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1 Introduction

Recently, some progress has been made on a concrete example in relating higher spin/vector

model holographic dualities to standard gauge/string theory dualities. In [1] it was pro-

posed that Vasiliev higher spin theories on AdS4 with U(M) Chan-Paton factor are dual

to the large N limit of U(M) × U(N) ABJ gauge theories described by vector like CFTs.

Since the ABJ theories are believed to have a string theory dual [2, 3], this suggests that

the Vasiliev, ABJ and string theories are related by a triality. The connection with string

theory requires taking M large, while the case M = 1 corresponds to the original higher

spin/vector model duality of Klebanov & Polyakov [4], which was extensively tested in [5, 6].

On the other hand, in one dimension lower, the minimal model holography [7, 8]

(see [9] for a review) and its generalizations [10–14] have convincingly shown that higher

spin/vector model dualities are much simpler to deal with. Thus, if one can find a general-

ization of the triality [1] in this context, then one naturally expects to be able to understand

in great detail the mechanism by which the CFT, the Vasiliev theory and the string theory

are connected to each other.
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From this perspective, dualities between M × M matrix extensions of the N = 2

Vasiliev higher spin theories on AdS3 [15] and the large N limit of N = 1 cosets of the

form SU(N+M)/ SU(N)×U(1) have been proposed in [16, 17]. These are in many respects

analogous to the above mentioned dualities between the U(M) extended Vasiliev theories

and the large N limit of U(M) × U(N) ABJ theories. A convenient way to think about

them is as “matrix generalizations” of the N = 2 example [12] (see also [18]) of the minimal

model holography to which they reduce for M = 1.

According to the crucial observation of [16], the supersymmetry of the extended

Vasiliev theory is enhanced from N = 2 to large N = 4 when M is even or, more precisely,

the higher spin algebra of the extended Vasiliev theory shsM [µ] contains the large N = 4

supersymmetry algebra D(2, 1;α) with α = µ/(1−µ) as a subalgebra for any evenM . This

finding is of particular interest since it is believed that there is essentially only one string

background which supports this supersymmetry, namely AdS3 × S3 × S3 × S1 [19, 20].1

And indeed, it was checked in [16] that the (multi-particle) BPS states of the M = 2

Vasiliev theory reproduce the spectrum of single particle BPS states of supergravity on

AdS3 × S3 × S3 × S1. Based on this result and the natural expectation that for large M

one can generate the full (multi-particle) BPS spectrum of supergravity, the authors of [16]

have concluded that the extended Vasiliev theory has a good chance of being dual to string

theory on AdS3×S3×S3×S1. On the other hand, it was also observed that the cosets do

not have large N = 4 supersymmetry, except for the special case of M = 2 which belongs

to the classification of [21–23] based on Wolf spaces. In contrast, the case M = 2 did not

receive any special attention in the reference [17], in which the 1-loop partition function

of the extended Vasiliev theory was matched with the ’t Hooft limit of the coset partition

function for general M .

In this work we shall study the duality of [16, 17] for general M in more detail. Our

aim is twofold. First, we carry out a simplified analysis of the agreement between the

1-loop partition function of the Vasiliev theory and the ’t Hooft limit of the coset partition

function. In particular, we include chemical potentials for the residual affine symmetries

which, in principle, can be used to extract the BPS spectrum.

Our second goal is to elucidate the relation between the above duality and its slight

modification in which the cosets are of the form SU(N +M)/ SU(N)× SU(M)×U(1), i.e.

Grassmannian Kazama-Suzuki type coset. In fact, this point has lead to some confusion

in [17] which we would like to clarify here. To this end, we first show that in the ’t Hooft

limit the Kazama-Suzuki cosets are equivalent to the previous SU(N + M)/ SU(N) ×
U(1) cosets plus constraints. The constraints restrict only the currents and we discuss

at length their effect on the partition function and the W-algebra of the theory. The

main point, however, is that these constraints can be implemented on the higher spin side

simply by refining the standard asymptotic AdS boundary conditions without changing

the asymptotic AdS geometry. Thus, it is the boundary conditions of the Vasiliev theory

that determine the precise form of the coset dual.

The paper is organized as follows. In section 2 we introduce the matrix extension of

1Currently, the CFT dual of this string theory is not known. See [20] for attempts to find it.
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the N = 2 Vasiliev theory and briefly describe its gauge algebra, field content, dynamics,

boundary conditions, asymptotic symmetry algebra and 1-loop partition function. In sec-

tion 3 we introduce the proposed coset duals, compute their partition function and higher

spin spectrum in the ’t Hooft limit and check the agreement with predictions from the

higher spin theory. In section 4 we discuss the modified duality in which the cosets are re-

placed by Kazama-Suzuki models, while the Vasiliev theory is subject to slightly modified

asymptotic AdS boundary conditions. Finally, in section 5 we conclude and comment on

the supersymmetry problem for M > 2.

2 Extended higher spin theories

The aim of this section is to introduce the matrix extension of the N = 2 higher spin

theory of AdS3 gravity of Prokushkin and Vasiliev [15]. The higher spin theory being a

gauge theory, we shall first describe its gauge algebra. We then proceed to describe the

fields of the theory, their dynamics, the emergence of asymptotic symmetries and the 1-loop

partition function.

2.1 Extended higher spin algebra

Consider the following associative algebra

sB[µ] = U(osp(1|2))/〈Cas− 1

4
µ(µ− 1)1〉 ≃ sB[1− µ] (2.1)

obtained as a quotient of the universal enveloping algebra of the Lie superalgebra osp(1|2)
by a central ideal. In the standard N = 1 superconformal like basis of osp(1|2)

[Lm, Ln] = (m− n)Lm+n , [Lm, Gr] = (m/2− r)Gr+m , {Gr, Gs} = 2Lr+s , (2.2)

where m,n = −1, 0, 1 and r, s = ±1/2, the Casimir is normalized as

Cas = L2
0 −

1

2
{L1, L−1}+

1

4
[G1/2, G−1/2] . (2.3)

The algebra sB[µ] can be faithfully realized in terms of two oscillators ŷ1, ŷ2 and a Kleinian

operator k satisfying the relations

[ŷα, ŷβ ] = ŷαŷβ − ŷβ ŷα = 2iǫαβ(1 + νk) , kŷα = −ŷαk , k2 = 1 , (2.4)

where ǫαβ = −ǫβα and ǫ12 = 1, ν = 2µ− 1 if we identify

G 1
2
=

1

2
e−iπ

4 ŷ1 , G− 1
2
=

1

2
e−iπ

4 ŷ2 , (2.5)

and

L1 =
1

4i
ŷ21 , L−1 =

1

4i
ŷ22 , L0 =

1

8i
(ŷ1ŷ2 + ŷ2ŷ1) . (2.6)

In other words, the oscillator algebra generated by ŷα and k is isomorphic to sB[µ] if

ν = 2µ − 1. To see this, one first checks that the generators (2.5), (2.6) satisfy the
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commutation relations (2.2) and that Cas = (ν2k2−1)/16 = µ(µ−1)/4. Second, one must

check that the vector space generated by the products of ŷα and k has the same “dimension”

as sB[µ]. For this it is sufficient to prove that both of these spaces decompose as

∞⊕

j=0

2×Dj , (2.7)

where the sum is over all representations Dj of sl(2) ⊂ osp(1|2) of half-integer spin j. This
decomposition is equivalent to the statement that both sB[µ] and the oscillator algebra have

exactly two sl(2) highest weight states at every half-integer spin j ≥ 0. Clearly, for sB[µ]

these are G2j
1/2 and [G1/2, G−1/2]G

2j
1/2, while for the oscillator algebra these are ŷ2j1 and kŷ2j1 ,

where we have used the relation G2
1/2 = L1 and the fact that [G1/2, G−1/2] is an sl(2) singlet.

The structure constants of the multiplication operation in sB[µ] are known explic-

itly [24]. These are usually presented in a basis of symmetrized products of oscillators

V (s)±
m ∝ ŷ(α1... ŷαl)P± , (2.8)

where P± = (1 ± k)/2 are projectors, s = l
2 + 1, and 2m = #ŷ1 −#ŷ2 takes values in the

range −s + 1 ≤ m ≤ s − 1. Notice that the basis vectors V
(s)±
m with |m| < s span the

representations Ds−1 in eq. (2.7). Due to the commutation relations

[Lm, V
(s)±
n ] = [m(s− 1)− n]V

(s)±
m+n (2.9)

they are called generators of conformal spin s.

Let us define a Z2 grading | · | on sB[µ] by calling the generators V
(s)±
m even or bosonic

if s is integer and odd or fermionic if s is half odd-integer. Then one can turn sB[µ] into

a Lie superalgebra by endowing it with the usual Lie bracket [a, b]± := ab − (−1)|a||b|ba.

Moreover, according to [25, 26] sB[µ] has a graded symmetric trace which is non-degenerate

for µ /∈ Z. Thus, the traceless part of sB[µ] will form a subalgebra shs[µ] which is simple

for µ /∈ Z.2

Let us now extend the associative algebra sB[µ] by tensoring it with the matrix algebra

MatM of complex M ×M matrices

sB[µ]M := sB[µ]⊗MatM , (2.10)

which can also be viewed as the associative algebra of sB[µ] valued M ×M matrices. It

inherits a natural conformal sl(2) subalgebra

Lm ≡ Lm ⊗ 1M , (2.11)

a parity grading |a⊗A| = |a|, and a graded symmetric trace

tr a⊗A = tr a trA . (2.12)

2For µ ∈ Z , shs[µ] acquires a unique maximal ideal χµ such that the quotient shs[µ]/χµ is simple and

isomorphic to sl(µ|µ− 1) if µ > 0 and sl(1− µ| − µ) if µ < 0, see [26].
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Hence, sBM [µ] can be turned into a Lie superalgebra in the usual way. Its traceless part

will form a subalgebra shsM [µ] which is simple for µ /∈ Z and which decomposes as follows

shsM [µ] := 1 ⊗ sl(M) ⊕ shs[µ]⊗ 1M ⊕ shs[µ]⊗ sl(M) (2.13)

w.r.t. the action of the subalgebra shs[µ] ⊗ 1M ⊕ 1 ⊗ sl(M). The spin s = 1 subspace of

shs[µ] is the direct sum of the two mutually commuting subalgebras

sl(M)± := P± ⊗ sl(M) (2.14)

together with the gl(1) subalgebra generated by J0 ⊗ 1M , where

J0 := −1

2
(ν1 + k) (2.15)

spans the traceless elements of shs[µ] ar s = 1. Using the explicit basis (2.8), it is easy to

check that the spin s part of shsM [µ] decomposes into the following multiplets of sl(M)+⊕
sl(M)− ⊕ gl(1)

s = 1 : (adj, 0)0 ⊕ (0, adj)0 ⊕ (0, 0)0 (2.16)

s ∈ N +
1

2
: (f, f∗)−1 ⊕ (f∗, f)1

s ∈ N + 1 : (adj, 0)0 ⊕ (0, adj)0 ⊕ 2(0, 0)0 ,

where f is the fundamental representation of sl(M), f∗ is its dual, adj is the adjoint

representation and the index denotes the J0 charge.

To construct the Vasiliev theory, one needs to impose a reality condition on shsM [µ].

In the following we shall assume that this reality condition selects the unitary real forms

of the subalgebras sl(M)± at spin s = 1.

2.2 Extended Vasiliev theory

The explicit form of the e.o.m. of the extended Vasiliev higher spin theory based on shsM [µ]

can be found in [15]. For our purposes it suffices to consider the simpler form of these

equations, which is linear in the matter fields [15] (see also [27])

dA+A ∧A = 0 , dĀ+ Ā ∧ Ā = 0 , (2.17)

dC +AC − CĀ = 0 , dC̄ + ĀC̄ − C̄A = 0 , (2.18)

where A, Ā are 1-forms taking values in shsM [µ] and C, C̄ are 0-forms taking values in

sBM [µ]. These equations are invariant w.r.t. the gauge transformations

δΛ,Λ̄A = dΛ + [A,Λ] , δΛ,Λ̄Ā = dΛ̄ + [Ā, Λ̄] , (2.19)

δΛ,Λ̄C = CΛ̄− ΛC , δΛ,Λ̄C̄ = C̄Λ− Λ̄C̄ , (2.20)

where Λ, Λ̄ ∈ shsM [µ]. All fields are defined on a 3-manifold with the topology of a solid

cylinder. Their dynamics can be roughly understood as follows. If the connections A and

Ā were to take values in sl(2), then the flatness conditions would be equivalent to the
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vacuum Einstein e.o.m. with negative cosmological constant in the first order formalism,

see [28, 29]. The equivalence is established by expressing A and Ā in terms of the vielbein

e and the spin connection ω as follows

A = ω +
e

ℓ
, Ā = ω − e

ℓ
, (2.21)

where ℓ is a length unit which can be identified with the radius of the globally AdS3 solution

AAdS = e−L0ρ

(

L1 +
L−1

4

)

eL0ρdx+ L0dρ ,

ĀAdS = −eL0ρ

(

L−1 +
L1

4

)

e−L0ρdx̄− L0dρ . (2.22)

Here x = t/ℓ + θ, x̄ = t/ℓ − θ, t is the time coordinate, θ is the angular coordinate and ρ

is the radial coordinate on the cylinder, with the boundary being located at ρ→ ∞.

When the gauge fields A, Ā take values in shsM [µ], the flatness conditions can be

understood as the e.o.m. in the first order formalism for the infinite tower (2.16) of gauge

fields of all half-integer spins s ≥ 1; for details on the first order formalism for higher

spin gauge fields see [30]. In particular, the components of A (Ā) along the spin s = 1

generators of shs[µ] describe a set of (topological) vector fields valued in a left (right)

copy of the subalgebra su(M)+ ⊕ su(M)− ⊕ u(1), while the components along the sl(2)

generators (2.6) describe as before the gravity field. More generally, the components of A

and Ā along the spin s ≥ 3
2 generators correspond to 2M2 spin s gauge fields which are

charged under the vector fields as described in eq. (2.16). The reformulation of these fields

in the second order formalism requires introducing a notion of geometry, which comes in

through the asymptotically AdS3 boundary condition, see [31, 32]

A−AAdS3 ∼ O(ρ0) , Ā− ĀAdS3 ∼ O(ρ0) , ρ→ ∞ . (2.23)

The scalar fields C, C̄ behave rather differently. Most of their components are non-

dynamical and their only role is to provide a manifest representation of the higher spin

algebra shsM [µ]. On the asymptotically AdS3 higher spin background (2.23), one can use

the e.o.m. (2.18) as explained in [15] to express all components only in terms of the lowest

spin s = 1 bosonic components and the lowest spin s = 3
2 fermionic components, which are

denoted by

C = P+ ⊗ φ+ + P− ⊗ φ− + ŷαP+ ⊗ ψα
+ + ŷαP− ⊗ ψα

− +O(ŷ2) ,

C̄ = P+ ⊗ φ̄+ + P− ⊗ φ̄− + ŷαP+ ⊗ ψ̄α
+ + ŷαP− ⊗ ψ̄α

− +O(ŷ2) , (2.24)

where φ±, φ̄+ are MatM valued bosonic complex scalar fields and ψ±, ψ̄± are MatM valued

fermionic Dirac fields. After this “folding” procedure the e.o.m. (2.18) reduce to linear

higher derivative e.o.m for the lowest spin components, describing their free propagation on

the higher spin background (see [27] for explicit examples of such equations). In particular,

on the pure AdS3 background (2.22) the e.o.m. for φ±, φ̄± reduce to the Klein-Gordon

equation on AdS3 with mass squared M2
± = −1 + (1∓ ν)2/4, while the e.o.m. for ψα

±, ψ̄
α
±

– 6 –
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Fields Mass Dimensions ∆ Charges

φ+ M2
+ = −1 + (1− µ)2 µ (f, 0)−µ ⊗ (f∗, 0)µ

ψ+
m2

± = (µ− 1
2)

2 µ+ 1
2

(0, f)1−µ ⊗ (f∗, 0)µ
ψ− (f, 0)−µ ⊗ (0, f∗)µ−1

φ− M2
− = −1 + µ2 µ+ 1 (0, f)1−µ ⊗ (0, f∗)µ−1

φ̄− M2
+ = −1 + µ2 1− µ (0, f∗)µ−1 ⊗ (0, f)1−µ

ψ̄−
m2

± = (µ− 1
2)

2 3
2 − µ

(0, f∗)µ−1 ⊗ (f, 0)−µ

ψ̄+ (f∗, 0)µ ⊗ (0, f)1−µ

φ̄+ M2
+ = −1 + (1− µ)2 2− µ (f∗, 0)µ ⊗ (f, 0)−µ

Table 1. The matter fields of the shs
M
[µ] Vasiliev theory. The left (right) factor in the charge

denotes the transformation properties w.r.t. the su(M)+ ⊕ su(M)− ⊕ u(1) fields of A (Ā) at spin

s = 1 and the conventions for the various representation labels are the same as in eq. (2.16).

reduce to the Dirac equation on AdS3 with mass squared squared m2
± = ν2/4, where the

masses are given in units of ℓ. The charges of matter fields w.r.t. the vector fields of the

theory can be easily derived from eqs. (2.18), (2.24) and are represented in table 1. Notice

that when the complex conjugate fields are taken into account the quantum numbers of

all fields are such that a degeneracy of 2 survives: φ± is indistinguishable from φ̄∗± and ψ±

from ψ̄∗
∓. To later match with the CFT, we have associated opposite quantizations to the

degenerate pairs, i.e. the conformal dimension ∆ := h+ h̄ lifts the degeneracy.

2.3 Asymptotic symmetry algebra

According to [31], the most general flat connections A and Ā satisfying the asymptotic

boundary condition (2.22) with any remaining gauge freedom removed can be written as

A = e−L0ρaeL0ρdx+ L0dρ , Ā = −eL0ρāe−L0ρdx̄− L0dρ , (2.25)

where a depends only on x, ā only on x̄ and they are of the form

a = L1 ⊗ 1M + P+ ⊗ tIJI + P− ⊗ tIKI + J0 ⊗ 1MU +
∑

s≥ 3
2
,ε=±

V
(s)ε
−s+1 ⊗ EijW

(s)ε
ij ,

ā = L−1 ⊗ 1M + P+ ⊗ tI J̄I + P− ⊗ tIK̄I + J0 ⊗ 1M Ū +
∑

s≥ 3
2
,ε=±

V
(s)ε
s−1 ⊗ EijW̄

(s)ε
ij .

(2.26)

Here tI is a basis of su(M) and Eij is the matrix with entry 1 at position (ij) and zero

everywhere else. Hence, the most general asymptotically AdS background is parametrized

by two copies of left and right moving 2M2 − 1 spin s = 1 currents, and 2M2 currents of

every half-integer spin s ≥ 3
2 .

The flatness conditions (2.17) can be derived from a double Chern-Simons theory

for the Lie superalgebra shsM [µ] endowed with the trace (2.12). The latter comes with a

canonical Poisson bracket which can be used to define a left moving Poisson-bracket algebra

– 7 –
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satisfied by the holomorphic currents (2.26) together with a similar right moving copy. As

explained in great detail in [31, 33], these are generically non-linear W-algebras which

can be computed as the Drinfel’d-Sokolov reduction of the gauge algebra of the Chern-

Simons theory, in our case shsM [µ], w.r.t. the sl(2) subalgebra entering in the asymptotic

boundary conditions (2.23). They are called asymptotic symmetry algebras, because they

act on a given classical solution (2.26) of the Chern-Simons theory as field dependent gauge

transformations (2.19) that do not decay at the boundary and, for this reason, map the

given solution to physically inequivalent solutions.

2.4 Partition function

One of the simplest characteristics of the perturbatively quantized Vasiliev theory is the 1-

loop partition function on thermal AdS3, which is topologically a solid torus parametrized

by the modular parameter q = e2πiτ of the conformal boundary torus C/(Z + τZ). The

1-loop partition function takes into account only the quadratic fluctuations of the fields

around the Euclidean AdS vacuum, hence is uniquely determined by the field content of

the theory in terms of the following elementary building blocks: the partition function of

an integer spin s gauge field [34, 35]
∞∏

n=s

1

(1− qn)(1− q̄n)
, (2.27)

the partition function of a half odd-integer (anti-periodic) spin s gauge field [12, 36]
∞∏

n=s− 1
2

(1 + qn+
1
2 )(1 + q̄n+

1
2 ) , (2.28)

the partition function of a complex massive scalar of conformal dimension ∆ = 2h [34]
∞∏

m,n=0

1

(1− qh+mq̄h+n)2
(2.29)

and, finally, the partition function of a (anti-periodic) massive Dirac fermion of conformal

dimension ∆ = 2h+ 1
2 [12]

∞∏

m,n=0

(1 + qh+
1
2
+mq̄h+n)(1 + qh+mq̄h+

1
2
+n) . (2.30)

In order to write down the 1-loop partition function explicitly, let us split it into a

gauge part and matter part

Z1-loop
Vasiliev = ZgaugeZmatter . (2.31)

Then, with the help of eqs. (2.27), (2.28) and the decomposition (2.16) we can write the

gauge field contribution as follows

Zgauge =
∞∏

s=1

∞∏

n=s

M∏

i,j=1

(1 + qn+
1
2 zi+z

j∗
− )(1 + qn+

1
2 zi∗+z

j
−)

(1− qnzi+z
j∗
+ )(1− qnzi−z

j∗
− )

(1 + q̄n+
1
2 z̄i+z̄

j∗
− )(1 + q̄n+

1
2 z̄i∗+ z̄

j
−)

(1− q̄nz̄i+z̄
j∗
+ )(1− q̄nz̄i−z̄

j∗
− )

×

×
∞∏

n=1

(1− qn)(1− q̄n) , (2.32)

– 8 –



J
H
E
P
0
4
(
2
0
1
4
)
1
4
5

where we have introduced the phases zi± (z̄i±) “by hand” to keep track of the charges w.r.t.

the left (right) su(M)± vector fields. Heuristically this partition function can be understood

as follows: every positive Fourier mode of the spin s boundary currentW
(s)±
ij (x) contributes

with a factor qnzi±z
∗j
± if s ∈ N and qn+

1
2 zi∓z

∗j
± if s ∈ N + 1

2 ; the modes with n ≤ s are

discarded because they correspond to residual symmetries of the AdS vacuum [37, 38]. The

right current W̄
(s)±
ij (x̄) contributes similarly to the right part.

Let us now split the matter part of the partition function

Zmatter = Z+
matterZ

−
matter , (2.33)

into a factor Z+
matter containing the contribution of the fields φ±, ψ± and a factor Z−

matter

containing the contribution of φ̄±, ψ̄±. Defining

h+ =
µ

2
, h− =

1− µ

2
, (2.34)

and using eqs. (2.29), (2.30) together with table 1 we can write these factors as

Z±
matter =

∞∏

m,n=0

M∏

i,j=1

(1 + qh±+mq̄h±+ 1
2
+nzi±z̄

∗j
∓ )(1 + qh±+mq̄h±+ 1

2
+nz∗i± z̄

j
∓)

(1− qh±+mq̄h±+nzi±z̄
∗j
± )(1− qh±+mq̄h±+nz∗i± z̄

j
±)

×

× (1 + qh±+ 1
2
+mq̄h±+nzi∓z̄

∗j
± )(1 + qh±+ 1

2
+mq̄h±+nz∗i∓ z̄

j
±)

(1− qh±+ 1
2
+mq̄h±+ 1

2
+nzi∓z̄

∗j
∓ )(1− qh±+ 1

2
+mq̄h±+ 1

2
+nz∗i∓ z̄

j
∓)

. (2.35)

Heuristically, one can understand this partition function as follows: the boundary modes

of the scalar fields (φ+)ij and (φ∗+)ij are counted by the factors qh++mq̄h++nzi+z̄
∗j
+ and,

respectively, qh++mq̄h++nz∗i+ z̄
j
+; the boundary modes of the Dirac fields (ψ+)ij and (ψ∗

+)ij

are counted by the factors qh++ 1
2
+mq̄h++nzi−z̄

∗j
+ and, respectively, qh++ 1

2
+mq̄h++nz∗i− z̄

j
+;

the boundary modes of the Dirac fields (ψ−)ij and (ψ∗
−)ij are counted by the factors

qh++mq̄h++ 1
2
+nzi+z̄

∗j
− and, respectively, qh++mq̄h++ 1

2
+nz∗i+ z̄

j
− etc.

The matter part (2.33) of the partition function can be written more compactly with

the help of the following supermatrices of GL(∞|∞)

U± = diag(qh±z1±, . . . , q
h±zM± ,−qh±+ 1

2 z1∓, . . . ,−qh±+ 1
2 zM∓ ,

qh±+1z1±, . . . , q
h±+1zM± ,−qh±+ 3

2 z1∓, . . . ,−qh±+ 3
2 zM∓ , . . . ) . (2.36)

Similarly, define U∗
± by making the replacements zi± 7→ zi∗± and z̄i± 7→ z̄i∗± on the r.h.s.

of eq. (2.36) and, then, Ū± and Ū∗
± by putting a bar on everybody. Here the grading of

GL(∞|∞) is induced from the grading of its fundamental representation over CN for which

the i-th component is defined to have the same parity as [i/M ], i.e. even basis vectors have

U± eigenvalues qh±+nzi±, while odd basis vectors have eigenvalues −qh±+n+ 1
2 zi∓, where n

is a non-negative integer. With this notation the partition function for the matter fields

becomes particularly simple and can be immediately expanded in a sum of GL(∞|∞) Schur

functions with the help of the Cauchy identity

Z±
matter =

1

sdet(1− U± ⊗ Ū∗
±) sdet(1− U∗

± ⊗ Ū±)
=
∑

Λ,Ξ

sΛ(U±)sΛ(Ū
∗
±)sΞ(U

∗
±)sΞ(Ū±) .
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In this way, we get the following expansion for the partition function (2.31)

Z1-loop
Vasiliev = Zgauge

∑

Λl,Λr

Ξl,Ξr

sΛl
(U+)sΛl

(Ū∗
+)sΛr(U

∗
+)sΛr(Ū+)sΞl

(U−)sΞl
(Ū∗

−)sΞr(U
∗
−)sΞr(Ū−) ,

(2.37)

which, as we shall see, is most naturally comparable with the proposed dual coset theory.

3 Dual coset theories

In this section we consider the coset CFT based on the coset algebra

su(N +M)k ⊕ so(2NM)1
su(N)k+M ⊕ u(1)κ

(3.1)

and its charge conjugate modular invariant. We compute the partition function and higher

spin spectrum in the ’t Hooft limit

N, k → ∞ with λ =
N

k +N
held fixed (3.2)

and find perfect agreement with the corresponding quantities in the extended shs[λ] Vasiliev

theory discussed in section 2. These findings strongly support the holographic duality [16,

17] between the classical Vasiliev theory based on shs[λ] and subject to the asymptotic

AdS3 boundary conditions (2.23) on the one hand, and the ’t Hooft limit of the coset

CFT (3.1) on the other hand.

3.1 Definition

The coset (3.1) can be obtained from the manifestly N = 1 coset

su(N +M)
(1)
k+N+M

su(N)
(1)
k+N+M ⊕ u(1)

(1)
κ

(3.3)

by removing all fermions in the denominator together with the remaining M2 − 1 free

fermions in the numerator. Notice that the last step generally breaks supersymmetry. The

level κ will be specified later.

Let us choose a basis of su(N +M)k that respects the decomposition

su(N +M)k ≃ su(N)k
︸ ︷︷ ︸

JA

⊕ su(M)k
︸ ︷︷ ︸

JI

⊕ u(1)
︸︷︷︸

J

⊕ (N, M̄)N+M
︸ ︷︷ ︸

Jai

⊕ (N̄ ,M)−N−M
︸ ︷︷ ︸

J̄ai

(3.4)

where the lower index denotes the J-charge. The OPEs of the currents in this basis are

given in eq. (A.1). The so(2NM)1 factor in the numerator of eq. (3.1) corresponds to NM

Dirac fermions ψai and their conjugates ψ̄ai, which satisfy the OPEs

ψai(z)ψ̄bj(w) ∼ δabδij
z − w

∼ ψ̄ai(z)ψbj(w) . (3.5)
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Out of them one can construct the following currents

KA = tAab : ψ
aiψ̄bi : , KI = tIij : ψ̄

aiψaj : , K = ψaiψ̄ai , (3.6)

which generate the current algebra su(N)M ⊕ su(M)N ⊕ u(1)NM . W.r.t. that algebra the

fermions ψai transform in the representation (N, M̄)1, ψ̄
ai in the representation (N̄ ,M)−1,

which can be seen explicitly from the commutation relations (A.2). The embedding of the

denominator into the numerator of (3.1) is given by

J̃A := JA +KA , J̃ := J + (N +M)K , (3.7)

where the coefficient of K in the second equality is determined from the requirement that

Jai and ψai have the same J̃-charge — a property inherited from the N = 1 supersymmetry

of the parent theory (3.3). Our convention for the level of J̃ is

J̃(z)J̃(w) ∼ κ

(z − w)2
, κ := NM(N +M)(k +N +M) . (3.8)

The coset algebra (3.1) is then to be understood as the algebra of normal ordered differential

polynomials in the numerator currents that are regular w.r.t. the denominator currents. In

particular, the energy-momentum tensor of the coset can be computed by the Goddard-

Kent-Olive (GKO) construction [39, 40] and is given explicitly in eq. (A.3).

The representations (Λ; Ξ, l) of the coset algebra (3.1) are defined by the usual GKO

construction through the decomposition

Λ⊗NS =
⊕

Ξ,l

(Λ; Ξ, l)⊗ Ξ⊗ l , (3.9)

where Λ is an integrable weight of SU(N+M)k identified with a Young diagram of at most

N +M − 1 rows and k columns, NS is the Neveu-Schwarz sector for the fermions ψai and

ψ̄ai, Ξ is an integrable weight of SU(N)k+M identified with a Young diagram of at most

N − 1 rows and k +M columns, and l ∈ Zκ labels the representation of charge l w.r.t the

u(1)-current in eq. (3.7). The decomposition (3.9) satisfies the selection rule

l ≡ (N +M)|Ξ| −N |Λ| mod N(N +M) , (3.10)

which follows from the requirement that the su(N + M) weights of the affine highest

weight vectors on both hand sides in eq. (3.9) differ by an element of the su(N) root

lattice plus an element of the su(M) weight lattice. There are also field identifications

(Λ; Ξ, l) ≃ (Λ′; Ξ′, l′), which are explained in [41], but they are irrelevant in the ’t Hooft

limit because they do not give rise to non-trivial identifications. The characters of the coset

representations (Λ; Ξ, l) are defined by

bΛ;Ξ,l(q, z+, z−) := tr(Λ;Ξ,l) q
L0 exp[JI

0 tr(t
IH+) +KI

0 tr(t
IH−)] , (3.11)

where L0, J
I
0 , K

I
0 are the zero modes of T , JI and KI , respectively, while eH± are two

arbitrary points on the Cartan torus of SU(M) with eigenvalues z± ≡ (z1±, . . . , z
M
± ) in
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the fundamental representation. More precisely, if ei is a basis of the fundamental repre-

sentation of SU(M) diagonalizing the Cartan subalgebra and ǫi is the weight of ei then

zi± = eǫi(H±).

To complete the definition of the coset CFT we must specify a Hilbert space which

glues in a modular invariant way the representations of a left and a right copy of the coset

algebra (3.1). The simplest choice is given by the charge conjugation modular invariant

Hcoset =
⊕

[Λ;Ξ,l]

(Λ; Ξ, l)⊗ (Λ∗; Ξ∗, l∗) , (3.12)

where [Λ; Ξ, l] denotes the equivalence class of the representation (Λ; Ξ, l) under the ac-

tion of the field identification rules and (−)∗ denotes the conjugate representation. The

corresponding partition function is then

Zcoset =
∑

[Λ;Ξ,l]

bΛ;Ξ,l(q, z+, z−)bΛ∗;Ξ∗,l∗(q̄, z̄+, z̄−) . (3.13)

3.2 Partition function

Let us now compute the ’t Hooft limit of the coset partition function (3.13). We recall

that the ’t Hooft limit of the Hilbert space (3.12) is regularized in such a way that only the

representations Λ of SU(N+M) which appear in a finite tensor product of the fundamental

representation and its conjugate are taken into account. The same remark applies to Ξ.

This means that in the limit Λ and Ξ can be unambiguously specified by a pair of finite

Young diagrams, i.e.

Λ 7→ (Λl,Λr) , Ξ 7→ (Ξl,Ξr) , (3.14)

where the index r corresponds to the tensor built out of the fundamental representation

(covariant) and l to the tensor built out of the conjugate representation (contravariant).

These pairs determine uniquely the u(1)-charge

l 7→ (N +M)(|Ξ|r − |Ξ|l)−N(|Λr| − |Λl|) , (3.15)

thus removing in the ’t Hooft limit the mod N(N +M) ambiguity of eq. (3.10), see [18]

for a more detailed explanation. Hence, in the ’t Hooft limit the coset branching functions

will effectively be labelled by the pairs of Young diagrams (3.14)

bΛ;Ξ,l 7→ b(Λl,Λr);(Ξl,Ξr) (3.16)

and the bulk of this section is dedicated to evaluating their limit.

We shall follow the strategy developed in [18], which starts with factoring out the k

dependence of the branching functions

bΛ;Ξ,l ≃ q
1

2(k+N+M)

[

CasN+M (Λ)−CasN (Ξ)− l2

NM(N+M)

]

aΛ;Ξ,l , (3.17)
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where aΛ;Ξ,l are free, i.e. k → ∞, branching functions defined by

chN+M
Λ (ı(z+, u, v))

N∏

a=1

M∏

i=1

∞∏

n=1

(1 + qn−
1
2 zi∗−u

avN+M )(1 + qn−
1
2 zi−u

a∗v∗N+M )

(1− qnzi∗+u
avN+M )(1− qnzi+u

a∗v∗N+M )
×

×
M∏

i,j=1

∞∏

n=1

1

1− qnzi+z
j∗
+

=
∑

Ξ,l

aΛ;Ξ,l(q, z+, z−)× chNΞ (u)× vl
∏∞

n=1(1− qn)
, (3.18)

see [18] for more details. Here z+ is an SU(M) matrix with eigenvalues {zi+}, u is an

SU(N) matrix with eigenvalues {ua}, v is a U(1) phase and ı(z+, u, v) denotes the following

embedding of SU(M)× SU(N)×U(1) into SU(N +M)

ı(z+, u, v) =

(

uvM 0

0 z+v
−N

)

. (3.19)

We shall now compute in two steps from the basic definition (3.18) the ’t Hooft limit of

the free theory branching functions

aΛ;Ξ,l 7→ a(Λl,Λr);(Ξl,Ξr) , (3.20)

where the representation labels on both hand sides are related by eqs. (3.14), (3.15).

Let us start with a0;(Ξl,Ξr). Decomposing every factor separately using the Cauchy

identity (see e.g. the appendix of [18]) we get

N∏

a=1

M∏

i=1

∞∏

n=1

(1 + qn−
1
2 zi∗− ũ

a)

(1− qnzi∗+ ũ
a)

×
N∏

a=1

M∏

i=1

∞∏

n=1

(1 + qn−
1
2 zi−ũ

a∗)

(1− qnzi+ũ
a∗)

=

=
∑

Λl,Λr

chN(Λl,0)
(ũ) chN(0,Λr)

(ũ) sΛl
(U 1

2
)sΛr(U

∗
1
2

) , (3.21)

where {ũa} are the eigenvalues of the U(N) matrix ũ = uvN+M , the sum runs over all

Young diagrams Λl, Λr of at most N rows, chN(Λl,0)
is the character of the irreducible

purely contravariant U(N) tensor of shape Λl, ch
N
(0,Λr)

is the character of the irreducible

purely covariant U(N) tensor of shape Λr, sΛ are GL(∞|∞) Schur functions, and U 1
2
is a

GL(∞|∞) matrix

U 1
2
= diag(−q 1

2 z1−, . . . ,−q
1
2 zM− , qz1+, . . . , qz

M
+ ,−q 3

2 z1−, . . . ,−q
3
2 zM− , q2z1+, . . . , q

2zM+ , . . . ) ,

(3.22)

which is obtained from U+ in eq. (2.36) by setting h+ = 0 and removing the first M rows

and columns while keeping the parity of the remaining entries unchanged. If we now use

the explicit form of the U(N) Clebsch-Gordan coefficients [42]

c
(Ξl,Ξr)
(Λl,0)(0,Λr)

=
∑

Π

cΛl

ΞlΠ
cΛr

ΞrΠ
, (3.23)
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where cΛΞΠ are the Littlewood-Richardson coefficients, and the basic property sΞsΠ =
∑

Λ c
Λ
ΞΠsΛ of the Schur functions, then the r.h.s. of eq. (3.21) becomes

∑

Ξl,Ξr,Π

chN(Ξl,Ξr)
(ũ)sΞl

(U 1
2
)sΠ(U 1

2
)sΞr(U

∗
1
2

)sΠ(U
∗
1
2

) =
∑

Ξl,Ξr

chN(Ξl,Ξr)
(ũ)sΞl

(U 1
2
)sΞr(U

∗
1
2

)

sdet(1− U 1
2
⊗ U∗

1
2

)
.

(3.24)

In this equality we have used the Cauchy identity to evaluate the sum over Π. Next, taking

into account the character relation

chN(Ξl,Ξr)
(ũ) = chN(Ξl,Ξr)

(u)× v(N+M)(|Ξr|−|Ξl|) (3.25)

and eq. (3.15) we can compare the left hand sides of eqs. (3.24), (3.18) to obtain

a0;(Ξl,Ξr)(q, z+, z−) = sΞl
(U 1

2
)sΞr(U

∗
1
2
)×

∞∏

n=1

1− qn
∏M

i,j=1(1− qnzi+z
j∗
+ )

×

×
∞∏

s=1

∞∏

n=s

M∏

i,j=1

(1 + qn+
1
2 zi+z

j∗
− )(1 + qn+

1
2 zi∗+z

j
−)

(1− qn+1zi+z
j∗
+ )(1− qnzi−z

j∗
− )

, (3.26)

where the first product is inherited from the u-independent products in eq. (3.18), while

the second product comes from the superdeterminant in eq. (3.24). In particular, notice

that the vacuum character of the theory is given by

b0;0 = a0;0 =
∞∏

n=1

(1− qn)×
∞∏

s=1

∞∏

n=s

M∏

i,j=1

(1 + qn+
1
2 zi+z

j∗
− )(1 + qn+

1
2 zi∗+z

j
−)

(1− qnzi+z
j∗
+ )(1− qnzi−z

j∗
− )

. (3.27)

In a second step, consider the general branching functions a(Λl,Λr);(Ξl,Ξr). From the

definition (3.18) we get

a(Λl,Λr);(Ξl,Ξr)(q, z+, z−) =
∑

Φl,Φr,Ψl

Ψr,Πl,Πr

r
(Λl,Λr)
(Φl,Φr)(Ψl,Ψr)

c
(Πr,Πl)
(Ψl,Ψr)(Ξr,Ξl)

chM(Φl,Φr)
(z+)a0;(Πl,Πr)(q, z+, z−).

(3.28)

To obtain this relation we have used the U(N + M) ↓ U(N) × U(M) restriction rules

(cf. 3.19)

chN+M
(Λl,Λr)

(ı(z+, u, v)) =
∑

Φl,Φr,Ψl,Ψr

r
(Λl,Λr)
(Φl,Φr)(Ψl,Ψr)

chM(Φl,Φr)
(z+v

−N ) chN(Ψl,Ψr)
(uvM ) (3.29)

where the explicit form of the restriction coefficients was given in [43]

r
(Λl,Λr)
(Φl,Φr)(Ψl,Ψr)

=
∑

σ,τ,ρ

cΛl

Φlσ
cΛr

Φrτ
cσΨlρ

cτΨrρ (3.30)

repeatedly used eq. (3.25), a relation following from eq. (3.30)

|Λl| − |Φl| − |Ψl| = |Λr| − |Φr| − |Ψr| , (3.31)
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and the obvious symmetry of the U(N) Clebsch-Gordan coefficients, which can be found

in [42]

c
(Ξl,Ξr)
(Ψl,Ψr)(Πl,Πr)

= c
(Πr,Πl)
(Ψl,Ψr)(Ξr,Ξl)

=
∑

π,ρ,σ,τ

c
(π,ρ)
(Ψl,0)(0,Πr)

c
(σ,τ)
(Πl,0)(0,Ψr)

cΞl
πσc

Ξr
ρτ . (3.32)

To make good use of the formula (3.28) we now need to take into account the emer-

gence of null vectors in the ’t Hooft limit. By analogy with [44], we shall make the usual

assumption that their removal is equivalent to declaring that in the limit, which assumes

that N → ∞, the fundamental representations of SU(N +M) and SU(N) do not talk to

their duals. This prescription is equivalent to the following factorization of the restriction

and Clebsch-Gordan coefficients in eq. (3.28) (cf. 3.30), (3.32)

r
(Λl,Λr)
(Φl,Φr)(Ψl,Ψr)

7→ cΛl

ΦlΨl
cΛr

ΦrΨr
,

c
(Πr,Πl)
(Ψl,Ψr)(Ξr,Ξl)

7→ cΠr

ΨlΞr
cΠl

ΨrΞl
, (3.33)

where we have used that the U(N) Clebsch-Gordan and restriction coefficients of purely

covariant or purely contravariant tensors coincide with the Littlewood-Richardson coeffi-

cients. Making these replacements in eq. (3.28) we can evaluate all sums to

a(Λl,Λr);(Ξl,Ξr) = sΛl
(U∗

0 )sΛr(U0)sΞl
(U 1

2
)sΞr(U

∗
1
2
) a0;0 , (3.34)

where U0 is the matrix U± with h± = 0 and we have used the fact that the GL(∞+M |∞) ↓
GL(M) × GL(∞|∞) restriction coefficients of purely covariant tensors coincide with the

Littlewood-Richardson coefficients (see e.g. [18])

sΛ(U0) =
∑

Φ,Ψ

cΛΦΨ chMΦ (z+)sΨ(U 1
2
) . (3.35)

We are now ready to evaluate the r.h.s. of eq. (3.17). Approximating the SU(N +M)

and SU(N) Casimirs with their dominant terms (see e.g. [18])

CasN+M (Λ)− CasN (Ξ)

2(k +N +M)
− l2

2(k +N +M)NM(N +M)
≃ λ

2
(|Λl|+ |Λr| − |Ξl| − |Ξr|) ,

(3.36)

one can absorb the overall power of q in eq. (3.17) in the entries of the matrices U0, U 1
2
,

i.e.

sΛ(U+) = q
λ
2
|Λ|sΛ(U0) , sΞt(U−) = q−

λ
2
|Ξ|sΞ(U 1

2
) , (3.37)

where in the second case the transpose comes from the opposite grading of the otherwise

equal matrices U− and q−
λ
2U 1

2
, see the appendix of [18] for more details. Thus, putting

everything together we get

b(Λl,Λr);(Ξl,Ξr) = sΛl
(U∗

+)sΛr(U+)sΞt
l
(U−)sΞt

r
(U∗

−) a0;0 . (3.38)

It is then obvious that the coset partition function (3.13) regularized as

Z ’t Hooft
coset :=

∑

Λl,Λr,Ξl,Ξr

b(Λl,Λr);(Ξl,Ξr)(q, z+, z−)b(Λr,Λl);(Ξr,Ξl)(q̄, z̄+, z̄−) (3.39)

gives exactly the higher spin partition function (2.37)

Z ’t Hooft
coset = Z1-loop

Vasiliev . (3.40)
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3.3 Higher spin spectrum

The generating function for the spectrum of the W-algebra of a coset is in general given

by the vacuum character, see [45]. For the coset (3.1), the ’t Hooft limit of the vacuum

character was computed in eq. (3.27). From its simple product form one can immediately

conclude that the W-algebra of the coset is freely generated in the ’t Hooft limit. Taking

into account that a spin s current which is not subject to any constraints contributes to

the vacuum character with a factor

∞∏

n=s

1

1− qn
,

if it is bosonic, i.e. s ∈ N, or with a factor

∞∏

n=s− 1
2

(1 + qn+
1
2 ) ,

if it is fermionic, i.e. s ∈ N− 1
2 , one can clearly read off from (3.27) the following spectrum

of generators (cf. 2.16)

s = 1 : (adj, 0)⊕ (0, adj)⊕ (0, 0) (3.41)

s ∈ N +
1

2
: (f, f∗)⊕ (f∗, f)

s ∈ N + 1 : (adj, 0)⊕ (0, adj)⊕ 2(0, 0) ,

where the the pair of labels in the brackets denotes the transformation properties of these

generators w.r.t. the two su(M)’s generated by JI
0 and KI

0 , respectively. In total we have

2M2 − 1 generators with spin 1 and 2M2 generators for every half-integer spin s ≥ 3/2.

This spin content matches precisely the spectrum of the asymptotic symmetry algebra of

the higher spin theory (2.26).

Let us now construct the currents in eq. (3.41) explicitly. Clearly, the spin 1 currents

always exist even at finite central charge and can be identified with

JI , KI , U =
J − kK

k +N +M
, (3.42)

respectively. Similarly, the spin s = 3/2 currents are given by

W
(3/2)−
ij = ψaiJ̄aj , W

(3/2)+
ij = Jaiψ̄aj , (3.43)

respectively, where i, j are free indices. They are both Virasoro primary and affine primary

w.r.t. the currents JI and KI . The problem of constructing the currents of spin s ≥ 2

explicitly at finite central charge is still feasible, but quickly becomes technically very

complicated with increasing spin, see [46] for an illustrative example. Let us explain the

main idea behind this construction.

The first step is to introduce the covariant derivative, which sends affine primaries of

the denominator subgroup into affine primaries [47]. Thus, given a set of su(N)k+M⊕u(1)κ
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affine primary fields Φa transforming in the representation ρAab ≡ ρ(tA)ab of su(N) and of

J̃-charge Q, i.e.

J̃A(z)Φa(w) ∼ ρAbaΦ
b(w)

z − w
, J̃(z)Φa(w) ∼ QΦa(w)

z − w
, (3.44)

their covariant derivative is defined as follows

DΦa = ∂Φa − 1

k +N +M

[

Q(J̃Φa)

NM(N +M)
+ ρAba(J̃

AΦb)

]

. (3.45)

Their OPEs with the su(N)k+M ⊕ u(1)κ currents are again given by eq. (3.44), except Φa

gets replaced by DΦa. Now we can write the coset currents of spin s ≥ 2 as follows

s ∈ N +
3

2
: W

(s)−
ij = (ψaiDs− 3

2 J̄aj) + · · · , W
(s)+
ij = (JaiDs− 3

2 ψ̄aj) + · · · , (3.46)

s ∈ N + 1 : W
(s)−
ij = (ψaiDs−1ψ̄aj) + · · · , W

(s)+
ij = (JaiDs−2J̄aj) + · · · ,

where the dots contain “lower order” terms in the following sense. The contraction of

su(N) indices of the dominant terms ensures that no first order poles can appear in their

OPEs with the denominator currents (3.7). If the dominant terms do not require a normal

ordering then all higher order poles will also vanish, but this is the case only for the spin

s = 3/2 currents (3.43). In all other cases the higher order poles will not vanish and in

order to remove these poles one must correct the dominant terms by descendants of the

operators appearing in the singular part of their OPE. This is precisely what makes the

explicit construction of higher spin currents technically complicated.

However, in the limit k → ∞, which is defined in such a way that only the zero modes

of the currents JI , JA and J survive, things simplify considerably: the currents Jai/
√
k,

J̄ai/
√
k become abelian, the covariant derivative (3.45) simplifies to the usual derivative,

the normal ordering in eq. (3.46) becomes a Wick normal ordering and all terms hidden

by the dots vanish.

4 Kazama-Suzuki models

In this section we explain how the refining of the asymptotic boundary conditions (2.23)

of the shsM [λ] Vasiliev theory of section 2 can change the CFT dual from the coset (3.1)

to the N = 2 Kazama-Suzuki coset

su(N +M)k ⊕ so(2NM)1
su(N)k+M ⊕ su(M)k+N ⊕ u(1)

(4.1)

of complex Grassmannian type. The parameter λ is defined as before, see eq. (3.2). The new

boundary conditions of the Vasiliev theory do not change the asymptotic AdS geometry

because they differ by O(ρ0) terms from the standard AdS boundary conditions (2.23).

Their only effect is to constrain an su(M) subset of the vector fields of the theory and, on

the coset side, this corresponds to gauging the parent coset theory (3.1) by an additional

su(M)N+k factor.
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The section is structured as follows. First, we present the Kazama-Suzuki model as a

gauged version of the previous coset (3.1) and then reformulate it as a constrained system.

Next, we discuss the W-algebra of the Kazama-Suzuki coset and emphasize some of its new

features. Finally, we interpret the constraints as being part of the asymptotic boundary

conditions of the dual shsM [λ] Vasiliev theory.

4.1 Partition function

The coset algebra (3.1) contains two current subalgebras: su(M)k generated by the cur-

rents JI and su(M)N generated by the currents KI , where we have used the notation of

section 3.1. If we now gauge the coset (3.1) by the diagonally embedded current algebra

su(M)k+N , generated by the currents

J̃I = JI +KI , (4.2)

then we obtain the Kazama-Suzuki coset (4.1). This coset can also be obtained directly

from the manifestly N = 1 complex Grassmannian coset

su(N +M)
(1)
k+N+M

su(N)
(1)
k+N+M ⊕ su(M)

(1)
k+N+M ⊕ u(1)(1)

, (4.3)

by removing all fermions in the denominator and according to Kazama and Suzuki [48] it

has an increased N = 2 supersymmetry.

The representations (Λ;Π,Ξ, l) of the coset algebra (4.1) in the Neveu-Schwarz sector

are realized on the multiplicity spaces of the su(M)k+N representations realized inside the

representations (Λ; Ξ, l) of the coset (3.1)

(Λ; Ξ, l) =
⊕

Π

(Λ;Π,Ξ, l)⊗Π , (4.4)

where Π is an integrable weight of su(M)k+N identified with a Young diagram of at most

M − 1 rows and k + N columns which must satisfy a selection rule similar to eq. (3.10),

see [41]. The branching functions of the Kazama-Suzuki coset are defined as

bΛ;Π,Ξ,l(q) := tr(Λ;Π,Ξ,l) q
LKS
0 , (4.5)

where LKS
0 is the zero mode of the energy momentum tensor of the Kazama-Suzuki coset ob-

tained from eq. (A.3) by subtracting the Sugawara energy momentum tensor of su(M)k+N .

Using again the charge conjugate modular invariant of the coset algebra (4.1) to define the

Hilbert space

HKS =
⊕

[Λ;Π,Ξ,l]

(Λ;Π,Ξ, l)⊗ (Λ∗; Π∗,Ξ∗, l∗) , (4.6)

where [Λ;Π,Ξ, l] denotes the equivalence class of the representation (Λ;Π,Ξ, l) under the

action of the field identification rules [41], the corresponding partition function becomes

ZKS =
∑

[Λ;Π,Ξ,l]

bΛ;Π,Ξ,l(q)bΛ∗;Π∗,Ξ∗,l∗(q̄) . (4.7)

– 18 –



J
H
E
P
0
4
(
2
0
1
4
)
1
4
5

As before, we ignore the field identification rules because in the ’t Hooft limit they do not

give rise to non-trivial identifications.

Let us now look at the ’t Hooft limit of the Kazama-Suzuki coset. The Hilbert space of

the theory is regularized in the same way as in section 3.2, i.e. the triplet of labels (Λ,Ξ, l) is

replaced by the pair of finite Young diagrams (3.14), while the range of the Young diagram

Π extends to all finite partitions of at most M − 1 rows. Taking the ’t Hooft limit of the

character of both hand sides in eq. (4.4) with the techniques of [18] we obtain the relation

bΛ;Ξ,l(q, z+, z−)
∣
∣
∣
z±=z

=
∑

Π

bΛ;Π,Ξ,l(q)×
chMΠ (z)

∏∞
n=1(1− qn)−1

∏M
i,j=1(1− qnziz∗j)

, (4.8)

where the branching function on the l.h.s. is given by eqs. (3.16), (3.38) and we have

identified the chemical potential z+ associated to su(M)k with the chemical potential z−
associated to su(M)N because the su(M)k+N factor in the denominator of the Kazama-

Suzuki coset is embedded diagonally into su(M)k⊕su(M)N , see eq. (4.2). Taking a look at

the partition functions (3.13), (4.7) and then at eq. (4.8) and its right moving counterpart

we conclude that in the ’t Hooft limit the following relation holds

Z ’t Hooft
KS =



Z ’t Hooft
coset

∣
∣
∣
z±=z̄±=z

×
∣
∣
∣
∣

∞∏

n=1

(1− qn)−1
M∏

i,j=1

(1− qnziz∗j)

∣
∣
∣
∣

2




su(M)–invariant

, (4.9)

where the invariance condition is imposed by expanding the term in the brackets in terms

of su(M) characters chMΠ (z) and then restricting to the Π = 0 piece. Put differently, the

partition function of the Kazama-Suzuki coset can be obtained from the partition function

of the previously considered coset (3.1) by removing the contribution of the su(M)k+N

currents JI+KI and of their right moving counterparts J̄I+K̄I , and then by imposing the

singlet condition w.r.t. the global su(M) generated by their zero modes JI
0 +K

I
0 + J̄

I
0 +K̄

I
0 .

On the cylinder, the above relation between the two coset theories, at least in the

’t Hooft limit, can be reformulated in the following way: the Kazama-Suzuki coset is

equivalent to the parent coset theory (3.1) subject to the constraints

JI +KI + J̄I + K̄I = 0 . (4.10)

In order to prove this, we shall use the fact that the ’t Hooft limit can be interpreted as

a classical limit, see section 4.2 for more details. Thus, in the ’t Hooft limit the su(M)

currents JI , KI , J̄I , K̄I become classical fields and we can treat the constraints (4.10) by

standard classical methods. If we develop eq. (4.10) in Fourier modes on the cylinder, then

we get

JI
0 +KI

0 + J̄I
0 + K̄I

0 = 0 , JI
m +KI

m = 0 , J̄I
m + K̄I

m = 0 , m 6= 0 . (4.11)

One can easily check that the first type of constraints are first class, while the last two types

of constraints are second class. The second class constraints can be dealt with simply by

restricting the phase space of the unconstrained theory to the constraint surface and then

replacing the Poisson bracket by the Dirac bracket. This procedure produces the second
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factor in the product enclosed in brackets in eq. (4.9). The first class constraints, on the

other hand, after restricting to the constraint surface leave behind residual gauge transfor-

mation which are generated by the constraints themselves. To deal with them one must

restrict to gauge invariant quantities, i.e. su(M) invariants in this case. This reproduces

the su(M) singlet condition in eq. (4.9).

4.2 Higher spin spectrum

In this section we shall describe the W-algebra of the Kazama-Suzuki coset which, as it

turns out, differs considerably from the previously considered algebras [8, 14, 33, 49–52].

We shall work in the ’t Hooft limit which is interpreted here as a classical limit after

identifying ~ ∝ 1/N , see [52, 53]. Thus, after rescaling the generators of section 3.3 by

an appropriate power of ~ and taking the ’t Hooft limit they become classical fields that

commute with each other.3 We shall denote them in the same way as before.

In the first approach, the higher spin fields of the Kazama-Suzuki coset are defined as

polynomials in the generators of the parent coset theory (3.1)

JI , KI , U , and W
(3/2)±
ij , W

(2)±
ij , W

(5/2)±
ij , W

(3)±
ij , . . . , (4.12)

which are regular, i.e. Poisson-commute, with the currents J̃I . In order to build such

polynomials one can assemble the s = 1 affine primaries w.r.t. the currents J̃I into a

multiplet transforming like the tensor product f ⊗ f∗

W
(1)±
ij ≡W

(1)
ij = tIji

(
JI

k
− KI

N

)

+ δij
U

k +N
, (4.13)

where to normalize every term we have used the fact that the currents JI/k, KI/N and

U/(k +N) have a well defined classical limit. Furthermore, we shall assume that one can

redefine all other higher spin fields W
(s)±
ij with s ≥ 3/2 so that they become J̃I -affine

primaries transforming in the the f ⊗ f∗ of su(M). Then, the covariant derivatives

DW s±
ij = ∂W s±

ij − J̃I

k +N
(tIliW

(s)±
lj − tIjlW

(s)±
il ) , (4.14)

and their higher order powers are also f ⊗ f∗ affine primary. Now, because we are in a

classical setting, it is very easy to impose the regularity condition w.r.t. J̃I . Defining the

M ×M matrix Ŵ (s)ε with matrix elements W
(s)ε
ij , one can construct a manifestly su(M)

invariant field simply by taking traces

trDn1Ŵ (s1)ε1Dn1Ŵ (s2)ε2 · · · DnLŴ (sL)εL . (4.15)

where si ≥ 1, εi = ±1. Now because the Poisson bracket satisfies the Leibniz rule, these

su(M) invariant fields will also Poisson-commute with all the modes of J̃I and not only

with the zero modes. Thus, they are higher spin fields of the Kazama-Suzuki coset. The

first fundamental theorem of classical invariant theory [54] then insures that the single trace

fields (4.15) generate the entire W-algebra of the Kazama-Suzuki coset in the ’t Hooft limit.

3As usual, the order O(~) term in the quantum commutator defines the Poisson bracket.
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In the second approach the W-algebra of the Kazama-Suzuki coset is defined as the

W-algebra of the parent theory subject to the constraints

J̃I = 0 . (4.16)

From the Poisson brackets

CIK
mn := {J̃I

m, J̃
K
n }
∣
∣
J̃L=0

= (k +N)mδm+n,0δ
IK (4.17)

where J̃I
m are the modes of J̃I , one clearly sees that the constraints J̃I

0 = 0 are first class,

while the constraints J̃I
m = 0 with m 6= 0 are second class. To resolve the second class

constraints one must restrict to the constraint surface and then replaces the Poisson bracket

inherited from the coset theory with the Dirac bracket

{F,G}∗ = {F,G} −
∑

m,n 6=0

{F, J̃I
m}(C−1

2 )IKmn{J̃K
n , G} (4.18)

where F and G are functionals on the phase space of the parent theory and C2 is the

restriction of the matrix (4.17) to the second class constraints. To solve the first class

constraints, in addition to imposing J̃I = 0, one must restrict to observables Poisson

commuting with J̃I
0 . Thus, the higher spin fields of the Kazama-Suzuki coset generating

the W-algebra will again be given by eq. (4.15), but now the covariant derivatives must be

replaced by simple derivatives and the Poisson bracket inherited from the parent theory

by the Dirac bracket (4.18).

The equivalence between these two apparently different presentations of the W-algebra

of the Kazama-Suzuki coset can be seen as follows. Let us identify the generators of the sec-

ond approach with the restriction of the generators (4.15) to the constraint surface (4.16).

Then the second term in eq. (4.18) vanishes and the Poisson brackets in both approaches

manifestly agree with each other.

In conclusion, let us notice that when M > 1 the generators (4.15) of the W-algebra

of the Kazama-Suzuki coset cannot be free because they must satisfy the (infinitely many)

relations dictated by the second fundamental theorem of classical invariant theory [54]. For

this reason, it is clear that the W-algebra of the Kazama-Suzuki coset with M > 1 cannot

be given by a Drinfel’d-Sokolov reduction. In fact, this property makes it very different

from all previously considered cosets [7, 10–14] — a fact which was overlooked in [17].

4.3 Dual higher spin theory

Here we take the duality between the shsM [λ] Vasiliev theory of section 2.2 and the ’t Hooft

limit of the coset (3.1) as given. From section 4.1 and 4.2 we have learned that on the

cylinder the Kazama-Suzuki coset (4.1) is equivalent to the coset (3.1) subject to the

constraints (4.10). These constraints have an obvious analogue on the higher spin side

because they act only on the currents of the coset and the correspondence between the

(higher spin) currents of the coset theory and the higher spin theory is fully understood,

compare eq. (2.26) with eqs. (3.42), (3.43), (3.46). Moreover, on the higher spin side these

constraints can be absorbed into the boundary conditions for the gauge fields, because
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according to section 2.3 the asymptotic behavior of the latter is determined precisely by

the higher spin currents. Thus, in conclusion, the higher spin dual of the Kazama-Suzuki

cosets is given again by the shsM [λ] Vasiliev theory, but now the asymptotic boundary

conditions include on top of eq. (2.23) also the constraints (4.10).

5 Conclusion

In this paper we have reconsidered the holographic dualities proposed in [16, 17] between

the shsM [λ] Vasiliev theory on AdS3 and the ’t Hooft limit of the cosets (3.1) and (4.1).

We have provided a simplified proof for the agreement of the partition functions and,

in addition, have shown that it is the asymptotic boundary conditions that determine

which of the two cosets (3.1) or (4.1) is the dual theory. In particular, this means that

the number of superconformal symmetries in the Vasiliev theory depends on the chosen

boundary conditions.

Let us now come back to the issues related to supersymmetry mentioned in the in-

troduction. First, recall that the cosets (3.1) are supersymmetric for M = 1, when they

reduce to the CPN Kazama-Suzuki type cosets [48] which have N = 2 superconformal

symmetry, and for M = 2, when they correspond to the construction of [21–23] based

on Wolf spaces which guarantees non-linear large N = 4 superconformal symmetry [55].

However, we have explicitly checked that for M > 2 the coset currents of spin s = 3
2 do

not generate any of the superconformal algebras classified in [56, 57]. The most one can

do is to find four supercharges that generate the non-linear N = 4 superconformal algebra

up to 1/c corrections proportional to bilinear terms in the spin s = 1 currents. One might

hope that the situation improves in the ’t Hooft limit, where the central charge diverges

and, naively, the problematic terms proportional to 1/c go away. However, at the level of

W-algebras, taking the ’t Hooft limit is not the same thing as letting c → ∞. One must

also rescale the currents by appropriate powers of c so that the ’t Hooft limit becomes a

classical limit [52, 53]; only then can the quantum W-algebra of the coset reproduce in the

’t Hooft limit the classical W-algebra of asymptotic symmetries of the dual higher spin

theory. If the ’t Hooft limit is taken correctly, then the problematic terms proportional to

1/c survive. In conclusion, the large N = 4 superconformal symmetry of the cosets (3.1)

is broken by 1/c corrections even in the ’t Hooft limit.

It would be interesting to check whether the large N = 4 superconformal symmetry of

the extended Vasiliev theory is also broken by 1/c corrections. In other words, the question

is whether the non-linear large N = 4 superconformal algebra is a subalgebra of the

Drinfel’d-Sokolov reduction of shsM [µ] for M = 2 and whether it ceases to be a subalgebra

for M > 2. The duality of [17] between the extended Vasiliev theory and the cosets (3.1)

predicts that this is indeed the case. Thus, in order to put the duality on solid grounds,

one should first confirm that the large N = 4 superconformal algebra is a subalgebra

of the Drinfel’d-Sokolov reduction of shsM [µ] only for M = 2 by a direct asymptotic

symmetry analysis and then carry out a stronger check of the agreement between the

asymptotic symmetry algebra of the higher spin theory and the coset W-algebra along the

lines of [8, 14, 49, 50, 52] or [51, 53, 59].
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A Coset currents

In the basis (3.4) the OPEs of the current algebra SU(N +M)k can be written as

JA(z)JB(w) ∼ kδAB

(z − w)2
+
fABCJ

C(w)

z − w
, (A.1)

JI(z)JJ(w) ∼ kδIJ
(z − w)2

+
fIJKJ

K(w)

z − w
, J(z)J(w) ∼ kNM(N +M)

(z − w)2
,

JA(z)Jai(w) ∼ tAbaJ
bi(w)

z − w
, JI(z)Jai(w) ∼

−tIijJaj(w)

z − w
, J(z)Jai(w) ∼ (N +M)Jai(w)

z − w
,

JA(z)J̄ai(w) ∼ −tAabJ̄bi(w)

z − w
, JI(z)J̄ai(w) ∼

tIjiJ̄
aj(w)

z − w
, J(z)J̄ai(w) ∼ −(N +M)J̄ai(w)

z − w
,

Jai(z)J̄bj(w) ∼ kδijδab
(z − w)2

+
δijt

A
baJ

A(w)− δabt
I
ijJ

I(w) + 1
NM δijδabJ(w)

z − w
,

where [tA, tB] = fABCt
C is a basis of su(N), [tI , tJ ] = fIJKt

K is a basis of su(M) and tAab,

tIij are their matrix elements in the fundamental representation. We have for simplicity

chosen these bases to be orthonormal, i.e. set tr tAtB = δAB and tr tItJ = δIJ , so that

fABC and fIJK are completely antisymmetric.

The OPEs of the “fermionic” currents (3.6) with each other and with the fermions ψai,

ψ̄ai have the form:

KA(z)KB(w) ∼ MδAB

(z − w)2
+
fABCK

C(w)

z − w
, (A.2)

KI(z)KJ(w) ∼ NδIJ
(z − w)2

+
fIJKK

K(w)

z − w
, K(z)K(w) ∼ NM

(z − w)2
,

KA(z)ψai(w) ∼ tAbaψ
bi(w)

z − w
, KI(z)ψai(w) ∼

−tIijψaj(w)

z − w
, K(z)ψai(w) ∼ ψai(w)

z − w
,

KA(z)ψ̄ai(w) ∼ −tAabψ̄bi(w)

z − w
, KI(z)ψ̄ai(w) ∼

tIjiψ̄
aj(w)

z − w
, K(z)ψ̄ai(w) ∼ −ψ̄ai(w)

z − w
.

The energy-momentum tensor of the coset (3.1) is explicitly given by

T =
1

2(k +N +M)

[
(JIJI) + (KIKI) + (JaiJ̄ai) + (J̄aiJai)− 2JK/NM −

− 2KAJA − k : (ψai∂ψ̄ai + ψ̄ai∂ψai) :
]
, (A.3)

which according to the Goddard-Kent-Olive construction [39, 40] can be computed as the

difference between the energy momentum tensor of the numerator and the denominator.
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