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1 Introduction

The CMS and ATLAS collaborations have announced the observation of a scalar around

125GeV [1, 2], which is supported by the Tevatron search [3]. The properties of this particle

with large experimental uncertainties are well consistent with the SM Higgs boson, which

will give the strong constraints on the effects of new physics.

One of the simplest extension of the SM is obtained by adding a second SU(2)L Higgs

doublet [4]. The two-Higgs-doublet model (2HDM) has very rich Higgs phenomenology,

including two neutral CP-even Higgs bosons h and H, one neutral pseudoscalar A, and two

charged Higgs H±. Further, the couplings of the CP-even Higgs bosons can deviate from

SM Higgs boson sizably. Therefore, the observed signal strengths of the Higgs boson and

the non-observation of additional Higgs can give the strong implications on the 2HDMs.

The 2HDMs generically have tree-level flavor changing neutral currents (FCNC), which

can be forbidden by a discrete symmetry. There are four types for 2HDMs, which are

typically called the Type-I [5, 6], Type-II [5, 7], Lepton-specific, and Flipped models [8–13]

according to their different Yukawa couplings. In light of the recent Higgs data, there have

been various studies on these 2HDMs over the last few months [14–26].

In this paper, we focus on a two-Higgs-doublet model that allows both doublets to

couple to the down-type quarks and charged leptons with aligned Yukawa matrices (

A2HDM) [23, 27]. Also there is no tree-level FCNC in this model. Compared to the above

four types of 2HDMs, there are two additional mixing angles in the Yukawa couplings of

the down-type quarks and charged leptons. This model can be mapped to the four types

of 2HDMs for the two angles are taken as specific values. There are also some works on the

Higgs properties in the A2HDM after the discovery of Higgs boson [23, 24, 28–32]. After

imposing the theoretical constraints from vacuum stability, unitarity and perturbativity as

well as the experimental constraints from the electroweak precision data, flavor observables
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and the non-observation of additional Higgs at collider, we study the implication of the

latest Higgs signals data on the A2HDM.

Our work is organized as follows. In section 2 we recapitulate the A2HDM. In section 3

we introduce the numerical calculations. In section 4, we discuss the implications of the

available Higgs signals on the A2HDM after imposing the theoretical and experimental

constraints. Finally, we give our conclusion in section V.

2 Aligned two-Higgs-doublet model

The general Higgs potential is written as [33]

V = m2
11(Φ

†
1Φ1) +m2

22(Φ
†
2Φ2)−

[
m2

12(Φ
†
1Φ2 + h.c.)

]

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5

2
(Φ†

1Φ2)
2 + h.c.

]
+
[
λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + h.c.

]

+
[
λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]
. (2.1)

We focus on the CP-conserving model in which all λi and m2
12 are real. Further, we assume

λ6 = λ7 = 0, which also facilitates the comparison to the four traditional types of 2HDMs.

The two complex scalar doublets have the hypercharge Y = 1,

Φ1 =

(
φ+
1

1√
2
(v1 + φ0

1 + ia1)

)
, Φ2 =

(
φ+
2

1√
2
(v2 + φ0

2 + ia2)

)
. (2.2)

Where v1 and v2 are the electroweak vacuum expectation values (VEVs) with v2 = v21+v22 =

(246 GeV)2. The ratio of the two VEVs is defined as usual to be tanβ = v2/v1. After

spontaneous electroweak symmetry breaking, the physical scalars are two neutral CP-even

h and H, one neutral pseudoscalar A, and two charged scalar H±. These scalars are also

predicted in the Higgs triplet models [34–36].

The Yukawa interactions of the Higgs doublets with the SM fermions can be given by

−L = yuQL Φ̃2 uR + ydQL (cos θdΦ1 + sin θdΦ2) dR

+ yl lL (cos θl Φ1 + sin θl Φ2) eR + h.c. , (2.3)

where QT = (uL , dL), L
T = (νL , lL), and Φ̃2 = iτ2Φ

∗
2. yu, yd and yℓ are 3 × 3 matrices

in family space. θd and θl parameterize the two Higgs doublets couplings to down-type

quarks and charged leptons, respectively. Where a freedom is used to redefine the two linear

combinations of Φ1 and Φ2 to eliminate the coupling of the up-type quarks to Φ1 [23].

The tree-level couplings of the neutral Higgs bosons can have sizable deviations from

those of SM Higgs boson. Table 1 shows the couplings of neutral Higgs bosons with respect

to the SM Higgs boson. According to table 1, the A2HDM can be mapped to the four

traditional types of 2HDMs via the angles θd and θl specified in table 2.
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V V (WW, ZZ) uū dd̄ ll̄

h sin(β − α) cosα
sinβ

− sin(α−θd)
cos(β−θd)

− sin(α−θl)
cos(β−θl)

H cos(β − α) sinα
sinβ

cos(α−θd)
cos(β−θd)

cos(α−θl)
cos(β−θl)

A 0 − i
tanβ

γ5 −i tan(β − θd)γ5 −i tan(β − θl)γ5

Table 1. The tree-level couplings of the neutral Higgs bosons with respect to those of the SM

Higgs boson. u, d and l denote the up-type quarks, down-type quarks and the charged leptons,

respectively. The angle α parameterizes the mixing of two CP-even Higgses h and H.

Type I Type II Lepton-specific Flipped

θd
π
2 0 π

2 0

θl
π
2 0 0 π

2

Table 2. The values of mixing angles θd and θl for the four traditional types of 2HDMs.

3 Numerical calculations

We have employed the following four codes to implement the various theoretical and ex-

perimental constraints. We require the A2HDM to explain the experimental data of flavor

observables and the electroweak precision data within 2σ range.

• 2HDMC-1.5 [37, 38]: the code is used to implement the theoretical constraints from

the vacuum stability, unitarity and coupling-constant perturbativity. Also the oblique

parameters (S, T , U) and δρ are calculated and the corresponding experimental data

are from [39]. δρ has been measured very precisely via Z-pole precision observables to

be very close to 1, which imposes a strong constraint on the mass difference between

the various Higgses in 2HDMs. In addition, the code 2HDMC-1.5,1 which calculates

the Higgs couplings and the decay branching fractions, provides the necessary inputs

for the following three codes.

• SuperIso-3.3 [40]: the code is used to implement the constraints from flavor observ-

ables, including B → Xsγ [41], Bs → µ+µ− [42], Bu → τν [43] and Ds → τν [41].

Also the constrains from ∆mBd
and ∆mBs

are considered,2 which are calculated

using the formulas in [44].

• HiggsBounds-4.1.0 [45, 46]: the code is used to implement the exclusion constraints

from the neutral and charged Higgses searches at LEP, Tevatron and LHC at 95%

confidence level.

• HiggsSignals-1.1.0 [47, 48]: the code is used to perform a global χ2 fit to the most

up-to-date signal strength measurements as of November 2013. We consider the

1A bug is modified: Γ(h → Zγ) = 0 for mh < mZ .
2Particle Data Group, 2013 partial update for the 2014 edition.
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73 Higgs signal strengths observables from ATLAS [49–57], CMS [58–70], CDF [71]

and D0 [72] collaborations as well as the four Higgs mass measurements from the

ATLAS and CMS h → γγ and h → ZZ∗ → 4l analyses, which are listed in the [48].

In our discussions, we will pay particular attention to the surviving samples with

χ2−χ2
min ≤ 6.18, where χ2

min denotes the minimum χ2. These samples correspond to

the 95% confidence level regions in any two dimensional plane of the model parameters

when explaining the Higgs data (corresponding to be within 2σ range).

In our calculations, the inputs parameters are taken as m2
12, the physical Higgs masses

(mh, mH , mA, mH± ), the vacuum expectation value ratio (tanβ), the CP-even Higgs

mixing angle (α), and the mixing angles of the down-type quark and charge lepton Yukawa

couplings (θd, θl). We fix respectively mh and mH as 125.5GeV, and scan randomly the

parameters in the following ranges:

50 GeV ≤ mA, mH± ≤ 900 GeV,

−1 ≤ sin(β − α) ≤ 1, 0.1 ≤ tanβ ≤ 50,

0 ≤ θd ≤ π, 0 ≤ θl ≤ π,

m2
12 (GeV2) = ±(0.1)2, ± (1)2, ± (5)2, ± (10)2, ± (30)2, ± (50)2,

±(100)2, ± (180)2, ± (300)2, ± (400)2, ± (500)2,

Scenario A : mh = 125.5 GeV, 125.5 GeV ≤ mH ≤ 900 GeV,

Scenario B : mH = 125.5 GeV, 20 GeV ≤ mh ≤ 125.5 GeV. (3.1)

HiggsSignals-1.1.0 automatically consider the effects of any neutral Higgs boson on χ2

if its mass satisfies

|mhi
− m̂s| ≤ ∆m̂s. (3.2)

Where hi denotes h, H and A. m̂s is the mass of signal s and ∆m̂s is the experimental mass

resolution of the analysis associated to signal s. However, if the χ2 contribution from the

measured Higgs mass is activated, the combinations with a Higgs boson mass which does

not fulfill eq. (3.2) are still considered. For the detailed introduction on the calculation of

χ2, see [47, 48].

4 Results and discussions

4.1 Scenario A

Let us begin by discussing the scenario A in which the mass of the light CP-even Higgs h is

fixed as 125.5GeV. In figure 1, we project the surviving samples with χ2 being within 2σ

range on the planes of sin(β − α) versus mH and sin(β − α) versus mA, respectively. The

left panel shows that, for the heavy CP-even Higgs mass is close to 125.5GeV, it can give

the important contributions to χ2, and the absolute values of sin(β −α) can be allowed to

be as low as 0, in which the HV V couplings approach to SM while hV V approach to 0.

For mH ≥ 128GeV, sin(β − α) is allowed to be in the ranges of 0.83 ∼ 1 and −1 ∼ −0.89.
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Figure 1. The scatter plots of surviving samples in scenario A projected on the planes of sin(β−α)

versus mH and sin(β − α) versus mA. The crosses (red), and bullets (blue) samples respectively

have the values of χ2 in the ranges of 81.0 ∼ 82.2 and 82.2 ∼ 87.2, where the three values are

respectively the minimal value of χ2 in scenario A (χ2
Amin), the SM value (χ2

SM) and the value of

χ2 at 2σ level in scenario A (χ2
A2σ).
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Figure 2. Same as figure 1, but projected on the planes of tanβ versus mH± and tan(β − θd)

versus mH± .

A small value of χ2 favors a large absolute value of sin(β − α), which denotes that the

absolute values of hV V couplings approach to SM.

Unlike the heavy CP-even Higgs, the right panel of figure 1 shows that the CP-odd

Higgs A does not give the very visible effects on χ2 around 125.5GeV compared to the other

mass ranges. mA is required to be larger than 63GeV, and the on-shell decay h → AA is

kinematically forbidden, which hardly affects the observed Higgs signals.
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Figure 3. The scatter plots of surviving samples in scenario A projected on the planes of mixing

angles. The χ2 values of the crosses (red), bullets (green) and inverted triangles (blue) samples are

respectively in the ranges of χ2
Amin ∼ χ2

SM and χ2
SM ∼ χ2

A2σ for 128GeV ≤ mH ≤ 900GeV, and

χ2
SM ∼ χ2

A2σ for 125.5GeV ≤ mH < 128GeV. The χ2 values of the circle (black) is χ2
Amin.
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and RhV V versus Rhll̄. RhV V and Rhff̄ denote the light CP-even Higgs couplings to gauge bosons

and ff̄ (f = u, d, l) normalized to the SM couplings, respectively.
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In figure 2, the surviving samples are projected on the planes of tanβ versus mH± and

tan(β−α) versusmH± . The left panel shows that the surviving samples favor 1 < tanβ < 5

and allow tanβ > 30 for mH± > 230GeV. The constraints from ∆mBd
and ∆mBs

require

tanβ to be larger than 1 for the whole range ofmH± , and larger than 3 formH± < 100GeV.

The right panel shows that the surviving samples favor -0.5 < tan(β−θd) < 0.5. The flavor

interactions mediated by H± are proportional to tan(β − θd). The constraints from the

flavor observables allow mH± to be smaller than 100GeV for the very small absolute of

tan(β − θd), and tan(β − θd) to be larger than 3 for mH± > 250GeV. In addition, the

samples with smaller χ2 than SM favor tan(β − θd) to be in the range of −0.5 ∼ 0 for

mH± > 150GeV.

The contributions of the heavy CP-even Higgs boson to χ2 can be sizably suppressed

for mH ≥ 128GeV. Therefore, we classify the surviving samples into groups: 125.5GeV

≤ mH < 128GeV and 128GeV ≤ mH ≤ 900GeV. In figure 3, the two groups of surviving

samples are projected on the planes of mixing angles (sin(β−α), tanβ, θd and θl). Figure 3

(a) shows that tanβ can be over 20 for sin(β − α) is close to 1. Figure 3 (b) shows that,

for mH > 128GeV, the mixing angle θd can loose constraints on sin(β − α) visibly. For

example, for θd ≃ 0 (Type-II and Flipped 2HDMs), the absolute value of sin(β − α) is

required to be very close to 1. While sin(β − α) are allowed to vary in the range of

0.83 ∼ 1 and −1 ∼ −0.89 for θd has the properly large value. Also figure 3 (c) shows that

sin(β − α) in the positive range is required to be very close to 1 for θl ≃ 0 (Type-II and

Lepton-specific 2HDMs).

According to figures 3 (d) and (e), although the surviving samples favor a small value

of tanβ, the value of χ2 can be smaller than SM for a large tanβ when θd and θl have the

proper large values, such as tanβ =13.5, θd = 1.6 and θl = 2.0.

Figure 3 (f) shows that the samples with smaller χ2 than SM are favored in the range

of 1 < θd < 2 and 0.5 < θl < 2.2. Thus, it is possible that Type-I 2HDM gives the smaller

value of χ2 than SM. The minimal value of χ2 (81.0) appears at θd = 1.7 and θl = 1.3.

In figure 4, the surviving samples are projected on the planes of Higgs couplings. For

125.5GeV ≤ mH < 128GeV, the heavy CP-even Higgs gives the important contributions

to χ2. Therefore, there may be sizable deviations from SM for the couplings hV V , huū,

hdd̄ and hll̄. For mH ≥ 128GeV and the hV V coupling with the small absolute value,

the hbb̄ coupling by suppressed properly is required to obtain enough large Br(h → ZZ∗)

and Br(h → γγ). The h → γγ and h → ZZ∗ → 4l have the rather precise measurements

and mass resolution, which play a very important role in the calculations of χ2. The signal

strengths of h → ττ have a large uncertainty and the signals are not important in the

calculations of χ2. In addition, the mass resolution of h → ττ is 20GeV for the analysis

of ATLAS [54, 55] and 25GeV for CMS [66], CDF [71] and D0 [72]. Therefore, H and A

with 100 ∼ 150GeV may contribute to χ2. The constraints on hτ τ̄ is much more weaken

than huū and hdd̄

For the samples with smaller χ2 than SM, there is the same sign for the light CP-even

Higgs couplings to fermions and gauge bosons. Compared to SM, the hV V , huū and hdd̄

couplings are suppressed, and the suppressions are allowed to be as low as 0.94, 0.90 and

0.83, while the absolute value of Rhll̄ are allowed to be as high as 1.2.
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Figure 5. The scatter plots of surviving samples in scenario B projected on the planes of sin(β−α)

versus mh and tanβ versus mh. The crosses (red) and bullets (blue) samples respectively have the

values of χ2 in the ranges of 81.5 ∼ 82.2 and 82.2 ∼ 87.7, where the three values are respectively

the minimal value of χ2 in scenario B (χ2
Bmin), the SM value (χ2

SM) and the value of χ2 at 2σ level

in scenario B (χ2
B2σ).
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Figure 6. Same as figure 5, but projected on the planes of tanβ versus mH± and tan(β − θd)

versus mH± .

4.2 Scenario B

Now we discuss the scenario B in which the mass of the heavy CP-even Higgs H is fixed as

125.5GeV. In figure 5, we project the surviving samples with χ2 being within 2σ range on

the planes of sin(β−α) versus mh and tanβ versus mh, respectively. The left panel shows

that, for 125GeV ≤ mh ≤ 125.5GeV, the absolute values of sin(β − α) can be allowed
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Figure 7. Same as figure 5, but projected on the planes of sin(β − α) versus mA and mA versus

mH± .

to be as high as 1, which denotes hV V couplings approach to SM while HV V approach

to 0. Such light CP-even Higgs can give the important contributions to χ2. The minimal

absolute value of sin(β − α) decreases with mh in principle. The light CP-even Higgs can

be allowed to be as low as 20GeV for -0.25 < sin(β − α) ≤ 0. To be consistent with LEP

constraints, the suppression of hbb̄ coupling is also required for some surviving samples in

addition to the small absolute value of sin(β−α). In addition, the small values of χ2 favor

-0.25 < sin(β − α) < 0.38, which denotes that the absolute values of HV V couplings are

close to SM. The right panel shows that tanβ is required to be larger than 4 for mh <

60GeV, which is due to the constraints of the observed Higgs signals on the opening decay

H → hh.

In figure 6, the surviving samples are projected on the planes of tanβ versus mH± and

tan(β−θd) versus mH± . The left panel shows that the surviving samples favor 1 < tanβ <

7 and allow tanβ > 40 for the proper mH± . Similar to scenario A, tanβ is required to be

larger than 1 for the whole range of mH± , and larger than 3 for the mH± < 100GeV. The

right panel shows that the surviving samples favor -1 < tan(β− θd) < 2.5. The constraints

from the flavor observables require the absolute value of tan(β− θd) to be smaller than 2.5

for mH± < 100GeV, and allow tan(β − θd) to be larger than 10 for mH± > 600GeV. The

samples with smaller χ2 than SM favor tan(β − θd) to be in the range of −0.5 ∼ 0 for the

large mH± and be enhanced for mH± around 100GeV.

In figure 7, the surviving samples are projected on the planes of sin(β − α) versus

mA and mA versus mH± . Similar to scenario A, the CP-odd Higgs A does not give the

very visible effects on the χ2 around 125.5GeV compared to the other mass ranges. The

on-shell decay H → AA is kinematically forbidden, which hardly affects the observed Higgs

signals. The right panel shows that most of samples lie in the region where there is small

mass difference between mA and mH± , and some other samples lie in the small region
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Figure 8. The scatter plots of surviving samples in scenario B projected on the planes of mixing

angles. The χ2 values of the crosses (red), bullets (green) and inverted triangles (blue) samples are

respectively in the ranges of χ2
Bmin ∼ χ2

SM and χ2
SM ∼ χ2

B2σ for 20GeV ≤ mH < 125GeV, and

χ2
SM ∼ χ2

B2σ for 125GeV ≤ mH < 125.5GeV. The χ2 values of the circle (black) is χ2
Bmin.
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Figure 9. Same as figure 8, but only the samples with 20GeV ≤ mh < 120GeV projected on

the planes of RHV V versus RHuū, RHV V versus RHdd̄ and RHV V versus RHll̄. RHV V and RHff̄

denote the heavy CP-even Higgs couplings to gauge bosons and ff̄ (f = u, d, l) normalized to the

SM couplings, respectively.
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where mH± is around 100GeV and has large mass difference from mA. Assuming m2
12 = 0,

Baradhwaj Coleppa et al. have shown the strong correlations between mA and mH± in

the Type-II 2HDM [16]. Here m2
12 is taken as various values, the strong correlations still

exist but the latter region becomes slightly wider than [16]. The main reason is from

the constraints of ∆ρ, which is also studied in detail in [73]. Since there is small mass

difference between mh and mH for the scenario B, mA and mH± should have the small

mass difference to cancel the contributions of mh and mH to ∆ρ. However, for mH±

is around mH , the contributions to ∆ρ from (mh, mH±) and (mA, mH±) loops can be

canceled by the (mh, mH) and (mA, mH) loops. Thus mA is allowed to vary from 70GeV

to 700GeV for mH± around 100GeV.

The contributions of the light CP-even Higgs boson to χ2 can be sizably suppressed for

mh < 125GeV. Therefore, we classify the surviving samples into groups: 20GeV ≤ mH <

125GeV and 125GeV ≤ mH ≤ 125.5GeV. In figure 8, the two groups of surviving samples

are projected on the planes of mixing angles. Figure 8 (a) shows that the samples with

tanβ > 20 require sin(β−α) to approach to 0. Figure 8 (b) shows that, for mh < 125GeV,

θd can loose the constraints on sin(β − α) sizably. For example, for θd ≃ 0 (Type-II and

Flipped 2HDMs), sin(β−α) is allowed to vary from -0.1 to 0.06. While for θd ≃ π
2 (Type-I

and Lepton-specific 2HDMs), sin(β − α) is allowed to vary in the range of −0.5 ∼ 0.44.

Further, figure 8 (c) shows that θl ≃ 0 (Type-II and Lepton-specific 2HDMs) also gives the

strong constraints on sin(β − α), -0.18 ≤ sin(β − α) ≤ 0.12.

Similar to scenario A, figures 8 (d) and (e) show that, although the surviving samples

favor 1 < tanβ < 7, the value of χ2 can be smaller than SM for a large tanβ when θd
and θl have the proper large values. Even for tanβ = 41, the value of χ2 can be smaller

than SM for θd = 0.7 and θl = 2.1. Figure 8 (f) shows that the samples with smaller than

SM are in the range of 0.5 < θd < 2 and 0.5 < θl < 2.2. The minimal value of χ2 (81.5)

appears at θd = 1.8 and θl = 1.1.

In figure 9, the surviving samples with 20GeV ≤ mh < 125GeV are projected on the

planes of Higgs couplings. Similar to scenario A, for the HV V coupling with the small

absolute value, the Hbb̄ coupling by suppressed properly is required to obtain enough large

Br(h → ZZ∗) and Br(h → γγ). The constraints on hτ τ̄ is much more weaken than huū

and hdd̄. For the samples with smaller χ2 than SM, there is the same sign for the heavy

CP-even Higgs couplings to fermions and gauge bosons. Compared to SM, the HV V ,

Huū and Hdd̄ couplings are suppressed, and the suppressions are allowed to be as low as

0.94, 0.86 and 0.77, respectively. However, the Hll̄ coupling can be allowed to have a 10%

enhancement, or 17% suppression.

In table 3 we present the detailed information for the four samples with the minimal

values of χ2 in the scenario A (125.5GeV ≤ mH < 128GeV and 128GeV ≤ mH ≤ 900GeV)

and scenario B (20GeV ≤ mh < 125GeV and 125GeV ≤ mh ≤ 125.5GeV). For the four

cases, θd and θl of the samples with the minimal χ2 are in the ranges of 1.5 ∼ 1.8 and

1.0 ∼ 2.0. For the scenario A with 128GeV ≤ mH ≤ 900GeV and scenario B with 20GeV

≤ mh < 125GeV, the absolute values for the 125.5GeV Higgs couplings to V V approach

to SM, and the couplings to uū and dd̄ have around 10% suppressions compared to SM.

The minimal χ2 values of the two cases are respectively 81.0 and 81.5, which are marginally
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scenario A scenario A scenario B scenario B

mh (GeV) 125.5 125.5 99.3 125.4

mH (GeV) 126.1 259.9 125.5 125.5

mA (GeV) 258.9 217.4 598.8 342.3

mH± (GeV) 139.1 242.8 612.1 347.1

m2
12 (GeV) 900 10000 0.01 900

sin(β − α) 0.172 -0.973 0.222 -0.042

tanβ 16.48 3.57 3.91 17.07

θd 1.71 1.63 1.78 1.53

θl 1.93 1.03 1.06 1.30

χ2 83.3 81.0 81.5 83.0

RhV V 0.172 -0.973 0.222 -0.042

Rhuū 0.231 -0.909 0.472 0.016

Rhdd̄ 0.371 -0.895 0.702 -0.020

Rhll̄ 0.608 -1.04 -0.033 -0.260

RHV V 0.985 0.229 0.975 0.999

RHuū 0.975 0.502 0.918 1.002

RHdd̄ 0.950 0.561 0.866 1.000

RHll̄ 0.909 -0.040 1.033 0.990

RAuū -0.061 -0.280 -0.256 -0.059

RAdd̄ 0.202 0.341 0.491 0.022

RAll̄ 0.443 -0.277 -0.262 -0.217

Table 3. The detailed information of the four samples with the minimal values of χ2 in the

scenario A (125.5GeV ≤ mH < 128GeV and 128GeV ≤ mH ≤ 900GeV) and scenario B (20GeV

≤ mh < 125GeV and 125GeV ≤ mh ≤ 125.5GeV). Where RAuū, RAdd̄ and RAll̄ are from the

interactions,
mf

v
RAff̄ Af̄γ5f with f = u, d, l.

smaller than SM value (82.2). This implies that the A2HDM can provide marginally better

fit to the observed Higgs signals than SM at the expense of additional parameters. Similarly,

the minimal dilaton model can not provide much better fit to LHC and Tevatron Higgs

data than SM [74]. The fit given by little Higgs models at most approaches to SM for very

large scale f [75–77], while Next-to-Minimal Supersymmetric Standard Model [78–80] can

give much better fit than SM.

After Moriond 2013, the CMS diphoton data has changed drastically, which is no

longer enhanced. In addition to the four typical 2HDMs, the Higgs data after Moriond

2013 have been used to examine the A2HDM in refs. [23, 24, 30, 32]. Refs. [32] assumes the

both Higgs doublet fields (Φ1 and Φ2) to couple to the up-type quarks, down-type quarks

and charged leptons with aligned Yukawa matrices. However, refs. [23, 24, 30] and this
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paper use a freedom to eliminate the coupling of up-type quarks to Φ1. In our discussions,

we consider more relevant theoretical and experimental constraints than refs. [23, 24, 30].

Our paper shows that the theoretical constraint from perturbativity disfavors a large tanβ

much more visibly than ref. [24]. In our analysis, we consider the 73 Higgs signal strengths

observables from ATLAS, CMS, CDF and D0 collaborations as well as the four Higgs

mass measurements from ATLAS and CMS, which are more than refs. [23, 24, 30]. The

HiggsSignals-1.1.0 is employed to takes into account the signal efficiencies, experimental

mass resolution and uncertainties. Our paper shows that the Higgs couplings to gauge

bosons and fermions are not more strongly constrained than refs. [23, 24, 30, 32]. Refs. [23,

30] focus on the constraints of the Higgs signals on the Higgs couplings to gauge bosons

and fermions. In addition to these Higgs couplings, we also give the allowed parameters

spaces in detail, including tanβ, sin(β − α), θd, θl, the neutral and charged Higgs masses,

and show explicitly that the proper θd can loose the constraints on sin(β − α), tanβ and

mH± sizably. An interesting finding is that when θd and θl have the proper large values,

the value of χ2 can be smaller than SM for a large tanβ (even tanβ = 41), although the 2σ

Higgs data and the relevant theoretical and experimental constraints favor a small tanβ.

5 Conclusion

In this note, we studied the implications of the latest Higgs signals on a two-Higgs-doublet

model with the alignment of the down-type quarks and charged lepton Yukawa coupling

matrices. In our analysis, we consider the theoretical constraints from vacuum stability,

unitarity and perturbativity as well as the experimental constraints from the electroweak

precision data, flavor observables and the non-observation of additional Higgs at collider.

We obtained the following observations:

(i) In the scenario A (mh is fixed as 125.5GeV), sin(β−α) is allowed to be in the range

of −1 ∼ 1 for 125.5GeV ≤ mH < 128GeV. For mH ≥ 128GeV, sin(β−α) is allowed

to be in the ranges of 0.83 ∼ 1 and −1 ∼ −0.89 for the proper θd, but be very close

to 1 or -1 for θd = 0. Also, the mixing angle θd can loose the constraints on tanβ

and mH± sizably. Although the surviving samples favor 1 < tanβ < 5, the value of

χ2 can be smaller than SM for a large tanβ when θd and θl have the proper large

values. mH± is allowed to be below 100GeV for the absolute value of tan(β − θd) is

very small, and the samples with the smaller χ2 than SM favor 0.5 < tan(β − θd) <

0 for mH± > 150GeV.

(ii) In the scenario B (mH is fixed as 125.5GeV), sin(β − α) is allowed to be in the

range of −1 ∼ 1 for 125GeV ≤ mh ≤ 125.5GeV, and the minimal absolute value of

sin(β − α) decreases with mh in principle. The light CP-even Higgs can be allowed

to be as low as 20GeV for -0.25 < sin(β − α) ≤ 0. The constraints of the observed

Higgs signals on the opening decay H → hh require tanβ to be larger than 4 for

mh < 60GeV. Similar to scenario A, the mixing angle θd can loose the constraints

on sin(β − α), tanβ and mH± sizably. For mh < 125GeV, θd around π
2 can allow

sin(β−α) to be in the range of −0.5 ∼ 0.44. Although the surviving samples favor 1
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< tanβ < 7, the value of χ2 can be smaller than SM for tanβ > 40 when θd and θl
have the proper large values. mH± is allowed to be below 100GeV for the absolute

value of tan(β − θd) is smaller than 2.5, and the samples with the smaller χ2 than

SM favor -0.5 < tan(β − θd) < 0 for the large mH± .

(iii) The model can provide the marginally better fit to available Higgs signals data than

SM. For mh = 125.5GeV, the absolute values of hV V , huū and hdd̄ couplings are

respectively allowed to be as low as 0.94, 0.90 and 0.83, and θd and θl are favored in

the ranges of 1 ∼ 2 and 0.5 ∼ 2.2. For mH = 125.5GeV, the HV V , Huū and Hdd̄

couplings are respectively allowed to be as low as 0.94, 0.86 and 0.77, and θd and θl
are favored in the ranges of 0.5 ∼ 2 and 0.5 ∼ 2.2.
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