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1 Introduction

The issue of studying compactifications of string theory producing satisfactory phenomenol-

ogy has always been of utmost importance from several different perspectives. In particular,

dimensional reductions of type IIA string theory and the possibility of generating a pertur-

bative moduli potential induced by gauge fluxes and geometry has been widely explored in

the literature over the last decade.

More specifically, type II reductions on twisted tori with gauge fluxes have received a

lot of attention over the years owing to the possibility of analysing them in terms of their

underlying lower-dimensional supergravity descriptions. In this context, a central role is

played by those string backgrounds that can be described by a class of minimal supergravity

theories a.k.a. STU-models in four dimensions due to their remarkable simplicity.

However, the search for (meta)stable de Sitter (dS) extrema within the above class

of STU-models has turned out to be unsuccessful [1–4]. A possible further development

of this research line includes the possibility of taking some strongly-coupled effects into

account. Therefore, a very natural framework is that of M-theory compactifications. The

corresponding flux-induced superpotentials present a complete set of quadratic couplings

induced by the curvature [5]. Still, in such a context, reductions on twisted tori are known

not to allow for any dS solutions either [6].

Within those STU-models describing M-theory on twisted tori, all the couplings higher

than quadratic are still judged as non-geometric [7], i.e. they do not admit any eleven-

dimensional origin. Nevertheless, by moving to topologies other than toroidal, it is actually

possible to find examples of flux superpotentials with homogenous degree higher than two.

A particularly enlightening case is that of reduction on S7 yielding maximal SO(8) gauged

supergravity in four dimensions admitting a truncation to an STU-model featuring quartic
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superpotential couplings. Analytic continuations thereof describe non-compact gaugings

exhibiting unstable dS extrema where, however, the internal space is non-compact [8].

The goal of our work is to investigate which STU-models containing non-geometric

fluxes can be understood as M-theory reductions on internal spaces with non-trivial topolo-

gies. It is worth mentioning that, by construction, all our models will admit a locally

geometric description in the sense that they rely on an eleven-dimensional formulation

correctly satisfying the section condition [9] in the language of U-duality covariant for-

mulations of eleven-dimensional supergravity such as Exceptional Generalised Geometry

(EGG) [10, 11] and Exceptional Field Theory (EFT) [12–14]. This is in the spirit of ref. [15]

and does not lead to non-geometric duality orbits in the sense of ref. [16]. However, such a

formulation will in general only be equivalent to the traditional one up to total derivative

terms [17] that might play an important role upon reductions on non-toroidal topologies.

Even though our present work aims at shedding further light on the meaning of non-

geometric fluxes, one cannot conclude anything about those non-geometric STU-models

that were found to allow for stable dS critical points [18–20]. Whether it is possible to find

novel examples of stable dS vacua satisfying the section condition still remains to be seen.

Even so we expect that there will be compactness issues due to the no-go result in ref. [21].

The paper is organised as follows. We first present a group-theoretical truncation

of maximal supergravity in four dimensions leading to isotropic STU-models with three

complex scalars. We then employ some group theory arguments applied to the embedding

tensor formalism in order to derive the flux-induced superpotentials describing M-theory

compactifications on a twisted T 7, S7 and S4 × T 3. The result of this procedure will be

a quadratic, quartic and cubic superpotential, respectively. We then discuss our results as

well as some possible implications and future research directions. Finally, we collect some

technical details concerning group theory in appendix A.

2 M-theory on different geometries and topologies

The low-energy M-theory action in its democratic formulation reads

S =
1

2κ2
11

∫
d11x

√
−g(11)

(
R(11) − 1

2
|G(4)|2 −

1

2
|G(7)|2

)
− 1

6

∫
C(3) ∧G(4) ∧G(4) , (2.1)

where |G(4)|2 ≡ 1
4! G(4)M1···M4

G(4)
M1···M4 and |G(7)|2 ≡ 1

7! G(7)M1···M7
G(7)

M1···M7 with

M = 0, . . . , 10. We choose the following reduction Ansatz

ds2
(11) = τ−2 ds2

(4) + ρ ds2
(7) , (2.2)

where ρ represents the volume of the internal space X7 and τ is suitably determined,

τ = ρ7/4 , (2.3)

such that the Ansatz in (2.2) yield a 4D Lagrangian in the Einstein frame.

In the second part of this section we will be considering different choices for X7 within

the class of Sd×T 7−d leading to STU-models withinN = 1 supergravity in 4D. We will start
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out revisiting the case of a twisted T 7, and we will derive the flux-induced superpotential for

this class of compactifications through group-theoretical considerations. This will help us

construct our working conventions, which will be used in the analogous derivations carried

out for different choices of X7 other than twisted tori. Before we do this, we first need to

introduce a particular group-theoretical truncation of maximal supergravity in 4D leading

to the isotropic STU-models that we are interested in.

2.1 An SO(3)× Z2 truncation of N = 8 supergravity

Maximal supergravity in 4D [22] enjoys E7(7) global symmetry and all its fields and de-

formations (i.e. gaugings) transform into irrep’s of such a global symmetry group. Vector

fields transform in the 56 though only half of them are physically independent due to elec-

tromagnetic duality, while scalar fields transform in the 133, though only 70 of them are

physically propagating due to the presence of a local SU(8) symmetry. A group-theoretical

truncation consists in branching all fields and deformations of the theory into irrep’s of a

suitable subgroup G0 ⊂ E7(7) and retaining only the G0-singlets. Such a truncation is guar-

anteed to be mathematically consistent due the E7(7) covariance of the eom’s of maximal

supergravity.

A first discrete Z2 truncation reads

E7(7) ⊃ SL(2)S × SO(6, 6) ,

56
Z2→ (2,12)(+) ⊕ (1,32)(−) ,

where only the Z2-even irrep’s are retained in the truncation1. This procedure yields

(gauged) N = 4 supergravity in D = 4 [23].

In the second step, we perform a truncation to the SO(3)-invariant sector in the fol-

lowing way

SL(2)S × SO(6, 6) ⊃ SL(2)S × SO(2, 2)× SO(3) ∼
∏

Φ=S,T,U

SL(2)Φ × SO(3) . (2.4)

This step breaks half-maximal to minimal N = 1 supergravity due to the decomposition

4 → 1 ⊕ 3 of the fundamental representation of the SU(4) R-symmetry group in N = 4

supergravity under the SO(3) subgroup

SU(4) ⊃ SU(3) ⊃ SO(3) . (2.5)

The resulting theory does not contain vectors since there are no SO(3)-singlets in the

decomposition 12→ (4,3) of the fundamental representation of SO(6, 6) under SO(2, 2)×
SO(3). The physical scalar fields span the coset space

Mscalar =
∏

Φ=S,T,U

(
SL(2)

SO(2)

)
Φ

, (2.6)

1From a more physical perspective, such a Z2 can be understood as an orientifold involution for those

supergravities coming from reductions of type II theories.
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involving three SL(2)/SO(2) factors each of which can be parameterised by the complex

scalars Φ = (S, T, U). Such scalars can be obtained by decomposing the adjoint represen-

tation 133 of E7(7) according to the chain in (2.4) to find nine real SO(3)-singlets, out of

which only six correspond to physical dof’s.

The Kähler potential of the theory reads

K = − log
(
−i (S − S̄)

)
− 3 log

(
−i (T − T̄ )

)
− 3 log

(
−i (U − Ū)

)
. (2.7)

In addition, the embedding tensor of the theory contains 40 independent components

(coming this time from the decomposition of the 912 of E7(7) according to the chain

in (2.4)) which can be viewed as the superpotential couplings2 representing a complete

duality-inviariant set of generalised fluxes [7]. This yields the following duality-covariant

flux-induced superpotential

W = (PF − PH S) + 3T (PQ − PP S) + 3T 2 (PQ′ − PP ′ S) + T 3 (PF ′ − PH′ S) , (2.8)

involving the three complex moduli S, T and U surviving the SO(3)-truncation introduced

ealier in this section.

PF = a0 − 3 a1 U + 3 a2 U
2 − a3 U

3 , PH = b0 − 3 b1 U + 3 b2 U
2 − b3 U3 ,

PQ = c0 + C1 U − C2 U
2 − c3 U

3 , PP = d0 +D1 U −D2 U
2 − d3 U

3 ,
(2.9)

as well as those induced by their primed counterparts (F ′, H ′) and (Q′, P ′) fluxes [26],

PF ′ = a′3 + 3 a′2 U + 3 a′1 U
2 + a′0 U

3 , PH′ = b′3 + 3 b′2 U + 3 b′1 U
2 + b′0 U

3 ,

PQ′ = −c′3 + C ′2 U + C ′1 U
2 − c′0 U3 , PP ′ = −d′3 +D′2 U +D′1 U

2 − d′0 U3 .
(2.10)

For the sake of simplicity, we have introduced the flux combinations Ci ≡ 2 ci − c̃i , Di ≡
2 di − d̃i , C ′i ≡ 2 c′i − c̃′i and D′i ≡ 2 d′i − d̃′i entering the superpotential (2.8), and hence

also the scalar potential.

In order to relate our 4D deformed supergravity models to M-theory reductions on

different geometries and topologies, one needs to fix some conventions for assigning a Z2

parity to the seven physical coordinates on X7. We adopt a set of conventions that is

inherited from the link with type IIA compactifications with O6-planes [27], where such a

parity transformation can be viewed as orientifold involution.

xM −→ xµ︸︷︷︸
4D

⊕ xa︸︷︷︸
(+)

⊕ xi ⊕ x7︸ ︷︷ ︸
(−)

,
(2.11)

where xm ≡
(
xa, xi, x7

)
realise the compact geometry of X7. Retaining only even fields

and fluxes w.r.t. the action of the above Z2 will automatically restrict the supergravity

theory obtained through an M-theory reduction to the framework of N = 1 STU-models.

2The connection between the N = 1 and N = 4 theory was extensively investigated in refs [24, 25].

However, the explicit agreement between the scalar potentials up to quadratic constraints was first shown

in ref. [4].
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The metric (2.2) splits accordingly into

ds2
11 = ρ−7/2 ds2

4 + ρ
(
σ−1κ−1Mab η

a ⊗ ηb + σκ−1Mij η
i ⊗ ηj + κ6

(
η7
)2)

, (2.12)

where {ηm} ≡
{
ηa, ηi, η7

}
represents a basis of one-forms carrying information about the

dependence of the metric on the internal coordinates. The R+ scalars σ and κ parametrise

the relative size between the a and i coordinates, which acquire opposite involution-parity

when adopting the type IIA picture [28] and the relative size between the type IIA di-

rections and the M-theory circle, respectively. Moreover, Mab and Mij contain in general

SL(3)a × SL(3)i scalar excitations. However, such degrees of freedom are frozen due to the

requirement of SO(3)-invariance, i.e. Mab = δab and Mij = δij .

The relationship between the STU scalars and the above geometric moduli reads

Im(S) = ρ3/2
(
κ
σ

)3/2
, Im(T ) = ρ3/2 σ1/2

κ3/2
, Im(U) = ρ3/2 κ2 . (2.13)

2.2 Compactifications on a twisted T 7

The seven compact coordinates of the torus transform in the fundamental representation

of the SL(7) subgroup of E7(7), which can be viewed as the group of diffeomorphisms on

T 7 with twist [29]. The relevant chain of decompositions is

E7(7) ⊃ SL(8) ⊃ R+
M × SL(7) ⊃ R+

M × R+
B × SL(6) ,

and finally down to

R+
M × R+

B × R+
A × SL(3)a × SL(3)i ,

where one should, furthermore, only restrict to isotropic objects. Following the philosophy

of ref. [27], one can match the näıve scaling behaviour coming from dimensional reductions

of the various terms in the action (2.1) with the correct STU-charges by using the relations

in (2.13). This results in the following mapping
qS = 1

28qM −
1
28qB −

1
4qA ,

qT = 3
28qM −

3
28qB + 1

4qA ,

qU = 3
28qM + 1

7qB ,

(2.14)

between the group-theoretical R+ charges obtained from the above decomposition and

the STU-charges realised in N = 1 supergravity. Such a mapping allows one to derive a

dictionary between fluxes and superpotential couplings.

From the decomposition of the fundamental representation of E7(7) (see appendix A

for the details)

E7(7) ⊃ R+
M × R+

B × R+
A × SL(3)a × SL(3)i ,

56 → (1,1)(+6;+6;0) ⊕ (3′,1)(+6;−1;−1) ⊕ (1,3′)(+6;−1;+1) ⊕ . . . ,
(2.15)

one can exactly and unambiguously identify the physical derivative operators along the

seven M-theory internal directions as

∂a ∈ (3′,1)(+ 1
2

;+ 1
2

;+ 1
2

) , ∂i ∈ (1,3′)(0;+1;+ 1
2

) , ∂7 ∈ (1,1)(0;0;+ 3
2

) (2.16)

w.r.t. R+
S × R+

T × R+
U × SL(3)a × SL(3)i.
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STU couplings M-theory fluxes Flux labels R+
S × R+

T × R+
U × SL(3)a × SL(3)i irrep’s

1 Gaibjck7 a0 (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

S Gijk7 b0 (1,1)(− 1
2

;+ 3
2

;+ 3
2

)

T Gibc7 c0 (3,3′)(+ 1
2

;+ 1
2

;+ 3
2

)

U Gaibj a1 (3,3)(+ 1
2

;+ 3
2

;+ 1
2

)

S T ω7i
a d0 (3,3′)(− 1

2
;+ 1

2
;+ 3

2
)

T 2 ωa7
i c′3 (3′,3)(+ 1

2
;− 1

2
;+ 3

2
)

T U ωaj
k, ωbc

a c1, c̃1 ((3′,8)⊕ (6,1))(+ 1
2

;+ 1
2

;+ 1
2

)

S U ωjk
a b1 (3,3)(− 1

2
;+ 3

2
;+ 1

2
)

U2 ωai
7 a2 (3′,3′)(+ 1

2
;+ 3

2
;− 1

2
)

Table 1. Summary of M-theory fluxes and superpotential couplings on a twisted T 7. Isotropy

(i.e. SO(3)-invariance) only allows for flux components that can be constructed by using ε(3)’s and

δ(3)’s. These symmetries also induce a natural splitting ηA = (ηa , ηi , η7) where a = 1, 3, 5 and

i = 2, 4, 6 .

As far as the fluxes are concerned, one has to decompose the embedding tensor of

maximal supergravity
E7(7) ⊃ SL(8) ,

912 → 36⊕ 36′ ⊕ 420⊕ 420′ ,
(2.17)

to find

SL(8) ⊃ R+
M × R+

B × R+
A × SL(3)a × SL(3)i ,

36′ → (1,1)(+14;0;0) ⊕ . . . ,

420 → (1,1)(+10;+3;+3) ⊕ (3,3)(+10;−4;0) ⊕ (3,3′)(+10;+3;−1) ⊕ . . . ,

420′ → (3,3)(+6;−1;+3) ⊕ (6,1)(+6;−1;−1) ⊕ (3′,8)(+6;−1;−1)⊕
(3′,3′)(+6;−8;0) ⊕ (3′,3)(+6;+6;−2) ⊕ (3,3′)(+6;+6;+2) ⊕ . . . ,

(2.18)

where we have used the decomposition in (A.1). By using the dictionary (2.14), we were

able to reproduce all the correct STU scalings of the fluxes on a twisted T 7. The results

of this procedure are collected in table 1 and agree with those already found earlier in

refs [5, 6]. As a consequence, the flux-induced superpotential in this case reads

W(T 7) = a0 − b0S + 3c0T − 3a1U + 3a2U
2 + 3(2c1− c̃1)TU + 3b1SU − 3c′3T

2 − 3d0ST .

(2.19)

One should note that the underlying gauging for this class of compactifications is expected

to be non-semisimple, its semisimple part being the group realised by the components of
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ω-flux as structure constants. The non-semisimple extension is given by the presence of

4- and 7-form gauge fluxes. This is in line with what already observed in refs [25, 27, 30]

in the context of massive type IIA compactifications on a twisted T 6 in the absence of

local sources, where the corresponding effective 4D description turned out to be N = 8

supergravity with gauge group SO(4) n Nil22.

2.3 Compactifications on S7

Let us now consider the compactification of M-theory on S7 [31]. In refs [32–37] it was

already noted that such a compactification is described by an SO(8) gauging in 4D maximal

supergravity. The components of the embedding tensor are parametrised by a symmetric

8× 8 matrix ΘAB transforming3 in the 36′ of SL(8).

Gaugings in the 36 ⊕ 36′ are in general identified by Θ̃AB ⊕ ΘAB satisfying the

following Quadratic Constraints [38]

ΘAC Θ̃CB − 1

8

(
ΘCD Θ̃CD

)
δBA = 0 . (2.20)

Such theories have a subgroup of SL(8) as gauge group and admit a Z2-truncation retaining

only 35 scalars spanning the SL(8)/SO(8) coset. The corresponding scalar potential can

be written in terms of a complex pseudo-superpotential [39]

V = −3

8
|W |2 +

1

4
|∂W |2 , (2.21)

where W ≡ 1
2

(
ΘABMAB − i Θ̃ABMAB

)
, MAB being the SL(8)/SO(8) coset represen-

tative and MAB its inverse.

In the relevant S7 example, the embedding tensor reads

ΘAB =


−c̃′1 13

−d̃2 13

−b′3
a0

 = 18 , Θ̃AB = 08 , (2.22)

which belongs to the semisimple branch of solutions to the constraints in (2.20). The

corresponding scalar potential in (2.21) simplifies to

V =
1

8
ΘABΘCD

(
2MACMBD − MABMCD

)
. (2.23)

We will now interpret this theory as an STU-model and rederive the corresponding

flux-induced superpotential by means of group theory arguments. In this case the relevant

decomposition is still the same as the one in the twisted T 7 case

SL(8) ⊃ R+
M × R+

B × R+
A × SL(3)a × SL(3)i,

36′ → (1,1)(+14;0;0) ⊕ (1,1)(−2;+12;0) ⊕ (6′,1)(−2;−2;−2) ⊕ (1,6)(−2;−2;+2) ⊕ . . . .
(2.24)
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STU couplings M-theory fluxes Flux labels R+
S × R+

T × R+
U × SL(3)a × SL(3)i irrep’s

1 Gaibjck7 a0 (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

S T 3 Θ77 b′3 (1,1)(− 1
2

;− 3
2

;+ 3
2

)

T 2 U2 Θab c̃′1 (6′,1)(+ 1
2

;− 1
2

;− 1
2

)

S T U2 Θij d̃2 (1,6′)(− 1
2

;+ 1
2

;− 1
2

)

T U Θi7 c1 (3′,1)(+ 1
2

;+ 1
2

;+ 1
2

) (non-isotropic)

Table 2. Summary of M-theory fluxes and superpotential couplings on S7. Isotropy (i.e. SO(3)-

invariance) only allows for flux components that can be constructed by using ε(3)’s and δ(3)’s. In

the frame we have chosen one of the objects in the 36′ is G(7) flux, whereas the quartic couplings

describe the S7 geometry.

This gives the STU-couplings collected in table 2 upon using the dictionary (2.14). The

associated flux-induced superpotential is given by

W(S7) = a0 − b′3ST
3 − 3c̃′1T

2U2 − 3d̃2STU
2 , (2.25)

which matches what was found in refs [30, 40] in the context of STU-models. The N = 1

scalar potential computed from (2.25) coincides with (2.23) upon using the correct identi-

fication of the STU scalars inside the coset representative MAB.

2.4 Compactifications on S4 × T 3

We have seen how for S7 the superpotential contains only the constant part and some

quartic parts. We will now analyse the flux-induced superpotential for S4×T 3 to find that

cubic terms will appear, thus mimicking the effect of the presence of Q-flux.

Given the natural factorisation that X7 has in this case, the relevant branching one

should analyse goes through

E7(7) ⊃ SL(8) ⊃ R+
Q × SL(3)a × SL(5) ⊃ R+

Q × R+
1 × SL(3)a × SL(4) ,

and finally down to

R+
Q × R+

1 × R+
2 × SL(3)a × SL(3)i ,

where, as usual, only isotropic objects should be retained within our STU-model.

By following the new branching of the fundamental representation of E7(7)

E7(7) ⊃ R+
Q × R+

1 × R+
2 × SL(3)a × SL(3)i ,

56 → (1,1)(−6;+3;+3) ⊕ (3′,1)(−10;0;0) ⊕ (1,3′)(−6;+3;−1) ⊕ . . . ,
(2.26)

3We adopt the following conventions XA ≡
(
Xa, Xi, X7, X8

)
for the fundamental representation of

SL(8).
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and demanding that the physical derivative operators identified in (2.16) be the same,

one finds 
qS = − 1

20qQ −
1
10q1 ,

qT = − 1
20qQ + 3

20q1 − 1
4q2 ,

qU = − 1
20qQ + 3

20q1 + 1
4q2 ,

(2.27)

as a new dictionary between STU-scaling weights and group-theoretical R+
Q × R+

1 × R+
2

charges. Note that this procedure of identifying the seven physical derivative operators

corresponds to choosing the relevant solution to the section condition in the EFT sense. In

this case, several a priori different choices are possible but they all yield a superpotential

that is unique up to modular transformations.

As far as the fluxes are concerned, in total analogy with the S7 case, now we expect

to be able to describe the S4 geometry with G(4) flux by turning on embedding tensor

deformations transforming in the 15′ of SL(5), i.e. a symmetric 5 × 5 matrix ΘIJ . This

would in itself lead to a maximal SO(5)-gauged supergravity in 7D [41].

However, these deformations can be supplemented with G(7) flux wrapping the whole

X7 and a twisting on the T 3 producing some metric flux ω. Due to the different Z2-parity

assigned to the M-theory coordinates through (2.11), there are three inequivalent models

that one can study, each of them characterised by different flux components threading

internal space:

Model 1 : Model 2 : Model 3 :

a
+

b
+

c
+︸ ︷︷ ︸

T 3

i
−

j
−

k
−

7
−︸ ︷︷ ︸

S4

a
+

j
−

k
−︸ ︷︷ ︸

T 3

b
+

c
+

i
−

7
−︸ ︷︷ ︸

S4

a
+

i
−

7
−︸ ︷︷ ︸

T 3

b
+

c
+

j
−

k
−︸ ︷︷ ︸

S4

Out of these Model 1 is the only choice that is compatible with SO(3)-invariance thus

yielding an isotropic STU-model. This is the model we will focus on, and for which we will

provide details. Dealing with Model 2 and Model 3 requires further breaking SL(3)a ×
SL(3)i symmetry down to SL(2)a × SL(2)i × R+

a × R+
i , this giving rise to non-isotropic

STU-models. We will only sketchily show that such non-isotropic superpotentials will still

be cubic.

• Model 1: in this case our decomposition contains the following relevant pieces

SL(8) ⊃ R+
Q × R+

1 × R+
2 × SL(3)a × SL(3)i ,

36 → (6,1)(−10;0;0) ⊕ . . . ,

36′ → (1,1)(−6;+8;0) ⊕ (1,6′)(−6;−2;−2) ⊕ (1,1)(−6;−2;+6) ⊕ . . . ,

420 → (1,1)(−18;+4;0) ⊕ . . . ,

(2.28)

Using the relations in (2.27), we derived the fluxes activated by the S4×T 3 compact-

ifications realised according to the first of the three different models presented above.

The results of this procedure are collected and shown in table 3. The associated

flux-induced superpotential is given by

W(S4×T 3) = a0 − b0S − 3c̃1TU + a′3T
3 − 3c̃2TU

2 , (2.29)
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STU couplings M-theory fluxes Flux labels R+
S × R+

T × R+
U × SL(3)a × SL(3)i irrep’s

1 Gaibjck7 a0 (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

S Gijk7 b0 (1,1)(− 1
2

;+ 3
2

;+ 3
2

)

T U ωbc
a c̃1 (6,1)(+ 1

2
;+ 1

2
;+ 1

2
)

T 3 Θ77 a′3 (1,1)(+ 1
2

;− 3
2

;+ 3
2

)

T U2 Θij c̃2 (1,6′)(+ 1
2

;+ 1
2

;− 1
2

)

T 2 U Θi7 c̃′2 (1,3′)(+ 1
2

;− 1
2

;+ 1
2

) (non-isotropic)

Table 3. Summary of M-theory fluxes and superpotential couplings on a twisted S4×T 3 according

to Model 1. Isotropy (i.e. SO(3)-invariance) only allows for flux components that can be constructed

by using ε(3)’s and δ(3)’s. Our chosen frame includes G(4) flux as one of the objects sitting in the

36′, whereas the other ones there parametrise the S4 geometry.

which contains some cubic contributions that can be regarded as M-theory Q-flux

QA
[BCD]. The explicit relation between Q-flux and the components of the Θ tensor

reads [42]

ΘAB =
1

3!
Q(A

CDE εB)CDE ,

where A, B, . . . = i, 7 represents a fundamental index on S4.

One should note that the geometry of the twisted T 3 sits in the 36. The explicit way

the corresponding ω-flux is embedded in Θ̃ is given by

Θ̃ab =
1

2!
ωcd

(a εb)cd , (2.30)

where now the indices a, b, c, . . . label the legs of the T 3.

Thus, in contrast with the S7 case, such a background lies in the non-semisimple

branch of solutions to the constraints (2.20)

ΘAB =


03

c̃2 13

a′3

b0

 =

(
03

15

)
, Θ̃AB =

(
c̃1 13

05

)
, (2.31)

the underlying gauge group being CSO(5, 0, 3), dressed up with a further non-

semisimple extension due to the presence of 7-form gauge flux, in analogy with the

twisted T 7 case.

• Model 2 & 3: the decomposition required in these cases is

SL(8) ⊃ (R+)
5 × SL(2)a × SL(2)i , (2.32)
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STU couplings M-theory fluxes Flux labels R+
S × R+

T × R+
U × SL(2)a × SL(2)i irrep’s

1 Gaibjck7 a0 (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

T Gibc7 c0 (1,1)(+ 1
2

;+ 1
2

;+ 3
2

)

T U ωaj
k c1 (1,3)(+ 1

2
;+ 1

2
;+ 1

2
)

S U ωjk
a b1 (1,1)(− 1

2
;+ 3

2
;+ 1

2
)

S U2 Θii b2 (1,1)(− 1
2

;+ 3
2

;− 1
2

)

S T 2 Θ77 d′3 (1,1)(− 1
2

;− 1
2

;+ 3
2

)

T U2 Θbc c̃′1 (3,1)(+ 1
2

;+ 1
2

;− 1
2

)

S T U Θi7 d̃1 (1,1)(− 1
2

;+ 1
2

;+ 1
2

)

Table 4. Summary of M-theory fluxes and superpotential couplings on a twisted S4×T 3 according

to Model 2. Please note that there appear several cubic couplings producing an intrinsically non-

isotropic model.

STU couplings M-theory fluxes Flux labels R+
S × R+

T × R+
U × SL(2)a × SL(2)i irrep’s

1 Gaibjck7 a0 (1,1)(+ 1
2

;+ 3
2

;+ 3
2

)

U Gbjck a1 (1,1)(+ 1
2

;+ 3
2

;+ 1
2

)

S T ω7i
a d0 (1,1)(− 1

2
;+ 1

2
;+ 3

2
)

T 2 ωa7
i c′3 (1,1)(+ 1

2
;− 1

2
;+ 3

2
)

U2 ωai
7 a2 (1,1)(+ 1

2
;+ 3

2
;− 1

2
)

T 2 U Θbc c̃′2 (3,1)(+ 1
2

;− 1
2

;+ 1
2

)

S T U Θjk d̃1 (1,3)(− 1
2

;+ 1
2

;+ 1
2

)

Table 5. Summary of M-theory fluxes and superpotential couplings on a twisted S4×T 3 according

to Model 3. Please note that there appeare several cubic couplings producing an intrinsically non-

isotropic model.

where three suitable and uniquely determined linear combinations of the five R+

charges introduced above represent the STU-charges. As already anticipated earlier,

the resulting superpotentials are non-isotropic and their explicit form is beyond the

present scope. Nevertheless, the qualitative analysis of the STU couplings induced

by fluxes in these models are respectively collected in tables 4 and 5.
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3 Discussion

In this paper we have considered compactifications of M-theory on manifolds with non-

trivial topologies. After reviewing the twisted T 7 and the S7 cases, we also analysed the

S4×T 3 case. By means of a group-theoretical approach, we have derived the flux-induced

superpotentials in all the different cases in question. While the twisted T 7 superpotential

contains terms that are at most quadratic in the complex scalars, the S7 and S4 × T 3,

contain some quartic and cubic terms, respectively.

The appearence of the aforementioned higher-degree superpotential couplings may be

näıvely judged as a sign of non-geometry if one insists on a toroidal interpretation of the

corresponding M-theory background. With these examples we show how non-geometric

backgrounds still satisfying the section constraint can have a globally geometric eleven-

dimensional origin from compactifications on topologies other than toroidal. In this per-

spective it is not surprising that we could find all kinds of cubic couplings except the U3,

which would correspond to turning on the Romans’ mass after reduction on a circle down

to type IIA. This is in line with the statement that the mass parameter cannot be written

as a derivative of any gauge field in a generalised geometry language [43].

Nevertheless, whether or not such models actually contain new physics needs to be

checked case by case. The origin of this open question is to be found in the local equiv-

alence between different reformulations of eleven-dimensional supergravity that relate in-

equivalent solutions to the section condition. At a global level, the different and locally

equivalent Lagrangians may differ by total derivative terms that might become important

upon dimensional reduction. Such a fact has been already investigated in ten dimensions

in the context of the so-called β-supergravity [44, 45].

In particular, as far as (meta)stable dS extrema are concerned, all the examples known

so far generically violate the section condition, thus being genuinely non-geometric. A pos-

sible future issue to be addressed is the existence of such (meta)stable dS vacua within

locally geometric backgrounds that can be made globally geometric by following our ap-

proach.

Another possible line of research left open by our analysis is the possible relevance of

exotic differentiable structures on spheres. The idea that our approach might capture some

information about those comes from observing that the expression of the scalar potential

associated with the S7 reduction contains volume scaling behaviours that are beyond the

ones predicted by its ordinary Riemannian structure. In ref. [35], it was already observed

that M-theory solutions on the S7 seem to require other parallelisable differentiable struc-

tures beyond the Riemannian one [46]. This might be seen as an evidence that maximal

supersymmetry and 11D supergravity are in fact sensitive to exotic differentiable structures

on S7. If this turns out to be the case, one could imagine using M-theory reductions, and

their underlying lower-dimensional gauged supergravity descriptions, to test the presence of

exotic differentiable structures in other cases of special mathematical interest like, e.g., S4.
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A Relevant branching rules

In this appendix we collect the whole set of branching rules used in the present paper. We

refer to [47] for the conventions adopted here.

E7(7) ⊃ SL(8) ,

56 → 28⊕ 28′ ,

912 → 36⊕ 36′ ⊕ 420⊕ 420′ .

(A.1)

SL(8) ⊃ R+
M × SL(7) ,

28 → 7(−6) ⊕ 21(+2) ,

36 → 1(−14) ⊕ 7(−6) ⊕ 28(+2) ,

420 → 21(+2) ⊕ 35(+10) ⊕ 140(−6) ⊕ 224(+2) ,

(A.2)

where the subscripts in the above decompisotions denote R+
M charges.

SL(7) ⊃ R+
B × SL(6) ,

7 → 1(−6) ⊕ 6(+1) ,

21 → 6(−5) ⊕ 15(+2) ,

28 → 1(−12) ⊕ 6(−5) ⊕ 21(+2) ,

35 → 15(−4) ⊕ 20(+3) ,

140 → 6(+1) ⊕ 15(+8) ⊕ 35(−6) ⊕ 84(+1) ,

224 → 15(+2) ⊕ 20(+9) ⊕ 84(−5) ⊕ 105(+2) ,

(A.3)
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where the subscripts in the above decompositions denote R+
B charges.

SL(6) ⊃ R+
A × SL(3)a × SL(3)i ,

6 → (3,1)(+1) ⊕ (1,3)(−1) ,

15 → (3′,1)(+2) ⊕ (1,3′)(−2) ⊕ (3,3)(0) ,

20 → (1,1)(+3) ⊕ (1,1)(−3) ⊕ (3,3′)(−1) ⊕ (3′,3)(+1) ,

21 → (3,3)(0) ⊕ (6,1)(+2) ⊕ (1,6)(−2) ,

35 → (1,1)(0) ⊕ (3,3′)(+2) ⊕ (3′,3)(−2) ⊕ (8,1)(0) ⊕ (1,8)(0) ,

84 → (3,1)(+1) ⊕ (1,3)(−1) ⊕ (3′,3′)(+3) ⊕ (3′,3′)(−3)⊕
(6′,1)(+1) ⊕ (1,6′)(−1) ⊕ (8,3)(−1) ⊕ (3,8)(+1) ,

105 → (3′,1)(+2) ⊕ (1,3′)(−2) ⊕ (3′,1)(−4) ⊕ (1,3′)(+4) ⊕ (3,3)(0)⊕
(3,6′)(0) ⊕ (6′,3)(0) ⊕ (3′,8)(+2) ⊕ (8,3′)(−2) ,

(A.4)

where the subscripts in the above decompositions denote R+
A charges.

SL(8) ⊃ R+
Q × SL(3)a × SL(5) ,

28 → (3′,1)(−10) ⊕ (3,5)(−2) ⊕ (1,10)(+6) ,

36 → (6,1)(−10) ⊕ (3,5)(−2) ⊕ (1,15)(+6) ,

420 → (3′,1)(−10) ⊕ (1,5′)(−18) ⊕ (3,5)(−2) ⊕ (1,10)(+6) ⊕ (6′,5)(−2)⊕
(3′,10′)(+14) ⊕ (8,10)(+6) ⊕ (3′,24)(−10) ⊕ (1,40)(+6) ⊕ (3,45)(−2) ,

(A.5)

where the subscripts in the above decompisotions denote R+
Q charges.

SL(5) ⊃ R+
1 × SL(4) ,

5 → 1(−4) ⊕ 4(+1) ,

10 → 4(−3) ⊕ 6(+2) ,

15 → 1(−8) ⊕ 4(−3) ⊕ 10(+2) ,

24 → 1(0) ⊕ 4(+5) ⊕ 4′(−5) ⊕ 15(0) ,

40 → 4′(+7) ⊕ 6(+2) ⊕ 10′(+2) ⊕ 20(−3) ,

45 → 4(+1) ⊕ 6(+6) ⊕ 15(−4) ⊕ 20(+1) ,

(A.6)
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where the subscripts in the above decompisotions denote R+
1 charges.

SL(4) ⊃ R+
2 × SL(3)i ,

4 → 1(−3) ⊕ 3(+1) ,

6 → 3(−2) ⊕ 3′(+2) ,

10 → 1(−6) ⊕ 3(−2) ⊕ 6(+2) ,

15 → 1(0) ⊕ 3(+4) ⊕ 3′(−4) ⊕ 8(0) ,

20 → 3(+1) ⊕ 3′(+5) ⊕ 6′(+1) ⊕ 8(−3) ,

(A.7)

where the subscripts in the above decompisotions denote R+
2 charges.
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