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1 Introduction

The discovery of a new scalar particle has been announced by both the ATLAS and CMS

collaborations at the large hadron collider(LHC) [1, 2]. At present, the physical properties

of the observed new scalar particle seem to be consistent with the long-sought Higgs boson

in the standard model(SM), and its mass has been observed at 126GeV with a few GeV

uncertainty [3–9]. Interestingly, such a mass range of the SM-like Higgs can imply that

the Higgs potential of the SM develops unstable electroweak vacuum at large field values,

depending on the top mass and strong coupling constant with some uncertainties [10].

From the theoretical point of view, the measurements of the Higgs mass can provide us

with an useful hint about the structure of the theory at the very short distance through

the sizable renormalization group(RG) running of the Higgs quartic coupling.

Recently a very simple and economical way to stabilize the electroweak vacuum at the

high energy has been proposed by introducing one singlet scalar particle and its relevant

couplings [11–13]. The existence of a heavy singlet scalar can generate threshold corrections

to the quartic Higgs coupling which can help to evade the instability of the vacuum at

large field values.1 On the other hand, embedding the singlet scalar particle in the SM

1The contribution from a new scalar to renormalisation group running can allow the same thing even if

the scalar has no VEV, see ref. [14].
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Lagrangian can not only modify the production and/or decay rates of the Higgs field [15,

16] but also supply solutions for dark matter [17, 18], baryogenesis via the first order

electroweak phase transition [19] and the unitarity problem of the Higgs inflation [20].2

Motivated by the discovery of a new scalar field and the amelioration of the electroweak

vacuum stability ascribed to the singlet scalar field embedded in the SM, in this paper, we

examine the implication of the perturbative unitarity in the SM extended to contain the

singlet scalar particle [23]. On top of the SM contributions to the scattering amplitudes, we

estimate new contributions generated due to the existence of the singlet scalar, and then

derive some conditions that guarantee the perturbative unitarity of the scattering matrix

(S-matrix), which can be translated into some bounds on the masses of the scalar fields.

In the case that the singlet scalar field develops vacuum expectation value (VEV), we can

get the upper bound on the singlet scalar mass. Thanks to the mixing between the singlet

and Higgs scalars, the unitarity bound on the singlet scalar mass depends on the mixing

angle between two scalar fields. As will be shown, the unitarity bound gets stronger as the

mixing angle goes up to maximal. On the other hand, the mass of the Higgs scalar can be

constrained by the unitarity condition in the case that the VEV of the singlet scalar is not

generated. The upper bound on the Higgs mass derived from the unitarity of the S-matrix

in the SM is well known as the so-called Lee-Quigg-Thacker (LQT) bound. The LQT

bound is modified and can appear to be severer in the presence of the singlet scalar field.

Although the upper bound on the Higgs mass we derive is not useful to study low energy

phenomenology due to the measurement of the Higgs mass at the LHC, it can be applied to

the scenario of the unitarized Higgs inflation. We will discuss how the unitarity condition

can constrain the Higgs inflation. In the model with Z2 symmetry, the mass of the singlet

scalar is not constrained by the unitarity itself because of no mixing with the Higgs scalar.

But, regarding the singlet scalar field as a cold dark matter candidate, we can derive upper

bound on the singlet scalar mass by combining the observed relic abundance with the

unitarity.3 Here, note that although the bounds we obtain are derived from the tree-level

unitarity condition, RG running at high energy may substantially affect the results.

This paper is organized as follows. In section II, we briefly present the extension of the

SM containing a singlet scalar model and show how three scalar couplings (λH , λS , λHS)

in the model are related to two physical scalar masses, two mixing angles and VEV. In

section III, we derive the unitarity condition on the scattering amplitudes by analyzing the

eigenvalues of the S-matrix presented in terms of those scalar couplings. From the numerical

analysis, we show how severe the unitarity conditions can constrain the masses of the scalar

fields. In section IV, we discuss about the applications of the unitarity conditions to the

unitarized Higgs inflation and the singlet scalar dark matter model, and show how they

are useful to get some constraints on the model parameters. Some useful formulae for the

amplitudes of the scattering processes will be given in the appendix.

2For extensive studies of LHC implications, see ref. [21, 22].
3In [23], the authors have studied the unitarity conditions in the similar model, but considered only

limited cases. The unitarity bound in the models with two Higgs doublets and a triplet scalar have been

studied in [24–26] and [27], respectively.
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2 Minimal model with the singlet scalar

The full Lagrangian considered in this paper simply consists of the SM Lagrangian LSM

and extra terms associated with the singlet scalar S,

L = LSM +
1

2
∂µS ∂µS − 1

2
µ2
S S2 +

1

4
λS S4 +

1

2
λHS(H

†H)S2 , (2.1)

where H is the SM Higgs doublet and LSM contains the Higgs potential given as −µ2H†H+

λH(H†H)2. Note that the singlet scalar S only couples to the SM Higgs H among the SM

particles and our results are irrespective of whether S is a complex or real singlet scalar.

Here, we consider two cases depending on whether the singlet scalar S develops VEV or

not. As will be shown later, the implications on the unitarity condition depend on whether

the VEV of S is developed or not.

2.1 Case for 〈S〉 6= 0

Let VEVs of the neutral components of H and S to be 〈H〉 = 1√
2
v and 〈S〉 = η, where

v = (
√
2GF )

−1/2 and the value of η is not determined from low energy experiments. After

two scalar fields H and S get VEVs, they are written by

H =





w+

1√
2

(

h+ i z + v
)



 , S =
(

s+ η
)

, (2.2)

where the Goldstones w+, z are eaten by charged and neutral weak gauge bosons, W and

Z, in the SM, respectively. Substituting these into the Lagrangian, we obtain mixing terms

between two neutral fields h and s which are superpositions of two physical states (h1, h2)

given as follows:
(

h

s

)

=

(

cosα − sinα

sinα cosα

)(

h1

h2

)

, (2.3)

where the mixing angle α (−π/2 ≤ α ≤ π/2) is given by

tanα =
−2(λHc2β − λS s2β)±

√

4(λHc2β − λS s2β)
2 − λ2

HSc
2
βs

2
β

λHS cβsβ
, (2.4)

with cβ ≡ cosβ = v/
√

v2 + η2, sβ ≡ sinβ = η/
√

v2 + η2, and tan β = η/v. For our

convenience, we express three scalar quartic couplings λi in terms of the physical scalar

masses, mh1
and mh2

, and two mixing angles, α and β,

λH =
1

4c2β ξ
2

(

m2
h1
c2α +m2

h2
s2α
)

, (2.5)

λS =
1

4s2β ξ
2

(

m2
h1
s2α +m2

h2
c2α
)

, (2.6)

λHS =
s2α

s2β ξ2
(

m2
h1

−m2
h2

)

, (2.7)

– 3 –
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where ξ2 = v2 + η2. We will assume that h1 is always lighter than h2, and denote their

masses as mh and ms, respectively. Finally, the conditions derived from the fact that the

potential should be bounded from below and all masses squared be positive are given by

λH > 0 , λS > 0 , 4λH λS ≥ λ2
HS , 2λH c2β + 2λS s2β > 0 . (2.8)

2.2 Case for 〈S〉 = 0

Imposing Z2 symmetry where only singlet s is Z2-odd charged while other all fields are

Z2-even charged, the singlet s can not get a nontrivial VEV and can be regarded as a good

candidate for dark matter. As will be shown later, the size of the S-matrix is reduced in

this case because some scattering channels are forbidden by the Z2 symmetry.

It is important to notice that there are no bi-linear mixing terms (∼ hs) between h

and s because the singlet s does not develop the VEV. In this case, the mass of singlet

scalar s is given by

m2
s = µ2

s + λHS
v2

2
. (2.9)

Contrary to the previous case ( 〈S〉 6= 0 ), ms has nothing to do with λH .

The vacuum stability gives rise to the same conditions as in the previous case except

for the third one in the eq. (2.8). Requiring that the vacuum is located at the global

minimum of the potential, we get the inequality given by

0 < µ2
s <

√

λSλHS v2. (2.10)

3 Unitarity of S-matrix and numerical analysis

Now let us consider various two-body scattering processes to derive the perturbative uni-

tarity bound. Before calculating the two-body scattering amplitudes, recall that the eigen-

values of the S-matrix does not depend on the choice of basis of the states. So, for our

convenience, we take weak eigenstates instead of mass eigenstates in the calculation sim-

ply because only scalar field h couples to the gauge bosons. Besides, since three external

longitudinal gauge bosons can be replaced by corresponding Goldstone modes thanks to

Goldstone-boson equivalence theorem, the amplitudes for two-body scattering processes we

consider are equivalent to those with longitudinal gauge bosons up to terms of O(M2
W /s)

which are negligible when s ≫ M2
W .

With the help of the partial wave decomposition, the scattering amplitudeM is written

by

M(s, t, u) = 16π
∞
∑

J=0

(2J + 1)PJ(cosθ) aJ(s), (3.1)

where s, t, u are Mandelstam variables, aJ(s) is the spin J partial wave and PJ are Legendre

Polynomials. The differential cross section is given by

dσ

dΩ
=

1

64π2s
|M|2 , (3.2)

– 4 –
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and by using the orthogonality of Legendre polynomial the cross section becomes

σ =
16π

s

∞
∑

J=0

(2J + 1)|aJ |2 . (3.3)

Applying the optical theorem that the cross section is proportional to the imaginary part

of the amplitude in the forward direction, M(θ = 0), given by

σ =
1

s
ℑ[M(θ = 0)] , (3.4)

we obtain the following unitarity constraint,

|aJ |2 = ℑ(aJ) , for all J . (3.5)

It leads to the famous unitarity constraint of the partial wave amplitude aJ with the

identity ℜ(aJ)2 + ℑ(aJ)2 = |aJ |2,
|aJ |2 ≤

1

2
. (3.6)

The Jth partial wave amplitude can be obtained by inverting eq. (3.1),

aJ(s) =
1

32π

∫ 1

−1

dzPJ(z)M(s, t, u) , (3.7)

where the z is the cosine of scattering angle. To derive unitary bound, it is enough to

focus on only J = 0 s-wave amplitude a0(s) with vanishing external particle masses whose

general form can be written by

a0(s)=
1

16π

[

A−B2
h

(

1

s−m2
h

− θt+θs
s

ln

(

1+
s

m2
h

))

−B2
s

(

1

s−m2
s

− θt+θs
s

ln

(

1+
s

m2
s

))

]

,

(3.8)

where A comes from the four point vertex, and the Bh(Bs) is related with three point

vertex with external h(s) fields, and θt, θs = 0 or 1 depending on the contributions of t

and u channels in the process. So, the upper bounds on the scalar masses can be derived

from

|a0| ≤
1

2
. (3.9)

3.1 Case for 〈S〉 6= 0

3.1.1 Limit of s ≫ m
2

h
, m2

s

The neutral states contributing to the scattering amplitudes are |W+W−〉, | 1√
2
ZZ〉,

| 1√
2
hh〉, | 1√

2
ss〉, | 1√

2
hs〉, |hZ〉 with suitable normalization factor 1 or 1√

2
.4 Their con-

tributions to the scattering amplitude can be presented by 6 × 6 matrix form, and we

denote it as T0. We note that the largest eigenvalue of the matrix T0 gives rise to the

4In fact, there also exist charged states whose contributions are simply presented by block diagonal

elements of T0 leading to an eigenvalue 1/2 which can not affect our results and discussion. So we do not

consider those contributions here.
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strongest bounds on their masses and couplings. It is obvious that the existence of the

states such as | 1√
2
ss〉 and | 1√

2
hs〉 can make the eigenvalues of T0 different from those in

the SM.

For the s ≫ m2
h , m

2
s, the matrix T0 in the basis (|W+W−〉, | 1√

2
ZZ〉, | 1√

2
hh〉, | 1√

2
ss〉,

| 1√
2
hs〉, |hZ〉) takes the following form,

T0 −→
(

−λH

4π

)

·



























1 1√
8

1√
8

0 0 0

1√
8

3

4

1

4
0 0 0

1√
8

1

4

3

4

3

4
B 0 0

0 0 3

4
B 3

4
A 0 0

0 0 0 0 3

4
B 0

0 0 0 0 0 1

2



























, (3.10)

where the A and B correspond to the scattering processes ss → ss and hh → ss,

respectively. It is easy to check that Feynmann diagrams involving four vertex couplings

can only survive in that limit at the tree level because other scattering channels are

suppressed by the factor 1/s in the propagators. The parameters A and B are given in

terms of the couplings by

A ≡ λS

λH
, B ≡ 1

6

λHS

λH
. (3.11)

Note that they are the ratios of the singlet relevant quartic couplings λH and λHS to the

SM quartic coupling λH . Taking A and B to be zero, the matrix form becomes equivalent

to the 4 × 4 matrix form of the SM, and we get the well-known perturbative unitarity

bound called Lee-Quigg-Thacker bound [28, 29] on the Higgs mass in the SM,

MH ≤
(

8
√
2π

3GF

) 1

2

≡ MLQT ≈ 1TeV , (3.12)

where |a0| ≤ 1 has been applied and the highest eigenvalue 3/2 has been taken from the

original 4 × 4 matrix. The eigenvalues of the matrix T0 are composed of 4 eigenvalues

derived from the 4 × 4 sub-matrix located at the left upper part of T0 and two diagonal

components of T0,
3

4
B and 1

2
. From the 4 × 4 sub-matrix, we can get the characteristic

polynomial given by
[

Λ− 1

2

] [

Λ3 − (A+ 2)Λ2 +

(

2A−B2 +
3

4

)

Λ−
(

3

4
A− 5

4
B2

)]

= 0 . (3.13)

It is obvious that one solution of eq. (3.13) is 1/2, and the others are obtained by solving

the cubic equation with respect to Λ. Since the cubic equation contains three unknown

parameters, we first fix the value of λHS and then numerically get the solutions by varying

the values of λH and λS . Once we obtain the eigenvalues of the matrix T0 (denoted as

ci), we can derive the perturbative unitarity bound generally given by
∣

∣

∣

∣

λH

4π
· ci
∣

∣

∣

∣

<
1

2
. (3.14)

– 6 –
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È
ΛH

4 P
*ciÈ<

1

2

4ΛHΛS ³ ΛHS
2

0 2 4 6 8 10 12
0

2

4

6

8

10

12

ΛH

Λ
S

0 1 2 3 4 5
0

2

4

6

8

ΛH

Λ
S

Figure 1. Allowed regions by both vacuum stability and perturbative unitarity in the plain (λH

and λS) for λHS = 0 (red), 1 (orange), 5 (yellow) and 9.8 (greens). The perturbative unitarity is

imposed by taking the largest eigenvalues of T0. No allowed region exists for λHS > 9.8.

Note that the above inequality with ci = 1/2 can naively be regarded as a perturbative

condition on the coupling λH , λH ≤ 4π. Thus, one can get stronger bound than the naive

perturbative one as long as any eigenvalue of T0 is larger than 1/2. With the help of

eqs. (2.5), (2.6), (2.7), the bound on the coupling is translated into the bound on the mass

given by

m2
hc

2
α +m2

ss
2
α <

8π

|ci|
ξ2c2β =

8πv2

|ci|
=

4
√
2π

GF

1

|ci|
=

3

2

1

|ci|
M 2

LQT . (3.15)

In the left panel of figure 1, we display how the regions of the parameter space in the

plain (λS , λH) for a fixed value of λHS(=9.8) can be allowed by the vacuum stability and

perturbative unitarity. The purple and blue regions are allowed by the vacuum stability and

unitarity, respectively. Thus, the overlapped region is in consistent with both conditions.

The right panel of figure 1 shows how the allowed region by both conditions varies with dif-

ferent choice of λHS . The red, orange, yellow and green regions correspond to λHS = 0, 1, 5

and 9.8, respectively. As λHS increases, the allowed region gets narrower. In our numerical

analysis, we found that there is no allowed region in the plain (λS , λH) for λHS > 9.8.

Figure 2 shows how the eigenvalues of eq. (3.13) are determined by varying both

λH and λS for given value of λHS . Notice that the contour plots displayed in figure 2

correspond to the largest eigenvalues among three for fixed λHS , whose numbers are

presented in the rectangular boxes on each panels. The other two eigenvalues are not

presented because they do not lead to stronger bounds. The left (right) panels correspond

to λHS = 0(9.8). We also show the allowed regions obtained by imposing the vacuum

stability eq. (2.8) and perturbative unitarity condition eq. (3.14). The red and black

curves represent the boundaries of the allowed regions. As shown in figure 2, constraint by

the vacuum stability is more severer than that by the perturbative unitarity in the case of

– 7 –
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Figure 2. Contour plots of the possible largest eigenvalues for eq. (3.13) as a function of quartic

couplings λH and λS . Left(right) panel corresponds to λHS ∼ 0(λHS = 9.8), and red and black

lines denote the boundaries of allowed regions derived from the vacuum stability and perturbative

unitarity bound, respectively.

λHS ∼ 0 , whereas vice verse in the case of λHS = 9.8. As mentioned before, the largest

eigenvalues of the matrix T0 can lead to the strongest perturbative unitarity bound. As

can be seen from the panels in figure 2, the allowed largest eigenvalue is reached to 3 (2)

for λHS ∼ 0(9.8), which in the end leads to much stronger unitarity bound, compared

with that in the SM where the largest eigenvalue is 3/2.5

As can be seen from the inequality (3.15), the perturbative unitarity bound is trans-

lated as the mass bound for the singlet scalar. Substituting the Higgs mass mh for the mea-

sured values of the boson mass at the LHC we can get upper bound on the mass of the singlet

scalar. Figure 3 shows the allowed region of ms by the perturbative unitarity along with

the mixing angle α for the largest eigenvalues cmax = 2 (upper panel) and cmax = 3 (lower

panel). The grey (orange) region corresponds to |a0| < 1 (|a0| < 1

2
). In each panel the grey

region is introduced as a reference. It is obvious that the allowed region of ms for |a0| ≤ 1/2

is narrower than that for |a0| ≤ 1. As can be seen from the insets of figure 3, for example,

the bound onms is around 5TeV for cmax = 2, and 4TeV for cmax = 3 in the case of α ∼ 0.1.

In the large mixing case (α ∼ π/2), we get very strong unitarity bounds on ms. Numeri-

cally, they correspond to 1TeV (cmax = 1), 500GeV (cmax = 2), and 400GeV (cmax = 3),

respectively. Since the upper bound on ms diverges in the limit of mixing angle α → 0 as

can be seen from two insets of figure 3, there is no bound on ms in the case that the light

scalar field is perfectly the SM-like Higgs scalar. Note that the unitarity bound on ms for

α = π/2 is 10 times larger than that for α = 0.1 becausems is multiplied by s2α in the (3.15).

5Since T0 has at least an eigenvalue 1/2, it is automatically satisfied with the perturbative condition of

the quartic coupling given as λH ≤ 4π.
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Figure 3. Allowed regions of ms by the perturbative unitarity for cmax = 2 (upper) and 3 (lower).

In each panel the regions in grey and orange correspond to |a0| < 1 and |a0| < 1/2, respectively.

The insets in each panel show that the upper bounds on ms diverge when α → 0.

3.1.2 Limit of s ≫ m
2

h
and s ∼ 4m2

s
∼ (1 TeV)2

The matrix T0 in this limit takes the form

T0 →
(

−λH

4π

)

·



























1 1√
8

1√
8

1√
2
C 1√

2
G 0

1√
8

3

4

1

4

1

2
C 1√

2
G 0

1√
8

1

4

3

4

3

4
B 3

4
F 0

1√
2
C 1

2
C 3

4
B 4

3
A 3

4
E 0

1√
2
G 1√

2
G 3

4
F 3

4
E 3

4
D 0

0 0 0 0 0 1

2



























(3.16)

where C,D,E, F and G denote the factors of the amplitudes corresponding to the channels

given by,6

C : a0(W
+W− → ss) = a0(ZZ → ss) , (3.17)

D : a0(hs → hs) , (3.18)

E : a0(ss → hs) , (3.19)

F : a0(hh → hs) , (3.20)

G : a0(W
+W− → hs) = a0(ZZ → hs) , (3.21)

Their explicit amplitudes are presented in the appendix.

6Note that we use following convention in our main text and appendix for notational convenience,

a0(W
+W− → ss) ≡

√
2 · a0

(

∣

∣

∣
W+W−

〉

→
∣

∣

∣

1√
2
ss
〉

)

, a0(ZZ → ss) ≡
(√

2
)2

a0

(

∣

∣

∣

1√
2
ZZ
〉

→
∣

∣

∣

1√
2
ss
〉

)

.
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Figure 4. The same as in figure 2, but left(right) panel corresponds to λHS ∼ 0.1(λHS = 8.87) in

the limit of s ≫ m2
h
and s ∼ 4m2

s ∼ (1 TeV)2.

We note that the Feynman diagrams for the amplitudes associated with C,E, F and G

contain propagators of the singlet scalar. In the limit of large s, those amplitudes become

negligible, so the matrix T0 becomes the same form as in the case of s ≫ m2
h,m

2
s.

On top of an eigenvalue, 1/2, directly taken from the diagonal component of T0, we can

obtain 5 eigenvalues by solving characteristic equation for the non-diagonal 5×5 sub-matrix

located at the upper left side of T0. Similar to the previous case, we display in figure 4

contour plots corresponding to the largest eigenvalues among five for both fixed λHS . Here

we choose s ∼ 1 TeV, and take ms(mh) to be 450(126)GeV. Note that Left(right) panel

corresponds to λHS = 0.1(8.87), where 8.87 is derived in the same way described in the

previous subsection. While most eigenvalues satisfying vacuum stability and perturbative

unitarity are not larger than 3/2 corresponding to the usual SM maximal eigenvalue, there

exist several eigenvalues larger than 3/2. But, as can be seen from the right panel in

figure 4, the largest eigenvalue for λHS = 8.87 is at best 2/5. Thus, the perturbative

unitarity bound in this case appears to be weaker than that in the case s ≫ m2
h,m

2
s.

3.2 Case for 〈S〉 = 0

In this case, the matrix T0 can be reduced to a simpler form because of the Z2-odd charge

of singlet s. It is worthwhile to notice that there is no s-h-h coupling because the singlet

scalar s can not develop the VEV, 〈s〉 = 0, and the odd parity of s forbids the processes

W+W− → hs, ZZ → hs, hh → hs and hs → ss. Thus, turning off the parameters E,F

– 10 –
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Figure 5. Contour plots of the possible largest eigenvalues for eq. (3.24) as a function of quartic

couplings λH and λS .

and G in the matrix form given by eq. (3.16), we get the matrix T0 for this case as follows:

T0 →
(

−λH

4π

)

·



























1 1√
8

1√
8

1√
2
C 0 0

1√
8

3

4

1

4

1

2
C 0 0

1√
8

1

4

3

4

3

4
B 0 0

1√
2
C 1

2
C 3

4
B 3

4
A 0 0

0 0 0 0 3

4
D 0

0 0 0 0 0 1

2



























. (3.22)

3.2.1 Limit of s ≫ m
2

h
, m2

s

In this limit, the elements of matrix T0 proportional to C vanish and only the tree-level

four-point vertex contributions can remain. The parameter D becomes the same as B.

Consequently, the form of the matrix T0 becomes the same as that given in the previous

subsection 3.1.1, so the largest eigenvalue of T0 is 3. However it just gives the upper bound

on the Higgs mass because of no mixing between the Higgs and the singlet scalar. Taking

α = 0 and cmax = 3, we get the upper bound on the Higgs mass given as,

mh ≤ 1√
2
MLQT . (3.23)

Note that although there is no bound on the mass of the singlet s in this case, there is still

constraint on the coupling λHS arisen from the same structure of T0.
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Condition cmax Sym. Mass bound Mixing angle (α) λHS

s ≫ m2
h , m2

s 3 × ms ≤ 4.5 TeV(400 GeV) α ∼ 0.1(1.5) 0∼ 9.8

s≫m2
h , s∼4m2

s∼1 TeV 5/2 × ms ≤ 6 TeV(550 GeV) α ∼ 0.1(1.5) 0∼ 8.87

s ≫ m2
h , m2

s 3 Z2 mh≤(1/
√
2)MLQT ≈707GeV × 0∼ 9.8

s≫m2
h , s∼4m2

s∼1 TeV 3/2 Z2 mh ≤
√
2MLQT ≈ 1404GeV × 0∼ 8.87

Table 1. Upper bounds on the scalar masses along with the limits of the center-of-mass energy

s (first column), the largest eigenvalues of T0 (second), the discrete symmetry of model (third),

mixing angle (α) (fifth) and the coupling λHS (sixth).

3.2.2 Limit of s ≫ m
2

h
and s ∼ 4m2

s

The non-trivial characteristic polynomial for the upper 4× 4 block of the matrix T0 which

has a trivial eigenvalue 1/2 is given by

(

64Λ3+(−128−48A)Λ2+(48+96A−36B2−48C2)Λ−36A+45B2−36BC+36C2

)

= 0 .

(3.24)

In figure 5, we display contour plots representing the largest eigenvalues obtained by nu-

merically solving eq. (3.24). Because of no mixing between the Higgs and singlet scalars,

the coupling λHS does not affect the determination of the eigenvalues at all, contrary to

the previous cases. Here we take s ∼ 1 TeV2, mh = 126GeV and ms = 450GeV as in the

previous subsection. We see from figure 5 that the largest eigenvalue is determined to be

around 3/2 irrespective of the value of λHS . Note that non-negligible matrix elements can

lower the largest eigenvalue compared with the one in the limit of s ≫ m2
h,m

2
s. The upper

bound on mh corresponding to the largest eigenvalue 3/2 is given by

mh ≤
√
2MLQT . (3.25)

4 Implications and conclusion

Requiring perturbative unitarity of the S-matrix in the SM extended to contain a singlet

scalar, we could get some bounds on the scalar masses. In particular, we derived the upper

bound on the singlet scalar mass by taking the Higgs mass to be 126GeV measured by the

LHC. In table 1, we summarize the upper bounds on the scalar masses along with the limits

of the center-of-mass energy s (first column), the largest eigenvalues of T0 (second), the

discrete symmetry of model (third), mixing angle (α) (fifth) and the coupling λHS (sixth).

Based on the upper bounds on the scalar masses we derived, let us discuss the impli-

cations of those bounds on two interesting scenarios in which scalar fields play a crucial

role in solving problems of inflation and dark matter.

4.1 Unitarized Higgs inflation

Recently, it has been proposed that cosmic inflation can be driven by the SM Higgs with a

large non-minimal coupling to Ricci scalar [30], namely ξH†HR and ξ ∼ 104. But soon it

was pointed out that the original Higgs inflation model can be afflicted with the unitarity
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problem due to non-minimal Higgs couplings [31]. To resolve the unitarity problem while

maintaining perturbativity up to the cut-off (Λ) scale of the model, an additional gauge-

singlet scalar is introduced [20] or appropriate counter terms are taken into account [11].

Here we mainly concentrate on the unitarized (explicitly, the linear σ model type) Higgs

inflation model that has an additional singlet scalar s. In this scenario, a state composed of

both the Higgs and the singlet scalar plays the role of inflaton [32]. Therefore, this scenario

requires nontrivial VEV of the singlet scalar so as to generate a mixing between the singlet

and Higgs scalars. The relevant Lagrangian of the model in the Jordan frame is given by

L Jordan/
√−g = −1

2
M2

P l R− 1

2
ξh h

2R− 1

2
ξs s

2R+
1

2
(∂µh)

2 +
1

2
(∂µs)

2 − V (h, s) (4.1)

where ξh, s > 0 are dimensionless parameters that can control the inflation in the early

universe at the large field value. The scalar potential V (h, s) in this scenario has the

following form,

V =
1

4
λh h

4 +
1

4
λs s

4 +
1

4
λhsh

2s2 +
1

2
m2

hh
2 +

1

2
m2

ss
2. (4.2)

Note that the potential is exactly the same as the one given by eq. (2.1).7

Using eq. (3.15) in this scenario, we can easily obtain an inequality for the mixing

angle α given as

α < sin−1

[(

3M2
LQT

2 ci
−m2

h

)

/
(

m2
s −m2

h

)

]

. (4.3)

In figure 6, we plot the upper bound on the mixing angle α as a function of the mass of

the singlet scalar S in the limit of ms ≫ mh after taking the Higgs mass to be 126GeV.8

Interestingly, in figure 6, we can easily see that the mixing angle α should be very small,

α ≤ [10−9, 10−13 ] on Ms ∈ [1012, 1016 ] . (4.4)

Imposing the COBE result for normalization of the power spectrum [33] on the parameters,

we can get the relation, √
λs

ξs
= 2× 10−5

√

λh

λh − λ2
hs/λs

, (4.5)

which is translated into the mass relation for the singlet scalar S given by [11]

M2
s ≃ λs

M2
P l

3 ξ2s
, (4.6)

where MP l is the Planck Mass in the given model. From the above COBE constraint,

we get Ms ≈ 1013GeV and it is represented in figure 6 by a dashed red line. We see

from figure 6 that the COBE constraint leads to the upper bound on the mixing angle,

α ≤ 10−10. From our numerical analysis, we found that the change of eigenvalue from 5

2
to

3 does not affect the allowed range of α. In fact, it is obvious that such a tiny value of α

comes from a big mass hierarchy between the Higgs and the singlet scalars in this scenario.

7For a review on the unitarized Higgs inflation model, see the ref. [32].
8For large couplings, the results can significantly be modified at high energy by RG running. The RG

effects will be studied elsewhere.
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Α

Figure 6. Allowed (blue shaded) region of α vs. ms for the eigenvalue c = 5/2. The red dashed

line corresponds to the upper bound on ms coming from the COBE constraint [11].

4.2 TeV scale singlet dark matter

Regarding the singlet scalar as a TeV scale dark matter candidate (DM) [18], let us discuss

how the perturbative unitarity condition can constrain the model parameter by combining

it with the relic density of DM. The annihilation cross section of the singlet scalar DM into

two Higgs bosons in the limit of ms ≫ mh is simply given by

〈σss→hh v〉 ≈ λ2
HS

16πm2
s

, (4.7)

where the v is the relative velocity of the annihilation particles, and the bracket denotes

the thermal average. Note that the above annihilation channel is dominant over the other

annihilation channels such as ss → ww/zz in the case of ms ∼ 1TeV. We see that the

relic density of the singlet scalar DM depends on the coupling λHS and its mass ms.

Combining the unitarity constraint on the coupling λHS with the measurement of the

relic density, we can derive some bound on the mass of the singlet scalar. From the 9 -year

WMAP result for the cold dark matter density given by ΩDM h2 = 0.1138 ± 0.0045 [34],

we obtain the following relation

ΩDM h2 ≈ 1.04× 105GeV−1

MP

xF√
g∗

1

〈σss→hh v〉 , (4.8)

where MP is the Planck mass (≈ 1.22 × 1019GeV), xF = mS/TF with the freeze-out

temperature TF , and the g∗ the effective number of relativistic degrees of freedom at

freeze-out. The suitable values of xF and g∗ are about 25 and 90, respectively.9 Figure 7

shows how the upper bound on the singlet scalar mass as a DM candidate can be

9See ref. [18] for the details on the singlet scalar dark matter model and the constants required in the

calculation of the DM relic density.
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Figure 7. Allowed region of the parameter space in the plain (ms, λH) from the observed DM

abundance at 1σ C.L. The blue region is disallowed by the unitarity condition, and the black

dashed line represents the upper bound on ms ≤ 30.490 TeV.

determined by imposing the perturbative unitarity constraint on λHS to the prediction

of the relic density of DM. In figure 7, the green band represents the allowed region of

the parameter space in the plain (ms, λHS) from the observed DM abundance at 1σ C.L.,

and the blue region is the disallowed region coming from the unitarity constraint. We

display the black dashed line representing the upper bound on ms determined from the

combination of the observed DM abundance and unitarity bound.

ms ≤ 30.490 TeV .10 (4.9)

In conclusion, we have studied the implication of the perturbative unitarity in the SM

extended to include the singlet scalar particle. Taking into account full contributions to

the scattering amplitudes, we have derived unitarity conditions on the S-matrix which can

be translated into bounds on the masses of the scalar fields. In the case that the singlet

scalar field develops vacuum expectation value (VEV), we could get the upper bound on

the singlet scalar mass varying with the mixing angle between the singlet and Higgs scalars.

While the bound becomes divergent in the decoupling limit (α → 0), the bound becomes

very strong, ms . 400GeV, as the mixing angle α reaches maximal. On the other hand,

the mass of the Higgs scalar can be constrained by the unitarity condition in the case that

the VEV of the singlet scalar is not generated. We found that the unitarity bound on

the Higgs mass is modified and can appear to be severer in the presence of the singlet

scalar field. We have shown how the unitarity condition can constrain the unitarised Higgs

inflation, and found that a tiny mixing angle α ∼ 10−10 is required for the singlet scalar

10In ref. [18], the authors have studied TeV scale singlet scalar dark matter by restricting the cutoff scale of

the model to be a few TeV. But, our analysis shows that there exists a valid perturbative regime up to 30TeV.
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with around 1013GeV in the model. The singlet scalar mass is not constrained by the

unitarity itself when we impose Z2 symmetry in the model because of no mixing with the

Higgs scalar. But, regarding the singlet scalar field as a cold dark matter candidate, we

have derived upper bound on the singlet scalar mass, ms . 30 TeV, by combining the

observed relic abundance with the unitarity.
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A Amplitudes of scattering processes

We here present the explicit S-wave partial amplitudes to calculate the perturbative uni-

tarity bound (see also ref. [23]):

• a0(hh → hh) = −λH

4π
κhh→hh

(

3

2

)

[

1 +
3m2

h

s−m2
h

− 6m2
h

s− 4m2
h

ln

(

s

m2
h

− 3

)

+δ2 tan2 β

(

3m2
h

s−m2
s

− 6m2
h

s− 4m2
h

ln

(

s− 4m2
h

m2
s

+ 1

))

]

, (A.1)

• a0(ss → ss) = −λH

4π
κss→ss

(

3

2

)

[

δ̃ + δ2
(

3m2
h

s−m2
h

− 6m2
h

s− 4m2
s

ln

(

s− 4m2
s

m2
h

+ 1

))

+δ̃2 tan2 β

(

3m2
h

s−m2
s

− 6m2
h

s− 4m2
s

ln

(

s

m2
s

− 3

))

]

, (A.2)

• a0(ss → hh) =
λH

4π
κss→hh

(

3

2

)

[

δ + δ
3m2

h

s−m2
h

− δ2
6m2

h
√

s− 4m2
h

√
s− 4m2

s

× ln

(

1 +
2
√

s− 4m2
h

√

s− 4m2
h

s−
√

s− 4m2
h

√

s− 4m2
h − 2m2

h

)

+ δδ̃ tanβ
3m2

h

s−m2
s

−δ2 tan2 β
6m2

h
√

s− 4m2
h

√

s− 4m2
h

ln

(

1 +
2
√
s− 4m2

s

√

s− 4m2
h

s−
√
s− 4m2

s

√

s− 4m2
h − 2m2

h

)]

, (A.3)

• a0(hs → hs) = −λH

4π
κhs→hs

(

3

2

)

[

δ + δ2
3m2

h

s−m2
s

− δ
3m2

hs

A
ln

(

s2 − s (2m2
s +m2

h) + (m2
h −m2

s)
2

sm2
h

)

−δ2
3m2

hs

A
ln

(

s2 − s(2m2
s +m2

h)

sm2
s − (m2

h −m2
s)2

)

+ δ2
3m2

h

s−m2
h

−δδ̃ tan2 β
3m2

h s

A
ln

(

s2 − s(2m2
h +m2

s) + (m2
h −m2

s)
2

sm2
s

)

− δ2
3m2

h s

A
ln

(

s2 − s(m2
h + 2m2

s)

sm2
h − (m2

h −m2
s)2

)

]

, (A.4)

• a0(hh → W+

L W−

L ) = a0(hh → ZLZL) = −λH

4π
κhh→ww/zz

(

1

2

)

[

1 +
3m2

h

s−m2
h

− 4m2
h

[s(s− 4m2
h)]

1/2
ln

(

s− 2m2
h − [s(s− 4m2

h)]
1/2

2m2
h

)

]

, (A.5)

• a0(ss → W+

L W−

L ) = a0(ss → ZLZL) = −λH

4π
κss→ww/zz

(

1

2

)(

δ
3m2

h

s−m2
h

)

, (A.6)
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• a0(hZL → hZL) = −λH

4π
κhz→hz

(

1

2

)

[

1 +
m2

h

s
− 3m2

h s

(s−m2
h)

2
ln

(

1 +
(s−m2

h)
2

sm2
h

)

− sm2
h

(s−m2
h)

2
ln

(

s(2m2
h − s)

m4
h

)

]

(A.7)

• a0(hZL → hh) = 0 , • a0(hZL → ZLZL) = 0 , • a0(hZL → W+

L W−

L ) = 0 . (A.8)

where A = s2− 2s(m2
h+m2

s)+ (m2
h−m2

s)
2 and the kinematic factor κAB→CD is defined by

κAB→CD ≡
(

1− (mA −mB)
2

s

)
1

4
(

1− (mA +mB)
2

s

)
1

4

·
(

1− (mC −mD)2

s

)
1

4
(

1− (mC +mD)2

s

)
1

4

.

The tangent parts of above formulae vanish when considering an odd parity of s.

Secondly, the Z2-charge violating processes:

• a0(hs → W+
L W−

L ) = a0(hs → ZZ) = −λH

4π
κhs→ww/zz

(

1

2

)(

δ tanβ
3m2

h

s−m2
h

)

• a0(hh → hs) = −λH

4π
κhh→hs

(

3

2

)

[

δ tanβ
3m2

h

s−m2
h

+ δ2 tanβ
3m2

h

s−m2
s

+
δ tanβ

√

1− 4m2
h

s

√
A

ln







m2
h − 1

2

√

A+ 4s(m2
h −m2

s) +
1

2

√

1− 4m2
h

s

√
A

m2
h − 1

2

√

A+ 4s(m2
h −m2

s)− 1

2

√

1− 4m2
h

s

√
A







+
δ2 tanβ

√

1− 4m2
h

s

√
A

ln







2m2
h −m2

s − 1

2

√

A+ 4s(m2
h −m2

s) +
1

2

√

1− 4m2
h

s

√
A

2m2
h −m2

s − 1

2

√

A+ 4s(m2
h −m2

s)− 1

2

√

1− 4m2
h

s

√
A







]

(A.9)

• a0(ss → hs) = −λH

4π
κss→hs

(

3

2

)

[

δ2 tanβ
3m2

h

s−m2
h

+ δδ̃ tanβ
3m2

h

s−m2
s

+
δ2 tanβ

√

1− 4m2
s

s

√
B

ln







m2
s − 1

2

√

B + 4s(m2
s −m2

h) +
1

2

√

1− 4m2
s

s

√
B

m2
h − 1

2

√

B + 4s(m2
s −m2

h)− 1

2

√

1− 4m2
s

s

√
B







+
δδ̃ tanβ

√

1− 4m2
s

s

√
B

ln







2m2
s −m2

h − 1

2

√

B + 4s(m2
s −m2

h) +
1

2

√

1− 4m2
s

s

√
B

2m2
s −m2

s − 1

2

√

B + 4s(m2
s −m2

h)− 1

2

√

1− 4m2
s

s

√
B







]

(A.10)

Note that two new variables, δ̂ and δ (for later works and the simplicity) are introduced

here and in our main body,

δ̂ ≡ λS

λH
, δ ≡ 1

6

λHS

λH
. (A.11)

When you consider the matrix T0 in our main body, you should multiply it by normalization

factors such as
√
2 or 2. For example,

a0(ss → hh) ≡
(√

2
)2

· a0
(

∣

∣

∣

1√
2
ss
〉

→
∣

∣

∣

1√
2
hh
〉

)

.
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