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Abstract: We compare methods to resum logarithms in event shape distributions as they

have been used in perturbative QCD directly and in effective field theory. We demonstrate

that they are equivalent. In showing this equivalence, we are able to put standard soft-

collinear effective theory (SCET) formulae for cross sections in momentum space into a

novel form more directly comparable with standard QCD formulae, and endow the QCD

formulae with dependence on separated hard, jet, and soft scales, providing potential ways

to improve estimates of theoretical uncertainty. We show how to compute cross sections

in momentum space to keep them as accurate as the corresponding expressions in Laplace
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space. In particular, we point out that that care is required in truncating differential distri-

butions at NkLL accuracy to ensure they match the accuracy of the corresponding cumulant

or Laplace transform. We explain how to avoid such mismatches at NkLL accuracy, and

observe why they can also be avoided by working to NkLL′ accuracy.
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1 Introduction

The theory Quantum Chromodynamics (QCD) is remarkably successful in describing the

strong interaction. Thanks to the phenomenon of asymptotic freedom [1, 2], many inclusive

strong interaction cross sections can be predicted to excellent accuracy in perturbation

theory, expanding order by order in the strong coupling αs(µ).

Cross sections that are not fully inclusive over final-state hadrons, however, re-

quire careful treatment in perturbation theory due to the appearance of large logarithms

lnk(µ1/µ2) at each order in fixed-order perturbation theory. The logarithms are of ratios

of scales µ1,2 that are used to define the exclusivity of the measurement. If the scales are

widely separated, the logs are large, and the expansion in αs is poorly behaved. In par-

ticular, such logs appear in cross sections that count hadronic jets [3]. They may depend

on ratios of energy cuts Λ on the final state to the total interaction energy Q. The logs

may also depend on masses of jets that are measured in the final state. Methods to resum

these logarithms to all orders in αs may or may not yet exist, depending on the type of

measurement.

Event shapes provide a large class of observables that can be used to measure the

jet-like structure of the final state in collisions producing hadrons [4]. We consider those

event shapes that are “global” observables, which sum over all the final-state hadrons with

a single weight measure e that introduces sensitivity of the cross section to a single collinear

scale and a single soft scale. Non-global observables which induce sensitivity to multiple soft

scales will not be considered here [5, 6]. For simplicity we consider event shapes in leptonic

collisions e+e− → X producing hadrons X. Our observations and conclusions apply more

generally to the resummation of logs in other types of collisions and measurements as well.

A very familiar event shape is the thrust τ = 1− T [7], defined here by

τ ≡ 1− T = 1− 1

Q
max

t̂

∑
i∈X

∣∣̂t · pi∣∣ , (1.1)

where Q is the center-of-mass collision energy, X the final hadronic state, pi the 3-

momentum of particle i, and t̂ the thrust axis, defined as the axis that maximizes the

sum over i (and thus minimizes τ) in eq. (1.1). The thrust is one of a continuous set of

event shapes that can be written in a more generic form,

e =
1

Q

∑
i∈X

∣∣piT ∣∣ fe(ηi) , (1.2)

where the transverse momentum pT and rapidity η of each particle are measured with

respect to the thrust axis t̂. (Equation (1.2) applies to massless hadrons i in the final

state. For the generalization to massive hadrons, see [8, 9].) The function fe is taken to

be continuous and to fall off sufficiently fast at large ηi to preserve infrared and collinear

safety [10, 11]. In the main discussion in this paper, we will consider the class known as

angularities e = τa [12–14], defined by fa(η) = e−|η|(1−a), which are infrared safe for real

numbers a < 2, although our discussion of factorization and resummation below will be

valid for a < 1.
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Although our discussion will take place mainly within the context of angularity event

shapes in e+e− collisions, our conclusions will not limited to this application. Rather they

provide a concrete arena in which to draw more general lessons about different techniques

to resum logs in QCD perturbation theory and the relation between them.

Measurement of an event shape such as thrust induces sensitivity of the cross section

on several different energy scales. Small thrust τ means that the final state is nearly two-

jet-like. The cross section then depends on the hard collision energy Q, the typical jet mass,

Q
√
τ , and the energy of soft radiation from the jets, Qτ . Ratios of these scales appear as

logs of τ in the perturbative expansion of the thrust distribution. A method to resum two-

jet event shapes was described in [15] (CTTW) based on the soft and collinear singularities

of QCD and approximations to phase space in these regions. A unified derivation of the

resummation of logarithms from the factorization properties of QCD cross sections was

presented in ref. [16], which are also naturally derivable using the methods of effective

field theory. We summarize these methods in parallel discussions below in the context of

“direct” QCD (dQCD) and soft collinear effective theory (SCET) [17–21] techniques to

resum logs, applied to jet cross sections [22, 23] and event shape distributions [24].

Working directly in full QCD or going through the methods of EFT should theoreti-

cally be equivalent. The EFT, after all, is a systematic approximation to and method for

computing in the full theory [25]. It is a primary goal of this paper to show that standard

formulae derived in the two formalisms are, indeed, equivalent. However, some results

for resummed event shapes published in the respective literature sometimes do not seem

obviously equivalent and sometimes yield apparently different numerical results.

We will illustrate one such previous discrepancy and its resolution by focusing on a

comparison between angularity distributions reported in [12, 13] using full QCD and [26, 27]

using SCET. (QCD NLL results for τa and many other event shapes are also given in [28].)

In [26] a comparison of the two sets of results at next-to-leading logarithmic (NLL) accuracy

was performed, and significant numerical differences were found. In this paper, we resolve

the source of this discrepancy. The resolution will involve a careful consideration of the

meaning of NkLL accuracy for various ways to write the cross section, e.g. as a differential

distribution, the cumulative distribution (cumulant) or in Laplace or position space. We

find that the results in [12, 13] and [26] were not evaluated according to a consistent

definition of NLL accuracy. Once we implement such a consistent scheme, we find that

results in the two formalisms yield numerically equivalent results.

In section 2 we will review a standard definition of NkLL accuracy, namely, which terms

in the exponent of the Laplace transform σ̃(νa) of the event shape distribution dσ/dτa are

accurately predicted. We will compare it to the definition given by CTTW in terms of the

cumulative distribution (or “cumulant” or “radiator”) R(τa). We will observe that the two

descriptions of NkLL are not precisely equivalent. This sets the stage for a more careful

prescription for computing to NkLL accuracy in the subsequent sections.

In section 3 we consider factorized and resummed event shape distributions predicted

in [24, 26] using the formalism of SCET and compare to a form based on the predictions

of [12, 13] derived directly in full QCD. These distributions look similar but not identical

at first, but we will put the two into forms that are precisely and transparently equivalent.

– 3 –
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This comparison serves not only a pedagogical purpose, but improves both versions in real

ways. The SCET version is put in a form in which more logarithmic terms are explicitly

exponentiated and thus sums a larger number of terms to all orders in αs at a given

level of logarithmic accuracy. In the QCD version, we generalize the jet and soft scales

from the fixed values they usually take to generic, variable forms, whose variation can

provide an accurate estimation of theoretical uncertainty at finite NkLL accuracy. This

restoration of variable scales to the traditional QCD form is a direct byproduct of our proof

of its equivalence with the SCET form. This proof in section 3.4 is the technical heart of

the paper.

Section 4 contains a detailed pedagogical review of the orders to which one must

compute various ingredients of the factorization theorem (hard, jet, soft functions and

their anomalous dimensions) to achieve NkLL accuracy in event shape cross sections. The

counting scheme for the Laplace transform σ̃(ν) is standard and straightforward. If we base

the definition of NkLL accuracy on this object, however, then we argue that in order to

evaluate cross section in momentum (τa) space to the equivalent accuracy, some additional

care is warranted in evaluating typical formulae for the cumulant R(τa), and even greater

care in evaluating the differential distribution σ(τa). Näıvely applying the same procedures

that one uses to truncate ingredients of the resummed Laplace transform at a given order of

accuracy directly to some existing forms for the resummed momentum-space distributions

can cause the latter to predict fewer terms at NkLL accuracy than one might expect them

to. We will give clear prescriptions on how to evaluate the cross sections in momentum

space to the equivalent accuracy as the Laplace transforms. Namely, it is preferable to

evaluate some quantities in R(τa) to what is known as NkLL′ accuracy (keeping fixed-order

jet and soft functions to one higher power in αs than at NkLL accuracy) to maintain an

equivalent level of accuracy with σ̃(ν), and it is essential to evaluate some terms in σ(τa)

to NkLL′ accuracy, so that an equivalent level of accuracy between σ(τa) and the result

of taking the derivative of R(τa) is maintained. We will provide a new formula for the

resummed differential distribution σ(τa) defined in terms of the derivative of the cumulant

and to which simple truncation rules can be applied.

Section 5 contains in summary form the results of the study in section 4, and the reader

who wishes to skip to the final formulae and prescriptions for evaluating σ̃(ν), R(τa) and

σ(τa) to NkLL or NkLL′ accuracy without working through the details of their development

in section 4 should turn directly to section 5.

In section 6 we will provide some numerical comparisons of formulae in previous liter-

ature and in the current paper to illustrate the effect of consistent counting of logarithms

and the implementation of the improved procedures we advocate.

Much of the information in this paper is a review of known, existing procedures,

and even some of the comparisons we perform have been presented in different contexts

in the past (e.g. [29–33], and more recently [34]). For these parts, we hope the reader

finds pedagogical value in the unified, coherent explanations we attempt to provide here.

However, we believe the new observations we make in comparing SCET and QCD event

shape resummation add new practical value as well, increasing the number of resummed

terms in one case and scale variability/uncertainty estimation in the other. Moreover, the
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observations we make about how to calculate the momentum-space cumulant to keep it as

accurate as the resummed Laplace transform and, more importantly, how to calculate the

differential distribution to an accuracy equivalent to that of the cumulant, have not to our

knowledge been made clearly and explicitly before. It is our hope that future studies in

this direction may avoid the counting complications we identify, so that with knowledge of

certain ingredients to a given order in αs, they may achieve the greatest accuracy and most

realistic uncertainty estimates that are possible. We also hope that the issues resolved here

will help ensure that the most precise QCD predictions will be available at the LHC and

future facilities.

2 Orders of resummed perturbative accuracy

2.1 Definition of NkLL accuracy: counting in the Laplace exponent

In this paper we will review and compare methods to resum large logarithms in event

shape distributions, expressed in three ways: as a differential cross section, as its Laplace

transform, and as a cumulant cross section (also called the radiator, e.g. in [13]):

σ(τ) ≡ 1

σ0

dσ

dτ
, (2.1)

σ̃(ν) ≡
∫ ∞

0
dτ e−ντσ(τ) (2.2)

R(τ) ≡
∫ τ

0
dτ ′σ(τ ′) , (2.3)

where σ0 is the Born cross section. Each of the three ways of writing the cross section in

eqs. (2.1), (2.2), and (2.3) exhibits logarithms that become large in the two-jet endpoint

region τ � 1. The differential distribution can be computed as a perturbative expansion in

the strong coupling αs, for sufficiently large τ . For very small τ . ΛQCD/Q, the distribution

must be convolved with a nonperturbative shape function (e.g. [13, 26, 35–37]) whose effects

dominate in this region, but which we do not consider in this paper. The distribution

predicted by perturbation theory takes the form,

σ(τ) =δ(τ) +
αs
4π

[
a12L1 + a11L0 + a10δ(τ)

]
+

(
αs
4π

)2[
a24L3 + a23L2 + a22L1 + a21L0 + a20δ(τ)

]
+

(
αs
4π

)3[
a36L5 + a35L4 + a34L3 + a33L2 + a32L1 + a31L0 + a30δ(τ)

]
+ · · ·+ d[αs](τ) ,

(2.4)

where Ln ≡ Ln(τ) = [θ(τ) lnn τ/τ ]+ is a plus distribution defined in appendix A, and where

d is an integrable function of τ , no more singular than ln(1/τ). Meanwhile the Laplace

– 5 –
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accuracy cnk Cn

LL k = n+ 1 n = 0

NLL k ≥ n n = 0

NNLL k ≥ n− 1 n ≤ 1

N3LL k ≥ n− 2 n ≤ 2

accuracy cnk Cn

LL k = n+ 1 n = 0

NLL′ k ≥ n n = 1

NNLL′ k ≥ n− 1 n ≤ 2

N3LL
′

k ≥ n− 2 n ≤ 3

Table 1. Conventions for order counting in σ̃(ν). At NkLL accuracy, all cnk for all n and m ≥
n+ k − 1 are included, as are all Cn for n ≤ k − 1. In the primed NkLL′ counting, the fixed-order

coefficients Cn are computed to one higher order in αs.

transform and the cumulant both take the form

{σ̃(ν), R(τ)} = 1 +
αs
4π

[
b12L

2 + b11L+ b10

]
+

(
αs
4π

)2[
b24L

4 + b23L
3 + b22L

2 + b21L+ b20

]
+

(
αs
4π

)3[
b36L

6 + b35L
5 + b34L

4 + b33L
3 + b32L

2 + b31L+ b30

]
+ · · · +D(αs) ,

(2.5)

where for the Laplace transform L = ln ν while for the cumulant L = ln(1/τ). The

remainder function D is either the Laplace transform or the integral of the integrable

function d(τ), with the property D→ 0 as τ→ 0 or ν→∞. Of course, the coefficients bij
differ between the Laplace transform and the cumulant.

Fixed-order perturbation theory calculates the cross sections in eqs. (2.4) and (2.5)

row-by-row, order-by-order in αs, which in eqs. (2.4) and (2.5) means αs(Q), where Q is

the CM e+e− collision energy. At this high scale, αs � 1. However when the logs Ln or Ln

become large, this expansion breaks down. Instead, the expansions should be reorganized

so that sets of large logarithms to all orders in αs are summed one set at a time. One might

be tempted to sum eqs. (2.4) and (2.5) column-by-column, capturing the largest logs first,

then the next-to-largest, etc. However, it turns out that this is not the most systematic

way to reorganize the summation. Instead, systematic methods of resummation prefer to

sum the logarithm of σ̃(ν), which exponentiates in a simple fashion:

σ̃(ν) = C(αs) exp

{
αs
4π

[
c12L

2 + c11L
]

+

(
αs
4π

)2[
c23L

3 + c22L
2 + c21L

]
+

(
αs
4π

)3[
c34L

4 + c33L
3 + c32L

2 + c31L
]

+ · · ·
}

+D(αs) ,

LL + NLL + NNLL + N3LL + · · ·

(2.6)

– 6 –
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where C has an expansion in αs independent of the logarithms,

C(αs) = 1 +
αs
4π
C1 +

(
αs
4π

)2

C2 + · · · . (2.7)

In the expansion in eq. (2.6), the highest power of logs in the exponent at each order αns is

Ln+1. It turns out that σ̃(ν) exponentiates more simply than σ(τ) or R(τ), and so we use

σ̃(ν) written as in eq. (2.6) as the benchmark for defining orders of logarithmic accuracy.

Systematic methods of resummation give a well-defined, simple definition of this exponent

in terms of a limited number of functions in QCD/SCET:

σ̃(ν) = C(αs)e
Ē(ln ν) + D̃(αs, ν) , (2.8)

where D̃ is the non-singular part of σ̃ in Laplace space. We will give a precise definition

of Ē in terms of anomalous dimensions and other functions in section 3. We use eq. (2.6)

to define the order of accuracy to which we resum logarithms in the cross section: the

first column contains all the terms at leading-log (LL) accuracy, the second column next-

to-leading log (NLL), the third next-to-next-to-leading log (NNLL), etc. This counting

is natural in a regime where the logs are large enough so that L ∼ 1/αs. Then LL

sums all terms of order α−1
s , NLL all terms of order 1, NNLL all terms of order αs, etc.

In this counting, the fixed-order terms in C are counted as C1 being NNLL (i.e. it is

explicitly order αs), C2 being N3LL, etc. Since the terms in the prefactor C in eq. (2.8) do

organize themselves differently than the exponent Ē, though, one can adopt an alternative

convention for them. Often, the fixed-order coefficients are included to one higher order

in αs, yielding the so-called “primed” counting [38], summarized in table 1, so C1 would

be NLL′, C2 NNLL′, etc. This counting is more useful when one wishes to compute the

transition region between small and large τ to NkLO accuracy where the fixed-order terms

in the non-singular D are the same size as the logs. In addition, we will find below that in a

number of ways the primed counting is a more consistent scheme for counting the accuracy

of the resummed logs themselves, at least when computing R(τ) or σ(τ) in momentum

space. When the non-singular terms D are calculated in an ordinary fixed-order expansion

to NnLO accuracy, etc. we speak of the cross section resummed to NkLL(′) accuracy and

matched onto fixed-order at NnLO , or, for short, NkLL(′)+NnLO.

We will define NkLL accuracy for the cumulant R(τ) or the distribution σ(τ) similarly

to σ̃(ν) in eq. (2.6). However, because they do not exponentiate as simply as eq. (2.8),

the prescriptions for calculating R(τ) or σ(τ) to NkLL (or NkLL′) accuracy are a bit more

involved. For example, the most compact form for systematic resummation of R(τ) that

we will find below is:

R(τ) = C(αs) exp

[
Ē(ln 1/τ) +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
+D(αs, τ) , (2.9)

where D is the non-singular part of R in τ -space. The exponents Ē in eqs. (2.8) and (2.9)

take the same form, while the terms generated by the gamma function and its derivatives

with respect to Ē′ [which itself is the derivative dĒ/d(ln 1/τ)] compensate for the addi-

tional terms generated due to the Laplace transform of lnn(1/τ) being not exactly equal to

– 7 –
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lnn(νeγE ) (lower order logs are also generated in the transform, as reviewed in appendix B).

Thus, to make eq. (2.9) reproduce the entire NkLL accurate σ̃(ν) in eq. (2.8) exactly requires

evaluating the differential operators in eq. (2.9) acting on the gamma function to infinitely

high order, for which a closed-form algebraic expression cannot be obtained. However,

we will find that keeping the differential operators to sufficiently high finite order, all the

terms in σ̃(ν) that should be correct at NkLL accuracy are indeed reproduced by Laplace

transforming R(τ) in eq. (2.9). We will describe the appropriate procedure and counting

in section 4.2.2. Additional similar considerations apply to σ(τ), which we will explain in

section 4.3.1.

2.2 Original CTTW convention: counting in the cumulant

Resummation of large logarithms in event shape distributions was described by CTTW [15]

in terms of the cumulant cross section (also called the “radiator”) R(τ), which can be

organized in the form

R(τ) = C(αs)Σ(τ, αs) +D(τ, αs) , (2.10)

where

C(αs) = 1 +

∞∑
n=1

(αs
2π

)n
Cn , (2.11a)

ln Σ(τ, αs) =

∞∑
n=1

n+1∑
m=1

(αs
2π

)n
Gnm lnm

1

τ

=
(αs

2π

) (
G12 ln2 1

τ
+G11 ln

1

τ

)
+
(αs

2π

)2
(
G23 ln3 1

τ
+G22 ln2 1

τ
+G21 ln

1

τ

)
+
(αs

2π

)3
(
G34 ln4 1

τ
+G33 ln3 1

τ
+G32 ln2 1

τ
+G31 ln

1

τ

)
+ · · · , (2.11b)

and D(τ, αs) is a remainder function that vanishes as τ → 0. In eqs. (2.10) and (2.11), αs
is again evaluated at the scale Q. Expanding R(τ) in powers of αs explicitly,

R(τ) =

∞∑
n=0

2n∑
m=0

Rnm

(αs
2π

)n
lnm

1

τ
+D(τ, αs) . (2.12)

In table 2 we give the coefficients Rnm in terms of the coefficients Gnm in the exponent of

Σ and coefficients Cn in the multiplicative prefactor up to O(α3
s).

Comparing eqs. (2.10) and (2.11) to eq. (2.9), we note that the CTTW exponent ln Σ is

not simply equal to Ē, but also contains terms generated by the gamma function Γ(1− Ē′)
and the derivatives in eq. (2.9) acting on it. Although eq. (2.9) is thus in a slightly more

involved mathematical form, in practice it is actually simpler in the sense that eq. (2.9)

can be computed from the single object Ē and its derivatives and shows how the CTTW

coefficients Gnm would be computed systematically to arbitrarily high accuracy. Because

eq. (2.9) is not simply an exponential of Ē as in eq. (2.8), we must take care in defining

– 8 –
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Rnm n = 1 n = 2 n = 3

m = 2n R12 = G12 R24 = 1
2G

2
12 R36 = 1

6G
3
12

m = 2n− 1 R11 = G11 R23 = G23 +G12G11 R35 = G23G12 + 1
2G

2
12G11

m = 2n− 2 R10 = C1 R22 = G22 + 1
2G

2
11 + C1G12 R34 = G34 +G23G11 +G22G12 + 1

2G12G
2
11 + 1

2C1G
2
12

m = 2n− 3 — R21 = G21 + C1G11 R33 = G33 +G22G11 +G21G12 + 1
6G

3
11 + C1(G23 +G12G11)

m = 2n− 4 — R20 = C2 R32 = G32 +G21G11 + C2G12 + C1(G22 + 1
2G

2
11)

m = 2n− 5 — — R31 = G31 + C2G11 + C1G21

m = 2n− 6 — — R30 = C3

Table 2. Coefficients in the fixed-order expansion of radiator R(τ). Rnm is the coefficient of

(αs/2π)n lnm(1/τ) in the expansion of R(τ), given here up to O(α3
s) in terms of the coefficients Cn

and Gnm in the exponentiated form of the radiator eq. (2.10).

what NkLL accuracy means in evaluating each part of eq. (2.9) in a manner consistent with

the prescription for eq. (2.8). This will be the subject of section 4.2.2.

In the presentation of CTTW, NkLL accuracy describes the number of terms in the

exponent ln Σ of R in eq. (2.11) that are known. We have instead defined NkLL accuracy

by the number of terms known in the exponent of the Laplace transform σ̃(ν) in eq. (2.6).

In principle, knowing one set of terms in either of eqs. (2.6) and (2.11b) to NkLL accuracy

would allow obtaining the other one to the same accuracy by (inverse) Laplace transfor-

mation. However, unlike for R(τ), it is possible to give a closed algebraic form eq. (2.8)

for σ̃(ν) that predicts all the NkLL terms to arbitrarily high order in αs in eq. (2.6). In

contrast, eq. (2.9) for R(τ) does so in principle, but not in a closed algebraic form —

the exponential of derivatives ∂n
Ē′

cannot actually be evaluated to infinitely high order in

practice. So, one has to decide at what finite order in αs to truncate the exponential dif-

ferential operator to finite order at NkLL accuracy. Because of this additional ambiguity

or complexity in defining NkLL accuracy in terms of R(τ) (similarly σ(τ)) in momentum

space, we define NkLL accuracy instead more simply by the number of terms accurately

predicted in the exponent of σ̃(ν). We will explain in section 4.2.2 below how to truncate

eq. (2.9) for R(τ) at NkLL accuracy properly so that it does in fact match the accuracy of

σ̃(ν).

For the distribution σ(τ), NkLL accuracy will be similarly defined, namely, the Laplace

transform of the NkLL σ(τ) must match the accuracy of the NkLL σ̃(ν). This can be

accomplished by simply differentiating R(τ) computed properly to NkLL accuracy or by

appropriate truncation of a formula derived for σ(τ) directly. In section 4.3, we will show

that care must be exercised in making such truncations of some standard formulae for the

resummed distribution. Näıve truncation according to standard rules for NkLL accuracy

can make those formulae for σ(τ) yield less accurate results than directly differentiating

the NkLL cumulant. This problem does not exist at NkLL′ accuracy.

To close this section, let us comment on counting logs in the fixed-order expansion

eq. (2.12) of the cumulant R(τ). Note that knowing all the coefficients Gnk and Cn at a

given order in NkLL accuracy also captures all the terms in the (k+1)-th row of the fixed-

order expansion of R(τ) shown in table 2. In the past, this is what was sometimes meant
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by NkLL when applied directly to the expansion of R(τ) in powers of αs (this is what is

called “NkLLF” accuracy in [39]). That is, LLF accuracy means the first row of table 2,

NLLF accuracy means the second row, etc. However, NkLL accuracy in the exponent of

R(τ) resums many more terms than this. The number of rows in table 2 do not stand in

one-to-one correspondence with the orders of accuracy NkLL in table 1 [39]. For resummed

calculations, nowadays NkLL accuracy invariably refers to the number of terms resummed

in the exponent ln Σ (and prefactor C) of the radiator R (or, rather, in the exponent Ē

of the Laplace transform σ̃(ν)). This counting is also much more natural and consistent

with systematic calculation using the renormalization group methods that are reviewed in

section 3.

3 Comparison of direct QCD and SCET resummation

In this section we review techniques for achieving the resummation of logarithms in eq. (2.6)

to all orders in αs. On the one hand, none of the techniques reviewed here are new. On

the other hand, by gathering them in one place, we will notice some new connections

that help generalize or simplify existing results into more illuminating, useful forms, and

even improve the accuracy of some resummation formulae. We hope the reader finds new

pedagogical and practical value in the combined results we collect and review here.

A variety of techniques have been employed to perform resummation for processes with

large logarithms, both within the context of full QCD and also using the tools of effective

field theory. For jets, the EFT is SCET. For threshold resummation, these methods have

been compared in detail from the perspective of both fields [29, 30, 32–34]). However,

for event shapes, such a detailed comparison has not been performed. These techniques

are applicable to more complex jet observables [40–44], and will find use in studies of jet

substructure [45–47].

In the title of this section we refer to “direct QCD” (dQCD) by which we mean the

method of resummation derived directly from the properties of scattering amplitudes in

perturbative QCD. This is in contrast to SCET methods derived using the techniques of

effective field theory. The two methods differ in details but both describe in a controlled

series of approximations the same full theory of QCD. The EFT can be viewed as a sys-

tematic method to organize the approximations made in order to factorize cross sections in

full QCD rather than being a different theory. The tools of EFT then make systematic the

methods of resumming logs via RG evolution. Whether working directly in the full theory

or going through the machinery of EFT, the two methods lead to the same resummation

results because both arrive at similar factorization of hard, collinear and soft scales for the

cross section. In SCET the collinear (jet) and soft functions in the factorization theorem

are matrix elements of operators built out of effective theory fields. In direct QCD they

rely on perturbative techniques to separate out the subleading contributions that violate

the factorization, but can also be expressed as matrix elements of operators similar to those

in SCET (see, e.g., [12, 48]). We use the adjective “direct” simply to distinguish whether

one uses explicitly the construct of an EFT or not to resum logs. We will, however, often

drop the adjective and simply refer to the direct method as “QCD” below.
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We begin this section with a brief overview of factorization in both QCD and SCET,

and provide separate short reviews of common resummation techniques in the two for-

malisms. We then show some rather compact and remarkable ways to rewrite the all-orders

resummation formalism that underscore the connection between QCD and SCET. We show

that the two methods are equivalent at all orders, and furthermore that, if the resummation

is truncated at a given order, the two methods still give the same result. Additionally, we

use the connection between the two resummation formalisms to show how non-canonical

scale choices can be made in the QCD resummation. This connection also leads us to a

form for event shape distributions resummed in SCET that resums more terms than most

standard formulae used in the literature to date.

While there is a wide variety of event shapes one can consider (e.g. thrust [7], jet

mass [49–51], broadening [52], C-parameter [53], N -jettiness [42], etc.), a much larger class

of event shapes that also encompasses some of these are the angularities [12–14], defined

for events in e+e− → hadrons as

τa =
1

Q

∑
i∈X

Ei sina θi(1− cos θi)
1−a mi=0−→ 1

Q

∑
i∈X

∣∣p⊥i ∣∣e−|ηi|(1−a) , (3.1)

where Q is the center-of-mass collision energy, X the hadronic final state, Ei the energy

of particle i, and where the angle θi, transverse momentum p⊥i and pseudorapidity ηi are

measured with respect to the thrust axis t̂X of the final state X. The second expression for

τa holds for massless hadrons; for generalization to nonzero mass, see [8]. The angularities

interpolate between thrust at a = 0 and broadening at a = 1, although a is allowed to vary

between −∞ < a < 2. The factorization theorem and resummation we discuss below hold

for a < 1. For the case a = 1 see [54–58]. For “recoil-free” versions of angularities and

other event shapes with nice properties at a = 1, see [59]. Thus, framing our discussion in

terms of angularities is not a narrow specialization to a particular variable, but rather a

way to encompass many of the above-mentioned event shapes at once in a generic way, and

also illustrates how to modify the resummation formulae for observables of different mass

dimensions. The discussion below for angularities should be read in this generic light.

3.1 Factorization and resummation of event shape distributions

3.1.1 The factorization theorem

The cross section for e+e− → hadrons differential in the angularity τa can be shown

to factorize in the two-jet region τa � 1. In this regime, soft and collinear degrees of

freedom dominate the final state, and the cross section factorizes into hard, jet, and soft

functions [12, 24, 26, 48]:

dσ

dτa
= σ0H2(Q2, µ)

∫
dtna dt

n̄
a dks δ

(
τa−

tna + tn̄a
Q2−a −

ks
Q

)
Jan
(
tna , µ)Jan̄

(
tn̄a , µ)Sa2

(
ks, µ

)
. (3.2)

For larger τa ∼ 1, non-singular terms which are power-suppressed in the two-jet region

become leading order and must be added to this expression. The factorization theorem

eq. (3.2) has been derived both using the methods of direct QCD [12, 48] and SCET [24,

26, 48]. We have changed the notation from that used in [12, 24, 26, 48] so the arguments
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of the jet and soft functions are dimensionful, reflecting the natural quantities on which

they depend. As alluded to in section 2, often it is advantageous to study the Laplace

transform of eq. (3.2), for which the factorization theorem is

σ̃(νa) = H2(Q2, µ)J̃an

(
νa
Q2−a , µ

)
J̃an̄

(
νa
Q2−a , µ

)
S̃a2

(
νa
Q
,µ

)
, (3.3)

where

σ̃(νa) =
1

σ0

∫ ∞
0

dτa e
−νaτa dσ

dτa
, (3.4a)

J̃an(xa, µ) =

∫ ∞
0

dta e
−xataJan(ta, µ) , S̃a2 (xa, µ) =

∫ ∞
0

dks e
−xaksSa2 (ks, µ) , (3.4b)

xa =
νa
Q2−a for J , xa =

νa
Q

for S , (3.4c)

where for simplicity of notation we let xa take the form appropriate to the function in

which it appears. Below, we will generally use νa for dimensionless transformed variables

and xa for dimensionful ones (with the dimension depending on whether it appears in J

or S). Alternatively one could use the Fourier transforms, for which eq. (3.3) would look

similar. We will find, as in previous literature, that the Laplace (or Fourier) transform

offers the most straightforward path to defining orders of resummed logarithmic accuracy.

The jet and soft functions in eqs. (3.2) and (3.3) encode the collinear and soft limits of

QCD scattering amplitudes and phase space constraints used in [15] to separate jet and soft

contibutions to event shape distributions and achieve resummation of logarithms arising

from the collinear and soft divergences of QCD. The factorization approach that starts from

eqs. (3.2) and (3.3) provides matrix element definitions of these jet and soft functions and

is thus very powerful to organize the computation of higher-order perturbative corrections

and subleading power corrections [60], and the derivation of general properties of the cross

section, such as universality of the leading nonperturbative corrections [8, 48, 61].

We collect here only the basic definitions of the jet and soft functions in eq. (3.2),

leaving discussions of their derivation and calculation to the relevant references. The

presentation here, which aims at comparing the two formalisms of direct QCD and SCET

factorization of the cross section in eqs. (3.2) and (3.3), is very much parallel to that

given in [48].

The hard coefficient H2(Q2, µ) is a short-distance or hard function containing the

underlying partonic hard-scattering diagrams, prior to the collinear branching and soft

radiation encoded in the jet and soft functions. It is computed perturbatively and depends

on dynamics only at the large energy scale Q.

3.1.2 Jet and soft functions in direct QCD

In direct QCD, the quark jet functions in eq. (3.2) are defined in terms of matrix ele-

ments [12, 48]

J ′c
µ
(tna , a, µ) =

2

Q2

(2π)6

NC

∑
NJc

Tr
[
γµ 〈0|Φ(q)†

ξn
(0)q(0) |NJc〉 〈NJc | q̄(0)Φ

(q)
ξc

(0) |0〉
]

× δ(tna −Q2−aτa(NJc))δ(Q− ω(NJc))δ
2(n̂Jc − n̂(NJc)) ,

(3.5)
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where c = n, n̄ labels the direction of the jet, NC is the number of colors, the sum is over

a set of collinear states NJn , τa(NJc) is the measured angularity of state NJc , and ω(NJc)

its total energy. These jet functions are, in the notation of [12], also differential in the

direction n̂Jc of the final state jet. In the inclusive event shape distribution eq. (3.2) we

integrate over these directions. The scalar jet functions in eq. (3.2) are the projection of

eq. (3.5) along the lightlike direction βc of the jet, Jan(ta, µ) = β̄c · J ′c(tna , a, µ). The jet

operators in eq. (3.5) contain the Wilson lines

Φ
(f)
ξc

(z) = P exp

[
ig

∫ 0

−∞
dλ ξc · A(f)(λξc + z)

]
, (3.6)

which are path-ordered exponentials of gluons in the color representation (f) along a 4-

vector direction ξc, which in [12] was taken to be off the light-cone, at least to start.

The soft function, meanwhile, is defined in direct QCD by starting with an “eikonal”

cross section reflecting the eikonal Feynman rules for emissions of soft gluons from ener-

getic partons,

σ̄(eik)(ks, µ) =
1

NC

∑
Neik

〈0|Φ(q̄)†
n̄ (0)Φ(q)†

n (0) |Neik〉 〈Neik|Φ(q)
n (0)Φ

(q̄)
n̄ (0) |0〉 δ(ks −Qτa(Neik)) ,

(3.7)

where the final states Neik are those produced by Wilson lines in the directions n, n̄. Again

τa(Neik) is the value of the angularity measured in state Neik. The eikonal cross section

provides a good approximation to the soft radiation at large angles from n, n̄ but double

counts soft radiation along these jet directions that are already in the jet functions eq. (3.5).

To avoid this double-counting in the factorization theorem eq. (3.2), one defines a set of

eikonal jet functions to be subtracted out of the eikonal cross section:

J̄ (eik)
c (ks, µ) =

1

NC

∑
Neik
c

〈0|Φ(fc)†
ξc

(0)Φ
(fc)†
βc

(0) |N eik
c 〉 〈N eik

c |Φ
(fc)
βc

(0)Φ
(fc)
ξc

(0) |0〉

× δ(ks −Qτa(N eik
c )) ,

(3.8)

where the roles of the quarks in eq. (3.5) are replaced by lightlike Wilson lines. Defining

the soft function in Laplace transform space,

S̃(xs) =
σ̃(eik)(xs)

J̃
(eik)
n (xs)J̃

(eik)
n̄ (xs)

, (3.9)

avoids double counting in the factorized cross section, and leads to the correct factorization

theorem eqs. (3.2) and (3.3). In [48] it was argued that subtracting the double-counted

contributions out of the jet functions instead leads to definitions of jet and soft functions

more parallel to SCET:

σ̃(ν) = σ0(Q)J̃n(xa)J̃n̄(xa)σ̃
(eik)(xa) , (3.10)

where

J̃c(xa) =
J̃c(xa)

J̃
(eik)
c (xa)

. (3.11)

This organization is directly related to the method of “zero-bin subtraction” in SCET [62],

a relation which was discussed in some detail in [48, 63, 64]
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3.1.3 Jet and soft functions in SCET

The jet and soft functions in SCET have similar definitions as above. Some differences in

approach are that SCET begins with a Lagrangian built out of collinear and soft quark and

gluon fields, formed after integrating out hard modes at the scale µ ∼ Q. This Lagrangian

encodes the Feynman rules for evaluating matrix elements of collinear or soft fields. Details

of the derivation of the leading-order Lagrangian can be found in [19, 20], the decoupling of

soft and collinear modes in the theory in [21]. The factorization in eq. (3.2) of event shape

distributions in the two-jet region proceeds by matching the quark electroweak current in

QCD onto currents of collinear and soft operators in SCET, the details of which can be

found to O(αs) accuracy in [22, 31]. Details of the proof of the factorization are found

in [22, 24].

It is not our intent to review all of these details here, but only to give the definitions

of the jet and soft functions in SCET arising from the proof of eq. (3.2) found in the above

references. The collinear quark jet functions appearing in eq. (3.2) are defined in SCET in

terms of matrix elements of collinear jet operators,

Jan(tna , µ) =

∫
dl+

2π

1

2NC
Tr

∫
d4x eil·x 〈0| n̄/

2
χn(x)δ(tna −Q2−aτ̂na )δ(Q+ n̄ · P)δ2(P⊥)χ̄n(0) |0〉,

(3.12)

where the trace is over colors and Dirac indices, Pµ is a “label” momentum operator

picking out the large components of the momentum of the collinear modes χn [20], and τ̂na
is an operator measuring the angularity of final states in the cut diagrams that must be

evaluated to compute the matrix element in eq. (3.12) [24]. The collinear jet fields χn are

themselves built out of collinear quark fields and collinear Wilson lines in SCET:

χn(x) =
∑
p̃

χn,p̃(x) , χn,p̃ = [δ(ω − n̄ · P)δ2(p̃⊥ − P⊥)W †nξn] , (3.13)

where p̃µ = ωnµ/2+ p̃µ⊥ is the large label momentum of the jet field χn, and ξn is a collinear

quark field, and Wn is the Wilson line of collinear gluons,

Wn(x) =
∑

perms

exp

[
− g

n̄ · P
n̄ ·An(x)

]
, (3.14)

where Aµn(x) =
∑

p̃A
µ
n,p(x) is an n-collinear gluon field.

Meanwhile the soft function in eq. (3.2) is a matrix element of soft gluon Wilson lines,

S(ks, µ) =
1

NC
Tr 〈0|Y †n̄(0)Y †n (0)δ(ks −Qτ̂ sa)Yn(0)Y n̄(0) |0〉 , (3.15)

where the trace is over colors, τ̂ sa is an operator [24] measuring the angularity τa of soft

final states, and the Wilson lines are defined

Yn(x) = P exp

[
ig

∫ ∞
0

ds n·As(ns+x)

]
, Y n̄(x) = P exp

[
ig

∫ ∞
0

ds n̄·Ās(n̄s+x)

]
, (3.16)

where As and Ās are soft gluons in the fundamental and anti-fundamental representation,

respectively [22]. The Wilson lines Yn,n̄ in eq. (3.15) arise by a field redefinition of the
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collinear fields in the SCET Lagrangian that achieves a decoupling of soft and collinear

interactions [21].

The jet and soft functions in SCET must also be carefully defined to avoid double

counting of soft radiation that happens to go along the collinear directions n, n̄. In SCET

this is achieved by a “zero-bin subtraction” [62] that accounts for the fact that the sums

over collinear label momenta in equations like eq. (3.13) do not include the momentum bin

p̃ = 0. Since this subtraction is performed out of the collinear functions, it is akin to the

direct QCD scheme in eqs. (3.10) and (3.11). This equivalence was discussed in [48, 63, 64].

The factorization theorems eqs. (3.2) and (3.3) separate the dependence on the hard,

jet, and soft scales whose ratios appear in the arguments of the large logarithms of τa in the

QCD cross section. In the hard, jet, and soft functions in dimensional regularization, the

logs are of ratios of the scale µ over a single scale, the hard scale Q, the jet scale Qτ
1/(2−a)
a ,

or the soft scale Qτa. The RG evolution of each of these functions with µ is what allows

for systematic resummation of the large logarithms in the cross section. We review below

how this is done in both methods, first in SCET and then in direct QCD.

3.2 Resummed event shape distributions in SCET

3.2.1 Perturbative expansions and evolution of hard, jet, and soft functions

The hard function H2 in eq. (3.2) is given by H2(Q2, µ) = |C2(Q2, µ)|2, where C2 is the

Wilson coefficient describing the matching from QCD onto the 2-jet operator O2 in SCET,

which comes from integrating out the short distance, energetic modes in QCD capable of

creating energetic jets, and is observable independent [17]. To O(αs), the hard function is

given by [22, 31]

H2(Q2, µ) = 1 +
αs(µ)CF

4π

(
−16 +

7π2

3
− 12 ln

µ

Q
− 8 ln2 µ

Q

)
, (3.17)

and is known to three loops [29, 65, 66]. Each jet function Jan comes from collinear radiation

in a jet, and is given to O(αs) by [26]:

Jan,n̄(ta, µ) = δ(ta)

[
1 +

αs(µ)CF
4π

f(a)

]
(3.18)

+
αs(µ)CF

4π

1

2− a

[
− 6

µ2−aL0

(
ta
µ2−a

)
+

8

1− a
1

µ2−aL1

(
ta
µ2−a

)]
,

where

f(a) =
1

2− a

(
14− 13a− π2

6

12− 20a+ 9a2

1− a
− 4

∫ 1

0
dx

2− 2x+ x2

x
ln[(1− x)1−a + x1−a]

)
,

(3.19)

which reduces to f(0) = 7−π2 for a = 0, agreeing with the one-loop result for the standard

jet function J0(t0) [67, 68]. The jet function depends naturally on a (2 − a)-dimensional

variable ta. For a = 0 the jet function is known to two loops [68] and the anomalous

dimension to three loops [29]. Meanwhile, the soft function Sa2 describes the global soft

radiation over the entire event, and is given to O(αs) by [26]:

Sa2 (k, µ) = δ(k)

(
1 +

αs(µ)CF
4π

1

1− a
π2

3

)
− αs(µ)CF

4π

16

1− a
1

µ
L1

(
k

µ

)
. (3.20)
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Figure 1. Natural scales for angularity event shapes in the factorization theorem eq. (3.2). The

hard, jet, and soft scales in this ladder minimize logs in the hard, jet, and soft functions in the

angularity cross sections eq. (3.48) in τa space or eq. (4.1) in Laplace space. The common factor-

ization scale µ in eq. (3.2) can be chosen anywhere, but is commonly chosen near µ ∼ Q. The

functions are evolved via RGEs from their natural scales to µ. The anomalous dimensions satisfy

the consistency condition γH + 2γJ + γS = 0. Note that the jet scale varies with a. At a = 1 it

coincides with the soft scale, and a new factorization theorem is required to sum logs in the jet and

soft functions, e.g. using SCETII [54–57] or using “recoil-free” versions of angularities [59].

Sa2 is a function of the sum of momenta k = n ·kAS + n̄ ·kBS , the sum of soft momenta in the

hemispheres A,B projected onto the n, n̄ directions that determine the two hemispheres.

For a = 0 the soft function is known to two loops [5, 69, 70], and the three-loop anomalous

dimension can be obtained from the three-loop hard and jet anomalous dimensions by the

requirement of RG invariance of the cross section eq. (3.2) [71]. The distributions Ln in

eqs. (3.18) and (3.20) are “plus distributions”:

Ln(x) ≡
[
θ(x) lnn x

x

]
+

, (3.21)

and are defined in appendix A.

The different functions in the factorization theorem each describe physics at different

scales, and the natural scales associated with these functions are well separated. Ratios of

these scales produce the logs of τa in the QCD cross section. The factorization theorem

eq. (3.2) splits up these logs into logs of the factorization scale µ over only one of these

natural scales at a time. The one-loop results in eqs. (3.17), (3.18), and (3.20) for the hard,

jet and soft functions display this natural scale dependence illustrated in figure 1. After

plugging them into the factorized cross section eq. (3.2), these scales are identified to be:

µnat
H = Q , µnat

J = Qτ1/(2−a)
a , µnat

S = Qτa . (3.22)
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Large logarithms of the ratios of these scales to the factorization scale µ are produced in

the fixed-order expansions of these functions, and these logs must be resummed to obtain

accurate predictions in the small τa regime. The renormalization group (RG) allows us

to independently evolve each function in µ and sum these logs. Each function has an

associated RG equation relating the renormalized function to its anomalous dimension:

d

d lnµ
H2(µ) = γH(µ)H2(µ) ,

d

d lnµ
Jai
(
ta, µ

)
=

∫
dt′a γ

a
J(ta − t′a, µ) Jai (t′a, µ) , (3.23)

d

d lnµ
Sa2
(
k, µ

)
=

∫
dk′ γaS(k − k′, µ)Sa2 (k′, µ) .

The hard function anomalous dimension takes the form

γH(µ) = κHΓqcusp[αs] ln

(
Q

µ

)
+ γH [αs] , (3.24)

dependent on “cusp” and “non-cusp” anomalous dimensions Γqcusp[αs], γH [αs]. The jet and

soft functions have a common form for the anomalous dimension:

γF (tF , µ) = κFΓqcusp[αs]
1

µjF
L0

(
tF
µjF

)
+ γF [αs]δ(tF ) , (3.25)

where F = J, S for the jet and soft functions, and tF is a variable of mass dimension jF ,

equal to ta for the jet function and k for the soft function.

The cusp anomalous dimension Γqcusp[αs] is a universal series in αs,

Γqcusp[αs] =

∞∑
n=0

(
αs
4π

)n+1

Γqn , (3.26)

where the coefficients are given up to n = 2, or O(α3
s), by [72, 73]:

Γq0 = 4CF ,

Γq1 = Γq0

[(
67

9
− π2

3

)
CA −

20

9
TFnf

]
, (3.27)

Γq2 = Γq0

[(
245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+

(
−55

3
+ 16ζ3

)
CF TF nf −

16

27
T 2
F n

2
f

]
.

The non-cusp anomalous dimension is similarly defined, with coefficients γFn that are spe-

cific to each function. The constants κF give the proportionality of the cusp part of each

function’s anomalous dimension to Γqcusp. The constants κF , jF and the O(αs) non-cusp

anomalous dimensions are

jH = 1 , κH = 4 , γ0
H = −12CF ,

jJ = 2− a , κJ = − 2

1− a
, γ0

J = 6CF ,

jS = 1 , κS =
4

1− a
, γ0

S = 0 . (3.28)
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For completeness, we include a constant jH for the hard function in this table, which is

implicitly the mass dimension of Q in eq. (3.24), and which we henceforth always set equal

to 1. Similarly we will always set jS = 1 except in equations where we refer to a generic

jF . We define the “cusp part” of each function’s anomalous dimension by

ΓF ≡ −
jFκF

2
Γqcusp , (3.29)

for notational use below. The non-cusp piece of each function’s anomalous dimension is

given by an expansion

γF [αs] =

∞∑
n=0

(αs
4π

)n+1
γnF , (3.30)

where F = H,J, S. These coefficients are given to O(α3
s) for the hard function and the

a = 0 jet and soft functions in appendix C. For a 6= 0 they are so far known only to

O(αs) [26].

The convolutions in the RGEs in eq. (3.23) for the jet and soft functions in momentum

space can be removed by Fourier or Laplace transforming the functions, in which case the

evolution is multiplicative (as in the hard function). The evolution is performed in the

transform space, and the result is transformed back to momentum space (e.g. [74, 75]).

Two formalisms exist in SCET to write the evolution in momentum space [29, 30, 76],

each with its own advantages. One method, described in ref. [76], performs the trans-

formation of the jet/soft function solutions in Laplace/position space back to momentum

space, and then writes the result for the resummed cross section as a convolution between

momentum-space fixed-order jet/soft functions and momentum-space evolution factors.

This method requires calculation of convolutions of plus functions with each other, all ex-

plicitly computed in [76]. This is particularly useful for the types of explicit calculations

in, e.g., [38, 76]. The other method, used in ref. [29, 30], writes the evolution in terms

of a derivative operator built out of Laplace-space jet/soft functions acting on a simple

τ -dependent function. This formalism turns out to be more transparently relatable to the

direct QCD resummation formalism used in, e.g., [12, 13, 77], and is somewhat more com-

pact to write down. For the purposes of our study, we find it more convenient to employ

the latter formalism. The two methods, as long as formulae are truncated appropriately,

yield numerically equivalent results, as illustrated in, e.g., [78].

3.2.2 Evolution in SCET

Taking the Laplace (similarly, Fourier) transform of the jet function using the variable xa
conjugate to ta makes the evolution equation multiplicative,

d

d lnµ
J̃(xa, µ) = γ̃J(xa, µ)J̃(xa, µ) , (3.31)

and analogously for the soft function. The Laplace-transformed anomalous dimensions

have the form, for F = J, S,

γ̃F (xa, µ) = −κFΓqcusp[αs] ln
(
µjF xae

γE
)

+ γF [αs] , (3.32)
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where xa is dimension −2 + a for F = J , and dimension −1 for F = S. A multiplicative

RG equation, as in eq. (3.31), leads to a straightforward evolution equation that allows us

to write the function at an arbitrary scale (in terms of its value at another arbitrary scale),

F̃ (xa, µ) = F̃ (xa, µ0) exp

(∫ µ

µ0

dµ′

µ′
γ̃F (xa, µ

′)

)
. (3.33)

To perform the evolution we define three functions:1

KΓ(µ, µ0) ≡
∫ µ

µ0

dµ′

µ′
Γqcusp[αs(µ

′)] ln
µ′

µ0
,

ηΓ(µ, µ0) ≡
∫ µ

µ0

dµ′

µ′
Γqcusp[αs(µ

′)] ,

KγF (µ, µ0) ≡
∫ µ

µ0

dµ′

µ′
γF [αs(µ

′)] . (3.34)

These separate the evolution of the function between two arbitrary scales (µ0, µ) from the

dependence on the particular scale x
1/jF
a in the anomalous dimension,∫ µ

µ0

dµ′

µ′
γ̃F (µ′) = −jFκFKΓ(µ, µ0) +KγF (µ, µ0)− κF ηΓ(µ, µ0) ln

(
µjF0 eγExa

)
. (3.35)

We define
KF (µ, µ0) ≡ −jFκFKΓ(µ, µ0) +KγF (µ, µ0) ,

ωF (µ, µ0) ≡ −κF ηΓ(µ, µ0) ,
(3.36)

so that

F̃ (xa, µ) = F̃ (xa, µ0) exp
(
KF (µ, µ0)

)(
µjF0 eγExa

)ωF (µ,µ0)
. (3.37)

For the hard function, the evolution equation reads

H(µ) = H(µ0) exp
(
KH(µ, µ0)

)(µ0

Q

)jHωH(µ,µ0)

. (3.38)

Using KF and ωF has factored out the xa dependence in the evolution factor in eq. (3.37),

and we can perform the inverse Laplace transform to obtain the evolution relation in

momentum space:

F (tF , µ) =

∫
dt′FUF (tF − t′F , µ, µ0)F (t′F , µ0) , (3.39)

where the evolution kernel UF is

UF (tF , µ, µ0) =
exp (KF (µ, µ0) + γEωF (µ, µ0))

Γ(1− ωF (µ, µ0))

[
− ωF
µjF0
L−ωF

(
tF

µjF0

)
+ δ(tF )

]
, (3.40)

1Note that these can also be defined as integrals over the running coupling [see eq. (4.18)] by using the

defining relation eq. (4.14) of the beta function, β[αs(µ)] = d
d lnµ

αs(µ). In this case the large logarithms are

expressed as logarithms of ratios of αs evaluated at parametrically different scales, while in the definitions

of eq. (3.34) the logarithms appear explicitly.
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and the distribution L−ω is given by the plus distribution [76]

L−ω(x) =

[
θ(x)

x1+ω

]
+

, (3.41)

defined in appendix A. The evolution factor is convolved with the fixed-order expansion

of F (tF , µ0) to produce F (tF , µ). These convolutions produce functions of ωF multiplying

distributions LωF , and the jet and soft functions in the factorization theorem can then be

convolved to produce the total cross section. The necessary convolutions have been worked

out in generality in ref. [76], meaning the procedure is formulaic.

An alternative way to write the evolution uses the following approach illustrated in

ref. [29, 30]. This approach turns out to be more transparently relatable to the dQCD liter-

ature and is slightly more compact to write down. First one notes that the xa-dependence

in the evolution factor in eq. (3.37) is contained entirely in logs LF (µ0), where

LF (µ) ≡ ln
(
µjF eγExa

)
= ln

[(
µ

Q

)jF
eγEν

]
. (3.42)

In the last equality we have indicated what the variable xa gets replaced by when these logs

appear in the jet or soft functions in eq. (3.3). Therefore, we can rewrite the x-dependence

in terms of logarithms LF (µ). Cleverly, this means we can generate the LF dependence

through partial derivatives with respect to ωF . Rewriting eq. (3.37) for F̃ in this way,

F̃ (LF (µ), µ) = F̃ (LF (µ0), µ0) exp
[
KF (µ, µ0)

]
exp
[
LF (µ0)ωF (µ, µ0)

]
= F̃ (∂ωF , µ0) exp

[
KF (µ, µ0)

]
exp
[
LF (µ0)ωF (µ, µ0)

]
. (3.43)

This removes the functional xa-dependence in F̃ at µ0, meaning the inverse transform can

be performed completely (without the remaining convolution in eq. (3.39)). The result is

F (tF , µ) = F̃ (∂ωF , µ0) exp
[
KF (µ, µ0)

](µjF0
tF

)ωF (µ,µ0) 1

tF

eγEωF (µ,µ0)

Γ[−ωF (µ, µ0)]
. (3.44)

This form deserves some remarks. In the position-space function F̃ at the initial scale µ0,

the τ -dependence (tF dependence) is generated via derivatives acting on the resummed

series ωF in the evolution factor. Operationally, the derivatives can be thought of as

representing a replacement rule, since we know what functions they are acting on, e.g.

eq. (4.33) below. We will see a similar method used in the QCD formulation of the cross

section in section 3.3. With jet and soft functions written in the form eq. (3.44) convolution

over the momentum variables in eq. (3.2) is quite simple to carry out, leading to a compact

form for the resummed cross section.

3.2.3 Resummed cross section in SCET

In position or Laplace space, the factorized cross section eq. (3.3) using RG evolved hard,

jet, and soft functions takes the form

σ̃(νa) = H2(Q2, µH)J̃(LJ(µJ), µJ)2S̃(LS(µS), µS) (3.45)

× exp
(
KH + 2KJ +KS

)(µH
Q

)ωH(µJ(νae
γE )1/jJ

Q

)2jJωJ
(
µSνae

γE

Q

)ωS
,
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Taking the inverse Laplace transform of eq. (3.45), or explicitly carrying through the con-

volutions in eq. (3.2) using the solutions eq. (3.44) for the momentum-space jet and soft

functions, the momentum-space cross section is

σ(τa) = exp
(
KH + 2KJ +KS

)(µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
H2(Q2, µH) (3.46)

× J̃
(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)2

S̃

(
∂Ω + ln

µS
Qτa

, µS

)
1

τa

exp(γEΩ)

Γ(−Ω)
,

where

Ω ≡ 2ωJ + ωS . (3.47)

The result eq. (3.46) for the thrust (a = 0) appeared in a very similar form in [71] and for

arbitrary a in [26], following the methods in [29, 30]. In eq. (3.46), we have pulled through

each ratio of factorization scales µH , µJ , and µS to the canonical scales in eq. (3.22) past

the fixed-order functions J̃ and S̃. This shifts the derivative in each function by a logarithm

of the relevant scale ratio. Integrating eq. (3.46) to yield the cumulant R(τa) defined in

eq. (2.3) is simple,

R(τa) = exp

(
KH + 2KJ +KS

)(
µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
H2(Q2, µH)

× J̃
(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)2

S̃

(
∂Ω + ln

µS
Qτa

, µS

)
exp(γEΩ)

Γ(1− Ω)
. (3.48)

The factorization scales µi are arbitrary scales that each function is evolved from, and the

cross section is independent of the common scale µ that all functions are evolved to. If we

kept the hard, jet, and soft functions exact to all orders, then the cross section would be

independent of these factorization scales. Truncating the resummation at a given accuracy

introduces dependence on the factorization scales due to the dropped (unknown) higher-

order terms. Thus, by varying these scales a theoretical uncertainty due to the omitted

higher-order terms can be estimated.2

It is worth remarking here that in integrating eq. (3.46) to obtain eq. (3.48) (or dif-

ferentiating the latter to obtain the former) one assumes that the scales µJ,S have not yet

been chosen and are considered independent of τa. Thus the derivative/integral does not

act on them. This is represented by the top arrow in the commutative diagram in figure 2.

However, eventually, to minimize the logs of µF /Qτ
1/jF
a in the jet and soft functions we will

choose them to be functions of τa. This is represented by the vertical arrows in figure 2.

If we do this first in eq. (3.46) or in eq. (3.48) before integrating/differentiating to obtain

the other, then the latter operations are considerably more difficult and yield apparently

different results at a truncated order of logarithmic accuracy. If all quantities in eqs. (3.46)

and (3.48) are kept to all orders in αs, then either order of operations will yield exactly

the same result — the cross section is independent of the scale choices µF . However, at a

2Typically these scales are varied up and down by a factor of 2. More reliable predictions and estimates

of theoretical uncertainties can be obtained by using so-called “profile scales” whose functional form varies

with τa, see e.g. [38, 76, 78, 79].
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Figure 2. Commutative diagram for obtaining the resummed differential distribution from the

resummed cumulant. The resummed distribution can be obtained by first differentiating the cumu-

lant with free scales, and then choosing the scales to be τ -dependent, such as the canonical choices

eq. (3.22) indicated in the figure. Or, it can be obtained by first fixing the scales in the cumulant

to be τ -dependent, and then differentiating. Starting with expressions for R truncated at a given

NkLL order of accuracy, the latter method will produce more terms in σ due to the derivative d/dτ

seeing more τ -dependent terms. However, if expressions for R, σ are kept to all orders in αs, the

two routes produce identical results.

truncated order, the two operations yield different results. We will remark on this further

in section 4.3.1 discussing how to keep σ and R as closely to the same accuracy as possible

when working to NkLL accuracy.

3.3 Resummed event shape distributions in QCD

The same 2-jet event shape distributions can be calculated directly in QCD, and such tech-

niques were applied before SCET was developed [15]. One exploits the universal structure

of soft and collinear singularities to write the resummed cross section. At next-to-leading

logarithmic order, for example, the resummation is expressed in terms of an evolution

kernel based on splitting functions. We will sketch here the derivation of the resummed

angularity cross sections in direct QCD, and then move on to the final results one finds in

the literature.

The analysis begins by determining the boost properties from the arguments of the

soft and jet functions through which logarithmic behavior can occur. Then, each of the

soft, jet, and hard functions obey two equations, one following from renormalization scale

variation, the other from boost invariance. This pattern has been known for some time,

and the general solutions derived in [16] are based on factorization and the strategy for

resummations developed in [80]. In this case, the renormalization group equations are

µ
d

dµ
ln S

(
Q

µν
(χc)

a−1, a, αs(µ)

)
= −γs (αs(µ)) , (3.49)

µ
d

dµ
ln Jc

(
Qχc
µ

,
Q

µν
(χc)

a−1, a, αs(µ)

)
= −γJc (αs(µ)) , (3.50)

µ
d

dµ
ln H

(
Q

µ
,
Qχc
µ

, αs(µ)

)
= γs (αs(µ)) +

2∑
c=1

γJc (αs(µ)) , (3.51)
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where

χc =
Q

2pc · ξ̂c
(3.52)

with ξ̂c the unit vector introduced in the definition of the QCD jet function, eq. (3.5),

and βc a unit, lightlike vector in the direction of momentum pµc = Qβµc /
√

2 in the case

of two-jet events. The anomalous dimensions can be defined to be scalars, because any

dependence on the vectors ξc or βc could be absorbed through a multiplicative redefinition

of the hard function.

From the behavior under boosts, we derive an equation satisfied by the jets, which is

the only one we need,

∂

∂ ln (χc)
ln Jc

(
Qχc
µ

,
Q

µν
(χc)

a−1, a, αs(µ)

)

= Kc
(
Q

µν
(χc)

a−1, a, αs(µ)

)
+ Gc

(
Qχc
µ

, αs(µ)

)
, (3.53)

in terms of perturbative functions K and G, whose low order expansions are given in [12].

Using these equations, we can evolve the soft function in the renormalization scale µ,

and the jet functions in µ and χc to organize all logarithms in terms of a limited set

of perturbative functions, in much the same manner as for SCET. We will not give the

details here, which for angularities are worked out in ref. [12], following [16]. The resulting

moment-space distribution takes the form

σ̃(νa) = N (Q) exp
[
E(ln νa)] , (3.54)

where N (Q) is a log-free factor with an expansion in αs with coefficients Cn as in eq. (2.7),

N (Q) = 1 +
∞∑
n=1

(
αs(Q)

4π

)n
Cn , (3.55)

which combines contributions from the hard, soft and jet functions evaluated at unit kine-

matic ratios at renormalization scale Q. The cumulant cross section is as usual written as

the inverse Laplace transform of (3.54),

R(τa) = N (Q)
1

2πi

∫
C

dνa
νa

exp
[
νaτa + E(ln νa)

]
, (3.56)

where C is the usual contour in the complex νa plane, to the right of singularities. The

QCD exponent E(ln νa) in eq. (3.54)) comes from fixed-order calculations of jet and soft

functions that bear strong resemblance to those in SCET (although the organization of

terms can differ), and is a combined object that describes the perturbative logarithms. It

is built from fixed-order coefficients A[αs], B[αs], where A contains the cusp singularity

contributions (and, at high orders, can contain additional terms) [12, 29, 30, 81]. The form
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of E for the angularity distribution in eq. (3.56) in terms of A and B can be written

E(ln νa) = 4

∫ Q

Q(eγE νa)−1/jJ

dµ′

µ′
A[αs] ln

µ′

Q

− 4

1− a

∫ Q(eγE νa)−1/jJ

Q(eγE νa)−1/jS

dµ′

µ′
A[αs] ln

µ′

Q(eγEνa)−1/jS

+ 2

∫ Q

Q(eγE νa)−1/jJ

dµ′

µ′
BJ [αs] +

∫ Q

Q(eγE νa)−1/jS

dµ′

µ′
BS [αs] . (3.57)

where the integrals BS and BJ generate non-leading singularities by evolving from the soft

and jet scales respectively to the hard scale. In fact, it is always possible to absorb the

term involving BS into the other two by following a method originally applied to threshold

resummation in ref. [82]. We may use this freedom to define A[αs] = Γcusp[αs], in which

case one finds that BS [αs] begins only at order α2
s. In this way, in the QCD angularity

analysis of [12], the three terms were reduced to two, to check consistency with the with

the original CTTW result [15]. For the comparison to SCET that we will make in the next

subsection, however, it is convenient to keep both of the B terms.

To perform the inverse transform eq. (3.56), the exponent is expanded about ln νa =

ln(1/τa) [15],

E(ln νa) =
∞∑
n=0

1

n!
lnn(νaτa)

[
dn

d(ln νa)n
E(ln νa)

∣∣∣
νa=1/τa

]
. (3.58)

Defining Ē = E(ln 1/τa) and the derivatives

Ē′ ≡ d

d ln νa
E(ln νa)

∣∣∣
νa=1/τa

, . . . , Ē(n) ≡ dn

d ln νna
E(ln νa)

∣∣∣∣
νa=1/τa

, . . . , (3.59)

we can write

exp
[
E(ln νa)

]
= exp

[ ∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
exp
[
Ē + Ē′ ln(νaτa)

]
≡ T̂ (Ē′) exp

[
Ē + Ē′ ln(νaτa)

]
. (3.60)

This uses the same kind of derivative operator as in the SCET resummation eq. (3.46), as Ē′

is a resummed series and derivatives with respect to it generate additional τa dependence.

As in the SCET case, it allows us to perform the inverse transform eq. (3.56) analytically.

The result is

R(τa) = N (Q) exp(Ē) T̂ (Ē′)
1

Γ(1− Ē′)
. (3.61)

The operator T̂ contains an infinite series of terms (generalizing the result eq. (85) in [15];

a similar form for threshold resummation in Drell-Yan appeared in [77]). However, the

series is well-ordered, as it is easy to see that the Ē(n) are sequentially higher order (Ē(n) is

NnLL, counting in the resummed exponent). Therefore to work to a given order we simply
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truncate the series. As with SCET, since the function that the derivatives are acting on is

known, the derivatives with respect to Ē′ represent a simple replacement rule.

Note that eq. (3.61) contains no free scales like µH,J,S . As we will see below, they have

implicitly been set to the values

µH = Q , µJ = µ̄J ≡ Qτ̄1/jJ
a , µS = µ̄S ≡ Qτ̄a , (3.62)

where

τ̄a ≡ e−γEτa (3.63)

Thus eq. (3.61) sits in the lower left-hand box in figure 2 (except with µJ,S rescaled to the

values in eq. (3.62)). We will show below how to generalize it to have free scales µH,J,S as

represented in the top left box in figure 2.

Before comparing the cross sections in QCD and SCET, we note that, using the defi-

nitions in eq. (3.28), we can write the function E(ln νa) as

E(ln νa) = −2jJκJ

∫ Q

Q(eγE νa)−1/jJ

dµ′

µ′
A[αs] ln

µ′

Q(eγEνa)−1/jJ

− jSκS
∫ Q

Q(eγE νa)−1/jS

dµ′

µ′
A[αs] ln

µ′

Q(eγEνa)−1/jS

+ 2

∫ Q

Q(eγE νa)−1/jJ

dµ′

µ′
BJ [αs] +

∫ Q

Q(eγE νa)−1/jS

dµ′

µ′
BS [αs] . (3.64)

This will make it easier to compare to the SCET resummed form.

3.4 Equivalence between QCD and SCET resummation

A natural question to ask is, do the SCET and QCD cross sections eqs. (3.48) and (3.61)

return the same result for the same observable? One answer is that they had better when

working to all orders, or someone is doing something wrong. But a more pragmatic (and

important) question is, if we truncate to a given order in logarithm counting do the two

methods still agree? This question has many possible answers. QCD and SCET may

exactly agree, given some conventions for how to truncate each resummed series at a given

order. They may agree on the terms up to the required accuracy but naturally include

different sets of subleading terms. They may disagree at the requested level of accuracy

(pointing to a fundamental problem in one of the methods). We will show, that written

in suitable form, the two formalisms agree exactly. The process of this rewriting will

illuminate and improve the results of both methods.

A detailed comparison between the two resummed cross sections above will only make

these questions more pointed: the two results eqs. (3.48) and (3.61) look quite similar in

form, and one might believe that appropriate relations between the QCD A[αs] and Bi[αs]

functions and the SCET Γcusp[αs] and γi[αs] anomalous dimensions would put them in

complete agreement. In fact, this is what we will find in this section. We start by building

the basic correspondence between the two forms, showing that at all orders the two cross

sections agree. Analogous but distinct considerations apply to the analysis of threshold
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Figure 3. Evolution from the natural scale. In eq. (3.66), we express a function F̃ (LF (µ), µ) at

the factorization scale µ by performing the RG evolution from its natural scale µ̃F where all the

large logs in the function are minimized. We further break this evolution into two pieces, one from

the natural scale µ̃F to another arbitrary scale µF , and from µF to µ. We may choose to vary

the arbitrary scale µF in order to estimate theoretical uncertainty in a prediction for F at finite

resummed accuracy.

resummation [29, 30, 32–34] when treated in moment space. In fact the correspondence

between SCET and dQCD forms requires a more elaborate analysis for event shapes than

for threshold resummation in moment space, but we will see that the resulting physical

predictions for event shapes are analytically equivalent, in a way that has not been found

for threshold resummed cross sections.

We will work mostly with the SCET formalism, primarily for the explicit dependence

on free scales µF that they display. We will massage the SCET form into one easily

relatable to the QCD cross section, in particular identifying the scale choices µF that make

the SCET and QCD forms transparently equivalent. To be concrete, we begin first with

the form of the resummed jet function in the two formalisms.

From eq. (3.37) or eq. (3.44) we already know how to express the jet (or soft) function

at one scale µ by RG evolving from another scale µJ (µS). However, by performing a

series of manipulations we can re-express eqs. (3.37) and (3.44) in a form that makes the

connection with direct QCD in eq. (3.61) as transparent as possible and also exponentiates

as many logs as possible. For instance, there are series of logs in the prefactor of eq. (3.44)

in F̃ (∂ωF , µ0), which are always truncated at some order in αs, generated by the action

of the derivatives ∂nωF acting on the gamma function. We will put eq. (3.44) in a form

that has as many of these logs explicitly exponentiated as possible, leaving the prefactor

free of logs.

We start with the evolution from the natural scale for jet functions in transform space,

µ̃J = Q(eγEνa)
−1/jJ . (3.65)

We then break the evolution into two pieces, that from µ̃J to µJ and that from µJ to µ,

illustrated in figure 3. Working from eqs. (3.37) and (3.43), we have,

J̃(LJ(µ), µ) = J̃(0, µ̃J) exp

(∫ µJ

µ̃J

dµ′

µ′
γ̃J(xa, µ

′)

)
exp

(∫ µ

µJ

dµ′

µ′
γ̃J(xa, µ

′)

)
, (3.66)

and similarly for the soft function, for which the discussion below would be entirely parallel.

Note that LJ(µ̃J) = 0; hence the first argument of J̃ on the right-hand side is 0.
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Our goal is to express each piece in eq. (3.66) in terms of the variable scale µJ . The

evolution from µJ to µ is straightforward, in the notation of eqs. (3.37) and (3.42):

exp

(∫ µ

µJ

dµ′

µ′
γ̃J(xa, µ

′)

)
= exp

[
KJ(µ, µJ)

]
exp
[
LJ(µJ)ωJ(µ, µJ)

]
. (3.67)

In dealing with the evolution from µ̃J to µJ , we will use derivatives with respect to ωJ to

generate LJ dependence. We express each scale in terms of LJ ≡ LJ(µJ) and L′J ≡ LJ(µ′)

µ̃J = µJe
−LJ/jJ ,

µ′ = µ̃Je
L′J/jJ = µJe

(L′J−LJ )/jJ . (3.68)

Changing variables from µ′ to u = L′J/LJ , the evolution from µ̃J to µJ is

exp

(∫ µJ

µ̃J

dµ′

µ′
γ̃J(xa, µ

′)

)
= exp

(∫ 1

0
du

{
−jJκJΓqcusp

[
αs
(
µJe

(u−1)LJ/jJ
)]L2

J

j2
J

u

+ γJ
[
αs
(
µJe

(u−1)LJ/jJ
)]LJ
jJ

})
. (3.69)

This form is convenient to Taylor expand about u = 1, that is, µ′ = µJ , allowing us then

to carry out the u integral explicitly. After some analysis we obtain

− jJκJ
∫ 1

0
duΓqcusp

[
αs
(
µJe

(u−1)LJ/jJ
)]L2

J

j2
J

u (3.70)

= −jJκJ
∞∑
n=2

1

n!

(
−LJ
jJ

)n dn

d(lnµJ)n

∫ µ

µJ

dµ′

µ′
Γcusp[αs(µ

′)] ln
µ′

µJ
,∫ 1

0
du γJ

[
αs
(
µJe

(u−1)LJ/jJ
)]LJ
jJ

=
∞∑
n=1

1

n!

(
−LJ
jJ

)n dn

d(lnµJ)n

∫ µ

µJ

dµ′

µ′
γJ [αs(µ

′)] .

Additionally, one can show by Taylor expansion around µ̃J = µJ ,

J̃(0, µ̃J) = J̃(0, µ)
J̃(0, µ̃J)

J̃(0, µ)

= J̃(0, µ) exp

{ ∞∑
n=0

1

n!

(
−LJ
jJ

)n dn

d(lnµJ)n

[
−
∫ µ

µJ

dµ′

µ′
d ln J̃(0, µ′)

d lnµ′

]}
. (3.71)

If we put the various pieces of the evolution together, we obtain the jet function in eq. (3.66)

at arbitrary µ,

J̃(LJ(µ), µ) = J̃(0, µ) exp

[
EJ(µ, µJ) +

∞∑
n=2

1

n!

(
−LJ
jJ

)ndnEJ(µ, µJ)

d(lnµJ)n

]
×

× exp

[
−LJ
jJ

dEJ(µ, µJ)

d lnµJ

]
, (3.72)
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where we have defined

EJ(µ, µJ) ≡ KJ(µ, µJ)−
∫ µ

µJ

dµ′

µ′
d ln J̃(0, µ′)

d lnµ′
. (3.73)

Note that the second term, and thus the difference between EJ and KJ , begins at

O(α2
s ln(µJ/µ)), which is NNLL in table 1. Defining the derivatives

E′J(µ, µJ) =
dEJ(µ, µJ)

d lnµJ
, E

(n)
J (µJ) =

dnEJ(µ, µJ)

d(lnµJ)n
, (3.74)

(note that taking two or more derivatives of EJ with respect to µJ removes its dependence

on µ) we find that eq. (3.72) can be expressed compactly as

J̃(LJ(µ), µ) = J̃(0, µ) exp

[
EJ(µ, µJ) +

∞∑
n=2

1

n!
E

(n)
J (µJ)∂nE′J

]
exp

[
−LJ(µJ)

jJ
E′J(µ, µJ)

]
.

(3.75)

Now, recalling that LJ(µJ) = ln(µjJJ e
γExa), we can inverse Laplace transform eq. (3.75)

from xa back to ta and obtain in momentum space:

J(ta, µ) = J̃(0, µ) exp

[
EJ(µ, µJ) +

∞∑
n=2

1

n!
E

(n)
J (µJ)∂nE′J

]
1

ta

(
µjJJ e

γE

ta

)−E′J (µ,µJ )/jJ 1

Γ(E′J/jJ)
.

(3.76)

We have succeeded in expressing J̃(LJ(µ), µ) or J(ta, µ) at one scale µ in terms of RG

evolution from any other scale µJ , with no explicit logs left over in the factor J̃(0, µ),

which must be truncated at fixed order in αs in eqs. (3.75) and (3.76). They are all

contained in the exponentiated evolution kernels. (The exponentiated derivative operators

must, however, still be truncated at some fixed order in practice; still, the exponentiated

form gives an easy prescription that can be evaluated to any desired order.)

Similarly for the soft function, by analogy to eq. (3.76)

S(k, µ) = S̃(0, µ) exp

[
ES(µ, µS)+

∞∑
n=2

1

n!
E

(n)
S (µS)∂nE′S

]
1

k

(µSeγE
k

)−E′S(µ,µS) 1

Γ(E′S)
, (3.77)

where

ES(µ, µS) ≡KS(µ, µS)−
∫ µ

µS

dµ′

µ′
d ln S̃(0, µ′)

d lnµ′
, (3.78a)

E′S(µ, µS) =
dES(µ, µS)

d lnµS
, E

(n)
S (µS) =

dnES(µ, µS)

d(lnµS)n
. (3.78b)

Finally, we can obtain the total cross section by starting with the Laplace-transformed

factorization theorem, obtained by transforming eq. (3.2):

σ̃(ν, µ) =

∫ ∞
0

dτae
−ντa 1

σ0

dσ

dτa
= H2(Q2, µ)J̃(LJ(µ), µ)2S̃(LS(µ), µ) , (3.79)
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plugging in the form eq. (3.72) of the jet function and similarly for the soft function, Laplace

transforming all at once from ν back to τa, and integrating over τa to obtain the cumulant:

R(τa) = H2(Q2, µH)

(
µH
Q

)ωH(µ,µH)

eKH(µ,µH)J̃(0, µ)2S̃(0, µ)

× exp[2EJ(µ, µJ) + ES(µ, µS)] exp

[ ∞∑
n=2

1

n!

(
2E

(n)
J (µJ)∂n2E′J

+ E
(n)
S (µS)∂nE′S

)]

×
(
QjJ τa

µjJJ e
γE

)2E′J (µ,µJ )/jJ
(

Qτa
µSeγE

)E′S(µ,µS) 1

Γ(1 + 2E′J/jj + E′S)
. (3.80)

This generalizes the NLL result eq. (85) of [15] and those of [12, 13] to arbitrarily high

accuracy and restores its dependence on variable hard, jet and soft scales µH,J,S .

We can show that the SCET cross section now written in the form eq. (3.80) and

the QCD cross section eq. (3.61) are identical if some identifications and particular scale

choices are made. In eq. (3.80), let us choose to run the hard, jet, and soft functions from

the scales

µH = Q , µ̄J = Qτ̄1/jJ
a , µ̄S = Qτ̄a , (3.81)

where τ̄a = e−γEτa as defined in eq. (3.63), to the scale µ = Q. Then we have the

expression [77]

R(τa) = H2(Q2, Q)J̃(0, Q)2S̃(0, Q) exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
, (3.82)

with

Ē ≡ 2ĒJ + ĒS (3.83a)

Ē′ ≡ dĒ

d ln(1/τa)
(3.83b)

Ē(n) ≡ dnĒ

d(ln(1/τa))n
(3.83c)

where ĒJ,S ≡ EJ,S(Q, µ̄J,S). Note that the derivatives in eq. (3.83) are now with respect

to ln(1/τa) instead of lnµJ,S as in eq. (3.74).

Remarkably, the SCET cross section in eq. (3.82) is now exactly in the form of the

QCD cross section eq. (3.61). They are equal if we identify

A[αs] = Γcusp[αs] , BF [αs] = γF [αs]−
d ln F̃ (0, µF )

d lnµF
,

N (Q) = H(Q2, Q)J̃(0, Q)2S̃(0, Q) . (3.84)

Similar identifications were found in ref. [29, 30, 32–34] for threshold resummation in Drell-

Yan production.

The identification is not without significance for direct QCD: with these identifica-

tions, eq. (3.80) also serves to generalize the usual QCD direct resummation formulae by

– 29 –



J
H
E
P
0
4
(
2
0
1
4
)
1
7
4

endowing them with free scales µ, µH,J,S and thus the flexibility to vary these scales away

from the values in eq. (3.81). This allows one to match the resummation onto fixed-order

perturbation theory using profile scales for µJ,S to smoothly interpolate between the re-

summation and fixed-order regimes, and in general allows one to obtain better estimates

of theoretical uncertainty.

We note that in eq. (3.82),

Ē′ = Ω̄ +
2BJ [αs(µ̄J)]

jJ
+BS [αs(µ̄S)] , (3.85)

where Ω̄ = 2ωJ(Q, µ̄J)+ωS(Q, µ̄S). This looks like the argument of the gamma function in

the form of the SCET distribution shown in eq. (3.46), shifted by 2BJ/jJ +BS . This shift

is the result of resumming many of the ∂Ω-dependent terms in the jet and soft operators

in eq. (3.46), which is effectively what has been done by resumming all the µJ -dependent

terms in the jet function into the exponential factors in eq. (3.75), and similarly for the

soft function. Also, note that the choices eq. (3.81) for jet and soft scales differ from the

usual choices in SCET by rescalings of τa to τ̄a ≡ e−γEτa. This just causes the factor of

eγEΩ in the SCET resummed distribution eq. (3.46) to be absorbed into KJ,S . Of course,

the different scale choices lead to equivalent results at a given order of accuracy.

Finally, we note that the resummed form in eq. (3.82) with the non-cusp and β-

function terms resummed into the gamma function is, to our knowledge, new for SCET.

Thus it formally resums more terms to all orders in αs than most previous formulae in the

SCET literature, capturing more of the non-cusp anomalous dimension and beta function-

dependent terms to all orders in αs, making it more accurate in the sense of maintaining

as closely as possible its equivalence to the inverse Laplace transform of σ̃(ν).

3.5 Interlude

In section 3.4 we obtained the central result of the paper, eq. (3.82) which puts the SCET

resummed cross section into a form transparently equivalent to the dQCD form eq. (3.61).

Before moving on, let us take stock of what we have found, and what is yet to come.

• Eq. (3.80) is a rewriting of the usual form of the SCET cumulant cross section

eq. (3.48). Making the scale choices eq. (3.81) in the SCET form eq. (3.80) yields

the form eq. (3.82), which is transparently equivalent to the dQCD form eq. (3.61).

Eq. (3.73) for EJ and eq. (3.78) for ES , along with the definitions eq. (3.83) and

identifications eq. (3.84) complete the dictionary for this equivalence.

• The form eq. (3.80) prior to fixing scales µH,J,S shows how to restore the dependence

on these scales in the dQCD cross section eq. (3.61), in which the scales are implicitly

fixed to the values in eq. (3.62). This is to our knowledge the first time the final result

for the momentum-space distribution has been written with variable scales in dQCD

notation, and with all derivative terms n ≥ 2 written explicitly.

• The forms eqs. (3.80) and (3.82) differ from the typical SCET form eq. (3.48) due

to the additional non-cusp anomalous dimension and beta function dependent terms
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that are included in EJ,S in eqs. (3.73) and (3.78) and are now all in the exponent

or argument of the gamma function in eqs. (3.80) and (3.82).3 The prefactors in

eq. (3.82) are free of logs, and can be truncated at fixed-order without losing factors

containing logs of τa. While the extra terms are formally subleading, they help

maintain closer equivalence to the Laplace transform to higher orders in αs.

Now there remains the question of how to evaluate each piece of eq. (3.82) to achieve

NkLL or NkLL′ resummed accuracy. We will show in section 4:

• It is easiest to define resummed accuracy in terms of the Laplace transform eq. (2.8)

since it exponentiates simply in terms of the exponent Ē for which a straightforward

prescription can be given for its computation. We will adopt the common definition

of NkLL accuracy in terms of the order to which Ē is computed in eq. (2.8).

• We will define prescriptions for computing the cumulant R(τ) or distribution σ(τ)

to NkLL accuracy so that they remain at least as accurate as σ̃(ν) computed to

NkLL accuracy.

• For R(τ) these prescriptions make it preferable to keep at least the n = 2 term in

the sum of derivative operators in the exponent of eq. (3.82) at NLL accuracy, n = 3

at NNLL, etc. The exponential of these operators can itself be truncated at O(αs) at

NLL, O(α2
s) at NNLL, etc. This is one higher order than is often kept. We will show

why this prescription does better in maintaining equivalent accuracy with the Laplace

transform σ̃(ν). In the standard SCET form eq. (3.48), the appropriate prescription

requires keeping the differential operator terms in J̃ , S̃ to at least O(αs) for NLL,

O(α2
s) for NNLL, etc.

• For σ(τ), we will show that the two procedures of computation, 1) directly from

eq. (3.46) and then fixing scales µF , or 2) by differentiating R(τ) in eq. (3.48) after

fixing scales µF , may give different answers when standard rules for computing to

NkLL accuracy are applied. To ensure that procedure 1 gives as accurate an answer

as procedure 2, we will show that the differential operator terms in J̃ , S̃ must not

be truncated according to standard rules too soon, namely when σ(τ) is still written

in the form eq. (3.46). Instead, we will show it is expedient to pull a factor of −Ω

through the J̃ , S̃ operators in eq. (3.46) first, and then keep a subset of the extra

terms generated by the action of the ∂Ω derivatives on this factor. At NkLL′ order,

though, this is not strictly necessary.

The reader who wishes to skip to the final results for formulae for the Laplace transform

σ̃(ν), cumulant R(τ), and differential distribution σ(τ), and the prescriptions for how to

evaluate each properly to NkLL or NkLL′ accuracy can now turn to section 5. First, in

section 4, we will develop and justify these prescriptions in detail.

3A similar exponentiated form for the momentum-space SCET soft function for tt̄ production in hadron

collisions was also found in [83]. Also, refs. [32, 33] observed in the context of threshold resummation that

inclusion of more terms in the SCET exponent as we did in eqs. (3.73) and (3.78) would bring SCET and

dQCD forms into closer agreement. Our formulae generalize these observations to all orders for the case of

event shape distributions.
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4 Achieving NkLL logarithmic accuracy

In eq. (2.6) we defined what NkLL accuracy means, in terms of the number of logs in

the exponent of the Laplace transform σ̃(ν) that are known. In this section, we consider

how to actually achieve NkLL accuracy in practice. We review the procedure for the

Laplace transform of the distribution σ̃(ν), and the consider how to compute the cumulant

R(τ) or differential event shape distribution σ(τ) to the equivalent accuracy. The formal-

ism reviewed in the previous section allows this to be done systematically by calculating

anomalous dimensions γF and hard, jet, and soft functions H,Jn,n̄, S order by order in αs.

We will clarify to what order in αs each of these quantities must be computed to achieve

a given order of logarithmic accuracy. The procedure is standard and straightforward for

σ̃(ν). It will turn out that usage of standard formulae for R(τ) and especially σ(τ) require

special care in how they are used (namely, how different parts of them are truncated to

finite order in αs) to preserve the same level of accuracy as σ̃(ν). We will explain how to

do this properly, and clarify some confusion that can easily arise from a casual reading of

the existing literature.

Our aim in this section is to be rather pedagogical and give as clear explanations as

possible for the prescriptions we present for evaluating σ̃(ν), R(τ), and σ(τ) to NkLL or

NkLL′ accuracy. The level of detail is, accordingly, quite high. As we mentioned above, the

reader who wishes to skip over it to reach the final results should turn directly to section 5.

4.1 Laplace transform

The RG-evolved Laplace-transformed cross section σ̃(ν) obtained from the factorization

theorem eq. (3.3) by using the methods in section 3.2.2 takes the explicit form given in

eq. (3.45),

σ̃(ν) = eKH(LH , µH)J̃(LJ , µJ)2S̃(LS , µS)

×
(
µH
Q

)ωH(µ,µH)(µJ(eγEν)1/jJ

Q

)2jJωJ (µ,µJ )(µSeγEν
Q

)ωS(µ,µS)

,

(4.1)

or, expressing the logs in the jet and soft functions as the result of derivatives,

σ̃(ν) = eKH(LH , µH)

(
µH
Q

)ωH(µ,µH)
(
µJν

1/jJ

Q

)2jJωJ (µ,µJ )(
µSν

Q

)ωS(µ,µS)−Ω

× J̃
(
∂Ω + ln

µjJJ
QjJ−1µS

, µJ

)2

S̃(∂Ω, µS)

(
µSe

γEν

Q

)Ω

.

(4.2)

This form will be easier to inverse Laplace transform to the cumulant or distribution in τa.

In eqs. (4.1) and (4.2), we have defined the combined RG evolution kernels,

K ≡ KH(µ, µH) + 2KJ(µ, µJ) +KS(µ, µS) (4.3a)

Ω ≡ 2ωJ(µ, µJ) + ωS(µ, µS) , (4.3b)
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with the functions KF and ωF defined in eq. (3.36). The hard, jet, and soft functions have

fixed-order expansions of the form

F (LF , µF ) =

∞∑
n=0

(
αs(µF )

4π

)n
Fn(LF , µF ) , (4.4)

where F = H, J̃, S̃, and to order α2
s the coefficients Fn are given by, using the evolution of

the functions F in eqs. (3.32) and (3.33),

F0 = 1 (4.5a)

F1 =
Γ0
F

j2
F

L2
F +

γ0
F

jF
LF + c1

F (4.5b)

F2 =
1

2j4
F

(Γ0
F )2L4

F +
Γ0
F

j3
F

(
γ0
F +

2

3
β0

)
L3
F (4.5c)

+
1

j2
F

(
Γ1
F +

1

2
(γ0
F )2 + γ0

Fβ0 + c1
FΓ0

F

)
L2
F +

1

jF
(γ1
F + c1

Fγ
0
F + 2c1

Fβ0)LF + c2
F ,

where for F = H, LH ≡ ln(µH/Q) and for F = J̃ , S̃, LF = ln(µjFF e
γEν/QjF ). In eq. (4.2),

for the jet and soft functions, each LF gets replaced by the differential operator shown in

the argument of J̃ , S̃. Recall jJ = 2 − a while jH = jS = 1. The quantities ΓnF are the

coefficients in the expansion in αs of ΓF in eq. (3.29),

ΓF [αs(µF )] =
∞∑
n=0

(
αs(µF )

4π

)n
ΓnF , (4.6)

and similarly for γF in eq. (3.30).

The expression eq. (4.2) for σ̃(ν) contains logarithms of µH/Q and µF (eγEν)1/jF /Q,

which can be minimized in ν space by the choices of scales

µ = µH = Q , µF = µ̃F ≡ Q(eγEν)−1/jF . (4.7)

Then σ̃(ν) takes the particularly simple form,

σ̃(ν) = HJ̃2S̃eK , (4.8)

where F = H, J̃, S̃ now have the simple log-free expansions

F = 1 +
αs(µ̃F )

4π
c1
F +

(
αs(µ̃F )

4π

)2

c2
F + · · · . (4.9)

eq. (4.8) organizes terms in σ̃(ν) into a form much like the CTTW form of the radiator

eq. (2.10). The exponent K with the scale choices eq. (4.7) reduces to

K = 2KJ(Q,Qs1/jJ ) +KS(Q,Qs), (4.10)

where s ≡ eγEν.
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Knm m = n+ 1 m = n m = n− 1 m = n− 2

n = 1 1
2Γ0

n = 2 1
3Γ0β0

1
2Γ1

n = 3 1
3Γ0β

2
0 (Γ0β1 + 2Γ1β0) 1

2Γ2

...
...

...
...

...

accuracy LL NLL NNLL N3LL

Table 3. Coefficients Knm in the expansion eq. (4.11) KΓ =
∑
n,mKnm(αs/4π)n lnm s1/jF up to

n = 3. A closed form of KΓ to N3LL accuracy is given in eq. (4.20).

knm m = n m = n− 1 m = n− 2

n = 1 γ0
F

n = 2 γ0
Fβ0 γ1

F

n = 3 4
3γ

0
Fβ

2
0 γ0

Fβ1 + 2γ1
Fβ0 γ2

F
...

...
...

...

accuracy NLL NNLL N3LL

ηnm m = n m = n− 1 m = n− 2

n = 1 Γ0

n = 2 Γ0β0 Γ1

n = 3 4
3Γ0β

2
0 Γ0β1 + 2Γ1β0 Γ2

...
...

...
...

accuracy LL NLL NNLL

Table 4. Coefficients knm and ηnm in the expansions eq. (4.12) for KγF =∑
n,m knm(αs/4π)n lnm s1/jF and eq. (4.13) for ηΓ =

∑
n,m ηnm(αs/4π)n lnm s1/jF , up to n = 3.

Closed forms for KγF and ηΓ up to N3LL accuracy are given by eqs. (4.22) and (4.23).

Each function KF above is given by eq. (3.36) in terms of KΓ and KγF , whose fixed-

order expansions take the form determined by the integrals in eq. (3.34),

KΓ(Q,Q/s1/jF ) =

(
αs(Q)

4π

) (
K12 ln2 s1/jF +K11 ln s1/jF

)
(4.11)

+

(
αs(Q)

4π

)2 (
K23 ln3 s1/jF +K22 ln2 s1/jF +K21 ln s1/jF

)
+

(
αs(Q)

4π

)3 (
K34 ln4 s1/jF +K33 ln3 s1/jF +K32 ln2 s1/jF +K31 ln s1/jF

)
+ · · ·

where the coefficients Knm are given in table 3, and

KγF (Q,Q/s1/jF ) =

[(
αs(Q)

4π

)(
k11 ln s1/jF

)
(4.12)

+

(
αs(Q)

4π

)2(
k22 ln2 s1/jF + k21 ln s1/jF

)
+

(
αs(Q)

4π

)3(
k33 ln3 s1/jF + k32 ln2 s1/jF + k31 ln s1/jF

)
+ · · ·

]
,

where the coefficients knm are given in table 4.
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Similarly the expansion of ηΓ is,

ηΓ(Q,Q/s1/jF ) =

[(
αs(Q)

4π

)(
η11 ln s1/jF

)
(4.13)

+

(
αs(Q)

4π

)2(
η22 ln2 s1/jF + η21 ln s1/jF

)
+

(
αs(Q)

4π

)3(
η33 ln3 s1/jF + η32 ln2 s1/jF + η31 ln s1/jF

)
+ · · ·

]
,

with the coefficients ηnm also given in table 4. Although it does not appear in eq. (4.8),

dependence on ηΓ(µ, µF ) will reappear if scale choices other than eq. (4.7) are made in

eq. (4.2). In addition, although eq. (4.13) seems to suggest that ηΓ begins at NLL order

rather than LL, we will find that transforming between the Laplace-space σ̃(ν) and the

momentum-space σ(τ) or R(τ) to a consistent order of accuracy requires keeping anomalous

dimensions in Ω to the same order as in K.

In eqs. (4.11) and (4.13) we have used the three-loop running of the coupling αs(µ) to

perform the fixed-order expansion [76]. The coupling obeys the equation,

dαs(µ)

d lnµ
= β[αs(µ)] , (4.14)

where the beta function has the perturbative expansion,

β[αs] = −2αs

∞∑
n=0

(αs
4π

)n+1
βn . (4.15)

The first few coefficients βn are given in eq. (C.1). The solution of eq. (4.14) with the

3-loop beta function gives the 3-loop running coupling,

αs(µ) =αs(Q)

{
X + αs(Q)

β1

4πβ0
lnX

+
α2
s(Q)

16π2

[
β2

β0

(
1− 1

X

)
+
β2

1

β2
0

(
lnX

X
+

1

X
− 1

)]}−1

, (4.16)

where

X ≡ 1 +
αs(Q)

2π
β0 ln

µ

Q
. (4.17)

The pattern in eq. (4.11) and table 3 makes evident that achieving NkLL accuracy in the

exponent K of σ̃(ν) requires the cusp anomalous dimension Γqcusp[αs] to order αk+1
s , the

non-cusp part γF [αs] to order αks , and the (k+1)-loop running of αs. Counting terms in the

prefactors H, F̃ consistently with the convention in table 1, NkLL accuracy can be achieved

by calculating the anomalous dimensions, running coupling, and fixed-order functions H, F̃

to the orders given in table 5. At each additional order in log accuracy, each column is

incremented by one power of αs.

Equations (4.11) and (4.13) for KF , ωF can be written in closed forms that resum all

the higher order terms in αs. This can be done, for example, by changing variables of
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accuracy ΓF γF β H, J̃, S̃

LL αs 1 αs 1

NLL α2
s αs α2

s 1

NNLL α3
s α2

s α3
s αs

N3LL α4
s α3

s α4
s α2

s

accuracy ΓF γF β H, J̃, S̃

LL αs 1 αs 1

NLL′ α2
s αs α2

s αs

NNLL′ α3
s α2

s α3
s α2

s

N3LL
′

α4
s α3

s α4
s α3

s

Table 5. Order of anomalous dimensions, beta function, and fixed-order hard, jet, and soft func-

tions required to achieve NkLL and NkLL′ accuracy in the exponent of σ̃(ν).

integration in eqs. (3.34) and (3.35) from µ to αs using dµ/µ = dαs/β[αs], yielding

KΓ(µ, µF ) =

∫ αs(µ)

αs(µF )

dα

β[α]
Γqcusp[α]

∫ α

αs(µF )

dα′

β[α′]
(4.18a)

Kγ(µ, µF ) =

∫ αs(µ)

αs(µF )

dα

β[α]
γ[α] , ηΓ(µ, µF ) =

∫ αs(µ)

αs(µF )

dα

β[α]
Γqcusp[α] (4.18b)

Using table 5 we obtain expressions for KΓ,K
F
γ , ηΓ order-by-order in logarithmic accuracy,

K = KLL +KNLL +KNNLL + · · ·

η = ηLL + ηNLL + ηNNLL + · · · .
(4.19)

Thus to N3LL order [38, 76]:

KLL
Γ (µ, µF ) =

Γ0

4β2
0

4π

αs(µF )

{
ln r +

1

r
− 1

}
(4.20a)

KNLL
Γ (µ, µF ) =

Γ0

4β2
0

{(
Γ1

Γ0
−β1

β0

)
(r−ln r−1)− β2

1

2β0
ln2 r

}
(4.20b)

KNNLL
Γ (µ, µF ) =

Γ0

4β2
0

αs(µF )

4π

{
B2

(
r2−1

2
− ln r

)
+

(
β1Γ1

β0Γ0
−β

2
1

β2
0

)
(r−r ln r−1)

+

(
Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

}
(4.20c)

KN3LL
Γ (µ, µF ) =

Γ0

4β2
0

(αs(µF )

4π

)2
{[(

Γ1

Γ0
− β1

β0

)
B2 +

B3

2

]
r2 − 1

2
−B2

(
Γ1

Γ0
− β1

β0

)
(r − 1)

+

(
Γ3

Γ0
− Γ2β1

Γ0β0
+
B2Γ1

Γ0
+B3

)(
r3 − 1

3
− r2 − 1

2

)
− B3

2
ln r

+
β1

2β0

(
Γ2

Γ0
− Γ1β1

Γ0β0
+B2

)(
r2 ln r − r2 − 1

2

)}
, (4.20d)

where

r ≡ αs(µ)

αs(µF )
, B2 ≡

β2
1

β2
0

− β2

β0
, B3 = −β

3
1

β3
0

+
2β1β2

β2
0

− β3

β0
, (4.21)
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and

ηLL
Γ (µ, µF ) = − Γ0

2β0
ln r (4.22a)

ηNLL
Γ (µ, µF ) = − Γ0

2β0

αs(µF )

4π

(
Γ1

Γ0
− β1

β0

)
(r − 1) (4.22b)

ηNNLL
Γ (µ, µF ) = − Γ0

2β0

(
αs(µF )

4π

)2(
B2 +

Γ2

Γ0
− Γ1β1

Γ0β0

)
r2 − 1

2
(4.22c)

ηN3LL
Γ (µ, µF ) = − Γ0

2β0

(
αs(µF )

4π

)3(Γ3

Γ0
− Γ2β1

Γ0β0
+

Γ1

Γ0
B2 +B3

)
(r3 − 1) , (4.22d)

and

KLL
γ = 0 , KNLL

γ = ηLL
γ , KNNLL

γ = ηNLL
γ , KN3LL

γ = ηNNLL
γ , . . . (4.23)

These last relations mean that to get Kγ on the left-hand side, use the specified formula

for ηΓ given in eq. (4.22) with the replacement Γn → γn. The expressions eqs. (4.20)

and (4.22) capture terms at all orders in αs required up to N3LL accuracy. Re-expanding

eqs. (4.20) and (4.22) in powers of αs(Q) using the running coupling eq. (4.16) produces

the fixed-order series shown in eqs. (4.11) and (4.13).

Note from eqs. (4.20d) and (4.22d) that N3LL accuracy requires knowing the 4-loop

cusp anomalous dimension Γ3, which is not known explicitly at the present time. It can

however be estimated by Padé approximation, yielding approximate N3LL resummed ac-

curacy as in [38, 71], assuming other ingredients such as non-cusp anomalous dimensions

and matching coefficients are also known to sufficiently high order.

The way we divided the evolution kernel into KF and ωF in eqs. (4.11) and (4.13) makes

it appear that ωF begins at a subleading order in logarithmic accuracy (NLL) compared

to KF (LL). However, it is advisable to keep the cusp anomalous dimension to the same

order of accuracy both in KF and ωF at a given order NkLL of logarithmic accuracy, as

we indicated in eq. (4.22) or table 4. One reason for this is that KΓ and ηΓ always appear

together as in eq. (3.35) in the combination:

− jFκFKF (µ, µ0) + (µjF0 eγEx)−κF ηΓ(µ,µ0)

= −jFκF
∫ µ

µ0

dµ′

µ′
Γqcusp[αs(µ

′)]
(

ln
µ′

µ0
+ ln[µ0(eγEx)1/jF ]

)
= −jFκF

∫ µ

µ0

dµ′

µ′
Γqcusp[αs(µ

′)] ln[µ′(eγEx)1/jF ] ,

(4.24)

whose integrand reproduces the starting form of the anomalous dimension eq. (3.32). Thus

keeping Γcusp to the same order in KF and ηΓ is necessary to remove the explicit dependence

on the arbitrary scale µ0 we introduced into the integrand of KΓ in eq. (3.34) purely for

convenience. In other words, if we had kept the evolution kernel in the form of the last line

of eq. (4.24) we would automatically keep Γcusp to the same order wherever it appears, and

this is what we shall do. The remaining dependence on µ0 in the lower limit of the evolution

integrals is cancelled by µ0-dependent terms in the fixed-order coefficients H, J̃, S̃.
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Figure 4. Commutative diagram for obtaining the resummed cumulant distribution from the

Laplace transform. The resummed cumulant can be obtained by first inverse Laplace transforming

σ̃ with free scales, and then choosing the scales to be τ -dependent. Or, it can be obtained by first

fixing the scales in the Laplace transform to be ν-dependent, and then inverse Laplace transforming.

If expressions for R, σ̃ are kept to all orders in αs, the two routes produce identical results, though

care must be exercised at truncated finite orders to maintain equivalent accuracy. (Nota bene:

when the running of the strong coupling αs(µ) is taken into account, the bottom route can lead to

integration over the Landau pole, which can be avoided by appropriate prescriptions, but in that

case the top route is preferable.)

Making the scale choices eq. (4.7) in the Laplace-transformed cross section σ̃(ν) in

eq. (4.2) is appropriate for the purpose of resumming logs of ν if one wishes to express the

distribution directly in terms of this variable. If one is interested instead in summing logs

of τa in σ(τa) or R(τa), one might think taking the inverse Laplace transform of eq. (4.8)

is the simplest thing to do, but this is actually fairly cumbersome due to the complex τa
dependence after scale setting. In addition, in integrating down to s = 0 one encounters

the Landau pole in αs(Qs) and αs(Qs
1/jJ ) whose expansions in αs(Q) produced the βn-

dependent terms in eq. (4.11). Instead, it is simpler to take the inverse Laplace transform of

eq. (4.2) before choosing the scales µF , and then after the transform to choose τa-dependent

scales, such as the canonical choice

µ = µH = Q , µnat
F = Qτ1/jF

a , (4.25)

in calculating either σ(τa) or R(τa).
4 Of course, the two orders of operations must be

equivalent when the cross section is computed to all orders in αs, as illustrated in the

commutative diagram figure 4. At a truncated order of accuracy, however, results may

differ. We carry out these comparisons explicitly in the next subsections.

4Alternatively, one can Taylor expand eq. (4.2) around ν = 1/τa before performing the inverse transform.

This is the approach taken in the QCD resummed [15] cross section given by eq. (3.56), with the Taylor

expansion performed in eq. (3.58).
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4.2 Cumulant

4.2.1 Resummed cumulant in SCET formalism

To obtain the cumulant R(τa), it is simplest to take the inverse Laplace transform of

eq. (4.2) and integrate with respect to τa, or

R(τa) =
1

2πi

∫
C

dν

ν
eντa σ̃(ν) , (4.26)

which gives the result in eq. (3.48). Then making the scale choices in eq. (4.25) leads to

the simple form:

R(τa) = H2(Q)eK J̃(∂Ω, µ
nat
J )2S̃(∂Ω, µ

nat
S )

[
eγEΩ

Γ(1− Ω)

]
, (4.27)

where

K = 2KJ(Q,Qτ1/jJ
a ) +KS(Q,Qτa) , (4.28a)

Ω = 2ωJ(Q,Qτ1/jJ
a ) + ωS(Q,Qτa) . (4.28b)

The scale choices eq. (4.25) are the typical “canonical” choices made in the SCET literature.

Another reasonable set of choices is eq. (3.81), which lead to a form of the resummed cross

section most similar to the typical QCD form eq. (3.61). With the choices eq. (3.81), we

obtain for the cumulant eq. (3.48):

R(τa) = H2(Q)eK̄ J̃(∂Ω̄, µ̄J)2S̃(∂Ω̄, µ̄S)

[
1

Γ(1− Ω̄)

]
, (4.29)

where

K̄ = 2KJ(Q,Qτ̄1/jJ
a ) +KS(Q,Qτ̄a) , (4.30a)

Ω̄ = 2ωJ(Q,Qτ̄1/jJ
a ) + ωS(Q,Qτ̄a) , (4.30b)

where τ̄a is defined in eq. (3.63). The two forms eqs. (4.27) and (4.29) are equivalent, when

computed to all orders in αs. Truncated at a given order of logarithmic accuracy, they

may differ in subleading terms but are equal at the given order of accuracy.

We proceed to classify the accuracy of logarithmic resummation for R(τ) given by

eq. (4.29) before considering the distribution σ(τa). The discussion for R will turn out to

be more straightforward. With the scale choices eq. (3.81), we find from eq. (3.36),

K̄F (Q,Qτ̄1/jF
a ) = −jFκFKΓ(Q,Qτ̄1/jF

a ) +KγF (Q,Qτ̄1/jF
a ) , (4.31)

where KΓ,KγF have the same fixed-order expansions as in eqs. (4.11) and (4.12) with the

replacement s→ 1/τ̄ . Meanwhile, Ω̄ = 2ω̄J + ω̄S , where

ω̄F (Q,Qτ̄1/jF
a ) = −κF ηΓ(Q,Qτ̄1/jF

a ) , (4.32)

with ηΓ having the same fixed-order expansion as in eq. (4.13) with the

replacement s→ 1/τ̄ .
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Each of the fixed-order jet and soft functions J̃ , S̃ in eq. (4.29) produces a prefactor

multiplying the exponentiated series. To calculate the prefactors, we use the relations

Ḡ(Ω̄) ≡
(
µ

Qτ̄

)Ω̄ 1

Γ(1− Ω̄)
, (4.33a)

∂Ω̄Ḡ(Ω̄) =

[
ln

µ

Qτ̄
+ ψ(1− Ω̄)

]
G(Ω̄) , (4.33b)

∂2
Ω̄Ḡ(Ω̄) =

[(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)2

− ψ(1)(1− Ω̄)

]
Ḡ(Ω̄) , (4.33c)

∂3
Ω̄Ḡ(Ω̄) =

[(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)3

− 3

(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)
ψ(1)(1− Ω̄)

+ ψ(2)(1− Ω̄)

]
Ḡ(Ω̄) , (4.33d)

∂4
Ω̄Ḡ(Ω̄) =

[(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)4

− 6

(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)2

ψ(1)(1− Ω̄) + 3ψ(1)(1− Ω̄)2

+ 4

(
ln

µ

Qτ̄
+ ψ(1− Ω̄)

)
ψ(2)(1− Ω̄)− ψ(3)(1− Ω̄)

]
Ḡ(Ω̄) , (4.33e)

and so on. Here ψ is the digamma function, ψ(z) = Γ′(z)/Γ(z), and ψ(n) is its nth

derivative. Note that when applied to eq. (4.29), the µ in eq. (4.33) is set equal to Qτ̄ , so

the explicit logs of µ/Qτ̄ disappear.

To NLL accuracy, the equation eq. (4.27) or eq. (4.29) for R(τa) fits into the form

eq. (2.10) given by CTTW, but only to NLL. At this order, the quantities in eq. (2.10) are

given by

ln Σ = K̄ − ln Γ(1− Ω̄) , C(αs) = 1 , (4.34)

but beyond NLL we see that parts of the CTTW “exponent” are actually generated by

the parts of the fixed-order functions F̃ that contain derivative operators ∂Ω̄ [30]. The

forms eqs. (3.61) and (3.82) are properly generalized forms of eq. (2.10), where some terms

in the τa-dependent function Σ(τa, αs) are produced by the differential operator T̂ (Ē′), or

equivalently in the forms eqs. (4.27) and (4.29) by the differential operators F̃ (∂Ω,Ω̄).

4.2.2 Computing Laplace transform and cumulant to consistent accuracy

Note: in this subsection, we will ignore the running of αs, treating it as a constant. As

a reminder, we will use the shorthand as = αs/4π.

Above we have defined NkLL or NkLL′ accuracy by the number of terms in the ex-

ponent of σ̃(ν) in eq. (2.6) or eq. (4.8) that are accurately predicted. In computing the

τa-distribution in momentum space, the counting of logarithmic accuracy can be a little

trickier. For instance, expressions like eq. (3.82), eq. (4.27), eq. (4.29) for the cumulant

R(τa) contain a series of derivative operators acting on a gamma function containing large

logs. How are the logs generated by these derivatives to be counted when computing to

NkLL or NkLL′ accuracy?
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Now, the resummed cumulant R(τa) given by eq. (4.27) or eq. (4.29) is supposed to be

equal to the inverse transform eq. (4.26) of the resummed Laplace-transformed cross section

σ̃(ν) in eq. (4.8). This is exactly true when both formulae are computed to all orders in αs.

In practice, of course, we have to truncate the accuracy of each at some finite order, so the

exact equivalence between the two forms cannot in practice be maintained. Here we will

explore this relationship by comparing the results of truncating these formulae for σ̃(ν) or

R(τ) at a finite logarithmic accuracy. We then prescribe how to compute R(τa) so that

the equivalence between it and σ̃(ν) in eq. (4.8) computed at a given order of resummed

accuracy is maintained as best as possible. We will give a prescription for truncating

ingredients of the resummed R(τa) so that it is at least as accurate as σ̃(ν) at NkLL or

NkLL′ accuracy, although subleading terms will differ.

First, note that we defined NkLL accuracy for σ̃(ν) by the number of terms in the

exponent K that are included, given by table 3. NkLL accuracy for σ̃(ν) is achieved by

calculating anomalous dimensions and the fixed-order coefficients to the orders given in

table 5. Inverse Laplace transforming the NkLL σ̃(ν) by eq. (4.26) must then produce the

expression eq. (4.29) with K̄, Ω̄ and the fixed-order coefficients H, J̃, S̃ computed to the

same orders as given by table 5. In particular, this produces an expression for Ω̄ computed

with the cusp anomalous dimension kept to the same order as in K̄ at NkLL accuracy, i.e.

to order αk+1
s , as specified in table 5. This is the case even though, by itself, ωF = −κF ηΓ

given by eq. (4.13) appears to begin at one lower logarithmic order than KΓ in eq. (4.11).

Even though it is not strictly required for achieving NkLL accuracy, keeping Γcusp to the

same order in Ω̄ as in K̄ is necessary for keeping the expressions eq. (4.8) for σ̃(ν) and

eq. (4.29) for R(τa) exactly equal to each other upon Laplace transformation. [See also

comments after eq. (4.24) on benefits of computing Ω̄ to this order.]

This is not by itself sufficient, however, for we need to consider the contribution of the

derivative operator terms in eq. (4.29) as well. To illustrate in a simple example the effect

of these terms (being somewhat schematic), consider a distribution σ̃(ν, µ) in Laplace space

which is made up of a product of transformed functions F̃ , each of which satisfies an RG

equation of the form

µ
d

dµ
F̃ (ν, µ) = 2ΓF [as] ln

(
µνeγE

Q

)
+ γF [as] , (4.35)

where ΓF , γF have the expansions in as,

ΓF [as] =
∞∑
n=0

ΓF,na
n+1
s , γF [as] =

∞∑
n=0

γF,na
n+1
s . (4.36)

Then, the resummed σ̃(ν, µ) is a product of functions of the form

F̃ (ν, µ) = F̃ (ν, µF )eKF (µ,µF )

(
µF νe

γE

Q

)ωF (µ,µF )

, (4.37)

where

KF (µ, µF ) = ΓF ln2 µ

µF
+ γF ln

µ

µF
, ωF (µ, µF ) = 2ΓF ln

µ

µF
. (4.38)
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For simplicity, we will write the full cross section σ̃ in a schematic form, in terms of only

one of these evolution factors,

σ̃(ν, µ) = σ̃(ν, µ0)eK(µ,µ0)

(
µ0νe

γE

Q

)Ω(µ,µ0)

, (4.39)

although the number of evolution factors does not affect the conclusions drawn from this

discussion. One can think of µ0 as representing a set of scales µi for each evolution factor.

Upon choosing the scales µ0 = Q(νeγE )−1 and µ = Q yields the expression

σ̃(ν) = C(as)e
ΓL̃2+γL̃ , (4.40)

where L̃ ≡ ln(νeγE ), and the coefficient C contains no logs,

C(as) ≡ σ̃(ν,Q(νeγE )−1) = 1 +

∞∑
n=1

Cna
n
s . (4.41)

Taking the inverse Laplace transform of σ̃(ν, µ) in eq. (4.39) before fixing the scale µ0, we

obtain for the cumulant distribution in momentum space,

R(τ, µ) =

∫
C

dν

2πi

eντ

ν
σ̃(ν) = C(as)e

K(µ,µ0)eΓ∂2
Ω+γ∂Ω

(
µ0

Qτ

)Ω(µ,µ0) eγEΩ(µ,µ0)

Γ(1− Ω(µ, µ0))
. (4.42)

The differential operator eΓ∂2
Ω+γ∂Ω here is the equivalent of the product of operators

J̃(∂Ω)2S̃(∂Ω) in the full SCET expression eq. (3.48) or the differential operator terms in

eq. (3.82). Thus the order to which we truncated this operator corresponds to the order to

which we truncate the jet and soft functions in SCET or the differential operators in the

dQCD resummed cumulant.

In eq. (4.42) we can choose the scale µ0 to be Qτ or Qτ̄ = Qτe−γE . Here, we will pick

the canonical choice µ0 = Qτ , and the same scale µ = Q as in eq. (4.40). Then we obtain

R(τ) = CeΓL2+γLeΓ∂2
Ω

eγE(Ω+γ)

Γ(1− Ω− γ)
, (4.43)

where

L ≡ ln
1

τ
, Ω = 2ΓL , (4.44)

and where we have used the translation operator eγ∂Ω in eq. (4.42) to shift the arguments

in last factor in eq. (4.43) from Ω to Ω + γ.

Since the factor C(as) is common to both σ̃(ν) in eq. (4.40) and R(τ) in eq. (4.43),

we will not explicitly include it in comparing the relative accuracy of the two expressions.

We focus on comparing how accurately the remaining explicitly log-dependent factors in

R(τ) in eq. (4.43) reproduce the exponentiated logs in σ̃(ν) in eq. (4.40) upon Laplace

transformation. It is these terms that determine the shape of the spectrum in τ .

The two formulae eq. (4.39) for σ̃(ν, µ) and eq. (4.42) are related by Laplace trans-

formation before fixing the scale µ0 to be ν-dependent or τ -dependent. This relation is

represented by the top arrow in figure 4. Fixing the scales µ = Q and µ0 = Q(νeγE )−1
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or µ0 = Qτ is represented by the vertical arrows. It should follow that transforming be-

tween σ̃(ν) and R(τ) on the bottom of figure 4 after fixing the scales should also be valid.

Evaluating the transform in practice is more involved, however, due to the additional ν

or τ dependence in the scales (at least once the running of αs is restored), but we can

compute at some truncated order in αs to compare the accuracy to which the transform

on the bottom of figure 4 is achieved.

Now, transforming R(τ) in eq. (4.43) back to σ̃(ν) using

1

ν
σ̃(ν) =

∫ ∞
0

dτ e−ντR(τ) (4.45)

will yield exactly the same result as eq. (4.40), if all objects in both expressions are com-

puted to all orders in αs. However, when truncated at a given logarithmic accuracy, the

inability to evaluate the infinite series of differential operators in eΓ∂2
Ω in eq. (4.43) prevents

this from being exactly realized. An explicit example will serve to illustrate this.

First, consider σ̃(ν) given, after fixing scales, by eq. (4.40), to N3LL accuracy [equation

appears in color]:

σ̃(ν) = C(as) exp

{
as(Γ0L̃

2 + γ0L̃)

+a2
s(Γ1L̃

2 + γ1L̃)

+ a3
s(Γ2L̃

2 + γ2L̃) + a4
sΓ3L̃

2 + · · ·
}
,

(4.46)

where we have colored the terms at LL accuracy in red, NLL in green, NNLL in blue, and

N3LL in purple. Now expanding eq. (4.46) in fixed orders in as up to O(a3
s) [color]:

σ̃(ν) = C(as)

{
1 + as(Γ0L̃

2 + γ0L̃) (4.47)

+ a2
s

[
Γ2

0

2
L̃4 + Γ0γ0L̃

3 +

(
γ2

0

2
+ Γ1

)
L̃2 + γ1L̃

]
+ a3

s

[
Γ3

0

6
L̃6 +

Γ2
0γ0

2
L̃5 +

(
Γ0γ

2
0

2
+Γ1Γ0

)
L̃4 +

(
γ3

0

6
+Γ1γ0+Γ0γ1

)
L̃3

+ (γ1γ0 + Γ2)L̃2 + γ2L̃

]}
,

where the colors indicate which terms in the fixed-order expansion are generated by ex-

panding the exponent in eq. (4.46) to the corresponding order in logarithmic accuracy. At

NkLL order, the first log that is missing in the exponent of eq. (4.46) is ∼ ak+1
s γkL̃. Thus,

in eq. (4.47), the largest log that is missing at O(αk+n
s ) in the fixed-order expansion of the

exponentiated logs eΓL̃2+γL̃ in σ̃(ν) is:

largest missing log in NkLL σ̃(ν) at fixed-order O(ak+n
s ):

(ak+1
s γkL̃)

(
an−1
s

Γn−1
0

(n− 1)!
L̃2n−2

)
= ak+n

s

Γn−1
0 γk

(n− 1)!
L̃2n−1

(4.48)
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We will use eqs. (4.47) and (4.48) to compare which terms are accurately predicted by the

Laplace transform of the cumulant R(τ) truncated at a given order. It is reasonable to

expect that a definition or prescription for NkLL accuracy in R(τ) should not mis-predict

any logs that are larger than eq. (4.48) upon Laplace transformation.

Now consider the expansion of the cumulant R(τ) in eq. (4.43) with the anomalous

dimensions kept to the same accuracy. The factor

eK(Q,Qτ) = eΓL2+γL (4.49)

will take exactly the same form as the expansion in eq. (4.47) for σ̃(ν), with each L̃ ≡
ln(νeγE ) replaced by L ≡ ln(1/τ). However, the powers L̃n and Ln are not exact transforms

of each other, as we see from eqs. (B.3) and (B.5), each contains a series of lower-order

logs Ln−k or L̃n−k for 0 ≤ k ≤ n. The extra terms in the transform of each power L̃n are

provided by the expansion of the extra factors in eq. (4.43),

eΓ∂2
Ω

eγE(Ω+γ)

Γ(1− Ω− γ)
=

(
1 + Γ∂2

Ω +
Γ2

2
∂4

Ω +
Γ3

6
∂6

Ω + · · ·
)

×
[
1− π2

12
(Ω + γ)2 − ζ3

3
(Ω + γ)3 +

π4

1440
(Ω + γ)4

+
5π2ζ3 − 36ζ5

180
(Ω + γ)5 +

(
ζ2

3

18
− π6

24192

)
(Ω + γ)6 + · · ·

]
,

(4.50)

or, evaluating the derivatives up to terms contributing at O(a3
s),

eΓ∂2
Ω

eγE(Ω+γ)

Γ(1− Ω− γ)
= 1− π2

12
(Ω + γ)2 − ζ3

3
(Ω + γ)3

+ Γ

[
−π

2

6
− 2ζ3(Ω + γ) +

π4

120
(Ω + γ)2

]
+

Γ2

2

[
π4

60
+

(
10π2

3
ζ3 − 24ζ5

)
(Ω + γ)

]
+

Γ3

6

(
40ζ2

3 −
5π6

168

)
+ · · · ,

(4.51)

recalling Ω = 2ΓL for fixed as. The derivatives can also be computed from the series

expansions of the expressions in eq. (4.33).

Now to compute R(τa) up to O(a3
s), we multiply together eqs. (4.49) and (4.51), and

find for the fixed-order expansion of R(τa) [color],

R(τ) = L −1

(
C(as)

ν

{
1 + as(Γ0L̃

2 + γ0L̃)

+ a2
s

[
Γ2

0

2
L̃4 + Γ0γ0L̃

3 +

(
γ2

0

2
+ Γ1

)
L̃2 + γ1L̃

]
+ a3

s

[
Γ3

0

6
L̃6 +

Γ2
0γ0

2
L̃5 +

(
Γ0γ

2
0

2
+Γ1Γ0

)
L̃4

+

(
γ3

0

6
+Γ1γ0+Γ0γ1

)
L̃3 + (γ1γ0 + Γ2)L̃2 + γ2L̃

]})
.

(4.52)
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where L −1(L̃n/ν) is given explicitly by eq. (B.5). That is, the Laplace transform of R(τ)

is exactly the expansion eq. (4.47) of σ̃(ν) up to the terms at O(a3
s) that are predicted

at N3LL accuracy. However, to achieve this result it was necessary to keep the expansion

of the derivative operator eΓ∂2
Ω in eq. (4.51) up to the terms of O(a3

s). This operator

corresponds to terms in the F̃ (∂Ω) operators in the SCET resummed cumulant eq. (4.27)

or eq. (4.29), or the ∂Ē′ terms in the QCD-inspired form eq. (3.82). This tells us that

the Laplace transform of R(τ) reproduces the expansion eq. (4.47) of σ̃(ν) exactly only

up to the order in as to which the differential operators are kept. Thus, to reproduce the

NkLL σ̃(ν) in eq. (4.47) exactly to arbitrary order in as, the differential operators in the

expansion of eΓ∂2
Ω would have to kept to infinite order.

Luckily, we will be able to reproduce σ̃(ν) to NkLL accuracy by keeping only a finite

number of these derivative operators, but to higher order than table 5 might suggest. To

see this, let’s first start näıvely, applying the rules in table 1 to evaluate R(τ) given by

eq. (4.43) at NLL order. When table 1 tells us to keep the J̃ , S̃ functions to tree level

at NLL, interpreted näıvely we also truncate the operator eΓ∂2
Ω in eq. (4.43) to tree level.

Then we would obtain for R(τ):

R(τ)
NLL
= exp

[
as(Γ0L

2 + γ0L) + a2
sΓ1L

2

]
exp
{
γE
[
as(2Γ0L+ γ0) + a2

s(2Γ1L)
]}

Γ
[
1− as(2Γ0L+ γ0)− a2

s(2Γ1L)
] (4.53)

= 1 + as(Γ0L
2 + γ0L)

+ a2
s

[
Γ2

0

2

(
L4 − 2π2

3
L2

)
+ Γ0γ0

(
L3 − π2

3
L

)
+
γ2

0

2

(
L2 − π2

6

)
+ Γ1L

2

]
+ · · · ,

expanded to O(a2
s). Comparing to eq. (B.5), the first thing we notice is that eq. (4.53) is

missing the as(π
2/6) term required to accompany L2 for it to Laplace transform properly to

L̃2. This is fine at NLL accuracy, since the missing O(αs) term corresponds to a subleading

term in the σ̃(ν) counting [see eq. (4.47)]. However, we then notice eq. (4.53) also has the

wrong a2
sπ

2L2 term required to make L4 transform properly to L̃4. This would lead to an

incorrect a2
sL̃

2 term in the Laplace transform of eq. (4.53), which should equal eq. (4.47).

[Continuing to O(a3
s) we would find the a3

sL
4 term in the Laplace transform of R(τ) also

incorrect.] The mismatch occurs in terms that are completely green (NLL) in eq. (4.47),

thus making the supposedly NLL R(τ) in eq. (4.53) objectively less accurate than σ̃(ν) in

eq. (4.47) at NLL. The similar problem occurs at NkLL order if table 5 is used to keep the

differential operator eΓ∂2
Ω to the same order as the fixed-order coefficients C(as). To be

precise, the largest log at a given fixed order in as that is incorrectly predicted at NkLL by

using eq. (4.43) with the differential operator kept to the order specified for the fixed-order

coefficients in table 5 is:

largest incorrect log in NkLL R(τ) at fixed-order O(αk+n
s ):

∼
[
aksΓ

k
0(#)

](
ans

Γn0
n!
L2n

)
= ak+n

s (#)
Γn+k

0

n!
L2n ,

(4.54)

where (#) is the constant generated by taking the derivative ∂2k
Ω of the (Ω + γ)2k term

in the series expansion eq. (4.50). We see the term in eq. (4.54) is larger (by one power
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of a log) than the largest log missing in the NkLL σ̃(ν) identified in eq. (4.48). This

is undesirable for an expression labeled to be NkLL accurate, which should contain the

equivalent information as in the NkLL Laplace transform.

These deficiencies are remedied by applying the NkLL′ counting in table 5 to the

differential operator eΓ∂2
Ω and thus expanding it to one higher order than at NkLL order. For

example, at NLL′ order, with the differential operator eΓ∂2
Ω expanded to first order, 1+Γ∂2

Ω,

and truncating this to O(αs), 1 + asΓ0∂
2
Ω, we find that R(τ) has the expansion to O(α3

s):

R(τ)
NLL′
= C(as)

{
1 + as

[
Γ0

(
L2 − π2

6

)
+ γ0L

]
(4.55)

+ a2
s

[
Γ2

0

2
(L4−π2L2−8ζ3L) + Γ0γ0

(
L3 − π2

2
L− 2ζ3

)
+
γ2

0

2

(
L2 − π2

6

)
+ Γ1L

2

]
+ a3

s

[
Γ3

0

6

(
L6 − 5π2

2
L4 − 40ζ3L

3

)
+

Γ2
0γ0

2

(
L5 − 5π2

3
L3 − 20ζ3L

2

)
+

Γ0γ
2
0

2

(
L4 − π2L2 − 8ζ3L

)
+ Γ0Γ1

(
L4 − 5π2

6
L2 − 4ζ3L

)
+
γ3

0

6

(
L3 − π2

2
L− 2ζ3

)
+ Γ1γ0

(
L3 − π2

3
L

)]}
.

Note that more of the displayed terms are now the correct inverse Laplace transforms of

L̃n/ν, according to eq. (B.5), in contrast to eq. (4.53) at unprimed NLL order. Not all the

terms in eq. (4.55) at O(a2
s) and O(a3

s) satisfy this property — for example, the a2
sΓ1L

2

term. However, there are enough logs correctly predicted in eq. (4.55) that its Laplace

transform reproduces all the terms in the fixed-order expansion eq. (4.47) of σ̃(ν) that are

supposed to be correct at NLL′ order [the green terms in eq. (4.47)]. That is, at NLL′ order,

R(τ) = L −1

(
1

ν
C(as)

{
1 + as

[
Γ0L̃

2 + γ0L̃

]
+ a2

s

[
Γ2

0

2
L̃4 + Γ0γ0L̃

3 +

(
γ2

0

2
+ Γ1

)
L̃2

]
+ a3

s

[
Γ3

0

6
L̃6 +

Γ2
0γ0

2
L̃5 +

(
Γ0γ

2
0

2
+ Γ0Γ1

)
L̃4 +

(
γ3

0

6
+ Γ1γ0

)
L̃3 + · · ·

]})
,

(4.56)

where the · · · on the last line indicate terms at O(a2
s) and higher order that are truly

subleading at NLL′ accuracy in σ̃(ν). The largest log in the fixed-order expansion of R(τ)

given by eq. (4.43) that is missing at NkLL′ order is:

largest incorrect log in NkLL′ R(τ) at fixed-order O(αk+n
s ):

∼
[
ak+1
s Γk+1

0 (#)
](
an−1
s

Γn−1
0

(n− 1)!
L2n−2

)
= ak+n

s

Γn+k
0

(n− 1)!
L2n−2 ,

(4.57)

which is two powers of logs smaller than the corresponding missing log in the NkLL R(τ) in

eq. (4.54), and one power smaller than the corresponding missing log in the NkLL or NkLL′

σ̃(ν) in eq. (4.48). Thus, the Laplace transform of the NkLL′ cumulant R(τ) evaluated using

eq. (4.43) does reproduce the NkLL′ σ̃(ν) evaluated from eq. (4.40).
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accuracy ΓF γF β J̃, S̃(∂Ω terms) cH,J,S

LL αs 1 αs 1 1

NLL α2
s αs α2

s αs 1

NNLL α3
s α2

s α3
s α2

s αs

N3LL α4
s α3

s α4
s α3

s α2
s

accuracy ΓF γF β H, J̃, S̃(full)

LL αs 1 αs 1

NLL′ α2
s αs α2

s αs

NNLL′ α3
s α2

s α3
s α2

s

N3LL
′

α4
s α3

s α4
s α3

s

Table 6. Order of anomalous dimensions, beta function, and fixed-order hard, jet, and soft func-

tions required to achieve NkLL and NkLL′ accuracy in the cumulant R(τ). Using this table instead

of table 5 at NkLL order ensures equivalent accuracy between R(τ) and σ̃(ν) upon Laplace trans-

formation of the former.

Some of the subleading terms still missing in eq. (4.55) to make each term be the

exact inverse Laplace transform of the corresponding term in eq. (4.47) can be restored by

keeping the Γ in the truncated differential operator 1 + Γ∂2
Ω to higher order. Others can

be restored by keeping higher-order terms in the Taylor expansion of eΓ∂2
Ω , as in eq. (4.51).

All these are legitimate options, equivalent at subleading accuracy. The higher the order

to which the expansion of the differential operator eΓ∂2
Ω is kept, the higher the accuracy to

which R(τa) computed using eq. (4.43) is in fact the correct inverse Laplace transform of

σ̃(ν) computed using eq. (4.40). The minimal prescription to maintain equivalence between

the accuracy of R(τ) and σ̃(ν) at NLL is to keep eΓ∂2
Ω up to at least the Γ∂2

Ω term of the

Taylor expansion, then truncated to O(αs) or greater. For NkLL accuracy, one keeps the

differential operator up to at least the Γk∂2k
Ω term of the Taylor expansion, then truncated

to O(αks) or greater. This prescription for evaluating R(τ) to NkLL accuracy is given in

table 6. Using table 6 ensures that the Laplace transform of R(τ) reproduces the logs

in the fixed-order expansion of σ̃(ν) eq. (4.47) that are fully predicted by exponentiating

eq. (4.46) at the same order of accuracy.

Up until now we have not considered the effect of the C(as) factor in front of eq. (4.40)

or eq. (4.43). The above considerations apply to maintaining equivalent accuracy between

the logs of τ or ν predicted by expanding the exponentiated logs in σ̃(ν) in eq. (4.40) or the

exponentials, derivative operators, and gamma function in R(τ) in eq. (4.43). These terms

determine the shape of the distribution. If one multiplies through the expansion of C(as)

in eq. (4.47) (which affects the normalization), there are terms that are missing at NkLL

order (with C(as) truncated according to table 5) that are the same size as those missed

by truncating the differential operator eΓ∂2
Ω to the same order. For example, at NLL order,

one of the leading effects of the missing O(as) coefficient C1 is a missing a2
sC1Γ0L̃

2 term

in eq. (4.47). Since this is the same size as the a2
sL̃

2 term we pointed out would be mis-

predicted by truncating the differential operator eΓ∂2
Ω to tree level in eq. (4.53), it is fair to

complain that one should not demand keeping the differential operator to higher order than

the order to which the Cn coefficients are known. Thus, it is not incorrect to use table 5

to evaluate all the objects in R(τ). We are pointing out that, as far as the exponentiation

of the logs themselves in eq. (4.40) is concerned, one loses information that is contained in

the exponent of eq. (4.40) by Laplace transforming eq. (4.43) with the differential operator

truncated according to table 5 instead of table 6. This is information one already has
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available if one knows the anomalous dimensions needed at NkLL accuracy, and so it need

not be thrown away. If we separate the counting of the exponentiated logs in eq. (4.40)

illustrated in eq. (4.47) from the fixed-order non-log coefficient C(as), then table 6 should

be used to evaluate R(τ) in order to preserve the accuracy of the logs predicted in eq. (4.47)

upon Laplace transformation.

For these reasons we say it is preferable to compute R(τ) in momentum space using

table 6 instead of table 5 when working to NkLL accuracy. And it is even better to work

to full NkLL′ accuracy if possible. Then not only does R(τ) match the accuracy of the

NkLL′ Laplace transform σ̃(ν), the coefficients Cn and terms in the differential operator

eΓ∂2
Ω are kept to a consistent accuracy. If the coefficients Cn of the non-logarithmic terms

required at NkLL′ accuracy are not available, then keeping just the differential operator

terms in the jet and soft functions (or the ∂nE′ terms in the dQCD form) to NkLL′ accuracy

in evaluating the cumulant R(τa) is sufficient to maintain equivalent accuracy with the

NkLL Laplace transform σ̃(νa), in the manner illustrated in eqs. (4.47) and (4.55).

Nota bene: in remainder of the paper, we restore the running of αs.

4.3 Distribution

The result of taking the inverse Laplace transform of eq. (4.2) is the expression for the

resummed distribution σ(τa) given in eq. (3.46). For the canonical scale choices eq. (4.25),

this simplifies to:

σ(τa) = H2(Q)
eK

τa
J̃(∂Ω, µ

nat
J )2S̃(∂Ω, µ

nat
S )

[
eγEΩ

Γ(−Ω)

]
, (4.58)

with K,Ω given by eq. (4.28). Alternatively, for the scale choices eq. (3.81), we obtain

the form

σ(τa) = H2(Q)
eK̄

τa
J̃(∂Ω̄, µ̄J)2S̃(∂Ω̄, µ̄S)

[
1

Γ(−Ω̄)

]
, (4.59)

where K̄, Ω̄ are given by eq. (4.30). These forms for σ(τa) correspond to making τa-

dependent scale choices after differentiating the cumulant R(τa) given by eq. (3.48), which

is the clockwise route in figure 2.

For the distribution σ(τa), which is the derivative of the cumulant R(τa), one might

expect that the accuracy of logarithmic resummation can be classified in the same way as

for R(τa) or for σ̃(ν), and thus achieved by calculating the quantities in table 5 (or table 6)

to the orders specified therein, in particular truncating the fixed-order coefficients J̃ , S̃ to

the specified accuracy. This is how one might interpret the prescriptions for computing

σ(τa) using the form eq. (4.58) given in, e.g., [71]. The situation is slightly more subtle,

however, and the truncation of J̃ , S̃ according to table 5 or table 6 should not yet be

performed in eq. (4.58) or eq. (4.59).

Consider the expression in eq. (4.59). Since the series expansion of Γ(−Ω̄) about Ω̄ = 0

starts with −1/Ω̄, it is not expedient to place it directly into the exponent of the cumulant

by taking its log as in eq. (4.34). Instead, let us pull out a factor of −Ω̄ to turn eq. (4.58)
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into as close a form as possible to the cumulant in eq. (4.27). This results in

σ(τa) = −H2(Q)
eK̄

τa
J̃(∂Ω̄)2S̃(∂Ω̄)

[
Ω̄

Γ(1− Ω̄)

]
. (4.60)

Now pull the factor of Ω̄ through the functions of ∂Ω̄ and relate derivatives of the quantity

in brackets to those of G(Ω̄) given by eq. (4.33):

F(Ω̄) ≡ Ω̄G(Ω̄) , (4.61a)

∂Ω̄F(Ω̄) = Ω̄∂Ω̄G(Ω̄) + G(Ω̄) , (4.61b)

∂2
Ω̄F(Ω̄) = Ω̄∂2

Ω̄G(Ω̄) + 2∂Ω̄G(Ω̄) , (4.61c)

∂3
Ω̄F(Ω̄) = Ω̄∂3

Ω̄G(Ω̄) + 3∂2
Ω̄G(Ω̄) , (4.61d)

∂4
Ω̄F(Ω̄) = Ω̄∂4

Ω̄G(Ω̄) + 4∂3
Ω̄G(Ω̄) , (4.61e)

and so on. Thus, the distribution eq. (4.60) can be written very closely to the form of the

cumulant eq. (4.29):

σ(τa) = −H2(Q)
eK̄

τa
[Ω̄F̃ (∂Ω̄) + G̃(∂Ω̄)]

[
1

Γ(1− Ω̄)

]
, (4.62)

where

F̃ (∂Ω) = J̃(∂Ω)2S̃(∂Ω) (4.63)

and

G̃(L) ≡ dF̃ (L)

dL
, (4.64)

where L is a variable standing in for ∂Ω̄. The extra terms on each line of eq. (4.61) show

that G̃ can be constructed from F̃ by differentiation with respect to the ∂Ω̄ operator itself.

The form eq. (4.62) is very similar to the cumulant eq. (4.27), but presents a conun-

drum: how do we deal with the prefactors F̃ , G̃ in defining NkLL accuracy for σ(τa)? There

is now an overall factor of 1/τa, which should be counted as one log. This promotes the

terms in the prefactor H[ΩF̃ +G̃] to one higher order in log accuracy than in the cumulant.

Applying the power counting that αs ln τ ∼ 1, we would conclude that the tree-level terms

in H, F̃ , G̃ are LL order, the O(αs) terms are NLL, O(α2
s) terms are NNLL, etc. Strictly

applying this power counting, even the constant terms cH,J,S in the hard, jet, and soft

functions are promoted to one higher order than in the cumulant alone. This is certainly a

possible choice of convention, which corresponds to NkLL′ accuracy in table 5 and table 6.

As with the cumulant, working to NkLL accuracy in table 6 is preferable to NkLL accuracy

in table 5, and NkLL′ accuracy is even better, as it obtains the correct NkLL terms as well

as the complete O(αks) fixed-order singular terms in the distribution.

We now explore an alternative approach to the distribution, which is to define a pre-

scription so that it equals the derivative of the cumulant at a given order of accuracy, or

at least as close to this as possible that we can achieve in practice.
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4.3.1 Keeping cumulant and distribution to consistent accuracy

We wish to define the NkLL distribution σ(τa) by identifying it with the derivative of the

NkLL cumulant R(τa) with respect to τa, so that integrating the NkLL distribution gives

back the NkLL cumulant. We will find that first resumming the cumulant in SCET using

eq. (3.48) and then differentiating it (following the counterclockwise route in figure 2) gives

a distribution with a closer correspondence with the direct QCD resummation of the cross

section than does using eq. (3.46) (resulting from the clockwise route in figure 2) directly.

It is possible to reorganize the result of following the clockwise route in figure 2 so that

at any truncated NkLL order it more closely matches the result of following the counter-

clockwise route. Above, we took the formula eq. (4.59) for the SCET distribution obtained

by choosing the scales eq. (3.81) and plugging into eq. (3.46) (clockwise, figure 2), and

reorganized its pieces into the form eq. (4.62). This form eq. (4.62) can be truncated in

such a way as to correspond to the derivative of the cumulant eq. (4.29) (counterclock-

wise, figure 2) at NkLL accuracy, namely, by truncating the terms in H, J̃, S̃ in eq. (4.62)

according to the usual NkLL table 5, except for the G̃(∂Ω̄) term produced by pulling Ω̄

through the J̃2(∂Ω̄)S̃(∂Ω̄) operators in eq. (4.60). We will find that we must keep a subset

of terms in G̃ to higher order than we do for F̃ specified in table 5 in order for the NkLL

distribution to equal the derivative of the NkLL cumulant. Truncating J̃ , S̃ in eq. (4.58)

according to table 5 before pulling Ω̄ through the differential operators in eq. (4.60) will not

produce the derivative of the full NkLL radiator but will be missing terms that are in G̃ in

eq. (4.62). Some of these missing terms are in fact required at unprimed NkLL accuracy; at

NkLL′ accuracy, they are formally subleading, but ensure closer numerical correspondence

with the derivative of the cumulant. If full NkLL′ results are not available, the truncation

rules for NkLL accuracy in table 6 also suffice to make eq. (4.62) match the accuracy of

the NkLL cumulant.

Since remembering which terms in G̃ are strictly necessary can be cumbersome, the

most straightforward way to compute the differential distribution so that it matches the

accuracy of the NkLL cumulant is simply to follow the counterclockwise route in figure 2 and

differentiate after choosing appropriate τa-dependent scales. We will derive below a generic

formula for the result of this procedure. This procedure guarantees that the resulting

distribution σ(τa) matches the accuracy of the cumulant R(τa) that we started with.

We note that this approach of differentiating the resummed cumulant to obtain the

distribution has been previously considered, and two potential (related) issues have been

noted [38]. First, the uncertainties from scale variation may be unreasonably small in the

tail region of the distribution, and second, the accuracy of the tail region when matching

onto fixed order may be compromised. These complications arise because the tail region of

the distribution has large cancellations between singular terms (those participating in the

resummation) and nonsingular terms. Care is required when turning off the resummation in

the tail region to preserve this delicate cancellation and also produce reliable uncertainties.

While these problems will not be solved here, we hope that the approach taken here offers

ways to address these issues in the future.

Following the counterclockwise route in figure 2, we take the derivative of the cumulant

after setting the scales µJ,S to be τa-dependent. For generality, we will allow for arbitrary
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functional dependence µJ,S = µJ,S(τa) (generalizing the canonical choices in figure 2).

Starting from eq. (3.48) and taking the τa derivative:

dR

dτa
= σn(τa) +

1

τa
exp(KH+2KJ+KS)

(
µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
H2(Q2, µH)

×

{ ∑
F=Jn,Jn̄,S

d lnµF
d ln τa

[
dK

d lnµF
+ jFωF + jF

dωF
d lnµF

ln
µF

Qτ
1/jF
a

(4.65)

+
dΩ

d lnµF
∂Ω +

d

d lnµF
ln F̃

(
∂Ω + ln

µjFF
QjF τa

, µF

)]}

× J̃n
(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)
J̃n̄

(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)
S̃

(
∂Ω + ln

µS
Qτa

, µS

)
exp(γEΩ)

Γ(1− Ω)
.

The spectrum σn(τa) in the first term is the “natural” SCET spectrum, given in eq. (3.46).

The jet functions Jn and Jn̄ and their profiles µJn and µJn̄ are treated separately to avoid

the combinatoric factors from a common jet function label. Using the relations

dK

d lnµF
= −jFωF − γF [αs(µF )] ,

dωF
d lnµF

= − 2

jF
ΓF [αs(µF )] ,

d

d lnµF
F̃

(
∂Ω + ln

µjFF
QjF τa

, µF

)
=

[
β[αs(µF )]

∂F̃ (LF , µF )

∂αs
+ jF

dF̃ (LF , µF )

dLF

]
,

with LF = ∂Ω + lnµjFF /Q
jF τa , (4.66)

we can write the spectrum σR, which is the derivative of the cumulant when working to all

orders:

σR(τa) =
dR

dτa
= σn(τa) + δσR(τa) , (4.67)

δσR(τa) =
1

τa
exp(KH + 2KJ +KS)

(
µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
H2(Q2, µH)

×

{ ∑
F=J,J,S

P̃F (LF , µF )
1

F̃ (LF , µF )

}
J̃(LJ , µJ)2S̃(LS , µS)

exp(γEΩ)

Γ(1− Ω)
,

with LJ = ∂Ω + lnµjJJ /Q
jJ τa , LS = ∂Ω + lnµS/Qτa .

The function P̃F is defined

P̃F (LF , µF ) =
d lnµF
d ln τa

{
jF
∂F̃ (LF , µF )

∂LF
+ β[αs(µF )]

∂F̃ (LF , µF )

∂αs

− γ̃F (LF , µF )F̃ (LF , µF )

}
. (4.68)

The γ̃F in the last term of eq. (4.68) takes the same form as the usual anomalous dimension

in eq. (3.32),

γ̃F (LF , µ) ≡ −κFΓqcusp[αs]LF + γF [αs] , (4.69)
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but in eq. (4.67) it becomes a differential operator upon making the replacements LF → LF
given in the last line of eq. (4.67). In eq. (4.67), the factor of 1/F̃ is present to cancel the

factor of F̃ present in J̃2S̃. Note that in this form there is no need to separately label the

two jet functions [as there was in eq. (4.65)].

Since table 5 (or table 6 if using the prescription discussed in section 4.2.2) specifies to

what accuracy the various ingredients in the cumulant are kept when working to a given

order, for σR table 5 or table 6 should also be used to define the orders of resummed

accuracy. The fact that the spectrum σn and the derivative of the cumulant are equivalent

when working to all orders implies that P̃F vanishes if all orders of accuracy are kept. In

fact, working to NkLL′, P̃F starts at O(αk+1
s ). [However, working to NkLL, P̃F starts at

O(αks).] Although we have derived σR by differentiating the cumulant, the way in which

the truncation occurs at a given finite order of accuracy is different between the cumulant

and σR. For example, the all-orders evolution kernel ηΓ in eq. (3.34) and cusp anomalous

dimension Γcusp obey the exact relation

dηΓ(µ, µF )

d lnµF
= −Γqcusp[αs(µF )] (4.70)

but at a finite order of accuracy the function defining ηΓ is truncated in such a way that its

derivative differs at the level of higher order terms beyond the requested order of accuracy.

For example, at NLL, using eqs. (4.18) and (4.22) and the counting of anomalous dimensions

and beta functions terms in table 5, we find

d(ηLL
Γ +ηNLL

Γ )

d lnµF
= −αs(µF )

4π
Γ0 −

(
αs(µF )

4π

)2

Γ1 −
(
αs(µF )

4π

)3(Γ1β1

β0
− Γ0β

2
1

β2
0

)
, (4.71)

thus with both sides of eq. (4.70) truncated at NLL accuracy, the relation holds only up

to subleading terms [here O(α3
s)]. These kinds of mismatches, formally subleading, lead

to small numerical differences in the values of σR in eq. (4.67) and dR/dτa computed by

differentiating eq. (3.48) when truncated to a finite accuracy.

The form in eq. (4.67) is fully generic, and simplifies significantly with simple scale

choices such that we can compare to the form in eq. (4.62). For the scale choice in eq. (3.81),

σR(τa) = H2(Q)eK̄
[
− 1

τa

(
Ω̄ +

∑
F

1

jF
γ̄F (∂Ω̄)

)
F̃ (∂Ω̄) +

dF̃ (∂Ω̄)

dτa

]
1

Γ(1− Ω̄)
, (4.72)

where the operator γ̄F (∂Ω̄) is defined

γ̄F (∂Ω̄) = −κFΓqcusp[αs(µ̄F )]∂Ω̄ + γF [αs(µ̄F )] , (4.73)

which is formed from the anomalous dimension eq. (3.32) replacing LF with ∂Ω̄.

If we start with the cumulant R at a given order of NkLL accuracy with γF ,ΓF , F̃

computed to the orders given in table 5 or table 6, then eq. (4.72) is the differential

distribution at the equivalent order of NkLL accuracy, where each piece of eq. (4.72) is

truncated to the same order as in R(τa) itself. Suppose, however, we start directly with

the formula eq. (4.62) for the distribution σ(τa). Note that the first term in brackets of
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each of eqs. (4.62) and (4.72) are the same. Thus the remaining terms in eq. (4.72) must

correspond to the terms in the G̃(∂Ω̄) operator in eq. (4.62). Note that we must keep the

terms in G̃ to higher order than F̃ in table 5 or table 6 to keep the two formulae eqs. (4.62)

and (4.72) equivalent. For example, using the table 5 prescription for computing to NLL

accuracy, we start with the formula eq. (4.72), and keep F̃ to O(1), γF to O(αs) and Γqcusp

to O(α2
s). Then we obtain the result

dRNLL

dτa
=− eK̄NLL

τa

(
Ω̄NLL +

∑
F

αs(µ̄F )

4π

1

jF

{
γ0
F − κF

[
Γ0

cusp + Γ1
cusp

(
αs(µ̄F )

4π

)]
∂Ω̄

})
× 1

Γ(1− Ω̄NLL)
. (4.74)

Meanwhile, from the formula eq. (4.62), applying the rules in table 5 näıvely to F̃ and G̃

[that is, to F̃ already in eq. (4.60)], we would obtain the formula

σ(τa) = − 1

τa
eK̄Ω̄NLL

1

Γ(1− Ω̄NLL)
, (4.75)

which contains only the first term in parentheses in eq. (4.74). The extra terms in eq. (4.74)

are contained as a subset of the terms in the G̃ operator in eq. (4.62):

G̃(∂Ω̄) =
∑
F

{
αs(µ̄F )

4π

1

jF

(
−κFΓ0∂Ω̄ + γ0

F

)
+

(
αs(µ̄F )

4π

)2[(κFΓ0)2

2j2
F

∂3
Ω̄ (4.76)

− κFΓ0

2j2
F

(3γ0
F + 2β0)∂2

Ω̄ +
1

j2
F

(
−κF jFΓ1 + (γ0

F )2 + 2γ0
Fβ0 − jFκF c1

FΓ0

)
∂Ω̄

+
1

jF
(γ1
F + c1

Fγ
0
F + 2c1

Fβ0)

]
+ · · ·

}
,

which is computed using eqs. (4.63) and (4.64) and the expansions of J̃ , S̃ to O(α2
s) given

by eq. (4.5). The dots indicate additional O(α2
s) cross terms and higher order terms in αs,

and we have indicated in bold where the extra terms in eq. (4.74) are found, namely the

O(αs) part and the Γ1 term of the O(α2
s) part of eq. (4.76). Thus, we see that at least

a subset of terms in G̃ are needed to higher order than those in F̃ in eq. (4.62) in order

to reproduce the result of differentiating the cumulant in eq. (4.74). And these terms are

contained in P̃F in eq. (4.68) at NLL accuracy.

This pattern continues at higher orders. At unprimed NkLL order, the extra terms

in G̃ that are contained in P̃F in eq. (4.68) are required to be kept to maintain the same

accuracy as the NkLL cumulant. At primed NkLL′ orders, the extra terms are subleading

— the leading ones are actually captured by the σn term in eq. (4.67), but the additional

terms in δσR ensure closer numerical equivalence with the derivative of the cumulant.

To recap, our proposed formula eq. (4.67) for computing the differential distribution

σ(τa) adds to the usual form terms that are necessary to maintain equivalent NkLL accuracy

with the cumulant or Laplace transform. These terms are not strictly needed at NkLL′

accuracy, where the modifications are subleading. Thus our proposed formula does not

differ at leading accuracy from any NkLL′ results for differential event shape distributions
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in the literature, e.g. those in [26, 38]. The extra terms are required when evaluating the

distribution directly at unprimed NkLL accuracy, using the standard formula (equivalent to

σn) that appears in, e.g., [26, 71, 84]. Thus they should be added to, e.g., the NLL results

in [26]. We note that distributions obtained by differentiation of NkLL cumulants do retain

the correct accuracy even at unprimed order, as in, e.g., [71, 78, 85, 86]. To ensure that

the resummed differential distribution given by eq. (3.46) integrates to the NkLL cumulant

computed from eq. (3.48), we compute the distribution σR in eq. (4.67). In that formula,

each piece including the fixed-order functions F̃ can be truncated according to the rules

in table 5 or table 6, and then σR will maintain the same accuracy as the corresponding

cumulant with the pieces truncated according to the same rules.

4.3.2 Counting accuracy of cumulant and distribution in dQCD formalism

We can consider also how to compute the distribution and cumulant from the QCD-

inspired formalism in section 3.4 to consistent accuracy. We can differentiate the radiator

in eq. (3.82) [after the scale choices in eq. (3.81)], or we can differentiate eq. (3.80) first

and then plug in the scale choices eq. (3.81). The first procedure gives:

σ(τa) = − 1

τa

dR

d ln(1/τa)

= − 1

τa
H2(Q)J̃(0, Q)2S̃(0, Q)

×
[ ∞∑
m=0

1

m!
Ē(m+1)∂mĒ′

]
exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
,

(4.77)

where the operator in the first set of brackets is formed by differentiating the argument of

the exponential. Meanwhile the second procedure gives:

σ(τa) = H2(Q)J̃(0, Q)2S̃(0, Q) exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

τa

−Ē′

Γ(1− Ē′)

= − 1

τa
H2(Q)J̃(0, Q)2S̃(0, Q)

×
[
Ē′ +

∞∑
m=2

1

(m− 1)!
Ē(m)∂m−1

Ē′

]
exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
,

(4.78)

where the terms in the first set of brackets are formed by moving the Ē′ in the numerator

on the first line through the differential operator in front of it. The operators summed over

m on the last line turn out to be the derivatives of the operators summed over n on the

first line with respect to ∂Ē′ itself. With a change of index (m → m + 1), we note that

eq. (4.78) is precisely equal to eq. (4.77).

In the resummed cumulant eq. (3.82), the number of terms we keep in the differential

operator is very simple: keep only Ē at LL, keep up to the Ē′′ term (truncating the

exponential derivative at O(αs)) at NLL, keep up to Ē(3) (truncated at O(α2
s)) at NNLL,

up to Ē(4) (truncated at O(α3
s)) at N3LL, etc. (This counting, summarized in table 7,

corresponds to the rules in table 6.) The distribution eq. (4.77) given by differentiating
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accuracy ΓF γF β Ē(j) H, J̃, S̃

LL αs 1 αs j = 1, αs 1

NLL α2
s αs α2

s j = 2, αs 1

NNLL α3
s α2

s α3
s j = 3, α2

s αs

N3LL α4
s α3

s α4
s j = 4, α3

s α2
s

accuracy ΓF γF β Ē(j) H, J̃, S̃

LL αs 1 αs j = 1, αs 1

NLL′ α2
s αs α2

s j = 2, αs αs

NNLL′ α3
s α2

s α3
s j = 3, α2

s α2
s

N3LL
′

α4
s α3

s α4
s j = 4, α3

s α3
s

Table 7. Order of anomalous dimensions, beta function, coefficients Ē(n) of derivative operators,

and non-log coefficients in H, J̃, S̃ in dQCD form eq. (3.80) of cumulant R(τ) required to achieve

NkLL and NkLL′ accuracy. These tables are also applicable to the form for the distribution σ(τa)

in the last line of eq. (4.78).

that formula then has terms in the sum in the prefactor in brackets up to at Ē′′ at LL,

Ē(3) at NLL, Ē(4) at NNLL, etc. To get eq. (4.78) to agree exactly with this result, it

does not suffice to truncate the differential operator in the first line according to this same

scheme. At NLL, if we truncate the sum starting at Ē(3) entirely from the start, we will

be missing the Ē(3) term in the last line of eq. (4.78) which is present in the last line of

eq. (4.77) if we start with the NLL R(τa) in the first line. The similar mismatch occurs at

higher NkLL orders. The mismatched terms are formally of subleading order. But if one is

interested in keeping the derivative of the cumulant and the directly computed differential

distribution in eqs. (4.77) and (4.78) numerically equal to each other, then, similarly to

the SCET formalism in the section above, one should keep an extra term in the sum over

derivatives in the first set of brackets in the last line of eq. (4.78) than specified by table 7.

5 Final formulae and prescriptions for NkLL(′) accuracy

In this section, we collect in summary form the formulae that can be used to obtain the

Laplace transform, cumulant, and distribution at a consistent order of NkLL accuracy, in

both SCET and QCD-inspired forms. These results follow from the detailed discussion in

section 4.

The standard counting rules in table 5 for achieving NkLL or NkLL′ accuracy apply

to the formulae eqs. (5.1) and (5.2) for σ̃(ν) below. The terms resummed in perturbation

theory by computing these formulae according to the rules in these tables form our baseline

definition for these orders of accuracy. Our prescriptions for computing R(τa) or σ(τa) are

motivated by the requirement that they reproduce the accuracy of σ̃(ν) computed in this

way, upon Laplace transformation.

For the cumulant we give two forms, in SCET and dQCD-like notation, in eqs. (5.4)

and (5.5). Our proof in section 3 of the equivalence of these forms is a central technical

result of this paper. Thus the dQCD-inspired form eq. (5.5) below can actually be viewed

as a SCET form as well, using the definitions eqs. (3.73) and (3.78) for the exponent. The

rules in table 6, in which derivative operator terms in R(τa) are kept to one higher order

in αs than implied by table 5, ensure that the Laplace transform of R(τa) reproduces the

result of computing σ̃(ν) in eq. (5.1) or eq. (5.2) according to the rules in table 5, order by
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order in αs to the accuracy illustrated in section 4.2.2. Eq. (5.5) is the first time to our

knowledge that a dQCD form for R(τa) with variable jet and soft scales and with derivative

operator terms up to arbitrarily high order has been given (see [77] for a similar form with

fixed scales in the context of threshold resummation).

For the differential distribution σ(τa), our final result, which we call σR, is eq. (5.10). In

this form, it is safe to truncate the ingredients according to the same rules as the cumulant

R(τa) in table 6. We write σR as a sum of two terms σn + δσR, where the first piece σn is

the usual way eq. (3.46) the SCET differential distribution is written, as in [26, 71, 84]. We

illustrated in section 4.3 that applying the truncation rules for NkLL accuracy in table 5 or

table 6 directly to σn would yield a result less accurate than taking the derivative of R(τa)

computed at the same accuracy. At NkLL′ order, the accuracy of σn or σR is formally

the same, but the integral of σR numerically matches the cumulant better. (We note the

final results in [71] were computed in terms of the cumulant, not σ(τ), so those results

do not suffer from these issues.) The extra term δσR restores the missing pieces. Our

formula eq. (5.10) is to our knowledge the first time a generic formula for the resummed

differential distribution σ(τa) that possesses this automatic equivalence to dR/dτa has been

written down.

It would be instructive to perform similar analyses and comparisons for the event shape

resummation performed in [38] using the formalism of [76]; an exercise that nevertheless

lies outside the scope of the present paper.

In the following subsections, those equations which are boxed represent our final

forms for the Laplace transform, cumulant, and differential distribution, which exhibit full

dependence on the hard, jet, and soft scales µH,J,S and which are also written in a form

where truncation of the ingredients according to the appropriate table in the text will

preserve the resummed logarithmic accuracy of the expression, as defined by equivalence

to the accuracy of σ̃(ν).

5.1 Laplace transform

For the Laplace transform σ̃(ν), eq. (4.2) gives with variable scales, in standard SCET

form,

σ̃(ν) = eKH2(Q2, µH)

(
µH
Q

)ωH(µ,µH)
(
µJν

1/jJ

Q

)2jJωJ (µ,µJ )(
µSν

Q

)ωS(µ,µS)−Ω

× J̃
(
∂Ω + ln

µjJJ
QjJ−1µS

, µJ

)2

S̃(∂Ω, µS)

(
µSe

γEν

Q

)Ω

,

(5.1)

where K,Ω are defined in eq. (4.3) and ωF in eq. (3.36). H2 is the hard function appearing

in the factorization theorem eq. (3.2), and J̃ , S̃ are the Laplace transforms of the jet and

soft functions J, S appearing therein. H2 is given to O(αs) in SCET by eq. (3.17), and the

momentum space jet and soft functions by eqs. (3.18) and (3.20). The generic definitions

of J, S are given in eqs. (3.12) and (3.15).
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In the dQCD-inspired form that was shown in section 3.4 to be equivalent to SCET

with the identification in eqs. (3.73) and (3.78), we have, by transforming eq. (3.80),

σ̃(ν) = H2(Q2, µH)

(
µH
Q

)ωH(µ,µH)

eKH(µ,µH)J̃(0, µ)2S̃(0, µ)

× e2EJ (µ,µJ )+ES(µ,µS) exp

[ ∞∑
n=2

1

n!

(
2E

(n)
J (µJ)∂n2E′J

+ E
(n)
S (µS)∂nE′S

)]

×
(

Q

µJ(eγEν)1/jJ

)2E′J (µ,µJ )( Q

µSeγEν

)E′S(µ,µS)

.

(5.2)

With the scale choices µ = µH = Q,µF = µ̃F ≡ Q(eγEν)−1/jF given in eq. (4.7), the

above expressions for σ̃(ν) simplify considerably,

σ̃(ν) = H2(Q)J̃(0, µ̃J)2S̃(0, µ̃S)eK

= H2(Q)J̃(0, Q)2S̃(0, Q)eĒ ,
(5.3)

where here K = 2KJ(Q, µ̃J) + KS(Q, µ̃S), and Ē = 2ĒJ + ĒS is defined in eq. (3.83).

The derivatives E
(n)
J,S are defined in eqs. (3.74) and (3.78). As noted after eq. (3.73), the

difference between the exponents K and Ē is NNLL. These differences at NkLL accuracy,

k ≥ 2, are made up by differences due the scales in the jet and soft functions, which differ

in the two lines of eq. (5.3), calculated to the order appropriate to the accuracy in question

(see table 5).

Nota bene: the primary definition of NkLL or NkLL′ accuracy is based on the accuracy

of the exponents in the simple exponentiated forms in eq. (5.3). These accuracies can

be achieved by computing ingredients according to table 5. The theoretical uncertainty

at finite resummed NkLL accuracy can be estimated by varying the scales in eqs. (5.1)

and (5.2).

5.2 Cumulant

For the cumulant, the usual resummed form given in SCET with variable scales is given

by eq. (3.48),

R(τa) = eK
(
µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
×H2(Q2, µH)J̃

(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)2

S̃

(
∂Ω + ln

µS
Qτa

, µS

)
exp(γEΩ)

Γ(1− Ω)
,

(5.4)

where K,Ω are defined in eq. (4.3) and ωF in eq. (3.36). The counting rules in table 6 for

computing to NkLL or NkLL′ accuracy apply to eq. (5.4). See also the note below.
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Meanwhile the dQCD-inspired form, shown in section 3.4 to be equivalent to SCET,

is given by eq. (3.80),

R(τa) = H2(Q2, µH)

(
µH
Q

)ωH(µ,µH)

eKH(µ,µH)J̃(0, µ)2S̃(0, µ)

× e2EJ (µ,µJ )+ES(µ,µS) exp

[ ∞∑
n=2

1

n!

(
2E

(n)
J (µJ)∂n2E′J

+ E
(n)
S (µS)∂nE′S

)]

×
(
QjJ τa

µjJJ e
γE

)2E′J (µ,µJ )/jJ
(

Qτa
µSeγE

)E′S(µ,µS) 1

Γ(1 + 2E′J/jj + E′S)
.

(5.5)

A closely related form was derived in the context of threshold resummation in ref. [77].

The counting rules in table 7 apply to eq. (5.5). Again the functions EJ,S are defined in

eqs. (3.73) and (3.78), and the derivatives E
(n)
J,S in eqs. (3.74) and (3.78).

Choosing the scales in eq. (3.81), µ = µH = Q,µF = µ̄F ≡ Q(e−γEτa)
1/jF , we obtained

for the above forms,

R(τa) = H2(Q)eK̄ J̃(∂Ω̄, µ̄J)2S̃(∂Ω̄, µ̄S)

[
1

Γ(1− Ω̄)

]
= H2(Q)J̃(0, Q)2S̃(0, Q) exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
,

(5.6)

where K̄, Ω̄ are defined in eq. (4.30), and Ē, Ē(n) in eq. (3.83). The first line is the SCET

form, eq. (4.29), and the second line follows directly from eq. (5.5). The sign change in the

argument of the gamma function between eqs. (5.5) and (5.6) is due to switching taking

derivatives with respect to lnµF in the former and ln(1/τa) in the latter. These scale

choices make the parallel between SCET and QCD forms, as given in previous literature,

most transparent. As we will discuss in section 6, however, it is often preferable to use the

“canonical” scales µ = µH = Q,µnat
F ≡ Qτ1/jF

a . In this case, the resummed cumulant takes

the form

R(τa) = H2(Q)eK J̃(∂Ω, µ
nat
J )2S̃(∂Ω, µ

nat
S )

[
eγEΩ

Γ(1− Ω)

]
= H2(Q)J̃(0, Q)2S̃(0, Q) exp

[
E +

∞∑
n=2

1

n!
E(n)∂nE′

]
eγEE

′

Γ(1− E′)
,

(5.7)

where the K,Ω here are defined in eq. (4.28), and E,E(n) are defined by

E = 2EJ(Q,Qτ1/jJ
a ) + ES(Q,Qτa) , E(n) =

dnE

d(ln(1/τa))n
, (5.8)

EJ,S being defined by eqs. (3.73) and (3.78).

The dQCD-inspired “E” forms in eqs. (5.6) and (5.7) in fact have SCET definitions by

way of the relations in eqs. (3.73), (3.78), and (5.8) (see also eqs. (3.84) and (3.85)). They

resum a larger set of terms than the Ω terms thanks to more logs generated by J̃2S̃ being

put in the exponent and gamma functions.
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Nota bene: while table 5 could be used to evaluate the ingredients in the above formulae

for R(τa) to NkLL accuracy, as explained in section 4.2.2 it is preferable to keep the

differential operator terms in J̃(∂Ω̄), S̃(∂Ω̄) or the ∂Ē′ operators to the order corresponding

to NkLL′ accuracy, as described in table 6. This maintains better equivalence with the

accuracy of the NkLL σ̃(ν). Similarly in eq. (5.7). Working to full NkLL′ accuracy as

given by table 5 or table 6 is the ideal. These rules for ∂Ω terms also apply to evaluation

and truncation of the exponential of ∂nE′ operators in the dQCD forms above, which is

summarized in table 7.

5.3 Differential distribution

For the cumulant, a common prescription is the form in eq. (3.46), which we label σn:

σn(τa) = exp
(
KH + 2KJ +KS

)(µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
H2(Q2, µH) (5.9)

× J̃
(
∂Ω + ln

µjJJ
QjJ τa

, µJ

)2

S̃

(
∂Ω + ln

µS
Qτa

, µS

)
1

τa

exp(γEΩ)

Γ(−Ω)
.

Often, the rules in table 5 are used to compute σn to a given accuracy. To achieve the

same accuracy as the Laplace transform or cumulant at NkLL order, it is necessary to use

the rules in table 6. At NkLL′ order the two tables are the same, and σn(τa) matches the

accuracy of σ̃(ν).

An alternate approach is to define a distribution that will reproduce the derivative of

the cumulant at any accuracy. This distribution is labeled σR(τa), with [ eq. (4.67) ]:

σR(τa) = σn(τa) + δσR(τa) ,

δσR(τa) =
1

τa
exp(KH + 2KJ +KS)

(
µH
Q

)ωH( µJ

Qτ
1/jJ
a

)2jJωJ
(
µS
Qτa

)ωS
×H2(Q2, µH)

{ ∑
F=J,J,S

P̃F (LF , µF )
1

F̃ (LF , µF )

}

× J̃(LJ , µJ)2S̃(LS , µS)
exp(γEΩ)

Γ(1− Ω)
,

with LJ = ∂Ω + lnµjJJ /Q
jJ τa , LS = ∂Ω + lnµS/Qτa ,

(5.10)

and [eq. (4.68)]:

P̃F (LF , µF ) =
d lnµF
d ln τa

{
jF
∂F̃ (LF , µF )

∂LF
+ β[αs(µF )]

∂F̃ (LF , µF )

∂αs

− γ̃F (LF , µF )F̃ (LF , µF )

}
. (5.11)

In the form eq. (5.10), σR(τa) can be evaluated using the rules in table 5 or table 6 to

achieve NkLL or NkLL′ accuracy. Using the form eq. (5.10) will guarantee that equivalent

accuracy is maintained with differentiating the NkLL or NkLL′ cumulant R(τa), evaluated

according the same rules.
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The dQCD-inspired differential cross section, found by taking the derivative of eq. (5.5),

can be written with free scales in the form,

σ(τa) =
1

τa
H2(Q2, µH)

(
µH
Q

)ωH(µ,µH)

eKH(µ,µH)J̃(0, µ)2S̃(0, µ)

× e2EJ (µ,µJ )+ES(µ,µS) exp

[ ∞∑
n=2

1

n!

(
2E

(n)
J (µJ)∂n2E′J

+ E
(n)
S (µS)∂nE′S

)]

×
(
QjJ τa

µjJJ e
γE

)2E′J (µ,µJ )/jJ
(

Qτa
µSeγE

)E′S(µ,µS) 1

Γ(2E′J/jj + E′S)
.

(5.12)

Alternatively one may also differentiate eq. (5.5) after choosing τa-dependent scales, which

allows one to apply the counting rules in table 7 directly.

Upon making the particular choices of scales in eq. (3.81), we obtained in SCET and

dQCD-inspired forms [eqs. (4.72) and (4.77), respectively],

σ(τa) = H2(Q)eK̄
[
− 1

τa

(
Ω̄ +

∑
F

1

jF
γ̄F (∂Ω̄)

)
F̃ (∂Ω̄) +

dF̃ (∂Ω̄)

dτa

]
1

Γ(1− Ω̄)

= − 1

τa
H2(Q2, Q)J̃(0, Q)2S̃(0, Q)

×

[ ∞∑
n=0

1

n!
Ē(n+1)∂nĒ′

]
exp

[
Ē +

∞∑
n=2

1

n!
Ē(n)∂nĒ′

]
1

Γ(1− Ē′)
.

(5.13)

and similarly with the canonical scale choices eq. (4.25),

σ(τa) = H2(Q)eK

[
− 1

τa

(
Ω +

∑
F

1

jF
γ̂F (∂Ω)

)
F̃ (∂Ω) +

dF̃ (∂Ω)

dτa

]
eγEΩ

Γ(1− Ω)

= − 1

τa
H2(Q2, Q)J̃(0, Q)2S̃(0, Q)

×

[ ∞∑
n=0

1

n!
E(n+1)∂nE′

]
exp

[
E +

∞∑
n=2

1

n!
E(n)∂nE′

]
eγEE

′

Γ(1− E′)
.

(5.14)

In these expressions the operator γ̄F was defined in eq. (4.73), and γ̂F is given by the same

formula with scales µF in eq. (4.25). The exponents K̄, Ω̄ are defined in eq. (4.30), and

K,Ω by eq. (4.28). The exponents Ē, Ē(n) are given by eq. (3.83), and E,E(n) by eq. (5.8).

In these forms, one may directly apply the counting rules in table 5 or table 6 for the SCET

forms, and table 7 for the dQCD-inspired forms.

Nota bene: use the forms in eq. (5.13) or eq. (5.14) keeping all objects to orders specified

in table 5 or table 6 at NkLL or NkLL′ accuracy to maintain equivalence with accuracy of

R(τa). Do not apply NkLL rules in table 5 or table 6 directly to eq. (4.60).

6 Numerical comparison of angularity distributions

A numerical study is useful to compare the various resummation prescriptions and the

relationship between the dQCD and SCET formalisms. For different values of the angu-

larity parameter a, we will study the effect of different prescriptions on NLL and NLL′
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distributions in both SCET and dQCD formalisms, for both the resummed cumulant and

spectrum. These prescriptions lead to notable differences between the resummed cross

sections, and we will find that the best agreement between SCET and dQCD results are

in the most consistent versions of the resummation formulae.

For the resummed cross sections in SCET and dQCD, we use the distributions in

eqs. (5.9), (5.10), and (5.12) to NLL and NLL′ accuracy. We label the dQCD-inspired form

in eq. (5.12) as σQ(τa) for clarity. This study will allow us to contrast the standard SCET

resummed distribution, σn [eq. (5.9)], with the SCET resummed form that matches closely

with the derivative of the cumulant, σR [eq. (5.10)], as well as the dQCD-inspired form σQ
[eq. (5.12)]. The NLL and NLL′ distributions for the SCET resummed forms σn and σR
are obtained from eqs. (5.9) and (5.10) by applying the counting rules5 in table 5. The

NLL and NLL′ distributions for the dQCD-inspired form σQ is obtained from eq. (5.12)

using the counting prescription described in section 4.3.2. For the case of NLL or NLL′

accuracy, this means that eq. (5.12) takes the form

σQ(τa) = − 1

τa
eKH+2EJ+ESH2(Q2, µH)J̃(0, µ)2S̃(0, µ)× (6.1)

×
(
µH
Q

)ωH(QjJ τa
µjJJ

)2E′J/jJ
(
Qτa
µS

)E′S
×
{
E′ + 2E′′J

(
∂E′ + ln

µjJJ
QjJ τa

)
+ E′′S

(
∂E′ + ln

µS
Qτa

)
+ E′E′′J

(
∂E′ + ln

µjJJ
QjJ τa

)2

+
1

2
E′E′′S

(
∂E′ + ln

µS
Qτa

)2} exp(γEE
′)

Γ(1− E′)
. (6.2)

where E′ = −2E′J/jJ−E′S . This form arises from eq. (5.12) by expanding the exponentiated

derivative operator to O(αs), which involves keeping only the leading nontrivial E′′J and

E′′S terms in the expansion. We also pulled several factors through the derivative operator,

as in previous forms.

The numerical study is performed at a center of mass energy of Q = 100 GeV, and

we make canonical scale choices, eq. (4.25), for the central scales of each distribution.

Uncertainty estimates are made through scale variation of µH = µ, µJ , and µS each up

and down by a factor of 2. The envelope of these scale variations determines the overall

uncertainty. The uncertainty estimates here should be taken as nominal; as we will see, the

uncertainties for σR and σQ are not robust (being either overestimated or underestimated

in certain regions of τa with the scale variations used here) and require further study.

Ideally more refined scale variations using parameters in the profile functions themselves

should be performed, as in e.g. [38, 76, 78, 79]. We leave such an improved study of the

uncertainties for future work. Here, our focus is on the change in behavior of the central

values of the curves amongst σn,R,Q and how well they agree with one another. Since there

5We use table 5 instead of table 6 to define the NLL spectrum for two reasons. First, since table 5 is

a prescription commonly used, it provides a useful point of comparison, especially for the results in [26].

Second, the difference between the NLL and NLL′ distributions is larger when using table 5, making the

orders of accuracy more distinct. Using table 6, we find that the NLL distributions are more similar to NLL′.
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is no matching of the far tail to fixed-order perturbation theory, we only study the behavior

of the distributions in the resummation region.

In figure 5, we plot the NLL resummed distributions for σn(τa) and σR(τa) for a =

−1, 0, 1/4, and 1/2. In figure 6 we plot the NLL resummed distributions for the same values

of a, comparing σR(τa) and σQ(τa). Figures 5 and 6 show a much better agreement between

the dQCD distribution σQ and the SCET distribution σR (which is close to the derivative

of the cumulant) than σQ and the standard SCET distribution σn. In [26], angularity

distributions in dQCD and SCET were compared using resummation formulae very similar

to σn and σQ. A discrepancy was observed which is very similar to the discrepancy seen

here in figure 5, and we see that it is ameliorated by including the additional resummed

terms present in σR. The good agreement between σR and σQ in figure 6 provides strong

evidence to support the analytic arguments that the dQCD and SCET resummations are

in close correspondence. We note when τa . 0.01, the central soft scale µS = Qτa . 1 GeV

becomes nonperturbative and the predictions become unreliable without additional care.

The uncertainty bands on each distribution are determined by the envelope of scale

variations, as described above. The relative size of uncertainty bands on σn and σR arise

because of the relationship of σR to the cumulant. In the large τa regime, the distribu-

tion σn produces reasonable uncertainties. The cumulant has scale uncertainties whose

τa dependence is very similar between different variations, meaning the derivative of the

cumulant (which matches σR closely) has very small scale uncertainties at large τa. This

is observed in figure 5. We also note that at large τa, σQ has scale variation that is smaller

than σn but larger than σR, suggesting that more careful scale variations (with profiles)

are needed when using σQ in phenomenological applications. This is also evident in the

fact that σQ has very large uncertainties in the peak region. Finally, the increase in un-

certainties with a is due to the logarithmic structure of the resummation and the gradual

breakdown of the resummation framework for both dQCD and SCET as a→ 1. Consistent

uncertainties across a values may be achieved with more careful scale variation and profile

functions, and further study on how to obtain robust uncertainties for σR and σQ is needed.

In figure 7, we plot the NLL′ resummed distributions for σn(τa) and σR(τa) for a =

−1, 0, 1/4, and 1/2. In figure 8 we compare σR(τa) and σQ(τa) at NLL′ accuracy at the

same values of a. These figures can be contrasted with figures 5 and 6.

The agreement between the central values of σR and σQ improves from NLL to NLL′

in the region of τa past the peak. The moderate difference between them in the peak of the

distribution observed in figure 8 arises from the different treatment in σR and σQ of the

O(αs) nonlogarithmic singular terms that are included in the fixed-order functions at NLL′.

We note this difference remains small compared to the uncertainties in the σQ distribution.

The uncertainties in σn, σR, and σQ at NLL′ follow the same general pattern as the

NLL case. An exception is that the uncertainties in the σn distribution decrease noticeably

in working to NLL′; this occurs because σn at NLL contains the hard, jet, and soft functions

only at tree level, while they are taken to O(αs) in the NLL′ spectrum. In σR and σQ,

however, the NLL spectrum has contributions from the hard, jet, and soft functions beyond

tree level. Had we used the prescription in table 6 to define the NLL spectrum for σn, we

would find the uncertainties in that case are much closer to the NLL′ spectrum in figure 7.
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Figure 5. The NLL distributions for σn(τa) and σR(τa), for a = −1, 0, 1/4, and 1/2 at Q =

100 GeV. These compare the natural SCET resummation (σn) with the resummed form that closely

matches the derivative of the cumulant (σR).

Further study of the relationship between the SCET and dQCD resummed angular-

ity distributions is of interest to more deeply probe the numerical effect of the different

approaches to resummation. As these approaches are formally consistent when working

to the same order of accuracy, the relative agreement gives insight into the uncertainties

that accompany each resummation scheme. Of particular interest would be a careful study

that includes matching to fixed-order perturbation theory in the large τa tail region of the

distribution and a systematic study of the profile scales and variations needed to obtain

reliable uncertainties across the spectrum.

7 Conclusions

In this paper we have performed a detailed study of resummed e+e− event shape distri-

butions in both SCET and dQCD, using angularities as a generic example. This study

contains several parts, examining three different ways to express the cross sections: the

cumulant R(τa), the spectrum σ(τa), and its Laplace transform σ̃(ν).

In section 2 we reviewed standard logarithmic counting schemes. As the cross section

in Laplace space directly exponentiates, it is simplest to define logarithmic accuracy by

counting in the exponent of σ̃(ν). We also discussed the original CTTW convention that

determines logarithmic accuracy by counting in the exponent of the cumulant R(τa). While

either definition of logarithmic accuracy is valid, and one can translate between the two,

the advantage of defining accuracy in terms of the Laplace-transformed cross section is
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Figure 6. The NLL distributions for σQ(τa) and σR(τa), for a = −1, 0, 1/4, and 1/2 at Q =

100 GeV. These compare the dQCD-like resummation (σQ) with the resummed form that closely

matches the derivative of the cumulant (σR). Note that these forms are in much better agreement

than the comparison in figure 5.

that a closed algebraic form for σ̃(ν) is easily obtained. A major goal of section 4 is to

define prescriptions for R(τa) and σ(τa) that are correct to a given order of accuracy when

these cross sections are transformed to σ̃(ν).

In section 3, we reviewed resummation techniques in SCET and dQCD and showed

the equivalence between resummed forms, culminating in the equivalence relations

eqs. (3.73), (3.78), and (3.84). This equivalence reveals alternative forms of the resummed

cross section in SCET that more closely correspond with the resummed cross section in

dQCD, as well as a form of the dQCD cross section with dependence on arbitrary soft and

collinear factorization scales, results which generalize both approaches to resummation.

In section 4 we discussed the precise prescriptions needed to obtain a given order of

logarithmic accuracy. We explained how to compute the resummed R(τa) and distribution

σ(τa) so that their accuracies match that of σ̃(ν) after Laplace transformation. We also

studied a way of defining the resummed spectrum σ(τa) in terms of the resummed cumu-

lant R(τa) [or equivalently the Laplace-transformed cross section σ̃(ν)]. This leads to a

novel way, eq. (4.67), of writing the resummed spectrum that matches onto the derivative

of the cumulant.

A compact summary of the dQCD and SCET resummed forms for the cross section,

its Laplace transform, and the cumulant is given in section 5.

Finally, in section 6 we have performed a short numerical study of the angularity

distributions. We have shown that numerical discrepancies between the dQCD forms (given
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Figure 7. The NLL′ distributions for σn(τa) and σR(τa), for a = −1, 0, 1/4, and 1/2 at Q =

100 GeV. These compare the natural SCET resummation (σn) with the resummed form that closely

matches the derivative of the cumulant (σR).

in [12, 13]) and the SCET forms (given in [26]), originally observed in the latter study, are

resolved by using versions of the resummed cross sections that arise from the equivalence of

the dQCD and SCET forms. This gives confidence that the novel resummed forms derived

in this paper may be applied in phenomenological studies. For example, we are now in a

position to perform a robust comparison to LEP data in [87]. Further work is warranted to

study the resummed forms introduced here at higher resummed orders and to determine

techniques to achieve robust uncertainty estimates. It would also be informative to extend

our study to resummation of angularities with a ≥ 1 [54–58] or to the recently introduced

“recoil-free” observables [59].

Although the comparisons and lessons in this paper are formulated in terms of event

shape distributions in e+e− collisions, the observations about how to compute different

ways of writing a cross section to consistent accuracy are applicable generally to any cross

section computed in dQCD. In the paper [34] which appeared recently, similar comparisons

are performed for threshold resummation in hadron collisions.
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A Plus distributions

In this appendix we collect definitions and properties of plus distributions used in the

main text.

In general for a function q, the plus distribution is defined by (see, e.g., [76])

[q(x)]+ = lim
ε→0

d

dx

[
θ(x− ε)Q(x)

]
(A.1)

= lim
ε→0

[
θ(x− ε)q(x) + δ(x− ε)Q(x)

]
,
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where

Q(x) =

∫ x

1
dx′q(x′) . (A.2)

With the choice of lower limit in eq. (A.2), the definition in eq. (A.1) satisfies
∫ 1

0 dx[q(x)]+ =

0. The result of integrating a plus distribution against a suitable test function f(x) is∫ xmax

−∞
dx [θ(x)q(x)]+f(x) =

∫ xmax

0
dx q(x)[f(x)− f(0)] + f(0)Q(xmax) . (A.3)

We define two special plus distributions which commonly appear,

Ln(x) ≡
[
θ(x) lnn x

x

]
+

, (n ≥ 0) , La(x) ≡
[
θ(x)

x1−a

]
+

. (A.4)

For the case n = −1, we define

L−1(x) ≡ δ(x) . (A.5)

The plus function Ln obeys the rescaling relation,

λLn(λx) =

n∑
k=0

(
n

k

)
lnk λLn−k(x) +

lnn+1 λ

n+ 1
δ(x) (A.6)

B Laplace transforms

In this appendix we collect results for the Laplace transforms and inverse Laplace trans-

forms (L −1) between the logs

L ≡ ln
1

τ
, L̃ ≡ ln(νeγE ) (B.1)

The Laplace transforms, defined by

F̃ (ν) ≡ L {F}(ν) =

∫ ∞
0

dτe−ντF (τ) (B.2)

are given by

L
{

1
}

=
1

ν
(B.3a)

L
{
L
}

=
1

ν
L̃ (B.3b)

L
{
L2
}

=
1

ν

{
L̃2 +

π2

6

}
(B.3c)

L
{
L3
}

=
1

ν

{
L̃3 +

π2

2
L̃+ 2ζ3

}
(B.3d)

L
{
L4
}

=
1

ν

{
L̃4 + π2L̃2 + 8ζ3L̃+

3π4

20

}
(B.3e)

L
{
L5
}

=
1

ν

{
L̃5 +

5π2

3
L̃3 + 20ζ3L̃

2 +
3π4

4
L̃+

10π2

3
ζ3 + 24ζ5

}
(B.3f)

L
{
L6
}

=
1

ν

{
L̃6 +

5π2

2
L̃4 + 40ζ3L̃

3 +
9π4

4
L̃2 + (20π2ζ3 + 144ζ5)L̃+ 40ζ2

3 +
61π6

168

}
,

(B.3g)
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and so on. The inverse Laplace transforms, defined by

L −1{F̃}(τ) =

∫ γ+i∞

γ−i∞

dν

2πi
eντ F̃ (ν) , (B.4)

where γ lies to the right of all the poles of F̃ in the complex plane, are given by

L −1

{
1

ν

}
= 1 (B.5a)

L −1

{
1

ν
L̃

}
= L (B.5b)

L −1

{
1

ν
L̃2

}
= L2 − π2

6
(B.5c)

L −1

{
1

ν
L̃3

}
= L3 − π2

2
L− 2ζ3 (B.5d)

L −1

{
1

ν
L̃4

}
= L4 − π2L2 − 8ζ3L+

π4

60
(B.5e)

L −1

{
1

ν
L̃5

}
= L5 − 5π2

3
L3 − 20ζ3L

2 +
π4

12
L+

10π2

3
ζ3 − 24ζ5 (B.5f)

L −1

{
1

ν
L̃6

}
= L6 − 5π2

2
L4 − 40ζ3L

3 +
π4

4
L2 + (20π2ζ3 − 144ζ5)L+ 40ζ2

3 −
5π6

168
,

(B.5g)

and so on. The results explicitly tabulated in eqs. (B.3) and (B.5) are needed to transform

logs in the fixed-order expansions of event shape distributions in QCD up to O(α3
s).

C Anomalous dimensions

The coefficients of the beta function up to three-loop order in MS are given by [88, 89]

β0 =
11

3
CA −

4

3
TF nf , (C.1)

β1 =
34

3
C2
A −

(
20

3
CA + 4CF

)
TF nf ,

β2 =
2857

54
C3
A +

(
C2
F −

205

18
CFCA −

1415

54
C2
A

)
2TF nf +

(
11

9
CF +

79

54
CA

)
4T 2

F n
2
f ,

and the cusp anomalous dimension coefficients by [72, 73]:

Γq0 = 4CF ,

Γq1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]
,

Γq2 = 4CF

[(
245

6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+

(
−55

3
+ 16ζ3

)
CF TF nf −

16

27
T 2
F n

2
f

]
. (C.2)
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The MS non-cusp anomalous dimension γH = 2γC for the hard function H can be ob-

tained [29, 66] from the IR divergences of the on-shell massless quark form factor C(q2, µ)

which are known to three loops [65],

γ0
H = −12CF ,

γ1
H = −2CF

[(
82

9
− 52ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(
65

9
+ π2

)
β0

]
,

γ2
H = −4CF

[(
66167

324
− 686π2

81
− 302π4

135
− 782ζ3

9
+

44π2ζ3

9
+ 136ζ5

)
C2
A

+

(
151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CFCA

+

(
29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+

(
−10781

108
+

446π2

81
+

449π4

270
− 1166ζ3

9

)
CAβ0

+

(
2953

108
− 13π2

18
− 7π4

27
+

128ζ3

9

)
β1 +

(
−2417

324
+

5π2

6
+

2ζ3

3

)
β2

0

]
. (C.3)

The non-cusp three-loop anomalous dimension for the a = 0 quark jet function is given

by [29],

γ0
J = 6CF ,

γ1
J = CF

[(
146

9
− 80ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(
121

9
+

2π2

3

)
β0

]
,

γ2
J = 2CF

[(
52019

162
− 841π2

81
− 82π4

27
− 2056ζ3

9
+

88π2ζ3

9
+ 232ζ5

)
C2
A

+

(
151

4
− 205π2

9
− 247π4

135
+

844ζ3

3
+

8π2ζ3

3
+ 120ζ5

)
CACF

+

(
29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2ζ3

3
− 240ζ5

)
C2
F

+

(
−7739

54
+

325

81
π2 +

617π4

270
− 1276ζ3

9

)
CAβ0

+

(
−3457

324
+

5π2

9
+

16ζ3

3

)
β2

0 +

(
1166

27
− 8π2

9
− 41π4

135
+

52ζ3

9

)
β1

]
. (C.4)

The anomalous dimension for the soft function is obtained from γS = −γH − 2γJ .
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