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1 Introduction

The spatially modulated phases are common in the condensed matter systems and have

been a subject of intense research for a while. The observation of charge density waves,

spin density waves and checkerboard structures in high temperature superconductors [1, 2]

suggests that the study of these states can shed more light on the nature and mechanism

of high-Tc superconductivity. Moreover, the interesting interpretation of the pseudogap

state in cuprates was recently uncovered as a region of the competition between d-wave

superconducting order and checkerboard charge density order [3].

The high-Tc superconductors being strongly correlated systems are hard to investigate

using the traditional perturbation theory techniques and deserve the development of new

approaches. One of them is the implementation of the power of nonperturbative methods

of quantum field theory, especially the AdS/CFT correspondence. The satisfactory models

of s-wave [4, 5], p-wave [6] and d-wave [7, 8] superconducting systems were proposed using

the gauge/gravity duality, that relates the physics of the strongly coupled condensed matter

system to the physics of the black hole in higher dimensional curved space. The latter is

relatively simpler to explore because of being in the classical regime.

On the other hand the spatially modulated phases are far from being common in the

quantum field theory, which tends to deal with uniform setups. That is why the study

of translation invariance breaking systems was not originally in the top priority. It was

revealed recently that further development of the AdS/CMT models implies the description

of the crystal lattice, which breaks translational invariance and gives rise to the Drude form

of the conductivity in holographic models of metals, insulators and superconductors [9–11].

Moreover, considerable interest raised in the study of spontaneous breaking of translational

invariance in the AdS black hole solutions, which can be directly related to the striped

phases of condensed matter systems such as superconductors or helical magnets [12, 13].
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It was shown that due to the mixing of modes in the Lagrangians of the holographic

models the stable branch of the solution to the gravitational equation of motion shifts

from the homogeneous state to the state with nonzero momentum, exhibiting spontaneous

translational symmetry breaking and including stripes or helix. This behavior is espe-

cially convenient to observe in p-wave superconductors [14], but was also studied for an

s-wave [15]. Depending on the type of interaction, which is introduced in order to give rise

to the mixing, the stable state may break the P-invariance and include the spatially oscillat-

ing current in the dual superconductor [13], which may be undesirable for phenomenology,

but these features can be avoided [15].

The purpose of the present work is to continue the above mentioned analysis with

regard to the holographic model of d-wave superconductor proposed in [7, 8, 16]. Although

there are considerable problems with the formulation of the model even in the homoge-

neous case which deserve to be solved, we find it likely that this setup can be considered

as a certain limit of the self-consistent holographic model of d-wave superconductor. That

is why it makes sense to study the possibility of the spontaneous translation symmetry

breaking in this model, although our results would be relevant only on qualitative level.

The observation of the spatially modulated modes in the simple setup under considera-

tion should show the phenomenological relevance of the holographic approach and should

certainly encourage the further searches for the consistent holographic model of d-wave

superconductor.

The paper is organized as follows: in section 2 we give a brief introduction to the

holographic model of d-wave superconductor and describe the system under consideration,

in section 3 we will study the spectrum of fluctuations around the condensed (supercon-

ducting) phase of the model and in the concluding section 4 we will discuss the results.

The details of the numerical search for the static modes are given in appendix A. The full

set of the equations of motion is presented in appendix B.

2 Holographic d-wave superconductor

The essential ingredient of the holographic d-wave superconductor model is the symmetric

tensor charged field dual to the order parameter of d-wave superconductivity [7, 8]. The

dynamics of this field is considered on the background of the 3+1 dimensional charged

Anti-De Sitter black hole space-time with the metric

ds2 =
L2

z2
(
−f(z)dt2 + f(z)−1dz2 + dx2 + dy2

)
, f(z) = 1− z3

z30
. (2.1)

And from now on we will rescale the curvature radius L to 1. The radius of the black hole

horizon is related to the temperature of the dual superconductor

T =
3

4π

1

z0
. (2.2)

The Abelian gauge field, generated by the charge of the black hole is dual to the electric

charge density operator of the superconductor and near the AdS boundary z → 0 behaves as

A0

∣∣∣
z→0

= µ+ zρ, (2.3)
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where µ is the electric charge chemical potential and ρ is proportional to the expectation

value of the electric charge density.1 The Lagrangian of the model, proposed in [7], is

L = −|Dρφµν |2 + 2|Dµφ
µν |2 + |Dµφ|2 − [Dµφ

∗µνDνφ+ c.c.]−m2(|φµν |2 − |φ|2) (2.4)

+ 2Rµνρλφ
∗µρφνλ − 1

4
R|φ|2 − iqFµνφ∗µλφνλ −

1

4
FµνF

µν ,

where φµν is a symmetric tensor field and φ ≡ φνν — its trace, Aµ is an Abelian gauge

field, Rµνρλ and R are the Riemann tensor and the Ricci scalar of the metric (2.1), and the

covariant derivative is Dµφνλ = ∇µφνλ − iqAµφνλ. This Lagrangian describes the correct

number of degrees of freedom for the spin two particle only if the background metric satisfies

the Einstein condition (which is true for (2.1)). Thus one can not consistently study the

gravitational backreaction in this model and is forced to restrict the consideration to the

probe limit, where the metric is static. This is achieved by taking the charge q sufficiently

large keeping the values of the fields finite, so that the energy-momentum tensor of matter

is suppressed. Moreover in order to keep causality one has to consider sufficiently weak

background gauge field Aµ(for details see [7, 23]).

Nevertheless under the above assumptions the theory is consistent and describes a

number of interesting phenomena. It was shown that in the ansatz (for later convenience

we denote it by tilde) where all the components of φ except φxy are zero and

φxy =
1

2z2
ψ̃(z), A = Ãt(z)dt, (2.5)

the equations of motion following from (2.4) take the form

0 = ∂2z Ãt(z)−
q2

z2f(z)
ψ̃2Ãt, (2.6)

0 = ∂2z ψ̃(z) +

(
f ′(z)

f(z)
− 2

z

)
∂zψ̃(z) +

(
q2Ã2

t

f(z)2
− m2

z2f(z)

)
ψ̃(z).

These equations coincide with the equations for s−wave holographic superconductor [4]

and at the temperatures lower then the critical one admit the nontrivial solution with the

asymptotic at z → 0

ψ̃
∣∣∣
z→0

= ∆z4. (2.7)

From the dual point of view that means that under the critical temperature the super-

conducting condensate ∆ is formed with the dxy anisotropic pattern. For the sake of

concreteness we will use the specific value of the tensor field mass2

m2 = 4. (2.8)

For this choice the critical temperature may be related to the chemical potential as

Tc ≈
3

4π

1

11.29
µ. (2.9)

1For reviews on the holographic superconductors see [17–22].
2The discussion of the possible choices can be found in [7, 24].
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Figure 1. The value of the normalized order parameter depending on the temperature of the

holographic d-wave superconductor.

The dependence of the normalized condensate value on the temperature is shown on fig-

ure 1. In the condensed phase the “Fermi arcs” in the density of fermionic states were

observed in [16]. The case of the complex combination of dxy and dx2−y2 condensates was

studied in [24] and the vortices in the condensed phase were obtained in [25].

3 Spatially inhomogeneous fluctuations around the condensed phase

As it was pointed out in [12] the system can develop a spatially inhomogeneous phase if

the mixing terms are present in the Lagrangian and the dispersion relations for different

fluctuation modes are deformed after the diagonalization in such a way that the ω = 0

states are shifted to the finite momentum. The presence of these states would mark the

instability of the homogeneous phase and the onset of the spatially modulated phase. As we

are particularly interested in the modes involving inhomogeneous charge density, we wish

to find the mixing terms with the gauge field At because according to (2.3) its normalizable

part on the boundary defines the charge density in the dual superconductor. Unfortunately

there are no such terms in the Lagrangian (2.4), instead of that it involves the interaction

terms of the form (φφ∗∂A). Hence one can not find the static (ω = 0) inhomogeneous

(k 6= 0) modes in the spectrum of fluctuations around the normal (φµν = 0) state of

the model unless we introduce any additional terms in the action (2.4). These additional

terms could explicitly break the symmetries of the model (i.e. Chern-Simons term breaks

P-symmetry in [13]) and can lead to the additional problems with defining propagating

modes of the massive spin-2 field, so we would like to avoid them. Thus the fact that there

are no mixing terms in the normal phase indicates that we should study the spectrum of

fluctuations around the condensed phase of the system, defined by (2.6). Indeed in the

condensed phase there is a nontrivial background profile of the component φxy ∼ ψ̃ and

we find the mixing terms of the form (ψ̃ δφ ∂δA) in the Lagrangian for the fluctuations.

In the following we will study the spectrum of these fluctuations and try to find the static

inhomogeneous mode, whose appearance would mean the instability of the condensed state

of holographic d-wave superconductor.
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First of all we write out the equations of motion for the static fluctuations around the

condensed solution (2.6), which carry nonzero momentum (kx, ky). We are considering the

fluctuations of the form

δφµν(t, x, y, z) = e−i(kxx+kyy)ϕµν(z), (3.1)

δAµ(t, x, y, z) = e−i(kxx+kyy)aµ(z).

From now on we use the notation (ϕ, a) for the fluctuations and absorb the charge q into

the normalization of the fields. For instance the equations of motion for ϕxy and at look as3

0 = ∂2zϕxy +

(
2

z
+
f ′(z)

f(z)

)
∂zϕxy −

[
m2 + 2f(z)− 2zf ′(z)

z2f(z)
− Ã2

t

f(z)2

]
ϕxy (3.2)

+ ikx

[
∂z +

f ′(z)

f(z)

]
ϕzy − kxÃt

1

f(z)2
ϕty

+ iky

[
∂z +

f ′(z)

f(z)

]
ϕzx − kyÃt

1

f(z)2
ϕtz + kxky

1

f(z)2
[
ϕtt − f(z)2ϕzz

]
+

ψ̃Ãt
z2f(z)2

at − iq
1

2z2

[
ψ̃∂z + 2∂zψ̃ +

(
f ′(z)

f(z)
− 2

z

)
ψ̃

]
az;

0 = ∂2zat −
1

f(z)

(
k2x + k2y +

ψ̃2

z2

)
at −

2

f(z)
Ãtψ̃

(
ϕxy + ϕ∗xy

)
(3.3)

+
1

2f(z)
ψ̃ (ϕtx − ϕ∗tx) kyq +

1

2f(z)
ψ̃
(
ϕty − ϕ∗ty

)
kxq.

The full set of equations of motion can be found in appendix B. One can immediately see

that at the special directions of the momentum: kx = 0 or ky = 0, the dynamics simplifies

considerably. For instance for kx = 0 the modes {ϕxy, ϕtx, ϕzx, at, ay, az} decouple from the

rest of the system and we can consistently neglect all the remaining modes. Because the

system in the condensed phase is symmetric under the π
2 rotation, the similar decoupling

is observed when ky = 0. Further on we study the former case (kx = 0, ky = k).

To proceed it is useful to rescale the fields as follows

ϕxy =
ψxy
2z2

, ϕtx =
ψtx
2z2

, ϕzx = −iψzx (3.4)

and the same for ϕ∗µν . Moreover, it is convenient to introduce “real” and “imaginary”

combinations

ψ1,2
µν =

1

2

(
ψµν ± ψ∗µν

)
. (3.5)

Note that ψ1,2
µν are not, strictly speaking, real and imaginary because ψµν and ψ∗µν are

considered as independent fields. After these redefinitions one can see that two sets of

modes decouple again. One of them includes at along with {ψ1
xy, ψ

2
tx, ψ

1
zx} and the other

includes ay coupled to az and {ψ2
xy, ψ

1
tx, ψ

2
zx}. The first set may describe the charge density

wave dual to at, while the second can produce the current density wave, because the current

operator is dual to ay. We start with the first one.

3All equations of motion in this work are derived using Cadabra symbolic computer algebra system [26].
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The equations of motion for the modes under consideration are

0 =

[
∂2z +

(
f ′(z)

f(z)
− 2

z

)
∂z −

m2

z2f(z)
+

(Ãt)
2

f(z)2

]
ψ1
xy

+ 2kyz
2

[
∂z +

f ′(z)

f(z)

]
ψ1
zx − ky

Ãt
f(z)2

ψ2
tx + 2

Ãtψ̃

f(z)2
at;

0 =

[
∂2z −

2

z
∂z −

m2 + z2k2y
z2f(z)

]
ψ2
tx + ky

Ãt
f(z)

ψ1
xy + 2z2

[
Ãt∂z +

1

2
∂zÃt

]
ψ1
zx + ky

ψ̃

2f(z)
at;

0 =

[
−m2 +

z2

f(z)
(Ãt)

2 − z2k2y
]
ψ1
zx +

1

2f(z)

[
Ãt∂z +

1

2
∂zÃt

]
ψ2
tx −

1

2
ky∂zψ

1
xy;

0 =

[
∂2z −

k2y
f(z)

− (ψ̃)2

z2f(z)

]
at − 2

Ãtψ̃

z2f(z)
ψ1
xy +

1

2
ky

ψ̃

z2f(z)
ψ2
tx

(3.6)

First of all we note that the equation for ψzx is algebraic, so we can eliminate this function

from the system and deal with the remaining ones. According to the general prescription of

thermal AdS/CFT [27] the solutions to these equations describing causal dynamics should

be regular on the black hole horizon z = z0. Hence we should choose the regular branches

of solutions as a boundary conditions at z = z0:

ψxy

∣∣∣
z=z0

∼ 1, ψtx

∣∣∣
z=z0

∼ f(z), at

∣∣∣
z=z0

∼ f(z). (3.7)

The conditions on the AdS boundary (z = 0) are fixed by demanding the absence of the

periodic sources in the problem. In accordance with holographic principle [28], we should

keep only the subleading modes at z → 0.

ψxy

∣∣∣
z→0
∼ z4, ψtx

∣∣∣
z→0
∼ z4, at

∣∣∣
z→0
∼ z. (3.8)

With the boundary conditions (3.7), (3.8) we need to solve the Sturm-Liuville problem

for the system (3.6) to find the value of ky, at which the nontrivial solution is possible.

This value would describe the wave vector of the standing wave forming on top of the

homogeneous condensate in holographic superconductor.

We solve this problem numerically using the method of shooting from the both ends

of the interval (0, zm), details of which are described in appendix A.4 Finally we obtain the

values of the wave vector kcr, at which the static mode is found, for a number of background

solutions (ψ̃, Ã) related to various temperatures. These values are shown on figure 2.

The obtained points can be interpolated well by the polynomial of the 4th power.

Because the scale in the problem is set by the position of the black hole horizon the value

of the wave vector is proportional to z−10 or, in accordance with (2.2), to the temperature:

kcr =
4π

3
T P

(
T

Tc

)
, P (x) ≈ 28− 106x+ 194x2 − 165x3 + 55x4. (3.9)

4The numerical solution of the differential equations is done with Wolfram Mathematica 9 [29].
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Figure 2. The values of the wave vector for the static fluctuation mode at given on the background

of condensed phase at different temperatures. The curve is a polynomial fit to the data points.

At this point it is reasonable to point out that the system (3.6) is symmetric under

spacial parity transformation

P : ky → −ky, ψzx → −ψzx, ψtx → −ψtx (3.10)

at → at, ψxy → ψxy,

so given the solution with ky = kcr one simultaneously gets the solution with ky = −kcr.
Given these two and using (3.1) we can construct the fluctuation mode which is real

δφxy ∼ cos(kyy)ψ1
xy(z), δφtx ∼ sin(kyy)ψ2

tx(z), (3.11)

δAt ∼ cos(kyy) at(z), δφzx ∼ sin(kyy)ψ1
zx(z).

One can see that this solution involves parity-even components (δφxy, δAt) as well as parity-

odd ones (δφtx, δφzx) hence it is not invariant under P-symmetry. Thus although the action

of the model under consideration is P-invariant the parity is spontaneously broken by the

static fluctuation mode.

Interestingly, we are able to find the static mode on the background of condensed

phase at any temperature below Tc. It means that until this mode is suppressed by some

additional mechanism, the homogeneous phase is always unstable. We discuss this result

in the last section.

Now we turn to the mode involving the fluctuations of ay and {az, ψ2
xy, ψ

1
tx, ψ

2
zx}. The

equations of motion for these functions are the following:

0 =

[
∂2z +

(
f ′(z)

f(z)
− 2

z

)
∂z −

m2

z2f(z)
+

(Ãt)
2

f(z)2

]
ψ2
xy + 2kyz

2

[
∂z +

f ′(z)

f(z)

]
ψ2
zx

− kyÃt
1

f(z)2
ψ1
tx − i

[
ψ̃∂z + 2∂zψ̃ +

(
f ′(z)

f(z)
− 2

z

)
ψ̃

]
az;

0 =

[
−m2 +

z2

f(z)
(Ãt)

2 − z2k2y
]
ϕ2
zx +

1

2f(z)

[
Ãt∂z +

1

2
∂zÃt

]
ψ1
tx

− ky
1

2
∂zψ

2
xy −

1

4

[
ψ̃∂z + 2∂zψ̃

]
ay + iky

1

2
ψ̃az;

– 7 –
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0 =

[
∂2z −

2

z
∂z −

m2 + z2k2y
z2f(z)

]
ψ1
tx + 2z2

[
Ãt∂z +

1

2
q∂zÃt

]
ψ2
zx + ky

Ãt
f(z)

ψ2
xy +

ψ̃Ãt
f(z)

ay;

0 =

[
∂2z +

f ′(z)

f(z)
∂z

]
ay + iky

[
∂z +

f ′(z)

f(z)

]
az + ψ̃

[
∂z +

f ′(z)

f(z)
− 2

z

]
ψ2
zx +

Ãtψ̃

z2f(z)
ψ1
tx;

0 = i

[
k2y + (ψ̃)2

1

z2
q

]
az + ky∂zay −

1

z2

[
ψ̃∂z − ∂zψ̃

]
ψ2
xy − kyψ̃ψ2

zx.

(3.12)

Looking at this system of equations one should notice that it is invariant under the local

transformation

δay = −ikyα(z), δaz = ∂zα(z), δψxy = iψ̃α(z). (3.13)

This is the residue of the Abelian gauge symmetry, which was present in the model (2.4)

before the condensation of ϕxy, and at ky = 0 it is related to the Goldstone mode. The

transformation (3.13) describes the infinitesimal change of the phase of ψ̃. As far as we

are dealing with the infinitesimal fluctuations around symmetry breaking solution, the

transformation parameter α can be considered of the same order of magnitude as our

fields, so we can use (3.13) to get rid of az in the equations (3.12). After this operation one

can find that the last equation of motion in (3.12) becomes a constraint on ay. Using this

constraint we can express the asymptotic behavior of the field ay on the AdS boundary

z → 0 via the leading terms of the tensor field. Similarly to (3.8) the absence of the tensor

sources implies that the tensor field on the boundary has only subleading modes

ψ2
xy ∼ z4, ψ2

zx ∼ z3. (3.14)

Hence the gauge field is expressed as

ay = C1 + C2z
6, (3.15)

where C1 is the constant of integration and C2 is defined by the tensor field asymptotics.

The absence of the external field, which could serve as a source for the spacial current, im-

plies C1 = 0. From the other hand the expectation value of the current obtained from (3.15)

as 〈Jy〉 = ∂zay(z)|z=0 (see (2.3)) vanish as well. It means that in this channel it is impossi-

ble to find a static mode, which would include the current density wave. This result is by

no means surprising, because the current density wave of the form {Jy ∼ sin(kyy), Jx = 0}
would violate the charge conservation law, which in its turn is just represented by the above

mentioned constraint.

So far we’ve studied the inhomogeneous fluctuations with the particular wave vector

directions: kx = 0 and ky = 0. Another interesting case, which is favored by the symmetry

of the model, is the diagonal direction kx = ky. In this direction one can also observe

the decoupling of modes, but in this case much more degrees of freedom remain coupled.

For instance to study the charge density fluctuation one needs now to solve the coupled

equations of motion for 8 functions: at, ϕxy, (ϕxx +ϕyy), (ϕzx +ϕzy), (ϕtx +ϕty), ϕtz, ϕtt,

– 8 –
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Figure 3. The phase diagram of the holographic d-wave superconductor: white region — sym-

metric uncondensed phase, blue region — homogeneous superconducting phase, red region — pre-

sumably inhomogeneous phase (see text). Purple line — formation of the homogeneous condensate

at T = Tc, blue line — formation of the static inhomogeneous mode with kcr = k0.

ϕzz. For them one gets 8 equations of motion, three of which are just constraints. On top

of that the derivatives of the equations of motion give 4 more constraints and one is faced

with the overconstrainted problem, where the constraints are not generally consistent with

the regular boundary conditions of the type (3.7). Indeed, we were not able to find the

asymptotically regular solutions satisfying all the constraints at nonzero k so we conjecture

that there is no nontrivial static mode with the wave vector in the direction kx = ky. The

details are given in the appendix B.

4 Discussion

The main result of this work is the observation of the static translation symmetry breaking

mode in the spectrum of the fluctuations around the condensed phase of the d-wave holo-

graphic superconductor. The mode (3.9) involves the standing wave in the charge density

ρ (see eq. (2.3)) as well as the modulation of the superconducting condensate. The wave

vector of this mode can be directed along the Ox or Oy axis of our model. The meaning

of this direction can be understood as follows. In [16] the fermion distribution function

was studied in the same model and it was shown that when the component φxy develops

nonzero expectation value (similar to the case considered in our study) the energy gap of

the fermionic degrees of freedom has dx2−y2 symmetry. Namely it has nodes in the direc-

tions forming the π
4 angle with the coordinate axis. In the real cuprates the nodes of the

energy gap are observed in the directions forming the π
4 angle with the Cu − O bonds,

which determine the crystal lattice [1, 30]. This tells us that the charge density waves

observed in the present work are directed along the crystal lattice, or in the anti-nodal

direction of the fermionic energy gap. This is consistent with the experimental data [1, 2].

Moreover we note that because of the d symmetry of the model the states with perpen-

dicular wave vectors are thermodynamically degenerate, so the patterns involving different

states in different domains of the material are allowed.
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According to (3.9) we can find the unstable mode in the condensed phase at any tem-

perature. This means that the stable homogeneous superconducting phase can be observed

in the system only in the presence of the certain additional mechanism, which disfavors

the formation of the standing wave at certain momenta. One can easily imagine such

mechanism based on the interference with other translation symmetry breaking operators

i.e. the umklapp operator or the lattice potential [9, 11]. In this case it is reasonable to

study the toy model, were only the charge density waves with the specific momentum k0
are allowed. Using the relation between the critical temperature Tc and chemical potential

µ (2.9), the fit to the obtained data for the critical wave vectors (3.9) and assuming that

the instability develops only at particular wave vector k0 we can plot the boundaries of

the stable homogeneous phase on the (T, µ) phase diagram of holographic superconductor,

which is seen on figure 3.

This phase diagram includes three phases separated by two different phase transitions.

Upon the superconducting phase transition (purple line) the U(1) symmetry associated

with the electric charge is broken and the charged condensate ∆xy is formed. Moreover,

because the condensate has a d-wave structure, it breaks also the rotational symmetry in

the plane (x, y) down to discreet rotations on π
2 . The second phase transition is marked

by the blue line and is associated with the formation of the charge density wave, which

breaks translational invariance either in x or in y directions. The parity invariance in this

phase is also broken by nonzero component ∆tx (3.11), whose physical meaning from the

dual condensed matter perspective is yet to be understood. We note that the time-reversal

symmetry remain intact in these phases.

The resulting picture turns out to be very interesting. As one can see, below particular

chemical potential µcr ≈ 2.13k0 the condensed homogeneous phase (blue region) is bounded

by the line of superconducting phase transition (2.9). At this chemical potential one can

cool the system from the normal to the homogeneous superconducting phase and no charge

density waves are formed, because the critical wave vector for them is lower then the

one allowed by the interference mechanism: kcr < k0. At µ > µcr the picture is more

complicated. As we found, the homogeneous phase is now bounded by the curve, which is

related to the formation of the static charge density wave with k = k0 (3.9). Based on our

perturbative approach we can not tell, what happens with the subsequent heating of the

system, but presumably it rolls to the more energetically favorable inhomogeneous phase.

This phase should be characterized by the pattern of finite charge density waves and the

absence of uniform superconductivity due to the strong modulation of the superconducting

order parameter. On the other hand, cooling the system at µ > µcr from the normal

phase one should hit the phase transition at T = Tc, accompanied by the formation of

the superconducting phase. Unfortunately without solving the full nonlinear system of

equations of motion with finite momentum one can not tell, whether it is the first phase

transition one encounters or there is another Tc2 > Tc at which the inhomogeneous phase

is formed, or whether the inhomogeneous phase is thermodynamically preferred at T = Tc
. This phase could fill then the whole red region of the phase diagram on figure 3 all

the way to the blue curve, which marks the transition to the homogeneous phase. The

nonperturbative solution of the partial differential equations describing the dynamics of

the system in this region should shed more light on this inhomogeneous state.

– 10 –



J
H
E
P
0
4
(
2
0
1
4
)
1
3
5

It is extremely appealing to compare this phase diagram with the one for real cuprates.

Taking into account that the relation between the chemical potential µ in holographic

model and the doping level n in the real material is, strictly speaking, not known, one can

easily imagine relations like µ ∼ n0 − n. Then the picture is flipped and the red shaded

inhomogeneous phase coincides with the pseudogap phase of the high-Tc superconductor,

where the charge density order is observed.

We should comment here also about the scale of the temperature on this picture. We

use the universal units Kb = c = ~ = 1 in the calculations, so the rescaling is needed to

convert the result to the physical units. For instance consider the maximal superconducting

temperature on figure 3 Tmax ≈ 0.05k0. Restoring the physical units one gets

Tmax = 0.05
~c
Kb

k0.

It is important to remember here that trying to restore physical values one should not use

the value for c equal to the speed of light. Instead of that the value for the relativistic

speed constant is fixed by the microscopical theory of the system under consideration. The

good candidate is the Fermi velocity of the quasi-particles in the material, which charac-

terize relativistic-like dispersion relation ω = vfk. If we use the characteristic values for

vf ≈ 1 aπeV and k0 = 1
4
π
a observed in cuprates [1] we get the maximal temperature approx-

imately Tmax = 145◦K, which coincide in the order of magnitude with the known critical

temperatures of high-Tc superconductors. Of course such comparison is very premature

and there are lots of problems one should solve before comparing the holographic result

with experiments (if it is possible at all), but we find this result particularly encouraging.

The present study points out the reach phenomenological potential of the d-wave holo-

graphic superconductor model. The spontaneous translation symmetry breaking is realized

without any adjustments of the original action of the model. As the present study was

performed in the perturbation theory framework, the natural further step is to consider the

problem nonlinearly and study the properties of the emergent spatially modulated phase

in detail. The other important generalization would be the inclusion of interaction with

other translational symmetry breaking mechanisms i.e. lattice, but this may demand for

description of gravitational backreaction in the model. The most challenging problem of

the holographic d-wave superconductor is still the inclusion of the dynamical gravity in

the action of the symmetric charged tensor. The progress in these directions could greatly

promote our understanding of the high-Tc superconductivity.
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A Numerical search for the static modes

A static spatially modulated mode exists in the spectrum of the model if the system (3.6)

has the nontrivial solution with boundary conditions (3.7), (3.8) at particular value of k.

Finding this solution is a problem similar to the problem of finding discreet spectrum of

a particle in the potential well. Indeed the system (3.6) always admits the trivial solution

and only for special k may have a nontrivial one.

The system we are considering has special points at both ends of the interval z ∈ (0, z0),

so it is undesirable to try to solve it by the shooting method imposing boundary conditions

on one end and checking the boundary values on the other one, because the solution

develops the singular mode easily. Instead of that we use the shooting method to generate

the pairs of solutions (ξα, ηα = {At, ψxy, ψtx}) with desirable boundary behavior at each

end (~ξ at z = 0 and ~η at z = z0) and try to connect them smoothly at particular point z1
inside the interval. While one, of course, is able to generate the functions ~ξ and ~η at any

given k, the smooth connection is possible only for the specific kcr that we are looking for.

As (3.6) is the system of linear ordinary differential equations for 3 functions, solutions

starting from each end can be expressed as a combination of three linearly independent

modes

ξα =

3∑
i=1

aiξ
i
α, ηα =

3∑
i=1

biη
i
α.

At the connection point the values of the functions and their derivatives should coincide

3∑
i=1

aiξ
i
α(z1) =

3∑
i=1

biη
i
α(z1),

3∑
i=1

ai∂zξ
i
α(z1) =

3∑
i=1

bi∂zη
i
α(z1),

α = 1 . . . 3.

This is a system of 6 linear equations on 6 coefficients (ai, bi), i = 1 . . . 3 which has a

nontrivial solution only if the Wronskian

W (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ11(z) . . . ξ31(z) η11(z) . . . η31(z)
...

. . .
...

...
. . .

...

ξ13(z) . . . ξ33(z) η13(z) . . . η33(z)

∂zξ
1
1(z) . . . ∂zξ

3
1(z) ∂zη

1
1(z) . . . ∂zη

3
1(z)

...
. . .

...
...

. . .
...

∂zξ
1
3(z) . . . ∂zξ

3
3(z) ∂zη

1
3(z) . . . ∂zη

3
3(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is zero at z = z1. Moreover at k = k0 the existence of the nontrivial smooth solution does

not depend, of course, on the value of z1, so W (z1) should be zero for any choice. For a
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W

Figure 4. Example of the behavior of Wronskian of the left and right modes, calculated at

z1 = 0.3, 0.4, 0.5, 0.6 depending on k. The intersection of all curves at W = 0 points out the value

of k, at which the smooth solution exists.

given background profiles (ψ̃, Ãt), we can plot the dependence of W (z1) on k for several

choices of the connection point z1. The typical result can be seen on figure 4, where the

example for the profiles at T = 0.8Tc is shown. One easily spots the point, where all

the curves intersect at W = 0. The same procedure is done for every background profile

at corresponding temperature T
Tc

. This is how we obtain the values of kcr(T ), shown on

figure 2.

B Equations of motion

The equations of motion following from the action (2.4) are

Eαβ = (D2 −m2)φαβ − 2D(αφβ) +D(αDβ)φ (B.1)

− gαβ
[
(D2 −m2)φ−Dµφµ

]
+ 2Rανβλφ

νλ − gαβ
R

4
φ

− iq
2

[
Fανφ

ν
β + Fβνφ

ν
α

]
,

Eγ = −DβF
βγ + iφ∗αβ(Dγφαβ −Dαφβγ) (B.2)

+ i(φ∗β −Dβφ
∗)(φβγ − gβγφ),

where φ = φµµ. Taking the covariant derivative DαEαβ one gets the set of constraints,

which doesn’t involve the second derivatives of φµν

DαEαβ =−m2(φβ −Dβφ) (B.3)

+ i
q

2
[3FανDαφνβ − 3Fβνφ

ν + F νφνβ − Fβφ+ 3FβαD
αφ+DαFνβφ

αν ] = 0,

where F ν = DµF
µν . From the combination of the second derivative DαDβEαβ and the

trace Eαα of the equations of motion one more constraint is obtained (d=3 is a dimensionality

of the dual superconductor)

− m2

d− 1

(
d m2 − d− 1

d+ 1
R

)
φ = iq

[
DβFανDαφνβ − Fνφν + FαD

αφ
]

(B.4)

− q2 3

2
F ναFβαφ

β
ν + q2

3

4
FαβF

αβφ.
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Expanding these equations in fluctuations around φ
(0)
xy = ψ̃

2z2
and A(0) = Ãtdt and keeping

only the linear terms, we get the set of equations for fluctuations (3.1), which are used in

the present work:

0 = ∂2zϕxy +

(
2

z
+
f ′(z)

f(z)

)
∂zϕxy −

[
m2 + 2f(z)− 2zf ′(z)

z2f(z)
− Ã2

t

f(z)2

]
ϕxy (B.5)

+ ikx

[
∂z +

f ′(z)

f(z)

]
ϕzy − kxÃt

1

f(z)2
ϕty

+ iky

[
∂z +

f ′(z)

f(z)

]
ϕzx − kyÃt

1

f(z)2
ϕtz + kxky

1

f(z)2
[
ϕtt − f(z)2ϕzz

]
+

ψ̃Ãt
z2f(z)2

at − iq
1

2z2

[
ψ̃∂z + 2∂zψ̃ +

(
f ′(z)

f(z)
− 2

z

)
ψ̃

]
az;

0 = ∂2zϕtx +
2

z
∂zϕtx +

(
− m2

z2f(z)
− 2

z2
− 1

f(z)
k2y

)
ϕtx (B.6)

+ i
1

2

[
2Ãt∂z + ∂zÃt

]
ϕzx + ky

Ãt
f(z)

ϕxy + ky
1

4

ψ̃

z2f(z)
at +

1

2

ψ̃Ãt
z2f(z)

ay

− kx
Ãt
f(z)

(ϕyy + f(z)ϕzz) + kxky
1

f(z)
ϕty + ikx

[
∂z +

f ′(z)

f(z)

]
ϕtz;

0 =

[
−m2 +

z2

f(z)
Ã2
t − z2k2y

]
ϕzx − i

1

2

z2

f(z)

[
2Ãt

(
∂z +

2

z

)
+ ∂zÃt

]
ϕtx (B.7)

+ ikyz
2

[
∂z +

2

z

]
ϕxy + i

1

4
z2
[
ψ̃∂z + 2∂zψ̃

]
ay + ky

1

4
ψ̃az

− ikxz2f(z)

[
2

z
− 1

2

f ′(z)

f(z)

]
ϕzz + ikx

z2

f(z)

[
∂z +

2

z
− 1

2

f ′(z)

f(z)

]
ϕtt

− ikxz2
[
∂z +

3

z

]
ϕxx + ikxz

2 1

z
ϕyy + kxkyz

2ϕzy − kxÃt
z2

f(z)
ϕtz;

0 = ∂2zat −
1

f(z)

(
k2x + k2y +

ψ̃2

z2

)
at −

2

f(z)
Ãtψ̃

(
ϕxy + ϕ∗xy

)
(B.8)

+
1

2f(z)
ψ̃ (ϕtx − ϕ∗tx) ky +

1

2f(z)
ψ̃
(
ϕty − ϕ∗ty

)
kx;

0 =

[
∂2z +

f ′(z)

f(z)
∂z +

1

f(z)
k2x

]
ay + kykx

1

f(z)
ax + iky

[
∂z +

f ′(z)

f(z)

]
az (B.9)

+ i
1

2
ψ̃

[
∂z +

f ′(z)

f(z)
− 2

z

](
ϕzx − ϕ∗zx

)
+

Ãtψ̃

2f(z)
(ϕtx + ϕ∗tx)

− kx
ψ̃

2f(z)2
[
f(z)2(ϕzz − ϕ∗zz)− (ϕtt − ϕ∗tt)

]
;

0 =

[
k2y + k2x +

ψ̃2

z2

]
az − iky∂zay − ikx∂zax (B.10)

+ i
1

z2

[
ψ̃∂z − ∂zψ̃

]
(z2ϕxy − z2ϕ∗xy)− ky

1

2
ψ̃(ϕzx − ϕ∗zx)− kx

1

2
ψ̃(ϕzy − ϕ∗zy).

Considering the wave vector of the fluctuations pointing in the diagonal direction
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kx = ky = k a few other modes should be added to the above ones. In this case it is

convenient to introduce the functions

2ϕll = ϕxx + ϕyy, 2ϕzl = ϕzx + ϕzy, 2ϕtl = ϕtx + ϕty, 2al = ax + ay,

rescale them as follows

ψll =
1

2
gxxϕll, ψzl = iϕzl, ψtl =

1

2
gxxϕtl, ψtt =

1

2
gttϕtt, ψzz =

1

2
gzzϕzz,

and similarly to (3.5) consider only the modes coupling to the at component of the gauge
field. In this case the additional equations are

0 =
[
m2 + 2z2k2

]
ψ2
tz − 2

[
Ãt

(
∂z −

1

2

f ′

f

)
+

1

2
∂zÃt

]
ψ1
ll (B.11)

− Ãt
2

z
ψ1
zz + 2k

[
∂z −

f ′(z)

f(z)

]
ψ2
tl − 2z2kÃtψ

1
zl;

0 = 2

(2

z
− 1

2

f ′

f

)
∂z +

z2k2 +m2

z2f(z)
−

(
Ãt

f(z)

)2
ψ1

ll +

[
2

z
∂z +

2z2k2 +m2

z2f(z)

]
ψ1
tt (B.12)

+ 6
1

z2f(z)
ψ1
zz + 2kz2

[
∂z +

4

z
− f ′

f

]
ψ1
zl − 4k

Ãt

f(z)
ψ2
tl − 4

z2Ãt

f(z)

1

z
ψ2
tz − 2k2

1

f(z)
ψ1
xy;

0 =

∂2z − (2

z
− f ′

f

)
∂z +

(
Ãt

f(z)

)2

− m2

z2f(z)

ψ1
ll +

[
∂2z −

(
2

z
− 3

2

f ′

f

)
∂z −

z2k2 +m2

z2f(z)
k2
]
ψ1
tt

(B.13)

+

(2

z
− 1

2

f ′

f

)
∂z −

z2k2 +m2

z2f(z)
+

(
Ãt

f(z)

)2
ψ1

zz −
z2

f(z)

[
2Ãt∂z + Ãt

f ′

f
+ ∂zÃt

]
ψ2
tz

− 6
1

z2f(z)
ψ1
zz + 2kz2

[
∂z +

f ′

f

]
ψ1
zl − 2k

Ãt

f(z)2
ψ2
tl;

0 =

[
∂2z +

(
−2

z
+

1

2

f ′

f

)
∂z −

k2z2 +m2

z2f(z)

]
ψ1
ll +

1

2

[
2

z
∂z −

2z2k2 +m2

z2f(z)

]
ψ1
zz (B.14)

− 3
1

z2f(z)
ψ1
zz + kz2

[
2∂z +

f ′

f

]
ψ1
zl +

1

f(z)
k2ψ1

xy.

The constraints (B.3) take the form

0 = gzzm2

[
−∂z +

2

z
− f ′

f

]
ψ2
tz +

[
2Ãtm

2 + 3gzz∂zÃt

(
∂z −

1

z

)
+ gzz∂2z Ãt

]
ψ1
ll (B.15)

− 2km2ψ2
tl − 3kz2f(z)2∂zÃtψ

1
zl +

[
Ãtm

2 + 3
1

z
gzz∂zÃt

]
ψ1
zz + gllψ̃k2at;

0 = z2f(z)

[(
−∂z + 2

1

z
− f ′

f

)
m2 +

z2

f(z)

3

2
Ãt∂zÃt

]
ψ1
zl (B.16)

+
1

f(z)

[
Ãtm

2 +
3

2
gzz∂zÃt

(
∂z −

1

z

)
+

1

2
gzz∂2z Ãt

]
ψ2
tl − km2

(
ψ1
xy − ψ1

zz − ψ1
tt − ψ1

ll

)
;
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0 =

[
2

(
∂z −

1

z

)
m2 − z2

f(z)
3Ãt∂zÃt

]
ψ1
ll +m2

[
∂z −

1

z
+

1

2

f ′

f

]
ψ1
tt +m2

[
3

1

z
− 1

2

f ′

f

]
ψ1
zz

(B.17)

+ 3k∂zÃt
z2

f(z)
ψ2
tl −

z2

f(z)

(
Ãtm

2 + 3
1

z
gzz∂zÃt

)
ψ2
tz + 2z2km2ψ1

zl.

And the last constraint (B.4) is

0 =
(

3m2m2 + 6m2 − 2Ãtz
4∂2z Ãt − 3z4(∂zÃt)

2
)
ψ1
ll (B.18)

+ 2kz4∂2z Ãtψ
2
tl − 2z4zf(z)∂2z Ãtψ

2
tz +m2

[
3

2
m2 + 3

]
(ψ1

zz + ψ1
tt).

Solving the system of equations for the diagonally oriented fluctuation one finds that

the equations (B.7), (B.11), (B.12) do not include the second derivatives, and together

with the constraints (B.15), (B.16), (B.17) allow to compute the modes ψtz, ψzl, ψzz and

their first derivatives algebraically thus eliminating them from the problem. In this case

one is left with five equations of the second order (B.5), (B.8), (B.6), (B.13), (B.14) for the

five functions ψxy, ψtl, ψll, ψtt, at and one additional constraint (B.18). Unfortunately, the

subleading asymptotics at z = z0, which we find from the form of the equations of motion,

are incompatible with the constraint (B.18). Hence at k 6= 0 we can not find the nontrivial

solution to this system, which would satisfy the boundary conditions similar to (3.7). Thus

we conjecture that there is no instability in the present system, involving the spatially

modulation in the diagonal direction kx = ky.
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