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1 Introduction

Now that a SM-like Higgs particle has been experimentally discovered [1–9] , the possibility

of an enlarged scalar sector becomes very plausible. In this analysis we are going to use

the anomalous magnetic moment of the muon as a probe for new physics and study new

contributions to this observable within the two-Higgs-doublet model (2HDM) framework.

The anomalous magnetic moment of the muon has been extensively analysed within the

Standard Model (SM) and its numerous extensions. Even if the SM prediction still suffers

from large theoretical uncertainties (mostly hadronic and electroweak) it is a nice place to

look for new physics. The latest result for the discrepancy between the SM prediction and

the experimental measured value is given by [10–32]

∆aexpµ ≡ aexpµ − aSMµ = 262(85) × 10−11 . (1.1)

Here we will study the two-loop Barr-Zee type [33] contributions to ∆aµ that have not been

analysed previously within the 2HDM. We show that some of these diagrams can bring

rather sizeable contributions for a quite large region of the parameter space and therefore

can reduce the value of the difference between theory and experiment given by (1.1). We

also show that other sets of these type of diagrams bring small contributions and can be

safely discarded. For the calculations we use the most generic Higgs potential and the

generic Yukawa structure of the aligned two-Higgs-doublet model (A2HDM) [34]. Thus,
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we also re-examine the classical Barr-Zee type diagrams [10, 11, 35–46] expressing their

contributions in terms of the three independent complex alignment parameters ςu,d,l. All the

results are given in analytical form. The phenomenological analysis is made assuming a CP-

conserving Lagrangian. However, all the generic formulae given in this work can be used

for future, and more complete, analyses without assuming CP-conservation. Additional

constraints coming from the flavour sector and global fits to the LHC data are also taken

into account [47–56].

In the first part of this paper, section 2, we present the relevant features of the A2HDM.

In section 3 we present the one-loop results in terms of the generic A2HDM parameters.

In section 4 we present the classical two-loop Barr-Zee results and the calculation of the

new sets of this type of diagrams that can potentially bring sizeable contributions to the

anomalous magnetic moment. Section 5 is dedicated to the phenomenological analysis for

the CP-conserving case and the presentation of the relevant contributions. Finally, we

conclude in section 6 with a brief summary of our results. One appendix is also given, with

technical details for the calculation of a particular set of Barr-Zee type diagrams.

2 The aligned Two-Higgs-Doublet Model

The 2HDM extends the SM with a second scalar doublet of hypercharge Y = 1
2 . It is

convenient to work in the so-called Higgs basis (Φ1,Φ2), where only one doublet acquires

a vacuum expectation value:

Φ1 =

[
G+

1√
2

(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2

(S2 + iS3)

]
, (2.1)

where G± and G0 denote the Goldstone fields. Thus, Φ1 plays the role of the SM scalar

doublet with v = (
√

2GF )−1/2 = 246 GeV. The physical scalar spectrum contains

five degrees of freedom: two charged fields H±(x) and three neutral scalars ϕ0
i (x) =

{h(x), H(x), A(x)}, which are related with the Si fields through an orthogonal transfor-

mation ϕ0
i (x) = RijSj(x). The form of the R matrix is fixed by the scalar potential,

which determines the neutral scalar mass matrix and the corresponding mass eigenstates.

A detailed discussion is given in [47–49]. In general, the CP-odd component S3 mixes

with the CP-even fields S1,2 and the resulting mass eigenstates do not have a definite CP

quantum number. If the scalar potential is CP symmetric this admixture disappears; in

this particular case, A(x) = S3(x) and(
h

H

)
=

[
cos α̃ sin α̃

− sin α̃ cos α̃

] (
S1
S2

)
. (2.2)

Performing a phase redefinition of the neutral CP-even fields, we can fix the sign of sin α̃.

In this work we adopt the conventions Mh ≤MH and 0 ≤ α̃ ≤ π, so that sin α̃ is positive.

The most generic Yukawa Lagrangian with the SM fermionic content gives rise to

FCNCs because the fermionic couplings of the two scalar doublets cannot be simultaneously

diagonalized in flavour space. The non-diagonal neutral couplings can be eliminated by
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Figure 1. One-loop contribution to ∆aµ in two-Higgs-doublet models.

requiring the alignment in flavour space of the Yukawa matrices [34]; i.e., the two Yukawa

matrices coupling to a given type of right-handed fermions are assumed to be proportional

to each other and can, therefore, be diagonalized simultaneously. The three proportionality

parameters ςf (f = u, d, l) are arbitrary complex numbers and introduce new sources of

CP violation.

In terms of the fermion mass-eigenstate fields, the Yukawa interactions of the A2HDM

read [34]

LY = −
√

2

v
H+

{
ū
[
ςd VMdPR − ςuM †uV PL

]
d + ςl ν̄MlPRl

}
− 1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i

[
f̄ MfPRf

]
+ h.c. , (2.3)

where PR,L ≡ 1±γ5
2 are the right-handed and left-handed chirality projectors, Mf the

diagonal fermion mass matrices and the couplings of the neutral scalar fields are given by:

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3) ςd,l , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3) ς∗u . (2.4)

The usual models with natural flavour conservation, based on discrete Z2 symmetries, are

recovered for particular (real) values of the couplings ςf [34]. The coupling of a single

neutral scalar with a pair of gauge bosons takes the form (V = W,Z)

gϕ0
i V V

= Ri1 gSMhV V , (2.5)

which implies g2hV V + g2HV V + g2AV V = (gSMhV V )2. Thus, the strength of the SM Higgs in-

teraction is shared by the three 2HDM neutral bosons. In the CP-conserving limit, the

CP-odd field decouples while the strength of the h and H interactions is governed by

the corresponding cos α̃ and sin α̃ factors. Again, for further details about the interac-

tion Lagrangian as well as the Higgs potential, needed for the calculations in this work,

see [47–49].

3 One-loop contribution

At the one-loop level, the contribution of the 2HDM extension of the SM to the anomalous

magnetic moment of the muon is given by the two well-known diagrams shown in figure 1.
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The explicit expressions for these contributions, in terms of the most generic Higgs potential

and the A2HDM Yukawa structure, are given by

∆a(a)µ =
m2
µ

8π2v2

∑
i

m2
µ

M2
ϕ0
i

[
Re
(
y
ϕ0
i

l

)2 ∫ 1

0
dx

x2(2− x)

(m2
µ/M

2
ϕ0
i
)x2 − x+ 1

+ Im
(
y
ϕ0
i

l

)2 ∫ 1

0
dx

−x3
(m2

µ/M
2
ϕ0
i
)x2 − x+ 1

]
, (3.1)

for the neutral Higgses and

∆a(b)µ =
m2
µ

8π2v2

(
m2
µ

M2
H±

)
|ςl|2

∫ 1

0
dx

x2(1− x)

(m2
µ/M

2
H±)x(1− x)− x , (3.2)

for the charged Higgs. These contributions have been previously analysed

in [10, 35, 40, 57–60].

It’s a known fact that the two-loop Bar-Zee type diagrams dominate over the one-loop

contributions. The two loop contributions have a loop suppression factor of (α/π) but also

have an enhancement factor of (M2/m2
µ), where M stands for the mass of heavy particles

running in one of the loops: MH± , mt, Mϕ0
i
, etc. This last factor usually dominates

over the first one. Furthermore, in the usual Z2 models, there is an extra enhancement

(suppression) factor from tan β (cotβ) for some diagrams. In the aligned model there

is a lot more freedom to independently enhance or suppress any contribution through

the alignment parameters ςf . We shall see next, that for somewhat large values of these

parameters, there are new Barr-Zee contributions that have never been taken into account,

and can bring quite sizeable contributions to (g − 2)µ.

4 Two-loop contribution

The Barr-Zee type contributions with an internal photon, i.e., figure 2, diagrams (1) and

(2), have been extensively analysed within the 2HDM and also in minimal super-symmetry

(MSSM) framework [10, 11, 35–46]. Diagram (3) from figure 2 is also of the Barr-Zee type

and could, in principle bring important contributions. Given that the coupling to a pair of

gauge bosons of the recently discovered scalar particle is close to the SM prediction [47],

one expects the contributions from the remaining scalars to be somewhat suppressed (by

a factor Ri1). However, we shall see that this statement is not correct, and that this

contribution is quite sizeable.

Similar contributions to the ones shown in figure 2, but with the internal photon

replaced by a Z boson have been also analysed in the literature [37]. These contributions

have a relative suppression factor of order 10−2. This factor is in part due to the vectorial

couplings of Z to leptons, which are the only ones that survive for both scalar and pseudo-

scalar bosons [37], and in part from the Z propagator which introduces a new mass scale

MZ . Therefore we will ignore these contributions in our present analysis.

This is, pretty much, the summary of all the mechanisms that are usually considered

in the literature. However, there is no reason a priori to discard other similar Barr-Zee

contributions with a charged Higgs H± substituting the neutral scalars ϕ0
i , and a W boson
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Figure 2. Two-loop Barr-Zee type (with an internal photon) contribution to ∆aµ in two-Higgs-

doublet models.
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Figure 3. Two-loop Barr-Zee type (with a charged Higgs and an internal W boson) contribution

to ∆aµ in two-Higgs-doublet models.

substituting the internal photon.1 These diagrams are illustrated in figure 3. On one hand,

one expects a relative suppression factor with respect to the contributions of the diagrams

from figure 2 due to the propagator of the W boson (note that in this case we don’t have

the additional suppression factor due to the gauge boson couplings to leptons, as in the Z

case). On the other hand, one must also expect to be able to re-enhance these contributions

with the ςf (or tan β) parameters, and therefore, obtain sizeable contributions at least in

some regions of the parameter space.

1Similar contributions, however, with sfermionic loops within the MSSM framework have been previously

analysed in [61].
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Figure 4. Generic two-loop Barr-Zee type contributions, with two internal charged Higges (left)

and two internal W bosons (right), to ∆aµ in two-Higgs-doublet models.

In this analysis we shall calculate the contribution from these new diagrams and demon-

strate, that in fact, all of these new sets can bring rather sizeable contributions to the

anomalous magnetic moment of the muon in a quite large region of the parameter space.

For completeness we shall also present the classical two-loop results in terms of the most

generic Higgs potential and in terms of the generic Yukawa texture of the A2HDM.

Before moving on to the next section and presenting the analysis, there are a couple

of related cases that are worth discussing. They are shown in figure 4, where the grey

circles stand for the same loop contributions as in figure 3 (excluding the fermionic loops

for diagram (B) which is just a pure SM contribution). The contribution from the first

case (A), will have a relative suppression factor m2
µ/M

2
W with respect to the contributions

of diagrams from figure 3 so we can safely discard it. The contribution coming from the

second set, figure 4 (B), does not have this suppression factor, thus we can expect, at

least in principle, a rather sizeable effect. Details of the the full calculation of this last

set of diagrams, together with other technical details are given in appendix A. Roughly

one obtains a contribution of O(10−11) which is rather small and we shall not include it in

this analysis.

Next we move on to the analysis of the set of diagrams shown in figure 3 which is the

main goal of our paper.

4.1 Gauge invariant effective vertices

The calculation of the two-loop Barr-Zee type diagrams can be separated in two parts.

We will first calculate the ϕ0
i − γγ and H+ − γW+ one-loop effective vertices and obtain

analytical and rather simple expressions. With these expressions, the calculation of the

second loop becomes quite trivial. The effective vertices can be written in a generic gauge-

invariant transverse form:

iΓµν = i (gµνk · q − kµqν)S + i εµναβ kα qβ S̃ , (4.1)

where qµ is the momentum of the incoming real photon and kν is the momentum of the

out-going virtual gauge boson (see figure 5), and where S and S̃ are scalar form factors. In

order to obtain this expression we have considered the most generic Lorentz structure for
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Figure 5. Feynman rule for the gauge-invariant one loop effective vertices ϕ0
i −γγ and H+−W+γ.

the Γµν vertex, and we have imposed the electromagnetic current conservation qµ Γµν = 0.

All terms proportional to qµ have also been eliminated as they cancel when contracted

with the polarization vector of the photon. As the W boson is off-shell, in the actual

calculation of the effective vertex there will also appear some other Lorentz structures

than the ones shown in (4.1). However in some cases, these gauge-dependent contributions

vanish when calculating the second loop or they are cancelled by some other non Barr-Zee

terms, as it is nicely shown in [62]. If this was not the case, when summing the proper non

Barr-Zee contributions to the gauge dependent Barr-Zee terms, the result must be gauge

independent. As the gauge dependence from the Barr-Zee terms is cancelled by other sub-

dominant topologies, we also expect this contribution to be sub-dominant. Therefore, we

shall discard these terms in our analysis.

The gauge independent contribution from each set represented by the generic topologies

in figure 2 and figure 3 is transverse by itself, i.e., of the form given in (4.1); we can therefore

decompose the results into eight separate contributions. For the ϕ0
i − γγ effective vertex

S = S(1)+S(2)+S(3) and S̃ = S̃(1); as for the H+−γW+ vertex we have S = S(4)+S(5)+S(6)
and S̃ = S̃(6). Note that the only contributions to the εµναβ kα qβ structure come from the

fermionic loops. Furthermore, one can adopt our strategy from [49], and further simplify

the calculations of S(j) by only considering the terms that contribute to the structure kµ qν .

It is worth mentioning the following technical detail. When performing the calculations

for the first loop, after introducing the Feynman parametrization and after integrating over

the four-momentum, one obtains a denominator similar to

[k2x(x− 1) +M2
ax+M2

b (1− x) + k · q 2y x(1− x)]−1 , (4.2)

where Ma,b are the masses of heavy particles running in the loop, i.e., MW , mt, MH± ,

etc. It is a very common assumption that the photon is “soft” so one can ignore the k · q
term as a good approximation. This term, in fact, can be safely ignored without making

any assumptions on the “softness” of the photon. Keeping track of this term, one can

observe that it simply vanishes when calculating the second loop integral. However, this

happens accidentally for diagrams (1) to (6); for the WWγ effective vertices calculated

in appendix A, this is not always the case. Thus, having checked that these terms play

no role in our present case, we will discard them already at the one-loop level in order

to give simpler and more elegant expressions for the form factors S(i) and S̃(i). After

performing the four-momentum loop integral we obtain the following expressions for the

– 7 –
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scalar form-functions

S(1) =
∑
i,f

αm2
f

π v
Q2
f N

f
C Re

(
y
ϕ0
i

f

) ∫ 1

0
dx

2x(1− x)− 1

k2x(1− x)−m2
f

, (4.3)

S̃(1) =
∑
i,f

αm2
f

π v
Q2
f N

f
C Im

(
y
ϕ0
i

f

) ∫ 1

0
dx

1

k2x(1− x)−m2
f

, (4.4)

S(2) =
∑
i

α v

2π
λϕ0

iH
+H−

∫ 1

0
dx

x(x− 1)

k2x(1− x)−M2
H±

, (4.5)

for the ϕ0
i − γγ vertices with a fermionic or a charged Higgs loop, in agreement with [45].

As for the third diagram, we find

S(3) =
∑
i

α

2π v
Ri1

∫ 1

0
dx

M2
W x(3x(4x− 1) + 10)−M2

ϕ0
i
x(1− x)

k2x(1− x)−M2
W

. (4.6)

The new gauge-invariant scalar form factors coming from diagrams (4) to (6) are given by:

S(4) =
αNC |Vtb|2

2π v sw

∫ 1

0
dx

[
Qtx+Qb(1− x)

] [
ςum

2
tx

2 − ςdm2
b(1− x)2

]
k2x(1− x)−m2

b(1− x)−m2
tx

, (4.7)

S̃(4) = i
αNC |Vtb|2

2πv sw

∫ 1

0
dx

[
Qtx+Qb(1− x)

] [
− ςum2

tx+ ςdm
2
b(x− 1)

]
k2x(1− x)−m2

b(1− x)−m2
tx

, (4.8)

S(5) =
α

4π v sw

∑
i

Ri1(Ri2 − iRi3)
∫ 1

0
dxx2

(M2
H± +M2

W −M2
ϕ0
i
)(1− x)− 4M2

W

k2x(1− x)−M2
Wx−M2

ϕ0
i
(1− x)

, (4.9)

S(6) =
α v

4πsw

∑
i

λϕ0
iH

+H− (Ri2 − iRi3)
∫ 1

0
dx

x2(x− 1)

k2x(1− x)−M2
H±x−M2

ϕ0
i
(1− x)

,

(4.10)

with sw ≡ sin θw, and θw the weak mixing angle.

4.2 Contributions to ∆aµ

Using the effective vertices from the previous section for calculating the second loop, ignor-

ing suppressed terms proportional to higher powers of m2
µ/M

2 (with M a heavy mass) in

the numerator and the muon mass in the denominator, we obtain the various contributions

to the anomalous magnetic moment of the muon. The first two contributions are the well

known classical results [10, 11, 35–45]

∆a(1)µ =
∑
i,f

αm2
µ

4π3 v2
Nf
C Q

2
f

[
Re
(
y
ϕ0
i

f

)
Re
(
y
ϕ0
i

l

)
F (1)

(
m2
f

M2
ϕ0
i

)

+ Im
(
y
ϕ0
i

f

)
Im
(
y
ϕ0
i

l

)
F̃ (1)

(
m2
f

M2
ϕ0
i

)]
, (4.11)

∆a(2)µ =
∑
i

αm2
µ

8π3M2
ϕ0
i

Re
(
y
ϕ0
i

l

)
λϕ0

iH
+H− F (2)

(
M2
H±

M2
ϕ0
i

)
. (4.12)
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The third contribution simply reads

∆a(3)µ =
∑
i

αm2
µ

8π3 v2
Re
(
y
ϕ0
i

l

)
Ri1F (3)

(
M2
W

M2
ϕ0
i

)
. (4.13)

As for the new contributions, given by the last three sets in figure 3, their contributions

are given by

∆a(4)µ =
αm2

µNC |Vtb|2
32π3 s2w v

2 (M2
H± −M2

W )

∫ 1

0
dx
[
Qtx+Qb(1− x)

]
×
[

Re(ςdς
∗
l )m2

bx(1− x) + Re(ςuς
∗
l )m2

tx(1 + x)
]

×
[
G
(

m2
t

M2
H±

,
m2
b

M2
H±

)
− G

(
m2
t

M2
W

,
m2
b

M2
W

)]
, (4.14)

∆a(5)µ =
αm2

µ

64π3 s2w v
2 (M2

H± −M2
W )

∑
i

Re
[
ς∗l Ri1(Ri2 − iRi3)

] ∫ 1

0
dxx2

×
[ (
M2
H± +M2

W −M2
ϕ0
i

)
(1− x)− 4M2

W

]
×
[
G
(
M2
W

M2
H±

,
M2
ϕ0
i

M2
H±

)
− G

(
1,
M2
ϕ0
i

M2
W

)]
, (4.15)

∆a(6)µ =
αm2

µ

64π3 s2w (M2
H± −M2

W )

∑
i

Re
[
ς∗l (Ri2 − iRi3)

]
λϕ0

iH
+H−

∫ 1

0
dxx2(x− 1)

×
[
G
(

1,
M2
ϕ0
i

M2
H±

)
− G

(
M2
H±

M2
W

,
M2
ϕ0
i

M2
W

)]
. (4.16)

We can also consider the contribution from a lepton and a neutrino loop by replacing

Qt → 0, mt → 0, Qb → −1, mb → ml, ςd → ςl and ςu → 0 in (4.14) and where ml is the

mass of the considered lepton. However, these contributions turn out to be very suppressed

due to the smallness of the lepton masses and we shall ignore them in our present analysis.

The needed loop functions are given by:

F (1)(ω) =
ω

2

∫ 1

0
dx

2x(1− x)− 1

ω − x(1− x)
ln

(
ω

x(1− x)

)
, (4.17)

F̃ (1)(ω) =
ω

2

∫ 1

0
dx

1

ω − x(1− x)
ln

(
ω

x(1− x)

)
, (4.18)

F (2)(ω) =
1

2

∫ 1

0
dx

x(x− 1)

ω − x(1− x)
ln

(
ω

x(1− x)

)
, (4.19)

F (3)(ω) =
1

2

∫ 1

0
dx

x [3x(4x− 1) + 10]ω − x(1− x)

ω − x(1− x)
ln

(
ω

x(1− x)

)
, (4.20)

and

G(ωa, ωb) =

ln

(
ωax+ ωb(1− x)

x(1− x)

)
x(1− x)− ωax− ωb(1− x)

. (4.21)
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5 Phenomenology

In the present analysis we neglect possible CP-violating effects; i.e., we consider a CP-

conserving scalar potential and real alignment parameters ςf . The fermionic couplings of

the neutral scalar fields are then given, in units of the SM Higgs couplings, by

yhf = cos α̃+ ςf sin α̃, yAd,l = i ςd,l,

yHf = − sin α̃+ ςf cos α̃, yAu = −i ςu , (5.1)

and the couplings to a pair of gauge bosons (2.5) are simply (κ
ϕ0
i
V ≡ gϕ0

i V V
/gSMhV V , V = W,Z)

κhV = R11 = cos α̃ , κHV = R21 = − sin α̃ , κAV = R31 = 0 . (5.2)

We shall separate the phenomenological analysis in two parts. For the first part we will

analyse the individual contributions from the various ∆a
(i)
µ factors for different coupling and

mass configurations. As for the second part we shall sum all these contributions choosing a

few relevant scenarios compatible with collider and flavour bounds and also with constrains

from the oblique parameters. Also, we will identify the lightest CP-even Higgs with h and

take Mh = 125 GeV for the whole analysis.

5.1 Individual ∆a(i)µ contributions

As we know from global fits to the LHC data, the Yukawa couplings of the discovered scalar

boson are SM-like, however with quite large experimental errors. The coupling of h to two

gauge bosons is constrained by | cos α̃| > 0.8 at 95% CL [47]. Here we shall always take

the positive solution, cos α̃ > 0 (flipping the sign of cos α̃ leads to an equivalent solution

with a sign flip of the couplings ςf ). Choosing the positive solution for cos α̃, the top

Yukawa coupling must also be positive. We shall vary it in the range yhu ∈ [0.8, 1.2]. As

we know, at least for now, there is no experimental sensitivity to the relative sign of the

down-type or leptonic Yukawas with respect to the up-type Yukawas. Therefore we shall be

less restrictive with the yhd,l couplings and allow them to vary in the range yhd,l ∈ [−1.5, 1.5].

As for the alignment parameters, we will vary them as follows: −1 < ςu < 1 compatible

with all flavour constraints and direct charged Higgs searches [47] for a broad range of the

charged Higgs mass, and −50 < ςd,l < 50 to safely avoid the non-perturbative regime. We

shall also vary yHf in the same regions as the ςf parameters (in the limit cos α̃ → 1 we

obtain yHf = ςf ). The remaining parameters are the couplings of the neutral scalars to

a pair of charged Higgses. In order to safely satisfy the perturbativity bounds [48] for a

broad range of MH± , we will impose |λϕ0
iH

+H− | < 5.

The one-loop well known contribution from the various scalars are shown in figure 6.

The contribution of h is small and positive for the whole considered range of the coupling

|yhl |. The contribution of H is also positive and, its contribution can be of some significance

only for large values of |yHl | and small values of MH simultaneously. The contribution of

the CP-odd scalar is negative and it is only relevant for large values of |ςl| and low values

of it mass mass, similar to the previous case. As for the charged Higgs contribution, it is

always negative and very small, thus irrelevant, at the one loop level.

– 10 –



J
H
E
P
0
4
(
2
0
1
5
)
0
7
7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1´10-15

2´10-15

5´10-15

1´10-14

2´10-14

5´10-14

1´10-13

Èy
{

hÈ

D
a ΜH
a,
hL

MH=150 GeVMH=150 GeV

MH=250 GeVMH=250 GeV

MH=400 GeVMH=400 GeV

10 20 30 40 50
10-14

10-13

10-12

10-11

10-10

Èy
{

HÈ

D
a ΜH
a,
H
L

MA=40 GeVMA=40 GeV

MA=150 GeVMA=150 GeV

0 10 20 30 40 50
-5.´10-10

-4.´10-10

-3.´10-10

-2.´10-10

-1.´10-10

0

Ẹ̀{ È

D
a ΜH
a,
A
L

MH±=90 GeVMH±=90 GeV

MH±=150 GeVMH±=150 GeV

0 10 20 30 40 50

-1.4´10-12

-1.2´10-12

-1.´10-12

-8.´10-13

-6.´10-13

-4.´10-13

-2.´10-13

0

Ẹ̀{ È

D
a ΜH
bL

Figure 6. One-loop scalar contributions to ∆aµ as functions their couplings to fermions from h

(top-left), H (top-right), A (bottom-left) and H± (bottom-right).

The two-loop results are presented next. The contribution of h, associated with a

top-quark loop, to ∆a
(1)
µ is shown in figure 7 (top-left). It is positive for yhl y

h
u < 0. The

contribution of the same scalar h associated with bottom and tau loops is much smaller,

of O(10−13) or less for the whole considered parameter space, and is not shown here. The

contribution of H for different mass configurations and for different fermionic loops is also

shown in figure 7. This contribution is proportional to the yHl coupling which can be

large. Thus is turns out to be non-negligible even for the sub-dominant bottom-quark and

tau-lepton loops. The top-quark loop contribution can be large for all considered mass

settings as long as yHl is large, and it is positive for yHl yHu < 0, as we can observe in

figure 7 (top-right). The bottom-quark loop contribution can be additionally enhanced by

the coupling yHd , thus, it can overcome the mass suppression. This contribution is positive

for yHl yHd < 0, see figure 7 (bottom-left). Similar considerations about the enhancement

factor (yHl )2 can be made for the tau-lepton part, however this contribution is always

negative, as shown in the bottom-right panel of figure 7.

The contribution of the CP-odd scalar to ∆a
(1)
µ is probably the most interesting yet.

It has been extensively analysed in previous works [10, 11, 35–41]. For low values of its

mass and large values of ςd,l it can reach values within or close to the two-sigma region

of ∆aexpµ , as it is plotted in figure 8. Its value is positive for ςu ςl < 0 (ςd ςl > 0) for the

top (bottom) quark loop contribution and is always positive for the tau loop contribution.

This last case is not shown. It is worth mentioning, however that the tau loop contribution

is somewhat larger than the (absolute value of the) bottom contribution. Even if the tau-

lepton has a relative mass suppression, the bottom-quark has a charge suppression that is

in general larger.
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Figure 7. Contributions to ∆a
(1)
µ from h (top-left) and H (top-right) with an associated top-quark

loop, and from H with an associated bottom-quark (bottom-left) and tau-lepton (bottom-right)

loop, as functions of their couplings to fermions.

Figure 8. Contributions to ∆a
(1)
µ from the CP-odd scalar A, associated with a top-quark (left)

and bottom-quark (right) loop, as functions its couplings to fermions.

For ∆a
(2)
µ we only have two possible contributions, from h and H (in the CP-conserving

limit the vertex AH+H− vanishes [48]). The contribution of the light scalar h is relatively

small for the whole considered parameter space, figure 9 (left) and that is due to the

fact that yhl ∈ [−1.5, 1.5] whereas yHl can be much larger. The contribution of H can be

quite large depending on the configuration of the masses (MH± , MH) (GeV). It reaches

its largest value for low masses of both MH± and MH and large values of the product of

the couplings yHl λHH+H− . However, even for lower values of the couplings but with low

masses (or large masses and large couplings) the contribution can be non-negligible. For

details see figure 9 (right).
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Figure 9. Contributions to ∆a
(2)
µ from ϕ0

i = h,H as functions of the product of the couplings

y
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i

l λϕ0
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+H− for various charged Higgs masses (left) and for various configurations of (MH± , MH)

(GeV) (right).

Figure 10. Contribution to ∆a
(3)
µ from H (left) as function of the product of the couplings R21 y

H
l

for various mass configurations. Two-loop dominant contribution from the top-bottom quark loops

to ∆a
(4)
µ (right).

The next contribution we focus on is ∆a
(3)
µ . The contribution from the light scalar is

small, of O(10−11) or less (after subtracting the SM), therefore we can safely neglect it. The

H contribution however, is non-negligible. It reaches higher values (and it is positive) for

low values of MH and large positive values of the product R21 y
H
l (= sin2 α̃− ςl sin α̃ cos α̃)

as it is plotted in figure 10 (left). As we have already mentioned before, this diagram should

not be neglected, as it can introduce sizeable effects for some regions of the parameter space.

Now we move on to the analysis of the charged Higgs contributions of the Barr-Zee

type diagrams (figure 3), which is the main goal of this paper. It is obvious from figure 10

(right) that the ∆a
(4)
µ contribution is non-negligible for a large region of the parameter

space, except for very small values of the product |ςu ςl|. For a charged Higgs with a low

mass, say 90 GeV, and large negative values of ςl ςu this contribution alone can explain

around 35 % of the measured discrepancy. This looks very appealing, because with the

exception of a very light CP-odd scalar, the previous contributions cannot reach such large

values. For the plot shown in figure 10 (right) we have chosen ςd = 0. However, a variation

of ςd in its allowed interval [−50, 50] only produces a shift in the plotted values of order

10−12 or less. This is obviously due to a relative suppression factor m2
b/m

2
t and therefore

this contribution can be safely ignored.
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Figure 11. Contributions to ∆a
(5)
µ from ϕ0

i = h,H as functions of the product of the couplings

ςlRi1Ri2 for various charged Higgs masses (left) and for various configurations of (MH , MH±)

(GeV) (right).
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Figure 12. Contributions to ∆a
(6)
µ from ϕ0

i = h,H as functions of the product of the couplings

ςlRi2 λϕ0
iH

+H− for various charged Higgs masses (left) and for various configurations of (MH , MH±)

(GeV) (right).

Last, contributions ∆a
(5)
µ and ∆a

(6)
µ are shown in figure 11 and figure 12. They are

a little bit smaller, however they can reach values up to 10−10. Again this happens, for

small mass configurations and large values of the corresponding couplings. We can see in

figure 11 that both h and H contributions can be very similar, however, they cannot be

simultaneously positive (if the product of the three couplings ςlRi1Ri2 is chosen positive

for one scalar, for the other must necessarily be negative). On the other hand, both h and

H contributions from ∆a
(6)
µ can be simultaneously positive, and of similar value. Thus,

when summed up they can play an important role in the total value of ∆aµ.

We have proven thus, that these new Barr-Zee contributions must not be ignored,

as they might sizeably modify the theoretical prediction for this observable within the

2HDM framework.

5.2 Total contribution to (g − 2)µ

Thus, we have seen that the dominant contributions of the new Bar-Zee type diagrams

come from the mechanisms (3) (figure 2) and (4) (figure 3). All the other new contributions

are sub-dominant. Now, it is interesting to put all these results together, and show the

total effect on ∆aµ for a few relevant scenarios. In figure 13 (left panel) we show ∆aµ as a

function of ςl for positive values of this coupling and for a few scenarios given by cos α̃ = 0.9,
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Figure 13. Total ∆aµ contribution as a function of ςl for different coupling and mass configurations.

ςu = −0.8, ςd = −20, Mh = 125 GeV, λhH+H− = 0, λhH+H− = −5. The masses (in GeV)

of the remaining scalars are chosen the following way: MH = MH± = MA = 250 (lower

orange curve), 150 (middle blue curve), MH = MH± = 150 and MA = 50 (upper green

curve). Similar to the previous case, but this time for negative values of ςl, in the right

panel we have chosen the following parameter configuration: cos α̃ = 0.9, ςu = 0.8, ςd = 2,

Mh = 125 GeV, λhH+H− = 0, λhH+H− = 5 and MH = MH± = 250 GeV and MA = 40 GeV

(upper green curve) or MH = MH± = 350 GeV and MA = 50 GeV (lower orange curve).

As expected, from the analysis of the various ∆a
(i)
µ individual contributions, one obtains

a significant contribution for low masses of the scalars (especially for low MA) and large

couplings. We can also observe that in some cases we do not need the maximum allowed

value of |ςl| in order to reach the two-sigma region of ∆aexpµ ; a value around |ςl| ∼ 30 might

just be enough.

6 Conclusions

It is a common belief that only a restrained number of diagrams, namely (1) and (2)

from figure 2, can significantly contribute to ∆aµ in 2HDMs and in most of the previous

analyses [10, 11, 35–41], a CP-odd scalar in the low-mass range is enough to explain, or

reduce, the discrepancy between theory and experiment. In this work we have shown that

the extra degrees of freedom of the A2HDM given by the ςf parameters, can also explain

this discrepancy in some region of the parameter space, and if not, they can significantly

reduce it in most cases. We have also seen that the W loop contribution associated with

a heavy scalar H (diagram (3) from figure 2) can bring important contributions even if it

has a global suppression factor R21. This contribution is positive for negative values of ςl.

The most interesting case is, however, the fermionic loop contribution (diagrams (4) from

figure 3) with the dominant part given by the top-quark. The last two diagrams (5) and

(6) are also interesting, as they can sum up to an O(10%) of the total contribution. Also,

we have seen that not all of these new contributions can be made simultaneously positive,

however the total ∆aµ is positive for most parameter configurations.

A highly interesting scenario, that we defer for future work, is to consider CP-violating

effects. The imaginary part of the parameters of the potential and especially of the Yukawa

sector might be able to bring somewhat sizeable effects.
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Figure 14. One-loop contributions to the WWγ effective vertex. The last diagram stands for the

one-loop counter-term.
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Figure 15. One-loop contributions to the WG±γ effective vertex. The last diagram stands for the

one-loop counter-term.

A WWγ effective vertex contribution to (g − 2)µ

In this section we present the explicit calculation of the contributions from figure 4 (B)

to (g − 2)µ. The 2HDM contributions to the one-loop WWγ effective vertex are shown

in figure 14, where last diagram stands for the one-loop renormalization counter-term.

For this calculation we have followed the renormalization prescription described in [65].

Following this prescription one does not need to renormalize the gauge-fixing Lagrangian.

Thus, we simply worked in the Feynman gauge [48]. Working in this gauge, one also

needs to take into account WG±γ (figure 15) and G±G∓γ effective vertices. The last set

(G±G∓γ) will give rise to contributions to the anomalous magnetic moment that will have

a relative suppression factor of m2
µ/M

2
W (just as in case (A) of figure 4 for the H±H∓γ

effective vertex), and therefore will not be taken into account.
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The one-loop counterterms for the needed WWγ and WGγ vertices are given by

i Γρµνδ = i e Γρµν δW , i Γµνδ = i e gµν
1

2
(δW + δG± + δM ) , (A.1)

where i eΓρµν is the tree-level WWγ vertex and where we have defined the G±, Wµ and

M2
W renormalization constants as

ZW = 1 + δW , ZG± = 1 + δG± , ZM = 1 + δM . (A.2)

The needed W and G± self-energy diagrams needed for the calculation of these counter-

terms are shown in figure 16. As we can see, no tadpole diagrams are present. At one-loop

level, using the renormalization prescription from [65], tadpole diagrams do not contribute

to the W mass renormalization. On the other hand, they do not contribute to the wave-

function renormalization either as they do not generate any four-momentum dependence.

Thus, for our present calculation we need not to worry about tadpoles.

One last technical issue is the W −G± mixing that occurs at one-loop level. The gauge

fixing Lagrangian cancels exactly the tree-level mixing between the gauge and Goldstone

bosons generated by the covariant derivatives. This mixed term, when renormalizing the

Lagrangian is in fact, counter-term for the W −G± self-energies, as it is nicely explained

in [65]. For this calculation, however, we don’t need to worry about this mixture. As we

are going to ignore the propagator corrections, and these corrections are related to the

W − G± mixing through the Ward identities (for example the doubly contacted identity

shown diagrammatically in figure 17), we are also going to ignore the one-loop mixing in

order to preserve these identities.
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Using the on-shell scheme, working in D = 4 + 2ε dimensions (ε < 0), the expression

for δW reads δW = δ
(1)
W + δ

(2)
W + δ

(3)
W , with:

δ
(1)
W =

M2
W

v2

∑
i

|Ri2 +Ri3|2
µ2ε

(4π)2

(
1

3ε̂
+

∫ 1

0
dx 2x(1− x) ln

a2(M2
W )

µ2

)
, (A.3)

δ
(2)
W =

M2
W

v2

∑
i

R2
i1

µ2ε

(4π)2

(
1

3ε̂
+

∫ 1

0
dx 2x(1− x) ln

ā2(M2
W )

µ2

)
, (A.4)

δ
(3)
W = −4M4

W

v2

∑
i

R2
i1

1

(4π)2

∫ 1

0
dx

x(1− x)

ā2(M2
W )

. (A.5)

in agreement with [66]. The wave function renormalization counter-term for the charged

Goldstone boson is given by δG± = δ
(1)
G± + δ

(1)
G± + δ

(1)
G± with:

δ
(1)
G± = − 1

(4π)2

∑
i

|Ri2 +Ri3|2
(
M2
ϕ0
i
−M2

H±

)2
v2

∫ 1

0
dx

x(1− x)

a2(M2
W )

, (A.6)

δ
(2)
G± = − 1

(4π)2

∑
i

R2
i1

M4
ϕ0
i

v2

∫ 1

0
dx

x(1− x)

ā2(M2
W )

, (A.7)

δ
(3)
G± = − µ2ε

(4π)2
M2
W

v2

∑
i

R2
i1

[
2

ε̂
+

1

6
+

∫ 1

0
dx
(
3x2 − 6x+ 4

)
ln
ā2(M2

W )

µ2

+

∫ 1

0
dx

x(x− 1)

ā2(M2
W )

(
M2
W (3x2 − 8x+ 6) + 2xM2

ϕ0
i

) ]
.

(A.8)

Last, the W mass counter-term is given by δM = δ
(1)
M + δ

(2)
M + δ

(3)
M + δ

(4)
M + δ

(5)
M with:

δ
(1)
M =

1

v2
µ2ε

(4π)2

∑
i

|Ri2 +Ri3|2
[ (

1

ε̂
− 1

)(
M2
H± +M2

ϕ0
i
− 1

3
M2
W

)
+

∫ 1

0
dx 2a2(M2

W ) ln
a2(M2

W )

µ2

]
, (A.9)

δ
(2)
M =

1

v2
µ2ε

(4π)2

∑
i

R2
i1

[ (
1

ε̂
− 1

)(
M2
ϕ0
i

+
2

3
M2
W

)
+

∫ 1

0
dx 2ā2(M2

W ) ln
ā2(M2

W )

µ2

]
,

(A.10)

δ
(3)
M = −4M2

W

v2
µ2ε

(4π)2

∑
i

R2
i1

[
1

ε̂
+

∫ 1

0
dx ln

ā2(M2
W )

µ2

]
, (A.11)

δ
(4)
M = −2M2

H±

v2
µ2ε

(4π)2

[
1

ε̂
+ ln

M2
H±

µ2
− 1

]
, (A.12)

δ
(5)
M = − µ2ε

(4π)2

∑
i

M2
ϕ0
i

v2

[
1

ε̂
+ ln

M2
ϕ0
i

µ2
− 1

]
. (A.13)
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Here we have defined 1/ε̂ ≡ 1/ε+γE−ln(4π). The functions a2(p2) and ā2(p2) are given by:

a2(p2) = −p2 x(1− x) +M2
ϕ0
i
x +M2

H± (1− x) , (A.14)

ā2(p2) = −p2 x(1− x) +M2
ϕ0
i
x +M2

W (1− x) . (A.15)

Now, we move on and present the expressions for the one-loop WWγ effective vertices

from figure 14. The considered kinematics and the assigned Lorentz indices for this process

are W+(k − q, ρ) + γ(q, µ) → W+(k, ν). Discarding all terms proportional to qµ, the first

and second diagrams give:

i Γρµν(1) = i
e

(4π)2
M2
W

v2
µ2ε
∑
i

|Ri2 +Ri3|2
[
− 1

3ε̂
Γρµν +

∫ 1

0
dx

∫ 1

0
dy Jρµν(a) 2(1− x) ln

a2x
µ2

+

∫ 1

0
dx

∫ 1

0
dy

Jρµν(b)

k2 −M2
x − 2y k · q

]
, (A.16)

i Γρµν(2) = i
e

(4π)2
M2
W

v2
µ2ε
∑
i

R2
i1

[
− 1

3ε̂
Γρµν +

∫ 1

0
dx

∫ 1

0
dy Jρµν(a) 2(1− x) ln

ā2x
µ2

+

∫ 1

0
dx

∫ 1

0
dy

Jρµν(b)

k2 − M̄2
x − 2y k · q

]
. (A.17)

Again, Γρµν is the tree-level vertex function and it is given by

Γρµν = gµν(−k − q)ρ + gµρ(2q − k)ν + gνρ(2k − q)µ . (A.18)

The sum of diagrams (3), (4) and (5) gives

i Γρµν(3+4+5) = −i e

(4π)2
M4
W

v2

∑
i

R2
i1

∫ 1

0
dx

∫ 1

0
dy

1

x

−2 gµνQρ − 2 gµρJν + 4 Jρµν(c)

k2 − M̄2
x − 2y k · q . (A.19)

With diagram (6) we have to be specially careful. Its explicit expression reads

i Γρµν(6) = i
e

(4π)2
M2
W

v2
gµν(kρ − qρ) µ2ε

∑
i

|Ri2 + iRi3|2

×
∫ 1

0
dx (2x− 1)

(
1

ε̂
+ ln

b2x
µ2

)
. (A.20)

Integrating over x, the pole and the µ-dependence vanish. We are left with a logarithm

that depends on the four momentum and that we need to integrate in the second loop.

Using the expansion (δ � 1)

lnA =
1

δ

(
Aδ − 1

)
+O(δ) , (A.21)

we can write the previous expression as

i Γρµν(6) = i
e

(4π)2
M2
W

v2
gµν(kρ − qρ) (−1)δ

δ

∑
i

|Ri2 + iRi3|2

×
∫ 1

0
dx

(2x− 1)xδ(1− x)δ

(k2 −M2
x − 2 k · q)−δ , (A.22)
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and use the Feynman parametrization

1

A−δ1 A2A3A4

=
Γ(3− δ)
Γ(−δ)

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 1−x1−x2

0
dx3 x−δ−11

× 1(
x1A1 + x2A2 + x3A3 + (1− x1 − x2 − x3)A4

)3−δ , (A.23)

in order to solve the second loop (taking the limit δ → 0 at the end of the calculation). We

obtain a similar expression for diagram (7):

i Γρµν(7) = i
e

(4π)2
M2
W

v2
gµν(kρ − qρ) (−1)δ

δ

∑
i

R2
i1

∫ 1

0
dx

(2x− 1)xδ(1− x)δ

(k2 − M̄2
x − 2 k · q)−δ . (A.24)

Contributions (8) and (9) vanish as their expressions are terms proportional to qµ. Finally,

diagrams (10) and (11) read

i Γρµν(10) = i
e

(4π)2
M2
W

v2
gµρkν µ2ε

∑
i

|Ri2 + iRi3|2
∫ 1

0
dx (2x− 1)

(
1

ε̂
+ ln

c2x
µ2

)
, (A.25)

i Γρµν(11) = i
e

(4π)2
M2
W

v2
gµρkν µ2ε

∑
i

R2
i1

∫ 1

0
dx (2x− 1)

(
1

ε̂
+ ln

c̄2x
µ2

)
, (A.26)

which can be treated exactly as diagrams (6) and (7). The previously introduced tensorial

functions are given by:

Jρµν(a) = gµρ
(
(1− 2x)kν + 2y(x− 1)qν

)
+ gµν

(
(1− 2x)kρ + (2(x− 1)y + 1)qρ

)
− 2x gνρ kµ , (A.27)

Jρµν(b) = −2kµ
(
(2x− 1)kν − 2y(x− 1)qν

)(
(1− 2x)kρ + (2(x− 1)y + 1)qρ

)
, (A.28)

Jρµν(c) = gµρ
(
(xy − y + 2)qν − xkν

)
− gµν

(
xkρ + qρ(y − xy + 1)

)
+ 2x gνρ kµ , (A.29)

and,

Qρ = kρ (1− 2x) + qρ (2xy − 2y + 1) , Jν = kν (1− 2x) + qν 2y(x− 1) . (A.30)

The scalar functions are given by:

a2x = −x(1− x)(k2 −M2
x − 2y k · q) , ā2x = −x(1− x)(k2 − M̄2

x − 2y k · q) ,
b2x = −x(1− x)(k2 −M2

x − 2 k · q) , b̄2x = −x(1− x)(k2 − M̄2
x − 2 k · q) , (A.31)

c2x = −x(1− x)(k2 −M2
x ) , c̄2x = −x(1− x)(k2 − M̄2

x ) ,

with

M2
x =

M2
ϕ0
i

1− x +
M2
H±

x
, M̄2

x =
M2
ϕ0
i

1− x +
M2
W

x
. (A.32)
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Next we present the G±Wγ effective vertices from figure 15. The kinematics and Lorentz

indices are given by G+(k − q) + γ(q, µ)→W+(k, ν). Thus, the one-loop expressions are:

i Γµν(1) = −i e

(4π)2
MW µ2ε

∑
i

|Ri2 + iRi3|2
M2
ϕ0
i
−M2

H±

v2

[
gµν

1

ε̂

+

∫ 1

0
dx

∫ 1

0
dy

(
2gµν (1− x) ln

a2x
µ2
− 2Kµν

k2 −M2
x − 2y k · q

) ]
, (A.33)

i Γµν(2) = −i e

(4π)2
MW µ2ε

∑
i

R2
i1

M2
ϕ0
i

v2

[
gµν

1

ε̂

+

∫ 1

0
dx

∫ 1

0
dy

(
2gµν (1− x) ln

ā2x
µ2
− 2Kµν

k2 − M̄2
x − 2y k · q

) ]
, (A.34)

i Γµν(3) = −i e

(4π)2
MW

∑
i

R2
i1

M2
ϕ0
i

v2

∫ 1

0
dx

∫ 1

0
dy

1

x

2M2
W gµν

k2 − M̄2
x − 2y k · q , (A.35)

i Γµν(4) = i
e

(4π)2
M3
W

v2
µ2ε

∑
i

R2
i1

[
gµν

1

2ε̂
+

∫ 1

0
dx

∫ 1

0
dy

(
gµν (1− x) ln

ā2x
µ2

+
(2− x)

x

Kµν

k2 − M̄2
x − 2y k · q

) ]
, (A.36)

i Γµν(5) = i
e

(4π)2
M3
W

v2
µ2ε

∑
i

R2
i1

[
− gµν

(
3

2ε̂
+ 1

)
+

∫ 1

0
dx

∫ 1

0
dy

(
3gµν (x− 1) ln

ā2x
µ2

+
2

x

Gµν

k2 − M̄2
x − 2y k · q

) ]
, (A.37)

i Γµν(6) = i
e

(4π)2
MW gµν µ2ε

∑
i

R2
i1

M2
ϕ0
i

v2

(
1

ε̂
+

∫ 1

0
dx ln

b̄2x
µ2

)
, (A.38)

i Γµν(7) = i
e

(4π)2
MW gµν µ2ε

∑
i

|Ri2 +Ri3|2
M2
ϕ0
i
−M2

H±

v2

(
1

ε̂
+

∫ 1

0
dx ln

b2x
µ2

)
, (A.39)

i Γµν(8) = i
e

(4π)2
gµν

2M3
W

v2
µ2ε

∑
i

R2
i1

(
1

ε̂
+

∫ 1

0
dx ln

c̄2x
µ2

)
. (A.40)

The tensorial functions are given by:

Kµν = kµ
(
(2x− 1) kν − 2y(x− 1) qν

)
, (A.41)

Gµν = gµν
(
k2x(x− 2)− 2(x− 1)(xy − y − 1)k · q

)
+ kµ

(
(x− 1)(xy + 2y − 4)qν − x(x− 2)kν

)
. (A.42)

All other functions are the same as previously. Note, that for the previous expressions of

the one-loop effective vertices, we have maintained the k · q structure in the denominator

(in contrast to the H±Wγ effective vertices) because here, in some cases, this structure

does contribute to the final result.

Inserting all these expressions into the second loop we finally obtain the expression for

the total contribution to the anomalous magnetic moment of the muon. Subtracting the
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SM contributions we have

∆aµ =
α

128 π2 s2w

m2
µ

v2

∫ 1

0
dx

( ∑
i

R2
i1A−ASM +

∑
i

|Ri2 + iRi3|2 B + C
)
, (A.43)

with the functions A, B and C given by:

A =
7

3
x(1− x) ln

ā2(M2
W )

M2
W

−
(2x2 − 3x+ 2) M2

ϕ0
i

2x(M2
W − M̄2

x )

+
6(x− 1) M̄2

x + (−12x2 + 30x− 55)M2
W

6(M2
W − M̄2

x )

+
M2
ϕ0
i

ln(M̄2
x/M

2
W )

2xM2
W (M2

W − M̄2
x )2

(
M̄4

x x(2x− 1)− 2M4
W + 4M2

W M̄
2
x x(1− x)

)
+

ln(M̄2
x/M

2
W )

6x (M2
W − M̄2

x )2

(
M̄4

x x(16x− 9) +M4
W (8x− 42)

+ 2M2
W M̄

2
x (−6x3 + 10x2 − 30x+ 21)

)
+

x(1− x)

4M2
W ā2(M2

W )

(
M4
W

(
3x2 − 8x− 50

3

)
+ 2xM2

WM
2
ϕ0
i
−M4

ϕ0
i

)
, (A.44)

B =
7

3
x(1− x) ln

a2(M2
W )

M2
W

+
1

2
(2x− 1)

M2
x − 2M2

W (x− 1)

M2
W −M2

x

+

(
M2
ϕ0
i
−M2

H±

)
(3− 2x)

2(M2
W −M2

x )

+
M2

x ln(M2
x/M

2
W )

6(M2
W −M2

x )2

(
M2
W 2x(7− 6x) +M2

x (10x− 9)

)
−
(
M2
ϕ0
i
−M2

H±

)2
x(1− x)

4M2
W a2(M2

W )

+

(
M2
ϕ0
i
−M2

H±

)
M2

x ln(M2
x/M

2
W )

2M2
W (M2

W −M2
x )2

(
4M2

W (1− x) +M2
x (2x− 1)

)
+

1

4M2
W

(
2(1− x) M2

H± ln
a2(M2

W )

M2
H±

+ 2x M2
ϕ0
i

ln
a2(M2

W )

M2
W

)
, (A.45)

C =
∑
i

(
−

M2
ϕ0
i

4M2
W

ln
M2
ϕ0
i

M2
W

+R2
i1

1

4
(−3x2 + 4x− 6) ln

ā2(M2
W )

ā2SM(M2
W )

+ R2
i1

xM2
ϕ0
i

2M2
W

ln
ā2(M2

W )

M2
W

)
−
xM2

φ

2M2
W

ln
ā2SM(M2

W )

M2
φ

+
1

6
. (A.46)

All the functions that carry a SM sub-index are obtained from the original ones by replacing

Mϕ0
i

with Mφ everywhere, where Mφ is the mass of the SM Higgs. The numerical values

that we obtain for this contribution (for MH,A,H± < 500 GeV) are typically of O(10−11)

both positive or negative, which is two orders of magnitude below ∆aexpµ , therefore we shall

not take it into account in this analysis.
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