices to determine A. Differentiating with respect to Λ and identifying the singu-

larity in the two expressions, we find

d

dΛ

∫ ∞

1/Λ2

dαe−αm
2 1

α
=

2

Λ3
e−m

2/Λ2
Λ2 =

2

Λ
e−m

2/Λ2

=
2

Λ
+O(1/Λ3) = A(β)

1

Λ
+O(1/Λ2)⇒ A = 2, (4.27)

and we obtain the following divergent part:

I = Λ2 − 2(p2
c +m2) ln(Λ) +O(1). (4.28)
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Figure 9. One loop melonic 4-point function.

Returning to (4.24), we find then

Γmelo,1
2 (~p)(~p) = −2λπ2

√
5

∑

c

(
Λ2 − 2(p2

c +m2) ln(Λ)− 2

5
p2
c ln(Λ)

)
+O(1/Λ)

= −12λπ2

√
5

(
Λ2 − 2m2 ln(Λ)

)
+

24λπ2

5
√

5
ln(Λ)~p2 +O(1/Λ) , (4.29)

and comparing with (4.6) we conclude that at one loop

δZZ =
24λπ2

5
√

5
ln(Λ), (4.30)

δm2m2 = −12λπ2

√
5

(
Λ2 − 2m2 ln(Λ)

)
. (4.31)

4.4 Coupling constant renormalization and asymptotic freedom

In this section we examine how the coupling changes along the RG trajectory i.e. going

towards the IR.. Equations (4.29)–(4.30) gives us the coefficient γ at first order:

γ = −Λ
d

dΛ
lnZ = −24λπ2

5
√

5
. (4.32)

It remains now to evaluate the melonic monocolor four-point function at one loop,

Γmelo,1
4,mono.

The contributing diagram is sketched in figure 9 (shown with its four external arcs).

The total contribution of this diagram is

I ′ := −1

2
2λ
∑

c

∑

qc
c′ c
′ 6=c

δ(
∑

c′ q
c
c′)

[(~qc)2 +m2]2
=

d

dm2
λ
∑

c

∑

qc
c′ c
′ 6=c

δ(
∑

c′ q
c
c′)

(~qc)2 +m2
, (4.33)

and we can deduce the divergent part of I ′ (in the same notations as in the previous

section):

I ′ = −6λπ2

√
5

ln(Λ) +O(1/Λ). (4.34)

The last thing to evaluate are the symmetry factors. We have four ways to connect the

external fields in an amputated vertex, and two ways to connect these contracted vertices

for each of the 6 colors. The expression of the four point function at zero momentum is

then ultimately, to the (leading) one-loop order:

Γmelo,1
4,mono = 6× 4

(
−λ+

2λ2π2

√
5

ln(Λ)

)
+O(1/Λ). (4.35)
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Figure 10. Typical melonic graph with renormalon effect.

Returning to equations (4.16) and (4.18) we get:

2λ2π2

√
5
− β(λ)− 48λ2π2

5
√

5
= 0, (4.36)

which implies immediately,

Λ
dλ

dΛ
= β(λ) = −38λ2π2

5
√

5
. (4.37)

The minus sign is fundamental. It means that the bare coupling constant decreases

when the ultraviolet cutoff increases. The theory is therefore asymptotically free, thus

consistent at the perturbative level, like the familiar non-Abelian gauge theories of the

standard model.

We now discuss what happens beyond one loop.

4.5 Counterterms and renormalons

Renormalized amplitudes AR(G) can be explicitly written in terms of Zimmermann’s forest

formula

AR(G) =
∑

F∈D(G)

∏

γ∈F
(−τ∗γ )A(G), (4.38)

where τ∗ is an operator which performs explicitly the subtraction of the counter-term

and D(G) is the set of all divergent forests of G. However such renormalized amplitudes

suffer from the problem of renormalons. Indeed they can grow as n! with the number n of

vertices in G. This problem exists also in our model, and even in its melonic approximation.

Consider indeed the two point subgraph of figure 10; made of an arbitrarily large monocolor

chain of n simple loop vertices with two arcs, ending on a leaf with a single arc. All wavy

lines have same color c and carry the same momentum pc.

Because the renormalized four point function, hence the renormalized loop vertex with

two arcs, behaves as log(pc) at large pc, inserting such a chain on a convergent loop in a

convergent melonic vertex function will lead to a very large sum over pc which typically

can behave at large n as ∑

pc∈Z
[log pc]

n 1

p2
c +m2

∼ Knn! (4.39)

for some constant K. This is the renormalon problem.

Such renormalons in fact come entirely from the counterterms in Zimmermann’s for-

mula [87]. More precisely in (4.38) the counter-terms are subtracted, so to speak, blindly

with respect to internal scale integrations. But a divergent subgraph looks like its counter

term only when its internal scales are higher than the scale its external lines, hence when

it is a Gki in some attribution µ in the language of the previous section (locality principle).
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Counter-terms in (4.38) not only subtract these dangerous contributions, but also the in-

offensive parts in which the internal lines of the divergent subgraph have lower scale than

the external lines. It is exactly these unnecessary subtractions which give rise to the renor-

malons. Hence, although the standard renormalization procedure eliminates all ultraviolet

divergencies from any Feynman amplitude, such renormalized amplitudes are so big that

we cannot use them directly to sum even the melonic approximation to our theory.

4.6 The effective amplitudes

The effective series is a more physical way to compute perturbation theory, and a natural

solution to the renormalon problem when the theory is asymptotically free [87]. The basic

idea is to renormalize in the Wilsonian spirit, namely step by step, expanding in a whole

sequence of effective couplings rather than in the single renormalized coupling. Consider a

graph G and its bare amplitude Aµ(G) with scale attribution µ as defined in the previous

section. There are some Gki subgraphs which are divergent (ω(Gki ) ≥ 0). They form a

forest Dµ(G) (because it is a subset of the Gallavotti-Nicolò tree containing all Gki high

subgraphs). The effective amplitude Aeff(G) is defined by

Aeff(G) =
∑

µ

Aeff
µ (G), Aeff

µ (G) :=
∏

γ∈Dµ(G)

(1− τ∗γ )Aµ(G). (4.40)

Comparing with (4.38), we see such amplitudes are very different from the renormalized

ones. Because in (4.40) all divergent high graphs are subtracted, effective amplitudes,

like renormalized ones, have a finite limit when the ultraviolet cutoff is removed. How-

ever unlike renormalized amplitudes, effective amplitudes are free of renormalons [77, 87].

More precisely

Theorem 6 The effective amplitude Aeff(G) for a graph G with V (G) internal wavy lines

is uniformly exponentially bounded in term of its size, hence for some constant K

|Aeff(G)| ≤ KV (G). (4.41)

Proofs (sketched). Renormalization operators exactly act on the divergent subgraphs Gki
only. Taylor expanding and using the condition that external legs of Gki have all lower

scales than any internal line, they transform their divergent degree into an effective degree

ω′ ≤ −1. The rest of the argument to bound the sum over µ then follows exactly the proof

of Theorem 4. �
Hence effective amplitudes are better building blocks than either bare or renormalized

amplitudes to understand the ultraviolet limit of the theory. It remains to relate them to

the initial theory. Consider the bare power series defined by:

GΛ
2N =

∑

G,µ

1

s(G)
(−λ)V (G)Aµ(G), (4.42)

where attributions µ are summed with cutoff Λ = M−2ρ (hence by (3.4) every scale sat-

isfies 1 ≤ i` ≤ ρ) the amplitudes Aµ are computed with bare propagators and λ is the
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bare coupling. It has obviously no ultraviolet limit. But we have the following key theo-

rem [77, 87, 98]:

Theorem 7 (Effective expansion) The series (4.42) can be reshuffled as a multi-series

with effective couplings and effective amplitudes:

GΛ
2N =

∑

G,µ

1

s(G)


 ∏

v∈V(G)

(−λ(Λ)
iv(µ))


Aeff

µ (G), (4.43)

where iv(µ) = sup{i`, ` hooked to v}, and the effective couplings λ
(Λ)
iv(µ) and the effective

propagators Ceff
i occurring for lines of scale i in the amplitude Aeff

µ (G) obey the inductive

relations (4.45)–(4.46) below. Moreover, defining the renormalized coupling by λr := λ0 and

the renormalized propagators Cr by inverting (4.6), and reshuffling the effective series in

terms of the single renormalized coupling λr with renormalized propagators Cr, we recover

exactly the renormalized series.

In particular λ
(Λ)
ρ is the bare coupling, and λ

(Λ)
0 is the renormalized one. The other

couplings λi for 0 < i < ρ describe the RG trajectory in between these extremal values.

Proofs. (sketched). We recall only the main steps in the proof; more details can be found

in [77, 87].

The proof is inductive, working from the high scales towards the lower ones. The initial

step i = ρ starts with the bare series. At step number i we suppose we have defined the

effective expansion with

• effective couplings λj for vertices with highest scale j > i and λi+1 for all vertices

with highest scale j ≤ i;

• effective propagators Cj for lines with indices j > i and Ci+1 for all lines with indices

j ≤ i,

• effective amplitudes Aeff,i+1(G) with subtractions
∏
γ∈Di+1

µ (G)(1− τ
∗
γ ), where Di+1

µ is

the forest of all divergent Gkj with j > i.

We define the next coupling λi and propagator Ci by considering in µ the scale number

i. Adding and subtracting the counter-terms in Di
µ\Di+1

µ = {H ∈ Dµ(G)| inf i` = i}, ` ∈ H,

we write

Aeff,i+1
µ (G) :=

∏

H∈Diµ\D
i+1
µ

[(1− τ∗H) + τ∗H]
∏

γ∈Di+1
µ

(1− τ∗γ )Aeff,i+1
µ (G), (4.44)

and we expand the product over H ∈ Di
µ \Di+1

µ . The operators (1− τ∗H) will generate the

next layer of subtraction in the formula to change the subtraction operations of Aeff,i+1
µ (G)

into those of Aeff,iµ (G). The counterterms +τ∗H are then associated to collapsed graphs G/H
in which H has been collapsed to a vertex (if N(H) = 2) or to a mass or a wave function
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insertion (if N(H) = 1). Collecting these pieces and rearranging them according to the

collapsed graph rather than to the initial graph defines an (infinite series) redefinition of

the couplings hooked to vertices with highest line of slice j < i and of the propagators with

scale j < i, which become respectively λi and Ci. Hence the new effective coupling is

− λi = −λi+1 +
∑

H| N(H=2),inf`∈H i`=i

τ∗HAeff,i+1
µ (H) (4.45)

and the new propagator is

Ci = Ci+1 +
∑

H| N(H=2),inf`∈H i`=i

τ∗HAeff,i+1
µ (H). (4.46)

Remark we can omit in these definitions that H is divergent, since τ∗H = 0 if H is con-

vergent. Remark also that H in (4.46) is connected but can be one particle reducible and

that to update the effective mass and effective Laplacian normalization in Cr from i+ 1 to

i requires to analyze (4.46) in terms of the one-particle irreducible self-energy (see (4.6)).

Finally remark also that such recursive equations are non-Markovian. By this we mean

that the effective coupling λi is itself a multi-series in the sequence of all effective cou-

plings λρ, · · · , λi+1, Any attempt to rewrite it in terms of the single coupling λi+1 would

automatically reintroduce the renormalon problem. �

Thanks to Theorem 6 the effective expansion is therefore able to define the theory

provided all couplings on the trajectory from λρ to λ0 = λr are uniformly bounded by a

sufficently small constant, and the number of graphs is not too big. This is the case when

• the theory is asymptotically free or asymptotically safe in the ultraviolet regime,

• the set of graphs considered does not proliferate more than exponentially with size n.

Planar “wrong sign” φ4 [100, 101] or the Grosse Wulkenhaar model [92–95] satisfy these

two conditions. Since melonic graphs, like trees, obviously proliferate no more than expo-

nentially in size and since our theory is asymptotically free, its melonic approximation also

satisfy both conditions. Hence the effective expansion allows to define non perturbatively

this melonic approximation, in fact for any Green function Gmelo
2N or vertex function Γmelo

2N .

5 Melonic equations

In this section, we establish a closed equation for the melonic two-point vertex function,

and an equation expressing the melonic four-point vertex function in terms of the two-

point one. Combining this with the effective bounds of the previous section we shall prove

existence and unicity of the solution of these equations at small renormalized coupling.

5.1 Bare equations

Let us start with the two point vertex function or self-energy. The relationship betweens

the Green function G2 and the self-energy can be graphically represented as in figure 11,
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= + 1PI 1PI 1PI+ +...G2
C C C C C C

Figure 11. Decomposition of the 2-point function.

=1PI

G2

Melonic

Melonic order

∑
c

c

Figure 12. 1PI melonic two point function.

and corresponds to the functional equation:

G2(~p) = C + CΓ2C + CΓ2CΓ2C + · · · = C

1− Γ2C
=

δ(
∑

c pc)

~p2 +m2 − Γ2(~p)
. (5.1)

We want to restrict now this relationship to the melonic approximation. (3.19) ex-

pressed Γmelo
2 as a sum of trees in the intermediate field representation. Focusing on the

root of the tree, we can amputate the unique ciliated vertex into two trivial half-lines (this

wont be possible if there were wavy loops). Detailing the loop vertex at the other end of

the unique wavy line of the tree connected to the ciliated vertex leads to the graphical

representation of Γmelo
2 depicted in figure 12, where we sum over all possible colors for the

root wavy line.

Γmelo
2 (~p) = −2λ

∑

c

∑

qc
c′ c′ 6=c

G2(~qc) = −2λ
∑

c

∑

qc
c′ c′ 6=c

δ(
∑

c q
c
c′)

(~qc)2 +m2 − Γmelo
2 (~qc)

, (5.2)

where the vector ~qc was defined in the previous section. This is a closed equation for the

melonic self energy. Using Theorem 1, it writes in terms of the function f as

f(p) = 2
∑

q1
c′ , 2≤c

′≤6

δ(
∑

c′ q
1
c′)

(~q1)2 +m2 + λ
∑

c′ f(q1
c′)
, (5.3)

where we recall that q1
c′ = {p, q1

2, · · · q1
6} is a function of p.

Turning now to the melonic four-point vertex function, we can draw the two end

vertices as in figure 13.

Using the results of section 3 on the monocolored tree structure of Γmelo
4 and taking

care of the combinatorics we can write

Γmelo
4 (~p1, . . . ~p4) = −4λ

∑

c

[1− λgint(pc)]SymM(c)
~p1,...~p4

, (5.4)
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c c

Figure 13. End vertices of Γmelo
4,int.

G2,melonic

G2,melonic

c c

Figure 14. A melonic two point insertion.

where Mc is define by Tr bc(φ, φ̄) =:
∑
{~pi}M

(c)
~p1,~p2,~p3~p4

φ~p1
φ̄~p2

φ~p3
φ̄~p4

,

SymM(c)
~p1,...~p4

:=
1

2

(
M(c)

~p1,~p2,~p3~p4
+M(c)

~p3,~p2,~p1~p4

)
,

and Γmelo
4,int(~p) :=

∑
c gint(pc)SymM(c) is the simple loop integral with two arcs correspond-

ing to figure 14.

Hence

gint(p) =
∑

qc
c′ 6=c

δ(
∑

c′ q
c
c′)[

(~qc)2 +m2 + λ
∑

c′ f(qcc′)
]2 . (5.5)

Using Theorem 1 this means the following relation between f and g

g(p) = 4


1−

∑

qc
c′ 6=c

δ(
∑

c′ q
c
c′)[

(~qc)2 +m2 + λ
∑

c′ f(qcc′)
]2


 . (5.6)

5.2 Renormalized equations

In this subsection we give the renormalized version of the previous equations. We

rewrite (5.1) according to section 4 as

G2(~p) =
δ(
∑

c pc)

Z~p2 + Zm2m2
r − Γ2(~p)

=
δ(
∑

c pc)

~p2 +m2
r + δZ~p2 + δm2m2

r − Γ2(~p)
. (5.7)

Next, we impose the following useful renormalization conditions:

δZ :=
dΓ2

d~p2
|~p=~0 (5.8)

δm2 := Γ2(~p2 = 0). (5.9)

Note about this expression that, strictly speaking, the function Γ2 is a function on Zd,
and the derivation operation makes no sense. In the last expression, the derivative can be
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viewed as a new function on Zd, obtained from the first by analytic prolongation on Rd

(with the preamble remark that the function on Zd admit a natural prolongation on the

continuous space), computation of the derivative of this new function, and finally restriction

to the subset Zd ⊂ Rd.
The renormalized function is therefore obtained from the previous equation and the

renormalization conditions, by subtracting its value at ~p2 = 0 and its first derivative at the

same point:

Γ2,r(~p) := Γ(~p2)− Γ2(~0)− ~p 2 dΓ2

d~p 2
|~p=~0 . (5.10)

A similar equation relates Γmelo
2,r (~p) to Γmelo

2,r (~p), and by the same argument that in the

previous section, we obtain the following closed equation for the renormalized self-energy:

Γmelo
2,r (~p) = −2λr

∑

c

∑

qc
c′ 6=c

[
δ(
∑

c′ q
c
c′)

(~qc)2 +m2
r − Γmelo

2,r (~qc)
(5.11)

−
δ(
∑

c′ q
c
c′)

(~qc)2 +m2
r − Γmelo

2,r (~qc)
|pc=0 −

∑

c

p2
c

d

dp2
c

δ(
∑

c′ q
c
c′)

(~qc)2 +m2
r − Γmelo

2,r (~qc)
|pc=0

]
.

We obtain an equation for fr, the renormalized function f such that

Γmelo
2,r (~p) = −λr

∑

c

fr(pc), (5.12)

namely

fr(pc) = 2
∑

q1
c′ , 2≤c

′≤6

[
δ(
∑

c′ q
1
c′)

(~q1)2 +m2
r + λr

∑
c′ fr(q

1
c′)

(5.13)

−
δ(
∑

c′ q
1
c′)

(~q1)2 +m2
r + λr

∑
c′ fr(q

1
c′)
|pc=0 − p2

c

d

dp2
c

δ(
∑

c′ q
1
c′)

(~q1)2 +m2
r + λr

∑
c′ fr(q

1
c′)
|pc=0

]
.

The renormalized equation corresponding to (5.6) follows in the same way. Setting

Γmelo
4,mono,r(~p, ~p

′) = −λr
∑

c

δ(pc, p
′
c)gr(pc) (5.14)

(compare with (2.19)) we have the renormalized version of (5.5)

gint,r(p) =
∑

qc
c′ 6=c

[
δ(
∑

c′ q
c
c′)[

(~qc)2 +m2
r + λr

∑
c′ fr(q

c
c′)
]2 −

δ(
∑

c′ q
c
c′)[

(~qc)2 +m2
r + λr

∑
c′ fr(q

c
c′)
]2 |p=0

]
,

(5.15)

and the renormalized version of (5.6)

gr(p) = 4

(
1−

∑

qc
c′ 6=c

[
δ(
∑

c′ q
c
c′)[

(~qc)2 +m2
r + λr

∑
c′ fr(q

c
c′)
]2 −

δ(
∑

c′ q
c
c′)[

(~qc)2 +m2
r + λr

∑
c′ fr(q

c
c′)
]2 |p=0

])
.

(5.16)

– 33 –



J
H
E
P
0
4
(
2
0
1
5
)
0
9
5

5.3 Existence and unicity

The previous closed equations define, in principle, the renormalized melonic vertex func-

tions. Neither the existence nor the unicity of their solutions, however, are obvious at

all, since the bare equations do not have ultraviolet limit and the renormalized ones typ-

ically have zero convergence radius in λr because of renormalons (except at very special

values such as zero external momenta). But we can expand these equations according the

multiscale expansion of section 3 and reshuffle them in terms of the effective amplitudes

and effective constants λi of section 4. Subtractions in loop sums such as those of (5.13)

and (5.16) will then occur only when the external momentum pc has scale strictly lower than

the one of ~q c and the coupling λr will be replaced by the effective coupling corresponding

to the scale of ~q c.

Expanding in a multiseries for all couplings gives therefore an effective expansion with

• at most (K1)n graphs at order n, since as well known, trees proliferate only exponen-

tially in their number of vertices,

• effective melonic amplitudes bounded by (K2)n by Theorem 6 (which applies to any

effective amplitude, hence in particular to the melonic ones),

• effective constants all bounded by the last one λr because of asymptotic free-

dom (4.37).

Hence this effective melonic expansion converges and defines a unique solution of the

renormalized equations for 0 ≤ λr < (K1K2)−1. As usually for flow equations such

as (4.37), the solution is in fact analytic in λr in a disk tangent to the real axis, with

uniform Taylor remainder estimates at order s in Kss! [87]. We leave the details to the

reader, but have no doubt that the unique solution sum of the effective series is therefore

the Borel sum of the renormalized expansion for the melonic vertex functions Γmelo
2N,r, and

that this holds not just for N = 1 and 2 but for any number 2N of external arguments.

This completes the control of the melonic sector of the theory:

Theorem 8 The effective expansions of the renormalized melonic vertex functions con-

verge for 0 ≤ λr < K−1 to the Borel sum of their renormalized expansions.

It is tempting to believe that like for tensor models [38], for |λr| large enough we

reach singularities at which phase transitions occur, but this is left to future analytic and

numerical study.

6 Conclusion

We have studied a simple Abelian TGFT of rank 6 with quartic melonic interactions. We

defined its intermediate field representation and used it, together with a multi-scale analy-

sis, to prove its renormalizability, to compute its beta function and to check its asymptotic

freedom. We have defined the effective expansion of the model and established uniform
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exponential upper bounds on effective melonic amplitudes. Finally we wrote a closed equa-

tion for the melonic approximation to the two-point and four-point vertex functions and

using the effective expansion we proved that it admits a unique solution for small enough

stable renormalized coupling.

Next steps in the analysis of the model might be the numerical analysis of the RG flow

along the lines of [86] and a full constructive analysis (including the non-melonic sector) of

this model. The latter would require a non-trivial extension of the techniques of [88], but

may be tractable thanks to the vector-like nature of the intermediate field.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].

[37] R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary

dimension, Europhys. Lett. 95 (2011) 50004 [arXiv:1101.4182] [INSPIRE].

[38] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models

in the large-N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].

[39] R. Gurau, Universality for Random Tensors, arXiv:1111.0519 [INSPIRE].

[40] V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large-N limit:

Uncoloring the colored tensor models, Phys. Rev. D 85 (2012) 084037 [arXiv:1202.3637]

[INSPIRE].

[41] A. Tanasa, Multi-orientable Group Field Theory, J. Phys. A 45 (2012) 165401

[arXiv:1109.0694] [INSPIRE].

[42] S. Dartois, V. Rivasseau and A. Tanasa, The 1/N expansion of multi-orientable random
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[46] W. Kamiński, D. Oriti and J.P. Ryan, Towards a double-scaling limit for tensor models:

probing sub-dominant orders, New J. Phys. 16 (2014) 063048 [arXiv:1304.6934] [INSPIRE].

[47] S. Dartois, R. Gurau and V. Rivasseau, Double Scaling in Tensor Models with a Quartic

Interaction, JHEP 09 (2013) 088 [arXiv:1307.5281] [INSPIRE].

[48] V. Bonzom, R. Gurau, J.P. Ryan and A. Tanasa, The double scaling limit of random tensor

models, JHEP 09 (2014) 051 [arXiv:1404.7517] [INSPIRE].

[49] V. Rivasseau, The Tensor Theory Space, Fortsch. Phys. 62 (2014) 835 [arXiv:1407.0284]

[INSPIRE].

[50] D. Oriti, Disappearance and emergence of space and time in quantum gravity, Stud. Hist.

Philos. Mod. Phys. 46 (2014) 186 [arXiv:1302.2849] [INSPIRE].

[51] B.L. Hu, Can spacetime be a condensate?, Int. J. Theor. Phys. 44 (2005) 1785

[gr-qc/0503067] [INSPIRE].

[52] T.A. Koslowski, Dynamical Quantum Geometry (DQG Programme), arXiv:0709.3465

[INSPIRE].

[53] T. Koslowski and H. Sahlmann, Loop quantum gravity vacuum with nondegenerate geometry,

SIGMA 8 (2012) 026 [arXiv:1109.4688] [INSPIRE].

[54] B. Dittrich and M. Geiller, A new vacuum for Loop Quantum Gravity, arXiv:1401.6441

[INSPIRE].

[55] B. Dittrich, F.C. Eckert and M. Martin-Benito, Coarse graining methods for spin net and

spin foam models, New J. Phys. 14 (2012) 035008 [arXiv:1109.4927] [INSPIRE].

– 37 –

http://dx.doi.org/10.1007/s00023-011-0118-z
http://arxiv.org/abs/1102.5759
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5759
http://dx.doi.org/10.1209/0295-5075/95/50004
http://arxiv.org/abs/1101.4182
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4182
http://dx.doi.org/10.1016/j.nuclphysb.2011.07.022
http://arxiv.org/abs/1105.3122
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3122
http://arxiv.org/abs/1111.0519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0519
http://dx.doi.org/10.1103/PhysRevD.85.084037
http://arxiv.org/abs/1202.3637
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3637
http://dx.doi.org/10.1088/1751-8113/45/16/165401
http://arxiv.org/abs/1109.0694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0694
http://dx.doi.org/10.1007/s00023-013-0262-8
http://arxiv.org/abs/1301.1535
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1535
http://dx.doi.org/10.1007/s00023-014-0336-2
http://arxiv.org/abs/1310.3132
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3132
http://arxiv.org/abs/1408.5725
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5725
http://dx.doi.org/10.1103/PhysRevD.84.124051
http://dx.doi.org/10.1103/PhysRevD.84.124051
http://arxiv.org/abs/1110.2460
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.2460
http://dx.doi.org/10.1088/1367-2630/16/6/063048
http://arxiv.org/abs/1304.6934
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6934
http://dx.doi.org/10.1007/JHEP09(2013)088
http://arxiv.org/abs/1307.5281
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5281
http://dx.doi.org/10.1007/JHEP09(2014)051
http://arxiv.org/abs/1404.7517
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7517
http://dx.doi.org/10.1002/prop.201400057
http://arxiv.org/abs/1407.0284
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0284
http://dx.doi.org/10.1016/j.shpsb.2013.10.006
http://dx.doi.org/10.1016/j.shpsb.2013.10.006
http://arxiv.org/abs/1302.2849
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2849
http://dx.doi.org/10.1007/s10773-005-8895-0
http://arxiv.org/abs/gr-qc/0503067
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0503067
http://arxiv.org/abs/0709.3465
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.3465
http://dx.doi.org/10.3842/SIGMA.2012.026
http://arxiv.org/abs/1109.4688
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4688
http://arxiv.org/abs/1401.6441
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.6441
http://dx.doi.org/10.1088/1367-2630/14/3/035008
http://arxiv.org/abs/1109.4927
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4927


J
H
E
P
0
4
(
2
0
1
5
)
0
9
5

[56] B. Bahr, B. Dittrich, F. Hellmann and W. Kaminski, Holonomy Spin Foam Models:

Definition and Coarse Graining, Phys. Rev. D 87 (2013) 044048 [arXiv:1208.3388]

[INSPIRE].

[57] B. Dittrich, M. Mart́ın-Benito and E. Schnetter, Coarse graining of spin net models:

dynamics of intertwiners, New J. Phys. 15 (2013) 103004 [arXiv:1306.2987] [INSPIRE].

[58] J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys.

Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

[59] D. Benedetti and J. Henson, Spacetime condensation in (2+1)-dimensional CDT from a
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